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Current State of ENCODE Encyclopedia

« Candidate enhancers and promoters for DNase hypersensitivity, annotated with histone marks H3K27ac and H3K4me1 which are enriched

at enhancers, H3K4me3 which is enriched at promoters, H3K9ac which is enriched at both enhancers and promoters, as well as ChIP

peaks of transcription factors. Out of 177 cell types with DNase-seq data, we annotated 45 cell types with H3K27ac, 48 cell types with
H3K4me1, 94 cell types with H3K4me3, and 27 cell types with H3K9ac in a cell type specific manner. [Download methods ]

o

o

o

Distal DNase peaks [Download]

Proximal DNase peaks [Download]

Distal H3K27ac annotations (cell type specific) [Download]
Distal H3K4me1 annotations (cell type specific) [Download]
Distal H3K9 annotations (cell type specific) [Download]
Proximal H3K4me3 annotations (cell type specific) [Download]
Proximal H3K9ac annotations (cell type specific) [Download]
Distal TF binding sites [Download]

Proximal TF binding sites [Download]

» Gene expression over ~60 cell types with genes annotated by GENCODE 19 [Query tool at Penn State | Visualize data | Download data |

Download methods]

» Transcription start site (TSS) lists [View README]

o GENCODE v19 TSS [Download]
o GENCODE v19 TSS stratified by strict Fantom5 CAGE clusters [Download]

o GENCODE v19 TSS stratified by robust Fantom5 CAGE clusters [Download]
o GENCODE v19 TSS stratified by permissive Fantom5 CAGE clusters [Download]



Creating DNase Master Peaks — Stam Lab Pipeline
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Methods for Predicting Target Genes of
Distal Regulatory Elements

Correlation of genomic data
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Methods for Predicting Target Genes of
Distal Regulatory Elements

e 3D Chromatin Assays: ChIA-PET and 3C/4C/5C/Hi-C
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Methods for Predicting Target Genes of
Distal Regulatory Elements

 Machine learning methods

A novel prob. model for enhancer-gene linking using
chromatin-expression dynamics

Enhancer activity
(H3K4me1/H3K27me3)

Enhancer activity Gene activity
modules Gene expression

(RNA-seq)

Learning three-dimensional regulation of
gene expression

enh 1 modules

enh 2

§

Jianrong Wang

Cell types
Anshul Kundaje

Manolis Kellis celltypes
Joint learning of mixed-membership probabilistic model
. Mixed membership gene modules (which genes active in which cell types)
A\NG P rese ntat on: 4/ 10/ 15 Mixed membership enhancer modules (which enhancers active in which cell types)

Prob. non-linear linking of Gene module to enhancer module
Cell-type specific enhancer to gene linking




Methods for Predicting Target Genes of
Distal Regulatory Elements

 Machine learning methods
TargetFinder: Training

Teach a machine learning algorithm to discriminate true versus
false enhancer-promoter interactions based on their features.

Massive data integration enables
discovery of gene regulatory
enhancers and their targets

Training Data Computational Algorithm
Active enhancer Decision trees: good for interacting features

Ensemble learning: build many imperfect classifiers
and combine them to improve prediction accuracy

Katie Pollard

Evolutionary Conservation  Functional Genomics  gequence Annotations

Human i ) AAAA,AAAC,AAAG,AAAT,
Features Chimp i, AAGA, AGC. AAGC ARG,
Gladstone Institutes, Institute for Human Genetics, giﬁ:se y 48 ACA, ACAC, ACAG, ACAT,
Division of Biostatistics - UCSF
Conserved synteny of ChIA-PET K-mer correlation
AW G P re S e ﬂtat | O n 9/ 1 2/ 14 enhancer and promoter 2:;:::.2 (TFs, histones) sgtr;lz::;idoffugr::::rs\:nd

enhancer/promoter/window enhancer bound TFs
ChromHMM & Segway




Goal: Predict Target Genes for Distal Regulatory
Elements

* Approach #1 — Nearest Gene
 Approach #2 — Correlation of genomic & epigenomic data

* Approach #3 — Machine learning methods



Approach #1 — Nearest Gene

1. Assigned proximal REs to genes using Gencode V19 TSSs
2. Linked distal REs to nearest proximal RE
3. Links were calculated using center point of REs

Direct Link
Direct Link

m Proximal RE Gene
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Number of Regulatory Elements
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Most Genes are Linked with a Distal RE
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Average of 39 Linked Distal REs Per Gene
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Approach #2 — DNase Signal Correlation

1. Assigned proximal REs to genes using Gencode V19 TSSs

2. Linked distal REs to proximal REs using DNase | signal

correlation

Direct Link

=

"

\
<

Proximal RE Gene
2

Predicted Link

Cell Type Distal Signal Proximal Signal
GM12878 120.1 99.4
K562 3.4 2.6

HepG?2

50.8

60.3
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Datasets

ENCODE?2 =NCODES- Roadmap | Total
October Freeze
DNase
(Raw Signal) 261 35 ves 296+
DNase
(Fold Change) 0 0 >3 >3
H3K27/ac 53 0 534

(Raw Signal)

H3K27/ac

(Fold Change)

98

113
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Normalizing Raw Signhal Using Z Scores

Cell Type 1 | Cell Type2 Cell Type N

Peak 1 100.5 3.2 0

Peak 2 12.3 80.4 64.9

Peak 3 2.1 0 21.9

Peak M 45.3 3.1 54 \

% — colMean Cell Type 1 | Cell Type2 Cell Type N
~ T colSD Peak 1 2.0 -0.6 -2.0

Peak 2 -2.3 7.0 0.6
Peak 3 -2.8 -1.0 -1.1
Peak M -0.7 -0.7 -1.7
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DNase Results
Correlation With Raw Signal Data

All initial analyses were conducted on chromosome 22



Distribution of PCC for All Distal-Proximal Pairs
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Distribution of PCC for Pairs < 500 Kb

2.5

1.5 1

Density

0.5

All Pairs

Pairs < 500 Kb

0 0.25 0.5 0.75
Pearson Correlation Coefficient

19



Distribution of PCC for Closest Gene Pairs
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H3K27ac Results
Correlation With Raw Signal Data

All initial analysis was conducted on chromosome 22



Distribution of PCC for All Distal-Proximal Pairs
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Density

Distribution of PCC for Closest Gene Pairs
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Closest Gene Pairs: DNase vs H3K27ac PCC
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Future Directions

Compare raw signal vs. fold change for DNase and H3K27ac
correlation

Incorporate Hi-C and ChlA-PET data

How does correlation look across known gene-enhancer
pairs?

Develop benchmark as a metric for testing other methods

Other suggestions?
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