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D.  Approach 
D-1  Approach Aim 1 - Convert & extend the FunSeq somatic variant pipeline for germline 
prioritization 
D-1-a  Preliminary results for Aim 1 
D-1-a-i  We have experience in annotating non-coding regions of the genome, including 
both TF-binding sites and non-coding RNAs 
Our proposed work is based on our past experience in non-coding annotation, as part of our 10-
year history with the ENCODE and modENCODE projects. Our TF work includes the 
development of methods to define the binding peaks of TFs\cite{19122651}, prediction of a TF’s 
target genes\cite{22039215}, and new machine learning techniques\cite{19015141}. 
Furthermore, we developed methods that integrate ChIP-seq, chromatin, conservation, 
sequence and gene annotation data to identify gene-distal enhancers\cite{20126643}, which we 
have partially validated\cite{22950945}. We also constructed linear and non-linear models that 
utilize TF binding and histone modification signals to accurately predict the transcriptional 
output of a gene in different cell types of several organisms including yeast, worm, fly, and 
human. \cite{22060676,21177976,21324173,21926158,22955978} We have also constructed 
regulatory networks for human and model organisms\cite{22955619}\cite{21430782}, and 
completed many analyses on them (Fig 
1)\cite{22125477,21177976,20439753,15145574,14724320,17447836,15372033,19164758,164557
53,22955619,22950945,18077332,24092746,23505346,21811232,2160691,21253555}. 
Furthermore, we conducted large-scale multi-organism regulatory and coexpression network 
comparisons, along with transcriptome and pseudogene lineage 
analyses\cite{25164757,25164755,25157146,21253555,25249401}. We also have extensive 
experience conducting integrated analyses of RNA-Seq datasets generated by the ENCODE, 
modENCODE, BrainSpan and exRNA 
consortia\cite{22955616,22955620,21177976,0000001,0000002}. In particular, we developed 
RSEQtools and IQseq for gene model creation and transcript 
quantification\cite{21134889,22238592}. We also developed tools that specifically analyze 
features of ncRNAs, including incRNA and ncVAR for finding and characterizing these 
elements\cite{21177971, 21596777}. 
D-1-a-ii  We have experience in allelic analyses 
A specific class of regulatory variants is one that is related to allele-specific events. These are 
variants that are associated with allele-specific binding (ASB), particularly of transcription 
factors or DNA-binding proteins, and allele-specific expression 
(ASE)\cite{20567245,20846943}. We have previously developed a tool, 
AlleleSeq,\cite{21811232} for the detection of candidate variants associated with ASB and ASE. 
Using this we have generated comprehensive lists of allelic variants for ENCODE and 1000 
Genomes and found that allelic variants are under differential selection from non-allelic 
ones\cite{22955619,24092746}\cite{22955620,22955619,24092746}. By constructing 
regulatory networks based on ASB of TFs and ASE of their target genes, we further revealed 
substantial coordination between allele-specific binding and expression\cite{22955619}. 
Furthermore, we have constructed a personal diploid genome and transcriptome of NA12878 
on\cite{0000003}. 
D-1-a-iii  Experience in relating annotation to variation: the FunSeq pipeline 



We have extensively analyzed patterns of variation in non-coding regions, along with their 
coding targets\cite{21596777,22950945,22955619}. We used metrics, such as diversity and 
fraction of rare variants, to characterize selection on various classes and subclasses of functional 
annotations\cite{21596777}. In addition, we have also defined variants that are disruptive to a 
TF-binding motif in a regulatory region\cite{22955616}. Further studies showed relationships 
between selection and protein network topology (for instance, quantifying selection in hubs 
relative to proteins on the network periphery\cite{18077332,23505346}). 

In recent studies\cite{24092746,25273974}, we have integrated and extended these 
methods to develop a prioritization pipeline called FunSeq (Fig 2). It identifies sensitive and 
ultra-sensitive regions (i.e., those annotations under strong selective pressure, as determined 
using genomes from many individuals from diverse populations). FunSeq links each non-coding 
mutation to target genes, and prioritizes such variants based on scaled network connectivity. It 
identifies deleterious variants in many non-coding functional elements, including TF binding 
sites, enhancer elements, and regions of open chromatin corresponding to DNase I 
hypersensitive sites. It also detects their disruptiveness in TF binding sites (both loss-of and 
gain-of function events). Integrating large-scale data from various resources (including 
ENCODE and The 1000 Genomes Project) with cancer genomics data, our method is able to 
prioritize the known TERT promoter driver mutations, and it scores somatic recurrent 
mutations higher than those that are non-recurrent. Using FunSeq, we identified ~100 non-
coding candidate drivers in ~90 WGS medulloblastoma, breast and prostate cancer samples 
\cite{24092746}. We have also applied our method to investigate non-coding mutation patterns 
in subtypes of gastric cancer\cite{submitted}. Drawing on this experience, we are currently co-
leading the ICGC PCAWG-2 (analysis of mutations in regulatory regions) group. 
 
D-1-b  Research plan for Aim 1 
We plan to convert and extend the current FunSeq prototype from its focus on somatic variants 
to allow the identification of rare germline variants associated with high functional impact (Fig 
3). Our new pipeline is called eleVar. It will have several features tailoring it to germline 
analysis, including 1) identifying functional sites among the conserved regions of the human 
genome and ncRNA regulatory elements; 2) investigating the allelic elements; and 3) taking into 
account network connectivity. 
D-1-b-i  Consistently prioritizing non-coding elements from polymorphism data 
In order to define rare variants with highly impactful events, we will use both intra-human 
variation data (from The 1000 Genomes Project) as well as cross-species evolutionary 
conservation (using classical measures such as GERP score\cite{15965027}). 
 
We will first update the TF binding non-coding elements from the original FunSeq approach. 
Here, we will use the better enhancer definition provided by the Epigenome Roadmap 
\cite{25693563,25533951,25693566}, and more recently from ENCODE. In particular, we will 
develop a new machine learning framework that utilizes pattern recognition within the signal of 
various epigenomic features and transcription of enhancer RNA (eRNA) to predict active 
enhancers across different tissues. 
Second, RNA regulatory elements will be added as prioritization features in a way that is 
consistent with the approach taken for TF binding sites. Specifically, we will mine RNA 
interactions with proteins/miRNAs from publicly available data, such as CLIP-Seq, CLASH and 
computational predictions (TargetScan) to create a compendium of biochemical interactions 
with RNA\cite{25416797, 24297251, 20371350, 23622248, 21909094}. Our initial analyses 
indicate that some binding sites are even more sensitive to variation than coding sequences. In 



addition, we will incorporate aspects of RNA 3D-structure. Our initial survey indicates that 
more rigid RNA structures, such as stems, are under higher selective pressure than other RNA 
regions, and that those variants that cause a larger free energy change in terms of structure are 
rarer in human populations. We will define sensitive regions based on folding free energy and 
folding z-score cutoffs that are enriched for rare genetic variants. 
D-1-b-ii  Identifying high-impact mutations: breaking & creating motifs 
For impactful events at TF binding sites, we will use motif breakers and formers to define loss-
of- and gain-of-function events, respectively, as these events are more likely to have deleterious 
consequences\cite{23512712,24092746,21596777,23348503,23348506,23530248,23887589}. 
Variants altering the position-weight matrix (PWM) scores for TF binding sites could potentially 
either decrease (loss-of-function) or increase (gain-of-function) the binding strength of TFs. A 
key improvement that we plan to utilize is to employ ancestral alleles to get a more accurate 
determination of these events. 
In a way that is consistent with our means of searching for motif-breaking variants in TF 
binding sites, we will identify motif-breakers in specific RNA binding motifs. Studies of RNA 
processing and function have identified key motifs associated with events ranging from RNA 
splicing to chemical RNA base modifications\cite{18369186}. We have found that intron-exon 
junctions, polyadenylation sites, and intron lariat structures are much more sensitive to 
mutation than other genomic regions, particularly for motif-breaking variants. For 
miRNA/protein bindings sites, we will likewise use the specific binding sites of the microRNAs 
and whether the respective mutation moves closer to or further from the canonical pattern. 
D-1-b-iii  Variant prioritization based on allelic activity 
Allele-specific variants potentially provide a most direct readout of the functional impact of a 
variant. For example, if we can associate the differential binding effect of a particular 
transcription factor with different alleles of an SNV, then we can identify loci that have potential 
functional impacts in regulation. However, because allelic variants are enriched for rare 
variants\cite{24037378}, it will be difficult to match the specific variants in a personal genome 
of interest to prioritize against those earlier determined to be allelic in a functional genomics 
experiment on a cell line. Hence, instead of prioritizing by the direct overlap of allelic variants, 
we need to prioritize by the presence of allelic variants within 'allelic elements', or allelic regions 
in the genome (Fig 4). 
We derive allelic elements by first identifying allelic variants from hundreds of individuals. 
These individuals will be amassed from The 1000 Genomes Project\cite{23128226}. We will 
match them with their corresponding RNA-Seq and ChIP-seq experiments from multiple 
disparate studies, such as gEUVADIS\cite{24037378} and ENCODE\cite{22955616}. Because 
these separate studies typically have various inconsistencies in terms of tools and parameters 
used in processing their data, we have to reprocess and harmonize the heterogeneous data and 
detect allelic variants in a uniform fashion. Also, while the conventional way to detect allelic 
variants is using the binomial test, previous studies have found that the distributions of the 
allelic ratios in ChIP-seq and RNA-seq experiments have been empirically observed to give a 
broader, or an ‘overdispersed’, distribution than a binomial 
distribution\cite{25223782,20671027,22499706}. To identify and remove problematic "outlier" 
datasets and to account for overdispersion of read distributions, we will extend our detection 
pipeline (AlleleSeq) to include the calculation of an overdispersion parameter for each ChIP-seq 



and RNA-seq dataset; the beta-binomial test (which parametrizes the overdispersion) will be 
used to detect allelic variants instead of the binomial test. 
Subsequently, allelic variants (rare and common) identified across hundreds of genomes can be 
aggregated into ‘allelic genomic elements’. Each element will be assigned an ‘allelicity’ score 
based on not only its enrichment of allelic variants within the element (in comparison to 
accessible variants within the elements and having sufficient coverage to make an allelic activity 
call), but also across the number of individuals having allelic variants in a consistent allelic 
direction. The scoring system by element is useful in two ways: (1) it allows continuous ranking 
of genomic elements based on its allelic impact across multiple individuals (as opposed to 
defining a threshold to make a binary decision of whether an element is ‘allelic’) and (2) it 
enables incorporation of ASE and ASB into the main prioritization scheme; input variants (even 
those which are rare, but lie in highly-ranked allelic genomic elements) will be upweighted 
according to their scores. 
D-1-b-iv  Identifying likely target genes for distal regulatory elements & assessing the 
impact of variants on network connectivity 
To interpret the likely functional consequences of non-coding variants, we will comprehensively 
define associations between many non-coding regulatory elements and their target protein-
coding genes. The correlation between enhancer and promoter activity across the ENCODE cell-
lines and different tissues will be used to identify significant associations between regulatory 
elements and candidate target genes, as done by Yip et al\cite{20126643}. A single regulatory 
variant may affect the expression of multiple genes, either because it directly regulates multiple 
genes or because the target gene is itself a regulatory factor. 
We will use the regulatory element-target gene pairs to connect the non-coding variants into a 
variety of networks -- e.g. regulatory network, metabolic pathways, etc. We will examine their 
network centralities, such as hubs, bottlenecks and hierarchies, as we know that disruption of 
highly connected genes or their regulatory elements is more likely to be 
deleterious\cite{23505346,18077332}. For RNA regulatory elements, we will also use 
protein/miRNA biochemical interactions to interpret the network context of our variants, using 
RNA molecules as nodes and RNA-protein and miRNA-RNA interactions as edges. We will 
prioritize variants that are bound by multiple factors, and those within whole RNAs that are 
bound by many RNA-binding proteins. 
D-1-b-v  We will use a unified weighted scoring scheme for combining all eleVAR 
features to prioritize variants 
To integrate the various features mentioned above, we plan to elaborate the weighting system in 
FunSeq.\cite{25273974}. Constrained by selective pressure, common variations tend to arise in 
functionally unimportant regions. Thus, features that are enriched with common 
polymorphisms are less likely to contribute to the deleteriousness of variants and are weighted 
less. In general, features can be classified into two classes: discrete (e.g., within or outside of a 
given functional annotation) and continuous (e.g., the PWM change in ‘motif-breaking’). We will 
weigh these two sets of features with different strategies. 
 
For each discrete feature 𝑑, such as sentitive region overlap, ultraconserve region overlap, and 
HOT region overlap, we calculate the probability 𝑝! that it overlaps with common 
polymorphisms. We then calculate the information content to denote the value of discret 



features 𝑠! = 1 + 𝑝! ∗ 𝑙𝑜𝑔!𝑝! + (1 − 𝑝!)   ∗ 𝑙𝑜𝑔!(1 − 𝑝!) + 𝜃!, where 𝜃!~𝑁(0,𝜎) and can be used 
for score optimization. 
 
The situation is more complex for continuous features, as different feature values have different 
probabilities of being observed in natural polymorphisms. Thus, one weight cannot suffice for 
varied feature values. For a continuous feature 𝑐 , such as motif gain, motif break and GERP etc, 
which is associated with a value 𝑣!, the probability 𝑝!

!!  is firstly estimated using common 

variants: 𝑝!
!! = #!"##"$  !"#$"%&  !!!!

#!"##"$  !"#$"%&
. The score of continuous feature is defined as 𝑠!

!! = 1 + 𝑝!
!! ∗
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!! + (1 − 𝑝!

!!)   ∗ 𝑙𝑜𝑔!(1 − 𝑝!
!!). We then fit a smoothing curve and estimate parameters 𝜃! ’s 

according to empirical distribution 𝑆!  ~  𝑣!.  
The eleVAR score (eS) is calculated by summing up the values of all its features  𝒆𝑺 = 𝑠!! +
𝑠!
!!

! = 𝑠(𝜃). We will also consider the feature dependency structure when calculating the 
scores (e.g., removing redundant features or performing dimension reduction techniques). 
 
 
D-2-b-i  Statistical framework for parameter tuning using Bayesian updates 
The initial feature parameter 𝜽 (𝜽!,𝜽!,… ,𝜽!) (given 𝑚 number of features) assigned in D-1-b-v 
will be further optimized with newly available “gold standard” datasets. We plan to tune these 
parameters using an incremental Bayesian learning strategy. For a variant 𝐴, given eleVAR score 
𝑒𝑆 (equation 3 in D-1-b-v), the probability that 𝑣 is functional (𝑦! = 1 designates a positive 
result, whereas 𝑦! = 0 denotes a negative result) follows a logistic function 𝑃 𝑦! = 1 𝜽, 𝑒𝑆 =
   !
!  !!"# !!  ∗   !!!!

= !
!!!"#  (!!∗( ! 𝜽 !!)

 (𝑘, 𝑎 are scaling parameters). To update 𝜃 with training 

data 𝒀, we implement Bayes’ rule:  𝑃(𝜽|𝒀, 𝒆𝑺)   ∝   𝑃(𝒀|𝜽, 𝐞𝐒)𝑃(𝜽).  
The likelihood ratio is defined as: 𝑄 = !(!|!!"#!#$%&)

!(!|!!"##$%&)
 , and then MCMC (Monte Carlo Markov 

Chain) will be used to find the most probable 𝜽. The updated 𝜽 will then be used as tuned 
parameters in eleVAR to prioritize variants. The procedure will be iterated in several rounds. In 
the first round of tuning, feature weights obtained in D-1-b-v will be used to construct priors 
𝑃(𝜽). In subsequent rounds, the updated weights will be set as new priors. 
 
D-2-b-iii  Generating an initial list of prioritized variants & then running them through 
eleVAR 
We’ll get rare variants from 1000G Phase 3. [[MG: remove to PCAWG]][[SKL: to cut this part? 
D-1 has already used 1KG common SNP to train parameters, the original text focus on cancer 
and tissue specific stuff, which is nothing with current context, So cut this part and go to D-2-b-
iv?]] 
We will run eleVAR on the rare variants resulting from our variant calling on both PCAWG and 
on the prostate compendium whole-genome sequences.  
 
D-2-b-iv  Round 1 of tuning based on publicly available datasets 
To perform the initial round of performance assessment and parameter tuning, we plan to use 
publicly available datasets from various resources. These datasets include known disease-
causing mutations from molecular studies, high throughput reporter assays on enhancer 
activities and recurrence of cancer rare mutations in the region of interest involving germline 
and potentially somatic variants. 



The Human Gene Mutation Database (HGMD)\cite{12754702} and ClinVar\cite{24234437} 
catalogue large numbers of regulatory disease-causing mutations discovered in molecular 
studies. Several high-throughput technologies have also been developed to test the phenotypic 
impacts of non-coding genomic variants. For example, Kwasnieski et al used CRE-
seq\cite{23129659} to assay over 1,000 single- and double-nucleotide mutations in promoter 
regions. Kheradpour et al.\cite{23512712} used MPRA to test variants affecting regulatory 
motifs in over 2,000 human enhancers. We will utilize these datasets to perform comparisons 
with other variant prioritization methods, such as CADD\cite{24487276}, to obtain a 
preliminary evaluation of method performance. We will then tune our parameters using the 
scheme described above. 
 
D-2-b-v  Round 2 of tuning using high-throughput experiments done in this project 
We expect an average of ~40K rare germline variants per genome\cite{23128226}. Since they 
rarely recur at the exact same position, we anticipate a prioritized list of ~8M variants (=40K * 
250 genomes, based on the the expected size of the prostate compendium). We will select 500 
functional regions of appreciable size that contain highly ranked variants. Assuming ~8M 
variants are distributed evenly across the human genome, taking an average element size of 3kb, 
the number of variants per element will be ~4. Variants on the same element are expected to 
have different functional impacts. For each element, we will prioritize at least one of these 
variants to be of high impact, and the remaining variants to be of a lower impact. Specifically, we 
will have a total of 1000 variants (500 with a high impact and 500 with a low impact). 
Subsequent tuning and refinement of the eleVAR parameters will be based on further 
experimental characterization of these 1000 variants (500 highly prioritized and 500 lowly, 
respectively). We will validate these variants through functional genomic screens using the 
[[change cloneseq]] [[SKL:Done]]STRO-seq technology coupled with luciferase reporter assays. 
Overall, this refinement will be accomplished in two rounds, each round per year, as detailed in 
Aim 3 and the timeline (Fig 6). Finally, during the last year of the proposed work, we will 
perform a careful assessment of our model. We will again prioritize our full list of variants and 
select a final set of 200 top ranked variants for an unbiased validation. This will allow us to 
construct a precise ROC curve in order to measure the accuracy of our predictions. 
 


