

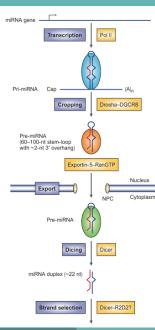
### **Encyclopedia of short RNAs**

A. Breschi - R. Murad

ENCODE AWG call

December 11th, 2015







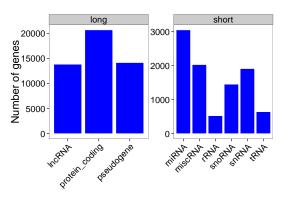

#### What are miRNAs?

- non-coding RNAs
- small (approx 22 nt)
- Are derived from a primary transcript which carries one or more hairpin structures which are cleaved to produce the mature miRNA

Kim, 2005, Nat. Rev.



### ENCODE3 CSHL shortRNA-seq samples - ENCSR171CXD


| Human Cell Lines       |                             |     |  |  |  |  |
|------------------------|-----------------------------|-----|--|--|--|--|
| Cell                   | Description                 | Rep |  |  |  |  |
| A375                   | melanoma                    | 2   |  |  |  |  |
| GM12878                | lymphoblastoid              | 2   |  |  |  |  |
| HT1080                 | fibrosarcoma                | 2   |  |  |  |  |
| K562                   | erythroleukemia             | 2   |  |  |  |  |
| Karpas-42              | B cell non-Hodgkin lymphoma | 2   |  |  |  |  |
| NCI-H460               | lung cancer                 | 4   |  |  |  |  |
| Oci-Ly-7               | B cell non-Hodgkin lymphoma | 2   |  |  |  |  |
| SK-MEL-5               | melanoma                    | 2   |  |  |  |  |
| SK-N-DZ                | neuroblastoma               | 4   |  |  |  |  |
| bipolar spindle neuron |                             |     |  |  |  |  |
| hepatocyte             |                             |     |  |  |  |  |
| neural progenitor cell |                             |     |  |  |  |  |
| smooth mu              | scle cell                   | 2   |  |  |  |  |

| Human Fetal Tissues |   |                        |     |  |  |  |  |
|---------------------|---|------------------------|-----|--|--|--|--|
| Neuronal            |   | Others                 |     |  |  |  |  |
| Tissue Rep          |   | Tissue                 | Rep |  |  |  |  |
| cerebellum          | 2 | heart                  | 2   |  |  |  |  |
| diencephalon        | 2 | liver                  | 1   |  |  |  |  |
| frontal cortex      | 2 | lung                   | 2   |  |  |  |  |
| occipital lobe      | 2 | metanephros            | 2   |  |  |  |  |
| parietal lobe       | 2 | skeletal muscle tissue | 1   |  |  |  |  |
| temporal lobe       | 2 | skin of body           | 2   |  |  |  |  |
| spinal cord         |   | thyroid gland          | 2   |  |  |  |  |
|                     |   | tongue                 | 2   |  |  |  |  |
|                     |   | urinary bladder        | 1   |  |  |  |  |
|                     |   | uterus                 | 2   |  |  |  |  |

#### **Annotation**

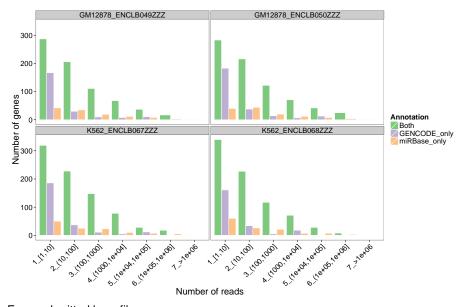
#### **GENCODE** v19 (2013-12-05, hg19)

3,055 hairpins (pre-miRNAs), 20 on chrY



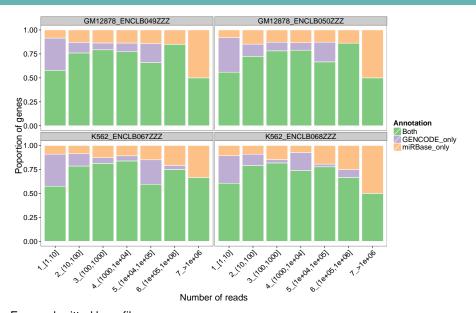
#### miRBase v19 (2012-7-23, hg19)

- 1,595 hairpins (pre-miRNAs),2 on chrY
- 2,233 mature miRNAs
- 638 hairpins can give 2 mature miRNAs


# Comparison between GENCODE and miRBase:

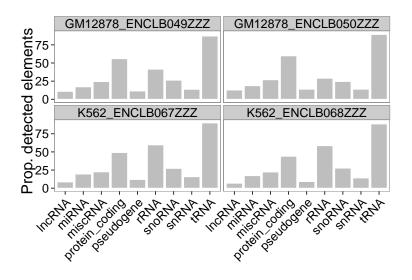
- GENCODE does NOT annotate mature miRNAs
- 1,345 hairpins in common
- 250 miRBase only
- 1,710 GENCODE only

GENCODE annotation of miRNAs [http://uswest.ensembl.org/info/genome/genebuild/ncrna.html) miRNAs are predicted by BLASTN of genomic sequence slices against miRBase sequences. Also peois are used. The BLAST hits are clustered and filtered by E value and the aligned genomic sequence is then checked for possible secondary structure using RNAFold. If evidence is found that the genomic sequence could form a stable hairpin structure, the locus is used to create a miRNA gene model. The resulting BLAST hit is used as supporting evidence for the miRNA gene.


Note: The miRNA identifier and name are only associated to the resulting Ensembl miRNA if they are of the same species.

### Hairpins common to both annotations are the most detected




From submitted bam file

### Hairpins common to both annotations are the most detected



From submitted bam file

### Proportion of detected elements



At least 10 reads to call the element; reads overlapping multiple genes are counted multiple times

### Discussion points

- Pre-miRNA (hairpin) annotation: miRBase vs GENCODE
  - Only GENCODE
  - Only miRBase (remove miRNA from GENCODE and concatenate miRBase to the remaining GENCODE annotation)
  - Union of GENCODE and miRBase, ask GENCODE if this is possible, or implemented in ENCODE for each new GENCODE/miRBase release
- Mature miRNAs annotation: not in GENCODE.
- Elements to report in the matrix:
  - All GENCODE elements (+ miRNAs as decided in the point above)
  - Only miRNA matrix as separate matrix
  - Only short RNA matrix as separate matrix

...

Moving to the new assembly

### UCI-HudsonAlpha miRNA profiling experiments - Human

#### **Human Samples**

| Cell                           | Nanostring<br>done/<br>sequenced | Submitted | Released |
|--------------------------------|----------------------------------|-----------|----------|
| GM12878                        |                                  |           | 2/2      |
| K562                           |                                  |           | 2/2      |
| H1-hESC                        | 0/2                              |           | 2/0      |
| HepG2                          | 0/2                              |           | 2/0      |
| HUVEC                          | 0/2                              | 2         |          |
| HCT116                         | 0/2                              |           | 2/0      |
| LHCN-diff                      | 2/2                              |           |          |
| MCF7                           | 0/2                              | 2/0       |          |
| A549 EtOH treated              | 2/1                              |           |          |
| HTB11                          | 2                                |           |          |
| A549 DXM treated               | 2/1                              |           |          |
| HeLa                           | 0/2                              |           |          |
| A549                           | 0/1                              |           |          |
| GM12891                        | 1/0                              |           |          |
| LHCN cycling                   | 0/1                              |           |          |
| NHEK                           | 0/1                              |           |          |
| H9 hepatocyte                  | 2/2                              |           |          |
| H9 neuron                      |                                  | 2/2       |          |
| H9 smooth muscle               |                                  | 2/2       |          |
| Bipolar spindle neuron         |                                  | 2/2       |          |
| Fibroblast of arm              |                                  | 2/2       |          |
| Induced pluripotent stem cells | 2/2                              |           |          |

| ENTEX sample                   | Nanostring<br>done/<br>sequenced | Submitted | Released |
|--------------------------------|----------------------------------|-----------|----------|
| Thyroid, donor 1               | 1/0                              |           |          |
| Thyroid, donor 2               | 2/0                              |           |          |
| Adrenal gland, donor 1         | 2/0                              |           |          |
| Adrenal gland, donor 2         | 2/0                              |           |          |
| Leg skin, donor 1              | 2/0                              |           |          |
| Leg skin, donor 2              | 2/0                              |           |          |
| Skeletal muscle, donor 1       | 2/0                              |           |          |
| Skeletal muscle, donor 2       | 2/0                              |           |          |
| Adrenal gland (ENTEX<br>49-50) | 2/0                              |           |          |
| Adrenal gland (ENTEX<br>51-52) | 2/0                              |           |          |
| Leg skin (ENTEX 42-43)         | 2/0                              |           |          |
| Leg skin (ENTEX 44-45)         | 2/0                              |           |          |

g done/ nced Submitted raw data R (# of Nanostring reps / # of miRNA-seq reps)

Nanostring done/

sequenced

Released

### UCI-HudsonAlpha miRNA profiling experiments - Mouse

| Mouse miRNA-seq  |                | Forebrain | Midbrain | Hindbrain | Neural tube | Cranioface | Heart | Liver | Limb | Lung | Spleen | Stomach | Thymus | Intestine | Bladder | Adrenals | Kidney | Skeletal muscle |
|------------------|----------------|-----------|----------|-----------|-------------|------------|-------|-------|------|------|--------|---------|--------|-----------|---------|----------|--------|-----------------|
| Se m             | e11.5          | 2         | 2        | 2         | 2           | 2          | 2     | 2     | 2    |      |        |         |        |           |         |          |        |                 |
| Mou              | e14.5          | 2         | 2        | 2         | 2           | 2          | 2     | 2     | 2    | 2    |        | 2       |        | 2         |         |          | 2      |                 |
|                  | P0             | 2         | 2        | 2         | 2           |            | 2     | 2     |      | 2    | 1      | 2       | 2      | 2         | 2       | 2        | 2      | 2               |
| bu               |                | Forebrain | Midbrain | Hindbrain | Neural tube | Cranioface | Heart | Liver | Limb | Fung | Spleen | Stomach | Thymus | Intestine | Bladder | Adrenals | Kidney | Skeletal muscle |
| iostri           | e11.5          | 2         | 2        | 2         | 2           | 2          | 2     | 2     | 2    |      |        |         |        |           |         |          |        |                 |
| Nar              | e13.5          | 2         | 2        | 2         | 2           | 2          | 2     | 2     | 2    |      |        |         |        |           |         |          |        |                 |
|                  |                |           |          |           |             |            |       |       |      |      |        |         |        |           |         |          |        | ( I             |
| snol             | e14.5          | 2         | 2        | 2         | 2           | 2          | 2     | 2     | 2    | 2    |        | 2       |        | 2         |         |          | 2      |                 |
| Mouse Nanostring | e14.5<br>e15.5 | 2         | 2        | 2         | 2           | 2          | 2     | 2     | 2    | 2    |        | 2       |        | 2         |         |          | 2      |                 |
| Mous             |                |           |          |           |             |            |       |       |      |      |        |         |        |           |         |          |        |                 |
| Mous             | e15.5          | 2         | 2        | 2         |             |            | 2     | 2     |      | 2    | 2      | 2       | 2      | 2         | 2       |          | 2      | 2               |

A. Breschi - R. Murad (ENCODE AWG call)

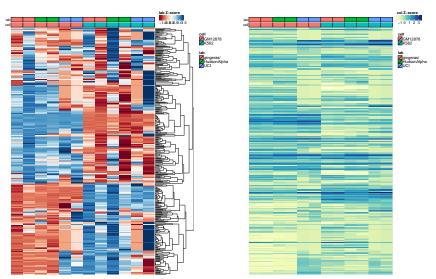
### Integrating NanoString annotation

**Genome**: assembly GRCh38 GCA\_000001405.15 (no-alt analysis set)

- o chr 1-22, X, Y, M
- 42 unlocalized scaffolds from chr 1-5,
  9, 11, 14-17, 22, Y (random)
- 127 unplaced scaffolds (chr unknown)
- EBV genome

**Annotation**: Gencode v23 4,205 miRNAs (same in Gencode v24)

#### NanoString probes:

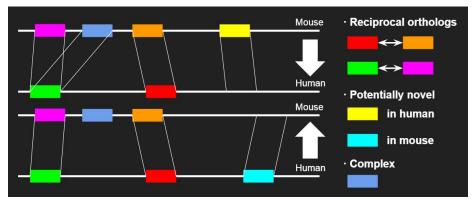

- 19 controls
- 743 miRNAs, of which:
- 80 viruses (of which 34 EBV)
- 654 human, of which:
- 17 are withdrawn from miRBase v21 because part of larger RNA molecules (e.g. tRNAs)
- 637 in miRBase v21 (belonging to 666 pre-miRNAs, see suppl. slides for detail)
- 619/637 in Gencode v23 (belonging to 647/666 pre-miRNAs)

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA\_000001405.15\_GRCh38/seqs\_for\_ alignment\_pipelines.ucsc\_ids/GCA\_000001405.15\_GRCh38\_no\_alt\_analysis\_ set.fna.gz

### Removing protocol variation highlights cell-specific pre-miRNAs

### Scaling within lab

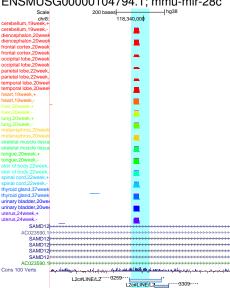
### Scaling within each experiment



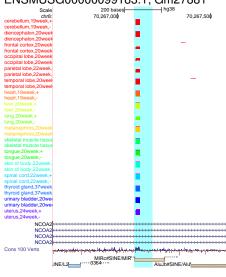

RNA evaluation samples. Filter for expression -> 353 pre-miRNAs

Comparing miRNAs in human and mouse

### Finding orthologous pre-miRNAs between human and mouse


**Human annotation:** Gencode v23, hg38 (GRCh38), 4,205 miRNAs **Mouse annotation:** Gencode vM7, mm10 (GRCm38), 2,202 miRNAs




|       | Reciprocal orth. | Novel (detected) | Complex |  |  |
|-------|------------------|------------------|---------|--|--|
| Human | 504              | 606 (16)         | 103     |  |  |
| Mouse | 504              | 1081 (?)         | 109     |  |  |

### chr8:118339950-118340025:

#### ENSMUSG00000104794.1; mmu-mir-28c



#### chr8:70267089-70267186; ENSMUSG00000099183.1; Gm27881



### Acknowledgments

#### Guigó lab

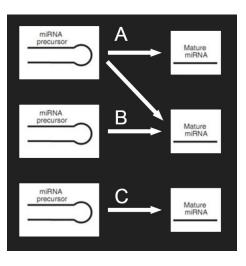
- Roderic Guigó
- Sarah Djebali



#### Gingeras lab

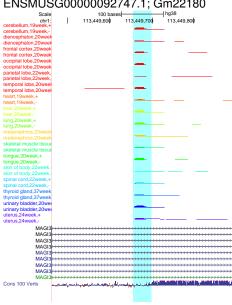
- Tom Gingeras
- Carrie Davis
- Alex Dobin



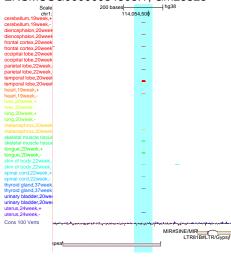

#### Mortazavi lab

- Ali Mortazavi
- Rabi Murad



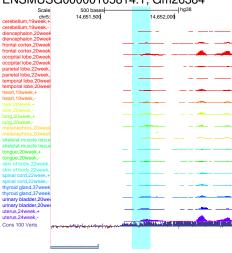

## Suppplementary slides

### Nanostring probes

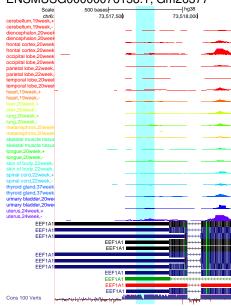



- A: one-to-two
  - 150 cases, involving:
  - 75 primary miRNAs
  - 132 mature miRNAs
  - -> merge and take the max in each sample
- B: many-to-one (up to 10)
  - 176 cases, involving:
  - 162 primary miRNAs
  - 72 mature miRNAs
  - -> duplicate lines
- C: one-to-one
  - 452 cases
- many-to-many
  - 37 cases, involving:
  - 23 primary miRNAs
  - 19 mature miRNAs

#### chr1:113449656-113449699; ENSMUSG00000092747.1; Gm22180

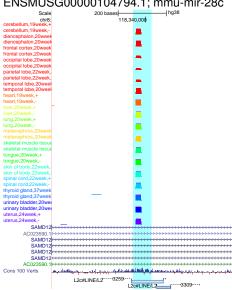



#### chr1:114054427-114054519; ENSMUSG00000084508.1; Gm25325

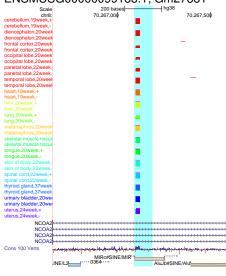



#### chr5:14651717-14651839; ENSMUSG00000076137.1,

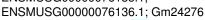
#### ENSMUSG00000105814.1; Gm26384

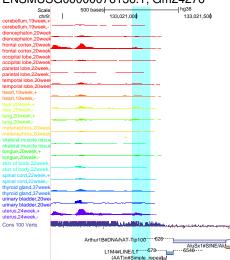



#### chr6:73517589-73517711; ENSMUSG00000076138.1; Gm26377

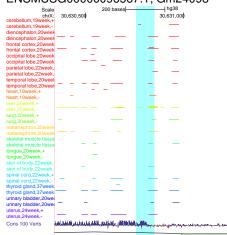



### chr8:118339950-118340025:


#### ENSMUSG00000104794.1; mmu-mir-28c



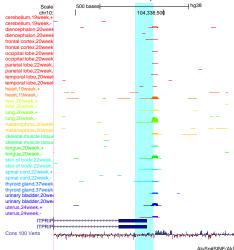

#### chr8:70267089-70267186; ENSMUSG00000099183.1; Gm27881




### chr9:133020972-133021094; ENSMUSG00000076135.1,

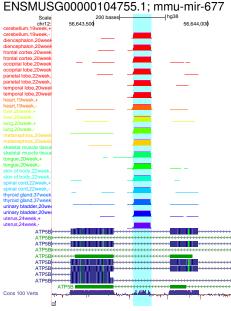


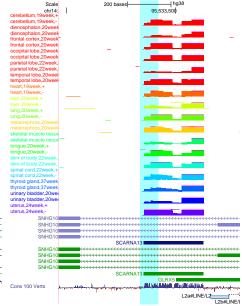



#### chrX:30630758-30630850; ENSMUSG00000096567.1; Gm24098



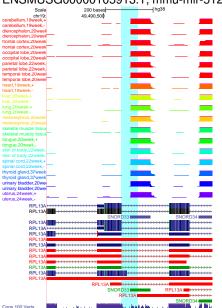
#### chr10:100360903-100360965; ENSMUSG00000093315.1; Mir5114





#### chr10:104338338-104338440; ENSMUSG00000092966.1; Gm22240

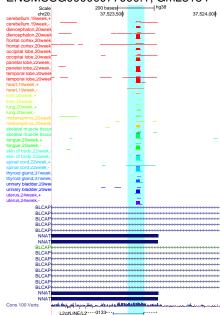


### chr12:56643675-56643754;


#### chr14:95533338-95533421; ENSMUSG00000106366.1; mmu-mir-3069






## chr19:49490575-49490645;

#### ENSMUSG00000105913.1; mmu-mir-5121



### chr20:37523524-37523615;

#### ENSMUSG00000077990.1; Gm23134

