
SPECIFIC AIMS 
The necessity for understanding gene regulation in human brain development is supported by several recent 
discoveries.  For example, most inherited common genetic variation underlying neuropsychiatric diseases lies in 
non-coding regions and is presumed to exert pathogenic effects via the regulation of gene expression and 
splicing1-4. Additionally, most non-inherited (de novo) highly penetrant ASD risk genes are enriched in co-
expression modules and protein interaction networks related to chromatin remodeling and transcriptional 
regulation3-8. Moreover, a specific shared pattern of transcriptional dysregulation is observed in the cerebral 
cortex in slightly more than 2/3 of post-mortem ASD cases9,10. Taken together, these observations emphasize 
the importance of integrating transcriptomic and epigenomic data with higher-order chromatin interactions to 
better understand the putative mechanisms underlying dysregulated genes and networks in ASD and other 
psychiatric disorders, a fundamental goal of psychENCODE. The primary goal of this application is to extend 
our ongoing analyses of healthy and ASD brains under the psychENCODE consortium with the inclusion 
of additional genomic features, brain regions, developmental time points and cell-type specific analyses. 
By performing these analyses we will enhance this public resource and improve our understanding of the 
molecular processes underlying normal human neurodevelopment and ASD.  
 Our group has been collaborating closely for a decade11-15, bringing together expertise in developmental 
neurobiology, human tissue biobanking, genetics and genomics, statistics, bioinformatics and systems biology. 
Several key conceptual threads have been apparent in our work together: 1) Revealed new insights into human 
neurodevelopment through functional genomic profiling of postmortem tissue and cell culture models12,16; 2) 
Assessed rare and de novo mutations for ASD association13,17,18, based on the notion that down-stream analyses 
are only as good as the genes that go into them; 3) Identified the neural processes and pathways that are altered 
in the presence of ASD-associated mutations, as well as when and where these processes and pathways occur 
in the developing human brain15,17,19. Here, we propose to continue this highly productive collaboration and 
expand psychENCODE phase 1 efforts through three integrated aims. 
Aim 1. Time, region and cell type-specific molecular profiling of control and ASD brains. In subaim 1.1, 
we will profile the transcriptome (by RNA-seq), cis-regulatory elements (ChIP-seq) and 3D chromatin architecture 
(Hi-C) in neurotypical dorsolateral prefrontal cortex (dlPFC), posterior superior temporal cortex (pSTC) and 
striatum (STR) during mid-fetal development, infancy, childhood, adolescence and adulthood. To address 
cellular heterogeneity and to complement the psychENCODE phase 1 tissue level data analyses, we will obtain 
these data from neuronal and non-neuronal nuclei collected with fluorescence-activated nuclei sorting (FANS). 
In subaim 1.2., complementary genomic analyses will be done on the FANS nuclei from syndromic and idiopathic 
ASD brains and matched control brains, to identify transcripts, regulatory elements, and 3D chromatin structures 
altered in ASD in brain region and cell type-specific manners. 

Aim 2. Integrated analyses of transcriptome, epigenome and chromatin structure in control and ASD 
brains.  In subaim 2.1, each dataset generated in Aim 1 will be analyzed to identify differences between the 
developmental stages and two major cell types in healthy and ASD tissue. Furthermore, these datasets will be 
integrated to gain comprehensive insights into the underlying mechanisms; Hi-C defined physical 
intrachromosomal interactions will be intersected with ChIP-seq to identify functional interactions between 
regulatory sequences potentially associated with transcriptional changes. In subaim 2.2, we will harmonize and 
integrate our multi-omic datasets with other psychENCODE studies and large-scale genomic datasets, such as 
BrainSpan, CommonMind, ENCODE, GTEx and REMC.  

Aim 3. Spatiotemporal analysis in ASD. Our prior work assessed the enrichment of ASD genes in 
spatiotemporal co-expression networks to identify the frontal cortex during mid-fetal development as a critical 
window in ASD etiology. In subaim 3.1, we will use the neurotypical gene expression data and our expanded list 
of ASD associated genes to increase the resolution of this spatiotemporal analysis. In subaim 3.2 we will use 
whole-genome data for 5,120 individuals in ASD families to identify non-coding de novo mutations within the 
regulatory loci identified in neurotypical brains in Aims 1 and 2. In subaim 3.3 we will use these non-coding 
mutations and the regulatory networks from Aim 2 to perform an independent assessment of spatiotemporal 
convergence in ASD to complement our gene-based analysis in subaim 3.1. Finally, in subaim 3.4 we will use 
the regulatory networks that are specific to the ASD brain identified in Aim 2 to assess enrichment of ASD-
associated genes and non-coding mutations thus demonstrating that such networks are causally linked to ASD 
rather than simply a consequence of ASD. At the completion of this aim we will have three independent 
assessments of spatiotemporal convergence in ASD from ASD-associated genes, ASD-associated regulatory 
loci, and ASD-associated networks in the post mortem brain. 
 
 



RESEARCH STRATEGY 
 

SIGNIFICANCE 
Neuropsychiatric disorders such as autism spectrum disorder (ASD), bipolar disorder (BD), and schizophrenia 
(SCZ) are complex and devastating illnesses with considerable morbidity and mortality, as well as high personal 
and societal costs. Many of them are also polygenic, with multiple variants, both rare and common, spread 
throughout the genome influencing the disease risk3. Recent studies have identified rare variants contributing to 
psychiatric disorders that are enriched in genes involved in global gene regulation and chromatin modification, 
and many common risk variants are enriched in regulatory regions of the human genome, regions whose 
functions are poorly understood. The interpretations of these variations in regulatory regions will certainly be 
improved with better maps of RNA transcripts, regulatory elements, and chromatin states in the human brain. 
The age of onset and progression of major psychiatric disorders also varies (Figure 1) necessitating the study 
of the temporal dynamics of gene regulation during human brain development and recognizing the 
developmental context of psychiatric disorders. An emerging body of research indicates that many aspects of 
the development and physiology of the human brain are not well recapitulated in model organisms20-24 and 
therefore it is increasingly apparent that psychiatric disorders need to be understood in the broader 
context of human brain development and physiology.  

In recent years, considerable effort has been made by many studies, including large-scale efforts by 
ENCODE, NIH Roadmap (REMC) and GTEx projects to survey the diversity of cis-acting regulatory regions and 
RNA species of the human genome across different tissues and time points. However, a comprehensive catalog 
of transcripts, regulatory elements, epigenetic modifications, and chromatin structure from the human brain 
during development and in distinct brain regions and cell types is lacking. The PsychENCODE (phase 1) projects 
have initiated these efforts.  

PsychENCODE consortium projects. The key goals of the PsychENCODE project are to provide an 
enhanced framework of regulatory elements, catalog epigenetic modifications, and quantitate coding and non-
coding RNA and protein expression in a tissue- and cell-type specific manner from neurotypical (healthy) control 
brains and diseased post-mortem human brains25. These efforts will be complemented with integrative analyses, 
as well as with functional characterizations of disease-associated genomic elements using human neural cell 
systems or the developing mouse brain. However, the human brain is heterogeneous cellularly and its 
development is regionally asynchronous and prolonged. To overcome issues that hamper the potential benefits 
of initial psychENCODE studies, we will apply several approaches to address regional and cellular heterogeneity, 
prolonged development, and new genomic methods in the context of brain development and ASD.  

Here we focus on neurotypical (control) brain and ASD, which is a complex developmental syndrome 
with a significant genetic contribution. Although considerable genetic and phenotypic heterogeneity has 
complicated efforts to establish the biological substrates of the syndrome, the emergence of reliable genetic 
findings has started to shed light on potential pathogenic mechanisms, providing an extraordinary opportunity 
for developing a mechanistic understanding of the disorder. Recent studies suggest that over 500 rare, de novo 
mutations contribute to ASD risk and no single genetic mutation accounts for more than 1% of ASD 
cases13,17,26-30, consistent with significant heterogeneity in this, and other neuropsychiatric disorders3. Despite 
this heterogeneity, mapping ASD risk genes onto co-expression networks that represent normal human 
brain development has revealed that ASD genes coalesce in modules related to chromatin remodeling 
and transcriptional regulation during early fetal brain development, suggesting potential convergent 
pathways in the disorder9,15,27,31. Another remarkable finding that parallels the convergence of genetic findings 
in developmental pathways is the identification and validation of shared transcriptional changes in postmortem 
brain in ASD9. This transcriptional dysregulation, coupled with the evidence that large effect size de novo ASD 

Figure 1. Psychiatric and 
neurological disorders have 
discrete ages of onset. The bars 
indicate the age range that each 
disorder commonly affects, with less 
frequent ages of diagnosis denoted 
as dotted lines. This variability is 
indicative of dysregulation of tightly 
controlled developmental processes 
and highlights the necessity of 
defining the spatio-temporal 
molecular processes in human brain.  



risk genes are highly enriched in chromatin modifying genes (many of which are expressed in early fetal brain 
development), emphasizes the importance of understanding the nature and extent of chromatin disorganization 
in ASD brain and in normal brain development. Further, since these data suggest distinct neuronal and glial 
gene dysregulation, it is crucial to delineate the profiles of these major cell types. In addition to our ongoing 
efforts in PsychENCODE phase I project, this proposal provides critical advances in our understanding of the 
role(s) of non-coding functional elements in the pathophysiology of ASD and a scaffold for understanding 
chromatin structure and gene regulation across normal brain development. Overall, the approach proposed here 
will provide mechanistic insights that connect distinct transcriptional programs associated with ASD 
pathogenesis, and will provide a resource of the mechanisms of gene regulation across brain development to 
inform other neuropsychiatric disorders, a key goal of psychENCODE. This work also leverages 
psychENCODE phase 1 projects by adding significant new data to expand the value of the resource and 
by directly addressing key areas of interest in control and ASD brains as outlined in RFA-MH-16-230: 1) 
Generation of comprehensive, high resolution human brain region/cell type and age-specific maps of different 
classes of RNA transcripts, regulatory elements, chromatin states, chromatin conformation, and chromatin 
interactions;  2)  Identification of human brain region/cell type and age-specific molecular processes; 3) 
Integration of these newly generated multi-omic datasets, from diseased and healthy control brains, with large-
scale genomic resources; 4) Generation and analysis of high-depth, whole genome sequencing data to allow for 
improved evaluation of various genetic alterations; and 5) Development of comprehensive molecular models of 
disease (i.e., ASD) using systems biology approaches.  

 

INNOVATION 
This proposal is innovative in several aspects. First, to the best of our knowledge, the systematic discovery and 
functional characterization of genomic non-coding elements and 3D chromatin architecture has not been 
performed in healthy developing human brains or ASD brains at a cell type-specific resolution. For example, we 
use Hi-C, which combines chromosome conformation capture and NextGen sequencing to identify physical 
interactions that capture multiple levels of chromosome architecture ranging from nuclear configuration 
(“compartments” of about 5Mb) to TADs (domains of 500kb on average) and gene loops (often reflect enhancer 
promotor relationships; 40kb average), and is the only such method that spans all of these levels, genome-
wide32-34. Second, this project will conduct direct analysis of one of the largest collection of well-characterized 
high quality healthy as well as syndromic and idiopathic ASD postmortem brains. Third, we will combine 
fluorescence-activated nuclei sorting (FANS) with advanced genomic techniques to analyze multiple genomic 
features in archived development control and ASD brains. Fourth, we will leverage these analyses with our 
ongoing psychENCODE phase 1 tissue level analyses and other recent large-scale genomic resources, such as 
BrainSpan, ENCODE, GTEx and Roadmap project. Therefore, our proposed data and integrated analyses has 
potential to improve our understanding of genomic processes and normal human brain development as well as 
diagnostics, neurobiology and treatment of ASD. 
 

COLLABORATION 
This collaboration brings together multiple groups with long standing expertise in developmental neurobiology, 
psychiatry, human biobanking, genetics and genomics, statistics, bioinformatics, and systems biology that have 
worked closely with one another for almost a decade as evidenced by many co-publications.  Several key 
conceptual threads have been apparent in our work together related to human brain development and 
neuropsychiatric disorders: 1) Revealed new insights into human neurodevelopment through functional genomic 
profiling of postmortem tissue and cell culture models12-16; 2) Assessed rare and de novo mutations for ASD 
association13,17,18; 3) Identified the neural processes and pathways that are altered in the presence of ASD-
associated mutations, as well as when and where these processes and pathways occur in the developing human 
brain15,17,19. In addition, M. Gerstein (Yale) and Z. Weng (University of Massachusetts), experts in bioinformatics 
and computational biology, are leaders of the PsychENCODE DAC, which will normalize the data to remove 
batch effects, establish uniform data processing pipelines and build calibration resources for all assays to enable 
comparison and integration of the data generated by all psychENCODE groups. The efforts of each group will 
be tightly integrated in order to communicate progress and results, design and implement analytical tools, and 
transfer data. Given the complexity of human neurodevelopment and genetics/neurobiology of ASD, we believe 
that integrating the respective expertise of these groups, and their respective collaborators at UCLA (Ernst and 
Geschwind), UCSF (Sanders, State and Willsey), UMass (Weng), and Yale (Gerstein and Sestan), offers the 
best opportunity to better understand human brain development and ASD through functional genomics. Here, 
we propose to leverage our expertise and continue this highly productive collaboration and expand 
psychENCODE phase 1. 
 



ELEMENTS UNIQUE TO THIS SITE (UCLA; Geschwind, PI; Ernst, co-investigator) 
The UCLA team will perform chromosome capture and deep sequencing (Aim 1) and analysis (Aim 2) of 3D 
chromatin architecture (Hi-C) in the neurotypical and ASD dorsolateral prefrontal cortex (dlPFC), posterior 
superior temporal cortex (pSTC) and striatum (STR) using nuclei sorted by the Yale PIs (Sestan).  The UCLA 
group will also perform WGCNA, hQTL, and other integrative analyses of genomic data in close collaboration 
with Yale investigators (Aim 2). UCLA will also contribute brain tissue from ASD patients and controls to the 
resources at Yale for the studies (Resources). UCLA continues to generate ASD and control brain transcriptional 
profiles as part of psychENCODE 1, completed by the Spring of 2016, and Geschwind will contribute these data 
to the integrative analyses proposed, as well as future cross disorder analyses. Fetal brain is not in 
psychENCODE 1, but realizing its value, Geschwind has produced RNAseq and ATAC-seq data from 6 subjects 
that will be used for Hi-C here, and will also contribute it to psychENCODE by April 2016. 
 
APPROACH 
The objective of this proposal is to extend our ongoing tissue level analyses of healthy and ASD brains under 
the psychENCODE consortium with the inclusion of additional genomic methods, brain regions, developmental 
time points, and cell-type specific analyses. By performing three integrated aims (Figure 2) we propose to 
enhance this public resource and improve our understanding of the molecular processes underlying normal 
human neurodevelopment and ASD.  

    Figure 2. Schematic workflow of three specific aims. 
 
Aim 1. Time, region and cell type-specific molecular profiling of control and ASD brains.  
Rationale and preliminary supporting data: Three major observations provide motivation for this aim. The first 
is the recognition that genomic data, including transcriptomic, epigenetic and physical chromatin structure, from 
the relevant neurotypical tissue (control), spanning the key epochs of neurodevelopment and function from fetal 
to adult periods, provide a new and previously unobtainable view of genetic risk for psychiatric 
disease10,15,16,31,35,36. The second is that brain is comprised of an extremely heterogeneous mixture of cell types 
that exhibit distinct molecular profiles, including glia-to-neuron ratios that could show considerable fluctuations 
across normal development or in certain disease states. The third is the observations of differences in 
transcriptome organization via tissue-level gene co-expression network analysis conducted between ASD and 
normal brains9. Thus, here we propose to create a region and cell type-specific normal developmental 
scaffolding on which to frame disease variants via transcriptional (RNA-seq), epigenetic (ChIP-seq) and 
chromatin architecture (HiC) profiling of neuronal and non-neuronal cells at key epochs in human brain 
development (subaim 1.1), as well as compare these profiles in ASD and matched control brains (subaim 
1.2) to help elucidate the mechanisms by which genetic variation alters brain development and function, 
leading to ASD and related neuropsychiatric conditions. While several genomic features are currently being 
analyzed in control and ASD brains by our and other groups in the psychENCODE consortium, cellular 
heterogeneity during development, other genomic features (e.g. 3D chromatin contacts), have yet to be 
addressed. To address these issues, we will utilize our large, high quality, phenotypically well-characterized 
human brain collection (see Facilities and Resources section), as well as newly implemented methods to collect 
molecularly defined cell type specific nuclei from archival human postmortem brains in this collection.   

Our preliminary data demonstrates a clear pattern of transcriptional dysregulation is observed in 
2/3 of ASD brains9, which we have now confirmed in our psychENCODE phase 1 projects (in a more than 



double sized sample of cases and controls) using tissue level RNA-seq and ChIP-seq (H3K4me3 and 
H3K27ac) in multiple brain regions in 43 idiopathic ASD cases, 8 cases with chromosome 15q11-13 duplication 
syndrome (dup15q) and ASD, and 63 controls37,38. We also observe that post mortem brain from patients with 
ASD caused by (dup)15q11-13 share this same pattern at all levels of differential protein coding gene expression, 
splicing and lncRNA38. As the first step in exploring potential mechanisms, we performed epigenetic profiling of 
ASD vs. control brains with H3K27ac marks, which indicate active enhancers39. Genes with differential H3K27ac 
peaks in their promoter regions (5000bp upstream of the transcription start site) were enriched with neuronal 
genes with changes in expression. This result demonstrates that transcriptional dysregulation in ASD is partially 
mediated by changes in histone/chromatin modifications. Furthermore, the two major groupings of modules 
derived from whole tissue gene expression analysis sort into those up-regulated and expressed in glia, and those 
down-regulated in neurons9,38, strongly motivating our plan for transcriptional, epigenetic and Hi-C profiling in 
neurons and non-neuronal (glial) cells independently.   

Another of the important advances in methodology that will be implemented here is the 
assessment of 3-D chromatin structure across to different brain regions and cell types, and 5 key epochs 
of normal brain development and in ASD brains. Our preliminary data strongly supports the value of these 
data and our ability to perform and analyze these experiments (see also40). We established an efficient Hi-C 
protocol and obtained high resolution data (10 kb resolution; via deep sequencing) from the fetal cortex from 3 
individuals dissected into two zones: cortical plate (CP) and germinal zones (GZ) at post-conception week (PCW) 
18 (total n = 12 samples: representative heatmap shown in Figure 3A). Demonstrating the data quality, principal 
component of the interchromosomal interaction matrix for GZ shows a high correlation with GC content (r=0.791, 
P<10–256), gene number (r=0.384, P<10–256), DNase I hypersensitivity (r=0.416, P<10–256), and to a lesser extent, 
gene expression (r=0.129, P=1.11x10–66; Figure 3B and C), recapitulating previous work in cell lines41. We next 
asked how chromatin interactions elicit transcriptional co-regulation. We hypothesized that highly interacting 
chromatin regions would be co-regulated at least in part by sharing chromatin remodelers and transcription 
factors (TFs). To test this, we binned chromatin interactions into top and bottom percentiles, and compared the 
distribution of correlation patterns for genes in the high and low interacting regions of chromatin. We observed 
that the high interacting regions were significantly biased toward positive correlations (Figure 4A), supporting 
the hypothesis that co-localization can predict co-expression. 
 We next integrated these data with the epigenomics map from the NIH Roadmap project42. By comparing the 
epigenetic mark combination matrix with the Hi-C contact matrix, we demonstrate that interacting regions exhibit 
shared epigenetic patterns: loci associated with transcriptional regulation and enhancers are significantly more 
likely to interact with each other (Figure 4B). Comparison of TF binding site (TFBS) combination matrix 
(generated from TFBS map reported in43) with the intrachromosomal contact matrix revealed distinct 

combinatorial patterns of TF binding likely to mediate 
chromosome interactions (Figure 4C), thus revealing new 
experimentally testable regulatory relationships.  
 To validate that Hi-C data can identify target genes 
regulated by single nucleotide polymorphisms (SNPs) in a 
general setting, we determined if SNPs with a significant 
effect on gene expression were also identified as 

Figure 3. Chromosome conformation in fetal brains (by Hi-
C). A. Representative heatmap of chromosome contact matrix of 
GZ. Normalized contact frequency (Contact enrichment) is color-
coded according to the legend on the right. B. Spearman 
correlation of PC1 of chromatin interaction profile of fetal brain 
(GZ) with GC content (GC), gene number, DNase I 
hypersensitivity (DHS), and gene expression level of fetal brains. 
These data show relationship of 3D structure to key known 
functional elements as has been previously shown in other 
systems. C. Gene ontology (GO) enrichment (GO Elite) of genes 
located in the top 5% of highly interacting inter-chromosomal 
regions specific to GZ vs. CP (top), and ES vs. CP (bottom), 
indicating that genes located on dynamic chromosomal regions 
are enriched for neuronal function in CP, which contains the 
more differentiated laminae. Please see Won et al. 2015 in 
Appendix for higher magnification figure. 



interacting by Hi-C using cis-expression quantitative trait loci (eQTL) data from adult frontal cortex44. Indeed, Hi-
CeQTL genes were significantly over-represented with known associated genes from the eQTL study and eQTL 
SNP-transcript pairs exhibit significantly higher chromatin contact frequency than the null across all distance 
ranges measured, further supporting the utility of Hi-C to infer the gene or region of activity for regulatory 
variation.  In addition we asked whether significant physical cis-chromosomal contacts identified with Hi-C could 
inform functional annotation of 108 genome-wide significant schizophrenia loci, most of which lie far outside 
known coding or other functional regions of the genome. 

 Although SNPs are typically assigned to the closest 
genes, or those within the LD block, Hi-C indicated 
that about 50% of the variants were neither adjacent 
to the index SNPs (most-associated SNP within a 
locus), nor in LD. Interestingly, Hi-CSCZ genes 
significantly overlap with ASD de novo likely gene-
disrupting (LGD) targets26,45 (CP: OR=2.4, 
P=1.6x10-5, GZ: OR=1.8, P=0.006), indicating a 
shared genetic etiology between ASD and 
schizophrenia46. The fact that genes with LGD 
mutations in ASD are associated with regulatory 
variants in schizophrenia suggests that complete 
abrogation of these genes may cause 
developmental defects as in ASD, while regulatory 
changes in these genes may cause later-onset of 
neuropsychiatric symptoms as in schizophrenia. 
Collectively, these preliminary data demonstrate 
that we can conduct and analyze genome-wide Hi-
C experiments, integrate these data with other 
epigenetic and transcriptomic data, and use 
chromatin architecture elucidated by Hi-C to provide 
novel genome-wide insights into the regulatory 
mechanisms occurring during neuronal 
differentiation and disease pathogenesis. 
 
Experimental design and methods: In subaim 
1.1., we will profile the transcriptome (by RNA-seq), 
cis-regulatory elements (ChIP-seq) and 3D 
chromatin architecture (Hi-C) in the control 
neurotypical dorsolateral prefrontal cortex (dlPFC), 
posterior superior temporal cortex (pSTC) and 
striatum (STR). These regions have been implicated 
in the risk for ASD and schizophrenia35 and in the 
cases of dlPFC and pSTC shown to have 
dysregulated transcriptional patterns in ASD9. 
Recent studies have also highlighted the late mid-

fetal frontal cortex as most enriched for co-expression of ASD and schizophrenia de novo hits15,31,35. Brains from 
at least 5 key epochs of development representing mid-fetal, infancy, childhood, adolescence and adult brain, 
and a minimum of 6 subjects (balancing sex when possible) from each of these 5 epochs (30 brains in total) will 
be profiled.  

Cell-type specific chromatin, epigenetic and transcriptome assays are at the core of this project. Mario 
Skarica, a talented research associate scientist in the Sestan lab, has developed a protocol to isolate high quality 
nuclei with preserved chromatin and RNA from archival fresh frozen fetal and postnatal human brains. Using this 
approach he has obtained, on average, 2.57 +-0.8 and 6.93+-3.3 million intact nuclei from 100 mg of the fetal or 
adult prefrontal gray matter (i.e., fetal CP or adult cortical layers 1 to 6 with a small part of underlying white 
matter), respectively (Figure 5A). Furthermore, we separated neuronal and non-neuronal nuclei, by 
immunostaining with the NeuN antisera against pan-neuronal splicing protein RBFOX3 (Figure 5B and C) and 
sorting on BD FACSAria IIU Three-Laser System. Starting with infancy and onwards, postnatal gray matter tissue 
corresponding to six-layered postnatal cortex and small part of adjacent white matter from dlPFC and pSTC, or 
STR (corresponding to the caudate-putamen with the internal capsule at the septal level) will be processed. 

Figure 4. Highly interacting regions share co-expression 
patterns, which is mediated by epigenetic regulation. A. 
The top 10,000 highest interacting regions (intH) in fetal 
brains both at GZ and CP show positive correlation in their 
gene expression patterns, while the top 10,000 lowest 
interacting regions (intL) and top 10,000 highly variant 
regions (intV) have no skew in the distribution, consistent 
with random interactions. P-value, Kolmogorov-Smirnov 
test. B-C. Epigenetic state combination (B) and TFBS 
combination (C) for intrachromosomal interacting regions. 
The epigenetic state matrix and TFBS combination matrix 
were generated by marking loci where two interacting 
chromosomal bins share epigenetic signature. For example, 
the epigenetic combination matrix between the active 
transcription start site (TssA) and active enhancers (EnhA1) 
is generated by marking where interacting loci have TssA 
and EnhA1. Intrachromosomal contact frequency map is 
compared to the epigenetic state combination matrix by 
Fisher’s exact test to calculate the enrichment of shared 
epigenetic combinations in interacting regions. Odds ratio 
(OR) and P-values are depicted in the heatmaps (Please see 
Won et al. 2015 in Appendix for higher magnification figure). 



Tissue samples will be dissected directly from frozen tissue blocks using custom dental tools and protocol 
described in Kang et al., 201147. These dissections will be performed by Nenad Sestan, who has over 2 decades 
of experience in human neuroanatomy and tissue processing and has microdissected over 1600 tissue samples 
for exon array profiling of the human brain transcriptome47.   Given the high proportion of neurons in the cortical 
plate of the mid-fetal brain (approaching 95% or more), and relatively few neurons that are positive for NeuN at 
17-20 PCW in neocortical CP or STR48,  we will not sort NeuN+ and NeuN- nuclei from mid-fetal brains, but 
instead analyze tissue homogenate and unsorted nuclei from CP of prospective dlPFC and pSTC as well as 
STR, separately, from corresponding neocortical and striatal GZ (i.e., VZ and SVZ) containing a mixed population 
of dividing neural stem/progenitor cells with a minor contribution of newborn neurons and glia.  

Tissue samples will be pulverized and processed to release nuclei, which will be purified by 
ultracentrifugation  and processed for RNA-seq in the case of mid-fetal samples or in the case of all postnatal 
specimens (infancy and onwards) sorted into a NeuN+ (predominantly neurons) and NeuN- (mostly glia) 
fractions. In the past year, we have obtained on average 23.45+-7.2 percentage of NeuN+ nuclei from PFC 
(Figure 5C). This approach will provide unbiased quantitative assessments of cell types in healthy and ASD 
brains. This approach allows us to simultaneously collect molecularly defined cell type-specific nuclei and isolate 
DNA, chromatin, and nuclear RNAs. Bulk tissue level RNA-seq is available for dlPFC, pSTC and STR in control 
and ASD brains as part of psychENCODE phase 1 studies38, has already been added to enhance the scope of 
the resource. All brains necessary for this project are currently available in the Geschwind and Sestan labs (see 
Facilities and Resources section for the list). 

Total RNA will be extracted from 1 million nuclei 
using Norgen’s Cytoplasmic & Nuclear RNA Purification Kit. 
RNA from tissue and cell populations will be depleted of 
rRNA and sequencing libraries prepared with TruSeq 
Stranded Total RNA with Ribo-Zero Gold and SMARTer 
Stranded RNA-Seq Kit, respectively. As expected, our 
preliminary nuclear RNA-seq analyses revealed higher 
percentage of unspliced primary transcripts and extensive 
identification of nuclear-retained long non-coding RNAs 
(Figure 5D). Importantly, we detected robust cell type-
specific expression differences, including those of ASD-
associated genes (Figure 5 E). RNA-seq libraries will be 
sequenced on the Illumina HiSeq 2500 at the Yale Center 
for Genome Analysis (http://ycga.yale.edu/) to generate 
100 bp strand specific paired-end sequence at over 40 
million reads per end for each sample. For ChIP-seq, 1 
million nuclei will be processed through our established 
protocol using well-characterized ChIP-grade H3K27ac and 
H3K4me3 antibodies that have been used in 
psychENCODE phase 1 tissue-level experiments. ChIP-
seq libraries will be sequence at HiSeq 2500 at Yale at >40 
million reads per sample.  Using the standard pipelines 
developed in the Sestan and collaborating labs, we will 
perform QC analyses and compare the transcriptome and 
epigenetic data from different time points and regions to 

construct spatiotemporal gene and disease state profiles and co-expression networks using computational 
methods described in Aim 2. 

For Hi-C, 2 million nuclei will be prepared from each sample and cross-linked in 1% formaldehyde for 10 
min. Cross-linked DNA will then be restriction digested using HindIII, digested chromatin ends filled with biotin-
14-dCTP, and resulting blunt-end fragments ligated under dilute conditions to minimize random intermolecular 
ligations. Following this, crosslinking will be reversed, unligated ends removed by exonuclease digestion (T4), 
DNA sheared by sonication, and 300-600bp fragments selected. The intermolecular ligation products containing 
biotin-tagged DNA will be pulled down with streptavidin beads and ligated with Illumina paired end adapters and 
the library sequenced by Illumina 50bp paired-end sequencing over 3 lanes of the HiSeq 25000 at UCLA, a 
depth necessary to facilitate sufficient hi-resolution analysis (300-500 million mapped reads), which can also be 
augmented by pooling samples to increase depth as needed. 

 

Figure 5. Fluorescence-activated nuclei sorting 
(FANS) and nuclear RNA-seq of human dlPFC. A. 
Collection of single nuclei (see insert) from fetal (n=6) 
and adult (n=29) PFC. B. FANS plot for NeuN 
immunopositive nuclei.  C. Percentage of NeuN+ 
nuclei collected across different experiments. D. 
Coverage for exon, intron and intergenic regions of 
different sequencing technologies. E) Differential 
expression comparison between NeuN+/- FANS 
nuclei for neuronal, glial and ASD-related genes. 



In subaim 1.2, complementary genomic analyses will be done on the FANS nuclei from control, and syndromic 
and idiopathic ASD brains, to identify transcripts, regulatory elements, and 3D chromatin structures altered in 
ASD in brain region and cell type-specific manners. We will conduct RNA-seq, ChIP-seq and Hi-C on sorted 
neuronal and non-neuronal nuclei from 2 cortical regions, dlPFC and pSTC, and STR from 20 matched control 
and 20 ASD individuals, including 5 dup15q cases. We will select 10 ASD cases manifesting the shared pattern 
of transcriptional dysregulation observed, 10 without this pattern, and match them to controls to account for 
potential confounders (sex, age, postmortem interval [PMI], and RNA integrity numbers [RIN]). We will select 5 
dup15q brains with most similar breakpoint structures. Hi-C will be performed on sorted nuclei using the identical 
experimental methods as in subaim 1.1.  
Pitfalls and alternatives: The techniques in these proposed experiments are commonly used in our laboratories 
and we do not expect complications. One potential issue is the obtainment of adequate samples.  The Sestan 
lab has almost 200 high quality frozen human prenatal, early postnatal and adult brain specimens from clinically 
unremarkable (neurotypical) control donors. Control brains from this collection were used for different BrainSpan 
and psychENCODE phase 1 projects (see example studies12,47,49,50 and Resources and Facilities section). Both 
Geschwind and Sestan labs have tissue samples from over 50 post mortem ASD cases and matched controls 
with good quality RNA, and have participated in the new initiative at the Simons Foundation to collect additional 
postmortem ASD brains.  A related concern is whether the 20 ASD brains we propose to analyze are sufficient, 
given the heterogeneity typical of ASD, to detect robust differences between these samples and our controls.  
However, we were able to detect transcriptional dysregulation in 2/3rds of ASD brains in a smaller cohort17, and 
by directly comparing ASD brains exhibiting hallmarks of dysregulated transcription with those that do not, we 
expect to have sufficient statistical power to assess the extent to which 3D chromatin structure contributes to the 
observed transcriptional changes.  Further, the use of 5 dup15q cases provides an additional homogeneous 
cohort, and as our preliminary results on transcriptome analysis of this cohort demonstrate (appendix), such 
sample sizes are sufficient. The main pitfall of Hi-C is that it averages chromosome contact population from 
millions of nuclei. Single-cell Hi-C can complement this limitation51, but it can capture only one interaction for a 
given locus. Homogenous population of cells can be achieved by FANS and thus we propose this approach 
here.  Additionally, Hi-C offers other benefits, including the ability to analyze interactions mediated by multiple 
TFs en masse in Hi-C, that are not easily achievable with other methods such as ChIA-PET. While our FANS 
approach, which follows standards accepted across the psychENCODE projects, is limited to two major groups 
of cells, we have been implementing the use of other cell type specific nuclear antibodies and single nuclear 
RNA-seq.  Finally, we realize that other regions, including the thalamus, hypothalamus, and hippocampus, may 
be affected in ASD. We believe our work on the neocortex and STR will develop a framework for understanding 
of the molecular neuropathology of ASD which can then be extended to include other regions in the future.   
 
Aim 2. Integrated analyses of transcriptome, epigenome and chromatin structure in control and ASD 
brains. 
Rationale: We will analyze the data generated in the previous aim to (1) identify developmentally regulated and 
cell type specific changes in the transcriptome, epigenome and the 3D chromatin structure (2) integrate the three 
types of datasets to gain comprehensive insights into the underlying mechanisms of transcriptional regulation 
and dysregulation in development and disease, respectively. 
  
Experimental design and methods: In subaim 2.1, several first order analyses will be done for quality control 
and to provide the data as a processed resource in addition to the raw data. We will use Illumina CASAVA to 
purify the low-quality and non-identified reads and Fastqc (http://www.bioinformatics.babraham.ac.uk/ 
projects/fastqc/), to report fundamental quality parameters. Next, Tophat52 will be employed to uniquely align the 
filtered reads to their reference genome and RSEQtools53 to quantify expression profiles of each type of 
annotation entry retrieved from the latest release of the GENCODE project. The R package DESeq 
(http://bioconductor.org/packages/release/bioc/html/DESeq.html) will be used to identify differentially expressed 
(DEX) genes and well established methods including MATs to identify differential splicing10,37. DEX genes will be 
detected from the reliably expressed coding and non-coding transcripts, which are defined as transcripts with 
RPKM ≥ 1 in at least 2 samples of different developmental period. ChIP-seq reads will be aligned to the genome 
by Bowtie. After filtering of low score reads, we will use the MACS platform to call peaks enriched over the input 
library, and peaks with high empirical FDR will be excluded from further analysis. Thus, we will catalog all 
potential cis-regulatory elements from our genome-wide histone modification maps in all brain regions across 
developmental periods.  
For Hi-C analysis, hiclib (https://bitbucket.org/mirnylab/hiclib) will be used to perform all initial analysis on Hi-C 
data from mapping to filtering and bias correction (see also40). Sequenced reads will be mapped to the human 
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genome by Bowtie2 (with increased stringency, --score-min -L 0.6,0.2--very-sensitive) through iterative mapping 
and read pairs allocated to HindIII restriction enzyme fragments. Self-ligated and unligated fragments, fragments 
from repeated regions of the genome, PCR artifacts, and genome assembly errors will be removed. Filtered 
reads will be binned at 10kb, 40kb, and 100kb resolution to build a genome-wide contact matrix at a given bin 
size. This contact map depicts contact frequency between any two genomic loci. To decompose biases from the 
contact matrix and yield a true contact probability map, filtered bins are subjected to iterative correction41. Bias 
correction and normalization results in a corrected heatmap of bin-level resolution. 100kb resolution bins are 
assessed for inter-chromosomal interactions, 40kb for TAD analysis, and 10kb for gene loop detection. For TAD-
level analysis32, we will quantify the directionality index by calculating the degree of upstream or downstream 
(2Mb) interaction bias of a given bin, which will be processed by a hidden Markov model (HMM) to remove 
hidden directionality bias. For gene loop detection, aggregate peak analysis (APA) will be performed that 
quantifies the aggregate enrichment of putative peak sets by calculating the sum of a series of submatrices 
derived from a contact matrix34. Resulting inter- and intra-chromosomal interaction matrices as well as genome-
wide TADs and gene loops will be used for integrative analysis. 
Developmental and cell type-specific changes: Pearson’s correlations between the first principal components 
(PC1) from different stages and neuronal and non-neuronal cell types, as well as with our own and other 
published data will be calculated to compare similarities between different cell types. We will explore alternative 
transcriptional mechanisms or post-transcriptional modifications occurring in normal (and ASD-affected, see 
below) regions/cells and time points. These can include up- or down-regulating expression, altered 
spatiotemporal gene expression, imbalanced expression of different alleles (allele-specific expression [ASE]), 
aberrant splicing events, modified RNA editing sites, fusion transcripts, or loss of function due to frameshift 
mutations. RNA and epigenome data will also be compared with tissue level psychENCODE phase 1 and 
BrainSpan’s RNA-seq and ChIP-seq data. We will follow up with an analysis of the relative enrichment of each 
cell-specific marker genes in each subpopulation and use the expression profiles of these genes to guide the 
identification of an expanded set of cell-type specific markers. 
Integrated analyses: Spearman’s correlations between PC1/PC2 and biological traits (gene expression, 
histonemark enrichment, GC content, gene density, DNase I hypersensitivity [DHS]) will be calculated. Gene 
expression and histone mark data generated in subaim 1.1 along with DHS of fetal brain from Epigenomic 
roadmap54 will be used and average values per 100kb bin calculated. In addition to the putative cis-elements 
identified in the same samples, we will also use the 15 state epigenetic marks from Epigenomic Roadmap54 in 
genomic regions classified based on compartments averaged across 40kb bins, as well as subject specific 
psychENCODE data. Epigenetic state counts54 for one compartment category are normalized by total epigenetic 
mark number of that compartment category and compared between samples.  
Dysregulation in ASD brains. Two main data analyses will be performed with the transcriptome data. We will use 
the same approach as in subaim 2.1 to identify DEX coding and non-coding transcripts (by DESeq) between 
ASD and matched controls. Gene function enrichment analysis will be performed for these DEX genes. Finally, 
we will also perform Weighted Gene Co-expression Network Analysis (WGCNA; http://labs.genetics.ucla.edu/ 
horvath/CoexpressionNetwork/) to identify modules of differentially co-expressed genes in ASD cases. For ChIP-
seq data, once peaks are called and filtered for quality and reproducibility, we will identify and catalog all putative 
enhancer and promoter sites gained or lost in ASD brains compared to matched control brains, as well as what 
genes they are associated with.  
 In Hi-C data, we will assess if compartments, TADs, and contact domain structures are abrogated in ASD 
brains. Interaction partners for ASD risk genes, as well as gene loops involving ASD risk gene regulatory 
elements will be examined. Genome-wide interchromosomal contact matrices at high resolution (approximately 
10kb) will be compared between ASD and control to identify bins that exhibit the largest chromosomal interaction 
changes in ASD (here we refer to ASD-specific bins). Gene ontology for these genes as well as their gene 
expression pattern in ASD may provide novel insights on ASD mechanism. The same approach will be applied 
to intrachromosomal contact matrices at 10-40kb resolution. TADs in ASD vs. controls will be also compared. 
The directionality index around ASD-specific TAD boundaries will be calculated to check significance. Moreover, 
we will examine gene expression level and histone marks on TAD boundaries as well as histone marks on TADs 
that contain ASD risk genes. Both inter- and intra-chromosomal interaction patterns of the bins that contain 
differentially expressed genes in ASD or ASD risk genes will be examined in ASD vs. controls. Gene expression 
pattern and histone states of genomic loci that highly interact with dup15q region will be assessed. This approach 
of integrating chromosome interactomes to transcriptomic and epigenetic profiles may delineate epigenetic 
mechanism behind gene dysregulation in ASD. 



 We will also perform integrative network analyses of these multi-level genomic data with genetic variation to 
understand the causal mechanism of transcriptional alterations in ASD (see also Aim 3). This will include 
integration of DNA sequence, methylation, chromatin contacts, eQTL and hQTL by this collaborative team of 
investigators (e.g. to include new hQTL methods by S. Prabhakar and colleagues55. Gene loops detected in 
control and ASD will be also interrogated. Gene loops that are specific to ASD or specific to controls may directly 
point out aberrant enhancer-promoter interactions, TF binding, or compartmentalization of genome. We will 
check if ASD-specific gene loops contain any ASD-associated variants (mostly common SNV at this point, 
although as more whole genome sequencing (WGS) data is available over the next 12 months, we can use these 
data to annotate potential functions of noncoding variants (Aim 3). 
   
In subaim 2.2., we will integrate and harmonize data across psychENCODE projects and other relevant genomic 
resources. In this aim, the DAC will integrate and harmonize our datasets with other psychENCODE studies and 
large-scale genomic datasets, such as BrainSpan, CommonMind, ENCODE, GTEx and REMC. The 
PsychENCODE DAC is led by Mark Gerstein and Nenad Sestan (Yale), Zhiping Weng (University of 
Massachusetts), who are part of this proposal and Kevin White (University of Chicago). DAC will summarize the 
major analysis results produced from psychENCODE and organize them into an encyclopedia of regulatory 
elements in the developing and adult human brain. We are currently building such an encyclopedia for the 
ENCODE consortium, and we will be able to leverage the methods that we are building for ENCODE and modify 
them to best serve psychENCODE data. The psychENCODE encyclopedia will include several components. 
The first component is the raw experimental data, including the expressed transcripts in neuronal and glial cells 
in various brain regions, the peaks (enriched regions) of an array of histone marks, the open chromatin regions 
detected using ATAC-seq, the differentially enriched histone mark peaks and open chromatin regions in ASD, 
BD and SCZ (diseases covered by psychENCODE projects. This component will largely result from a series of 
uniform processing pipelines, which we will build for analyzing psychENCODE data. The second component will 
include results that require the integration across multiple data types, including the enhancers in each cell type, 
the chromatin states called using a combination of histone marks and ATAC-seq data, and the topologically 
associated domains and compartments called by combining histone marks, ATAC-seq and Hi-C data. The third 
component of the encyclopedia will provide a higher-order organization to the elements in the first two 
components. Specifically we will derive the target genes for enhancers in a cell type specific manner, and identify 
the enhancer-gene links that are disrupted in the three diseases. We will also identify the variations that are 
linked with difference in gene expression (eQTLs) that are within enhancers that target the corresponding genes. 
Finally, we will develop a portal to guide the user through the components of the psychENCODE encyclopedia, 
with multiple entry points, such as genes, GWAS SNPs, or a specific regulatory region in the genome. 
Pitfalls and alternatives: Proposed computational approaches are well established in our team and we already 
have a considerable expertise and collaborative history therefore we foresee no complications in performing this 
aim. Furthermore, Sestan, State and Geschwind have been part of the BrainSpan project and Ernst, Gerstein 
and Weng has been part of several other relevant genomic consortia, such ENCODE. 
 
Aim 3. Spatiotemporal analysis in ASD. 
Rationale and preliminary supporting data: Over the past few years genomic analyses by our labs and others 
have made rapid progress in identifying genes associated with ASD, in particular through the identification of de 
novo mutations in ASD cases13,17,26,30,45. Despite the identification of these ASD-associated genes, progressing 
to an understanding of ASD neurobiology remains a challenge. Aims 1 and 2 described one approach to 
discovering this neurobiology through the identification of ASD-specific networks in post mortem brains. In Aim 
3 we propose a complementary approach through the identification of genomic loci, brain regions, developmental 
stages, cell types, and neurobiological processes that are enriched for ASD mutations in genes (subaim 3.1) 
and non-coding loci (subaims 3.2 and 3.3) in neurotypical brains. Finally, we will test the hypothesis that ASD 
specific networks observed in post mortem brains from Aims 1 and 2 will be enriched for ASD associated 
mutations (subaim 3.4) thus demonstrating that the disruption of this network precedes the diagnosis of ASD 
and is therefore likely to be a cause of ASD rather than a consequence.  

1) Detection of ASD-associated genetic loci. We identified rare and de novo variants in exome data from 
5,563 ASD cases and 13,321 controls alongside rare and de novo copy number variants in microarray data from 
4,687 ASD cases and 2,100 controls17. Comparison of these two data sets showed that small de novo deletions 
in ASD targeted the same set of genes as de novo loss of function point mutations in exome data. A combined 
analysis of exome data and small de novo deletions was performed using the Transmitted and De novo 
Association (TADA) method to identify ASD-associated genes. 28 ASD-associated genes were identified with 
very high confidence (false discovery rate (FDR) ≤ 0.01) and 65 ASD-associated genes were identified with high 



confidence (FDR ≤ 0.1). These 65 genes formed a protein-protein interaction (PPI) network with two distinct 
subnetworks, enriched for chromatin regulatory genes and synaptic genes respectively (Figure 6A).  

2) Detection of ASD-associated non-coding variants in whole-genome sequencing (WGS) data. We 
analyzed WGS data for 40 simplex ASD quartets composed of both parents, an affected child and an unaffected 
sibling control. The families were selected from the Simons Simplex Collection on the basis of no previous de 
novo loss of function or CNV mutations in exome and microarray data and high paternal age. The samples were 
sequenced to greater than 30x mean coverage (mean±standard 35.7±5.8). Raw data were aligned to hg19 
human reference genome using BWA-mem56. Duplicate reads were removed with Picard 
(http://broadinstitute.github.io/picard/); GATK best practices57 were used for all downstream steps including, local 
realignment, base quality score recalibration, SNV and indel calling, cohort-wide joint genotyping, and variant 
quality score recalibration. Data were normalized within families by only analyzing bases with at least 20 unique 
reads in all family members. A combination of PLINK/SEQ (https://atgu.mgh.harvard.edu/plinkseq/) and in-house 
scripts were used to identify autosomal de novo variants based on stringent criteria designed to maximize 
specificity: minimum genotype likelihood (GQ) ≥20, alternate allele frequency (AB) ≤0.05 in the parents, and 0.3-
0.7 in the child, minimum map quality (MQ) ≥30 in all family members, and allelic depth for the alternate allele 
(AD) ≥8. Approximately 7,000 de novo mutations were identified at a rate of 87.0±13.5 de novo mutations per 
child. Confirmation with Sanger sequencing was attempted on 10% of these variants (700) selected at random 
and achieved a >95% confirmation rate across both SNVs and indels, suggesting identification of de novo 
mutations with accuracy. We used tissue-level ChIP-seq for the histone modification H3K27ac from human 
dlPFC (psychENCODE phase 1) to identify active enhancers. We observed an increased burden of mutations 
in cases compared to sibling controls (p=0.02, Figure 6B) within these active enhancers. This association was 
especially strong for insertion/deletions (indels), possibly due to the greater functional impact of disrupting 
multiple nucleotides (p=0.007, Figure 6C).  

3) Analysis of gene co-expression to identify spatiotemporal convergence of ASD-associated genes. We 
considered the convergence between 9 ASD genes15 for gene expression data from 57 neurotypical brains that 
spanned 15 developmental periods and 16 brain regions47. To identify spatiotemporal windows whilst retaining 
sufficient numbers of samples for co-expression analysis we used hierarchical clustering to identify four groups 
of brain regions and considered each of these in 13 overlapping time periods each composed of three 
developmental periods (Figure 7A). Within each of the resulting 52 (4 x 13) spatiotemporal windows we built 
networks around nine high confidence ASD genes by selecting the top 20 co-expressed genes. We assessed 
these 52 windows for spatiotemporal convergence related to ASD etiology through the degree of enrichment for 
126 independent low confidence ASD genes (Figure 7A). We observed strong spatiotemporal convergence 
between ASD risk genes in the prefrontal and primary motor-somatosensory cortex during mid-fetal development 
(Figure 7A)15. Analysis of cell type specific marker genes within this network showed enrichment for cortical 
projection neurons. This result that has been replicated by three complementary techniques: WGCNA31, cell 
specific enrichment analysis58, and NETBAG+ systems analysis59.  

4) Comparison of ASD-related gene sets and gene expression analysis of post-mortem ASD brains. Two 
prior analyses have identified gene co-expression WGCNA modules that are differentially expressed in the brain 
in ASD cases compared with controls. The microarray analysis by Voineagu et al.9 identified a module enriched 

Figure 6. ASD associated de novo mutations. 
A. 65 ASD risk genes9 (red) form a single protein-
protein interaction network composed of two 
subnetworks. The genes in the left subnetwork are 
enriched for chromatin regulatory gene ontology 
terms. The genes in the right subnetwork are 
enriched for synaptic terms. B. De novo mutations 
were identified in WGS data for 40 ASD families. 
The median number of SNV and indel mutations 
per individual is shown within active enhancers that 
were identified by bulk tissue ChIP-Seq for 
H3K27ac in human dlPFC (psychENCODE phase 
1 studies). P-values are calculated using linear 
regression with for paternal age and total de novo 
mutations per individual included as co-variates. C. 
The analysis was repeated for indels only.  
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for synaptic genes (M12) that overlaps with three modules (M1, M2, and M6) identified using RNA-seq in Gupta 
et al60 (Figure 7B). Similarly, one module enriched for microglial genes (M16) was observed in the Voineagu et 
al.9 paper and this overlaps with two modules (M5 and M7) identified in the Gupta analysis (Figure 7B). We 
compared these seven WGCNA modules with four sets of ASD-related genes: the chromatin and synaptic 
modules from our recent analysis of exome and CNV data (Figure 6A)17, RNA targets of the fragile X protein 
FMRP61 that are strongly enriched within ASD-associated genes26, and genes that are downregulated in CHD8 
knockdown but not bound by CHD8 on ChIP-Seq analysis that have been described as targeting synaptic genes 
associated with ASD62. The synaptic module and FMRP targets are strongly enriched through the synaptic 
WGCNA modules suggesting these modules may represent causal factors that persist in the ASD brain. Further 
analysis is required to determine if these modules are causal or simply a consequence of ASD.  
 
Experimental design and methods:  In subaim 3.1, we will increase the spatiotemporal resolution of co-
expression analysis of ASD neurobiology. Our prior analysis of spatiotemporal convergence, described in detail 
under preliminary data15, was based on 57 neurotypical brains, 9 high confidence ASD genes (FDR ≤0.05), and 
126 low confidence ASD genes (FDR ≤0.3)17. These data enabled us to examine 4 groups of brain regions 
spanning multiple developmental periods (Figure 7A). The data from Aim 1 and our progress in ASD gene 
discovery will allow us to perform this analysis using 87 neurotypical brains, 28 high confidence ASD genes 
(FDR ≤0.01), and 151 low confidence ASD genes (FDR ≤0.3). As before (Figure 7A), the gene expression 
samples will be divided into spatiotemporal windows using hierarchical clustering to group related brain regions 
(spatial) and considering overlapping developmental windows (temporal). In each spatiotemporal window we will 
identify the top 20 co-expressed genes around 28 high confidence ASD genes and, following the logic that a 
spatiotemporal network relevant to ASD should be enriched for other ASD genes, we will assess the enrichment 
of the 151 low confidence ASD genes (FDR ≤0.3). The expanded number of brain samples will enable us to use 
small subdivisions of brain regions and developmental time regions to increase the resolution of the analysis, for 
example windows spanning one or two developmental periods. In addition, the larger list of high confidence ASD 
genes will allow us to perform the analysis by building the spatiotemporal networks around subsets of these 28 
genes and improve the accuracy of the analysis through cross validation. In addition, we will divide the 28 high 
confidence genes by the two main functional categories observed, specifically chromatin regulators and synaptic 
genes, to assess the spatiotemporal dynamics of each functional category separately. The outcome of this aim 
will be refined gene co-expression networks that show spatial and temporal convergence among ASD risk genes.  
Pitfalls and alternatives: The analytical methods described here have been applied to the BrainSpan data 
using 9 high confidence genes resulting in the discovery of spatiotemporal convergence in the frontal cortex of 
the mid-fetal brain. This finding has been replicated using complementary methods58,59. In this aim we will be 
increasing the resolution through the inclusion of additional gene expression data and novel ASD-associated 
genes17, therefore we do not foresee complications. An alternative ‘top down’ methodology such as WGCNA, in 
which co-expression modules are generated from the complete dataset and are then assessed for enrichment 

Figure 7. Enrichment of ASD-associated 
genes in gene expression data. A. 
Spatiotemporal co-expression networks were 
formed around nine high confidence ASD 
genes for 4 groups of brain regions (x-axis) and 
13 overlapping developmental periods (y-axis). 
The –log(P) value for enrichment with 126 low 
confidence ASD genes is shown by the size 
and shade of the circle. Strong enrichment is 
observed in the mid-fetal PFC and primary 
motor-sensory cortex (PFC-MSC). B. Four 
ASD related gene sets9,52,53  compared to seven 
WGCNA co-expression modules that are 
differentially expression in post mortem ASD 
brains (right). Fold enrichment is indicated by 
the size and shade of the circle. A synaptic and 
microglial module are indicated by the black 
rectangles. Small black circles show gene sets 
that are non-overlapping by definition (e.g. 
WGCNA modules in the same analysis).   



of ASD genes, has yielded similar findings31. We will also apply this complementary WGCNA method across 
spatiotemporal windows.  
 
In subaim 3.2, we will identify ASD-associated non-coding de novo mutations in regulatory loci. Under pre-
existing funding arrangements we will have access to whole-genome sequencing (WGS) data for 5,120 
individuals from 1,280 quartet families composed of two parents, an affected child, and an unaffected sibling 
control. We have previously reported an increased burden of de novo mutations between the affected and 
unaffected siblings17 and we have observed this for de novo CNVs in microarray data and de novo loss of function 
mutations in exome data. To identify functional non-coding de novo mutations in regulatory loci, we will leverage 
the integrated RNA-Seq, ChIP-Seq, and HiC data from Aims 1 and 2 with the de novo mutation identification 
approach described in our preliminary data (Figure 6). To maximize our ability to discover compartments of the 
genome that carry risk we will assess de novo burden in three sets of loci: 1) All regulatory loci identified in 
neurotypical brain divided by function (e.g. promoter, 3`UTR); 2) Regulatory loci identified in neurotypical brain 
with a relationship to 28 high-confidence ASD genes; and 3) Regulatory loci identified in neurotypical brain with 
a relationship to the points of convergence for ASD genes identified in Subaim 3.1 such as prefrontal cortex in 
mid-fetal development. The outcome of this aim will be non-coding mutations and regulatory loci that show 
association with ASD. 
Pitfalls and alternatives: Our methods for identifying de novo mutations in whole genome sequencing data are 
well developed and we have demonstrated a >95% confirmation rate for the mutations predicated. Additionally, 
our preliminary data, based on 40 families, shows evidence of ASD association for de novo mutations within 
enhancers active in human dlPFC (Figure 6B and C).  This suggests the proposed study of 1,280 families will 
offer sufficient power even if the overall contribution of de novo mutations in the non-coding genome to ASD 
etiology is relatively weak. To maximize our chance of identifying ASD associated non-coding variants we will 
assess only the loci with the strongest evidence of functional activity, including the larger mutations, such as 
indels, that may carry the greatest risk. Concurrently, Dr. Sanders has an established collaboration with Mike 
Talkowski and the GATK CNV/SV working group to develop methods that maximize our sensitivity for detecting 
indels and small CNVs in whole genome sequence data. 
 
In subaim 3.3, we will identify points of spatiotemporal convergence using ASD associated non-coding 
mutations: Non-coding elements such as enhancers frequently show a degree of specificity to particular 
developmental time points, brain regions, or cell types63. We will use the ASD-associated non-coding de novo 
mutations in regulatory loci and regulatory loci related to ASD associated genes to assess which integrated 
regulatory networks from Aim 2 show the greatest enrichment for these non-coding mutations. By considering 
the brain regions and developmental epochs in which these networks exist we will assess points of 
spatiotemporal convergence critical to ASD. The outcome of this aim will be an independent analysis of points 
of spatiotemporal convergence in ASD based on non-coding mutations and regulatory loci. 
Pitfalls and alternatives: This aim relies on the discovery of specific ASD-associated regulatory loci through 
the discovery of numerous de novo mutations in cases. Due to the small size of regulatory regions we may not 
see this clustering in a single regulatory element. Should this be the case we will use genomic annotation to rank 
the regulatory loci with a single mutation, for example considering conservation, constraint 64, and large mutations 
such as indels that are more likely to disrupt the element (Figure 6C).  
 
In subaim 3.4, we will assess regulatory networks that are observed in the post mortem ASD brain. Aims 3.1 to 
3.3 focus on neurotypical brains and their association with ASD-associated mutations. In this aim we will assess 
the enrichment of ASD-associated genes, non-coding mutations and regulatory networks that differ between 
post mortem ASD and neurotypical brains (Figure 6).  Because genetic variants associated with ASD precede 
the onset of ASD symptoms, enrichment for these mutations will suggest that such networks are causal (Figure 
7) to the ASD phenotype. Conversely, a lack of enrichment for these mutations in ASD-relevant networks will 
suggest the network is consequential to ASD.  The outcome of this aim will therefore be to distinguish ASD-
specific regulatory networks that are likely to be causal from those that may be consequential. 
Pitfalls and alternatives: Methods for assessing such enrichment are well established and we already have a 
large list of ASD-associated genes; we foresee no complications in performing this aim. The main challenge lies 
in the interpretation of a regulatory network that does not enrich for ASD-associated genes (e.g. microglia in 
existing post mortem analyses, Figure 7B), since this may indicate a non-causal relationship or reflect and 
incomplete list of ASD-associated genes. We will therefore focus on networks with positive enrichment for these 
genes and acknowledge the complexities of interpreting a negative result.  
 
TIMELINE AND MILESTONES SECTION See Other Attachments 
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SPECIFIC AIMS 
The necessity for understanding gene regulation in human brain development is supported by several recent 
discoveries.  For example, most inherited common genetic variation underlying neuropsychiatric diseases lies in 
non-coding regions and is presumed to exert pathogenic effects via the regulation of gene expression and 
splicing1-4. Additionally, most non-inherited (de novo) highly penetrant ASD risk genes are enriched in co-
expression modules and protein interaction networks related to chromatin remodeling and transcriptional 
regulation3-8. Moreover, a specific shared pattern of transcriptional dysregulation is observed in the cerebral 
cortex in slightly more than 2/3 of post-mortem ASD cases9,10. Taken together, these observations emphasize 
the importance of integrating transcriptomic and epigenomic data with higher-order chromatin interactions to 
better understand the putative mechanisms underlying dysregulated genes and networks in ASD and other 
psychiatric disorders, a fundamental goal of psychENCODE. The primary goal of this application is to extend 
our ongoing analyses of healthy and ASD brains under the psychENCODE consortium with the inclusion 
of additional genomic features, brain regions, developmental time points and cell-type specific analyses. 
By performing these analyses we will enhance this public resource and improve our understanding of the 
molecular processes underlying normal human neurodevelopment and ASD.  
 Our group has been collaborating closely for a decade11-15, bringing together expertise in developmental 
neurobiology, human tissue biobanking, genetics and genomics, statistics, bioinformatics and systems biology. 
Several key conceptual threads have been apparent in our work together: 1) Revealed new insights into human 
neurodevelopment through functional genomic profiling of postmortem tissue and cell culture models12,16; 2) 
Assessed rare and de novo mutations for ASD association13,17,18, based on the notion that down-stream analyses 
are only as good as the genes that go into them; 3) Identified the neural processes and pathways that are altered 
in the presence of ASD-associated mutations, as well as when and where these processes and pathways occur 
in the developing human brain15,17,19. Here, we propose to continue this highly productive collaboration and 
expand psychENCODE phase 1 efforts through three integrated aims. 
Aim 1. Time, region and cell type-specific molecular profiling of control and ASD brains. In subaim 1.1, 
we will profile the transcriptome (by RNA-seq), cis-regulatory elements (ChIP-seq) and 3D chromatin architecture 
(Hi-C) in neurotypical dorsolateral prefrontal cortex (dlPFC), posterior superior temporal cortex (pSTC) and 
striatum (STR) during mid-fetal development, infancy, childhood, adolescence and adulthood. To address 
cellular heterogeneity and to complement the psychENCODE phase 1 tissue level data analyses, we will obtain 
these data from neuronal and non-neuronal nuclei collected with fluorescence-activated nuclei sorting (FANS). 
In subaim 1.2., complementary genomic analyses will be done on the FANS nuclei from syndromic and idiopathic 
ASD brains and matched control brains, to identify transcripts, regulatory elements, and 3D chromatin structures 
altered in ASD in brain region and cell type-specific manners. 

Aim 2. Integrated analyses of transcriptome, epigenome and chromatin structure in control and ASD 
brains.  In subaim 2.1, each dataset generated in Aim 1 will be analyzed to identify differences between the 
developmental stages and two major cell types in healthy and ASD tissue. Furthermore, these datasets will be 
integrated to gain comprehensive insights into the underlying mechanisms; Hi-C defined physical 
intrachromosomal interactions will be intersected with ChIP-seq to identify functional interactions between 
regulatory sequences potentially associated with transcriptional changes. In subaim 2.2, we will harmonize and 
integrate our multi-omic datasets with other psychENCODE studies and large-scale genomic datasets, such as 
BrainSpan, CommonMind, ENCODE, GTEx and REMC.  

Aim 3. Spatiotemporal analysis in ASD. Our prior work assessed the enrichment of ASD genes in 
spatiotemporal co-expression networks to identify the frontal cortex during mid-fetal development as a critical 
window in ASD etiology. In subaim 3.1, we will use the neurotypical gene expression data and our expanded list 
of ASD associated genes to increase the resolution of this spatiotemporal analysis. In subaim 3.2 we will use 
whole-genome data for 5,120 individuals in ASD families to identify non-coding de novo mutations within the 
regulatory loci identified in neurotypical brains in Aims 1 and 2. In subaim 3.3 we will use these non-coding 
mutations and the regulatory networks from Aim 2 to perform an independent assessment of spatiotemporal 
convergence in ASD to complement our gene-based analysis in subaim 3.1. Finally, in subaim 3.4 we will use 
the regulatory networks that are specific to the ASD brain identified in Aim 2 to assess enrichment of ASD-
associated genes and non-coding mutations thus demonstrating that such networks are causally linked to ASD 
rather than simply a consequence of ASD. At the completion of this aim we will have three independent 
assessments of spatiotemporal convergence in ASD from ASD-associated genes, ASD-associated regulatory 
loci, and ASD-associated networks in the post mortem brain. 
 
 



RESEARCH STRATEGY 
 

SIGNIFICANCE 
Neuropsychiatric disorders such as autism spectrum disorder (ASD), bipolar disorder (BD), and schizophrenia 
(SCZ) are complex and devastating illnesses with considerable morbidity and mortality, as well as high personal 
and societal costs. Many of them are also polygenic, with multiple variants, both rare and common, spread 
throughout the genome influencing the disease risk3. Recent studies have identified rare variants contributing to 
psychiatric disorders that are enriched in genes involved in global gene regulation and chromatin modification, 
and many common risk variants are enriched in regulatory regions of the human genome, regions whose 
functions are poorly understood. The interpretations of these variations in regulatory regions will certainly be 
improved with better maps of RNA transcripts, regulatory elements, and chromatin states in the human brain. 
The age of onset and progression of major psychiatric disorders also varies (Figure 1) necessitating the study 
of the temporal dynamics of gene regulation during human brain development and recognizing the 
developmental context of psychiatric disorders. An emerging body of research indicates that many aspects of 
the development and physiology of the human brain are not well recapitulated in model organisms20-24 and 
therefore it is increasingly apparent that psychiatric disorders need to be understood in the broader 
context of human brain development and physiology.  

In recent years, considerable effort has been made by many studies, including large-scale efforts by 
ENCODE, NIH Roadmap (REMC) and GTEx projects to survey the diversity of cis-acting regulatory regions and 
RNA species of the human genome across different tissues and time points. However, a comprehensive catalog 
of transcripts, regulatory elements, epigenetic modifications, and chromatin structure from the human brain 
during development and in distinct brain regions and cell types is lacking. The PsychENCODE (phase 1) projects 
have initiated these efforts.  

PsychENCODE consortium projects. The key goals of the PsychENCODE project are to provide an 
enhanced framework of regulatory elements, catalog epigenetic modifications, and quantitate coding and non-
coding RNA and protein expression in a tissue- and cell-type specific manner from neurotypical (healthy) control 
brains and diseased post-mortem human brains25. These efforts will be complemented with integrative analyses, 
as well as with functional characterizations of disease-associated genomic elements using human neural cell 
systems or the developing mouse brain. However, the human brain is heterogeneous cellularly and its 
development is regionally asynchronous and prolonged. To overcome issues that hamper the potential benefits 
of initial psychENCODE studies, we will apply several approaches to address regional and cellular heterogeneity, 
prolonged development, and new genomic methods in the context of brain development and ASD.  

Here we focus on neurotypical (control) brain and ASD, which is a complex developmental syndrome 
with a significant genetic contribution. Although considerable genetic and phenotypic heterogeneity has 
complicated efforts to establish the biological substrates of the syndrome, the emergence of reliable genetic 
findings has started to shed light on potential pathogenic mechanisms, providing an extraordinary opportunity 
for developing a mechanistic understanding of the disorder. Recent studies suggest that over 500 rare, de novo 
mutations contribute to ASD risk and no single genetic mutation accounts for more than 1% of ASD 
cases13,17,26-30, consistent with significant heterogeneity in this, and other neuropsychiatric disorders3. Despite 
this heterogeneity, mapping ASD risk genes onto co-expression networks that represent normal human 
brain development has revealed that ASD genes coalesce in modules related to chromatin remodeling 
and transcriptional regulation during early fetal brain development, suggesting potential convergent 
pathways in the disorder9,15,27,31. Another remarkable finding that parallels the convergence of genetic findings 
in developmental pathways is the identification and validation of shared transcriptional changes in postmortem 
brain in ASD9. This transcriptional dysregulation, coupled with the evidence that large effect size de novo ASD 

Figure 1. Psychiatric and 
neurological disorders have 
discrete ages of onset. The bars 
indicate the age range that each 
disorder commonly affects, with less 
frequent ages of diagnosis denoted 
as dotted lines. This variability is 
indicative of dysregulation of tightly 
controlled developmental processes 
and highlights the necessity of 
defining the spatio-temporal 
molecular processes in human brain.  



risk genes are highly enriched in chromatin modifying genes (many of which are expressed in early fetal brain 
development), emphasizes the importance of understanding the nature and extent of chromatin disorganization 
in ASD brain and in normal brain development. Further, since these data suggest distinct neuronal and glial 
gene dysregulation, it is crucial to delineate the profiles of these major cell types. In addition to our ongoing 
efforts in PsychENCODE phase I project, this proposal provides critical advances in our understanding of the 
role(s) of non-coding functional elements in the pathophysiology of ASD and a scaffold for understanding 
chromatin structure and gene regulation across normal brain development. Overall, the approach proposed here 
will provide mechanistic insights that connect distinct transcriptional programs associated with ASD 
pathogenesis, and will provide a resource of the mechanisms of gene regulation across brain development to 
inform other neuropsychiatric disorders, a key goal of psychENCODE. This work also leverages 
psychENCODE phase 1 projects by adding significant new data to expand the value of the resource and 
by directly addressing key areas of interest in control and ASD brains as outlined in RFA-MH-16-230: 1) 
Generation of comprehensive, high resolution human brain region/cell type and age-specific maps of different 
classes of RNA transcripts, regulatory elements, chromatin states, chromatin conformation, and chromatin 
interactions;  2)  Identification of human brain region/cell type and age-specific molecular processes; 3) 
Integration of these newly generated multi-omic datasets, from diseased and healthy control brains, with large-
scale genomic resources; 4) Generation and analysis of high-depth, whole genome sequencing data to allow for 
improved evaluation of various genetic alterations; and 5) Development of comprehensive molecular models of 
disease (i.e., ASD) using systems biology approaches.  

 

INNOVATION 
This proposal is innovative in several aspects. First, to the best of our knowledge, the systematic discovery and 
functional characterization of genomic non-coding elements and 3D chromatin architecture has not been 
performed in healthy developing human brains or ASD brains at a cell type-specific resolution. For example, we 
use Hi-C, which combines chromosome conformation capture and NextGen sequencing to identify physical 
interactions that capture multiple levels of chromosome architecture ranging from nuclear configuration 
(“compartments” of about 5Mb) to TADs (domains of 500kb on average) and gene loops (often reflect enhancer 
promotor relationships; 40kb average), and is the only such method that spans all of these levels, genome-
wide32-34. Second, this project will conduct direct analysis of one of the largest collection of well-characterized 
high quality healthy as well as syndromic and idiopathic ASD postmortem brains. Third, we will combine 
fluorescence-activated nuclei sorting (FANS) with advanced genomic techniques to analyze multiple genomic 
features in archived development control and ASD brains. Fourth, we will leverage these analyses with our 
ongoing psychENCODE phase 1 tissue level analyses and other recent large-scale genomic resources, such as 
BrainSpan, ENCODE, GTEx and Roadmap project. Therefore, our proposed data and integrated analyses has 
potential to improve our understanding of genomic processes and normal human brain development as well as 
diagnostics, neurobiology and treatment of ASD. 
 

COLLABORATION 
This collaboration brings together multiple groups with long standing expertise in developmental neurobiology, 
psychiatry, human biobanking, genetics and genomics, statistics, bioinformatics, and systems biology that have 
worked closely with one another for almost a decade as evidenced by many co-publications.  Several key 
conceptual threads have been apparent in our work together related to human brain development and 
neuropsychiatric disorders: 1) Revealed new insights into human neurodevelopment through functional genomic 
profiling of postmortem tissue and cell culture models12-16; 2) Assessed rare and de novo mutations for ASD 
association13,17,18; 3) Identified the neural processes and pathways that are altered in the presence of ASD-
associated mutations, as well as when and where these processes and pathways occur in the developing human 
brain15,17,19. In addition, M. Gerstein (Yale) and Z. Weng (University of Massachusetts), experts in bioinformatics 
and computational biology, are leaders of the PsychENCODE DAC, which will normalize the data to remove 
batch effects, establish uniform data processing pipelines and build calibration resources for all assays to enable 
comparison and integration of the data generated by all psychENCODE groups. The efforts of each group will 
be tightly integrated in order to communicate progress and results, design and implement analytical tools, and 
transfer data. Given the complexity of human neurodevelopment and genetics/neurobiology of ASD, we believe 
that integrating the respective expertise of these groups, and their respective collaborators at UCLA (Ernst and 
Geschwind), UCSF (Sanders, State and Willsey), UMass (Weng), and Yale (Gerstein and Sestan), offers the 
best opportunity to better understand human brain development and ASD through functional genomics. Here, 
we propose to leverage our expertise and continue this highly productive collaboration and expand 
psychENCODE phase 1. 
 



ELEMENTS UNIQUE TO THIS SITE (UCSF; State, PI; Sanders and Willsey, co-investigators) 
The UCSF team will combine the data from Aims 1 and 2 with whole-genome sequencing (WGS) data for 5,120 
individuals in 1,280 ASD families to identify when, where, and in which cells the etiology of ASD occurs. In 
Subaim 3.1 they will use the additional gene expression data and ASD gene discovery to increase the resolution 
of their prior spatiotemporal analysis that implicated prefrontal cortex during mid-fetal development. In Subaim 
3.2 they will use regulatory loci from Aims 1 and 2 to filter de novo mutations in non-coding regions in the WGS 
data. In Subaim 3.3 they will use the non-coding mutations from Subaim 3.2 and the integrated analysis of 
regulatory networks from Aim 2 to perform an independent spatiotemporal analysis of when, where, and in which 
cells ASD etiology occurs. Finally in Subaim 3.4 they will assess the enrichment of coding and non-coding 
mutations from WGS in the integrated regulatory, transcriptional and molecular networks in ASD brains to 
provide evidence for these networks being a cause rather than a consequence of ASD. 
 
APPROACH 
The objective of this proposal is to extend our ongoing tissue level analyses of healthy and ASD brains under 
the psychENCODE consortium with the inclusion of additional genomic methods, brain regions, developmental 
time points, and cell-type specific analyses. By performing three integrated aims (Figure 2) we propose to 
enhance this public resource and improve our understanding of the molecular processes underlying normal 
human neurodevelopment and ASD.  

    Figure 2. Schematic workflow of three specific aims. 
 
Aim 1. Time, region and cell type-specific molecular profiling of control and ASD brains.  
Rationale and preliminary supporting data: Three major observations provide motivation for this aim. The first 
is the recognition that genomic data, including transcriptomic, epigenetic and physical chromatin structure, from 
the relevant neurotypical tissue (control), spanning the key epochs of neurodevelopment and function from fetal 
to adult periods, provide a new and previously unobtainable view of genetic risk for psychiatric 
disease10,15,16,31,35,36. The second is that brain is comprised of an extremely heterogeneous mixture of cell types 
that exhibit distinct molecular profiles, including glia-to-neuron ratios that could show considerable fluctuations 
across normal development or in certain disease states. The third is the observations of differences in 
transcriptome organization via tissue-level gene co-expression network analysis conducted between ASD and 
normal brains9. Thus, here we propose to create a region and cell type-specific normal developmental 
scaffolding on which to frame disease variants via transcriptional (RNA-seq), epigenetic (ChIP-seq) and 
chromatin architecture (HiC) profiling of neuronal and non-neuronal cells at key epochs in human brain 
development (subaim 1.1), as well as compare these profiles in ASD and matched control brains (subaim 
1.2) to help elucidate the mechanisms by which genetic variation alters brain development and function, 
leading to ASD and related neuropsychiatric conditions. While several genomic features are currently being 
analyzed in control and ASD brains by our and other groups in the psychENCODE consortium, cellular 
heterogeneity during development, other genomic features (e.g. 3D chromatin contacts), have yet to be 
addressed. To address these issues, we will utilize our large, high quality, phenotypically well-characterized 
human brain collection (see Facilities and Resources section), as well as newly implemented methods to collect 
molecularly defined cell type specific nuclei from archival human postmortem brains in this collection.   

Our preliminary data demonstrates a clear pattern of transcriptional dysregulation is observed in 
2/3 of ASD brains9, which we have now confirmed in our psychENCODE phase 1 projects (in a more than 



double sized sample of cases and controls) using tissue level RNA-seq and ChIP-seq (H3K4me3 and 
H3K27ac) in multiple brain regions in 43 idiopathic ASD cases, 8 cases with chromosome 15q11-13 duplication 
syndrome (dup15q) and ASD, and 63 controls37,38. We also observe that post mortem brain from patients with 
ASD caused by (dup)15q11-13 share this same pattern at all levels of differential protein coding gene expression, 
splicing and lncRNA38. As the first step in exploring potential mechanisms, we performed epigenetic profiling of 
ASD vs. control brains with H3K27ac marks, which indicate active enhancers39. Genes with differential H3K27ac 
peaks in their promoter regions (5000bp upstream of the transcription start site) were enriched with neuronal 
genes with changes in expression. This result demonstrates that transcriptional dysregulation in ASD is partially 
mediated by changes in histone/chromatin modifications. Furthermore, the two major groupings of modules 
derived from whole tissue gene expression analysis sort into those up-regulated and expressed in glia, and those 
down-regulated in neurons9,38, strongly motivating our plan for transcriptional, epigenetic and Hi-C profiling in 
neurons and non-neuronal (glial) cells independently.   

Another of the important advances in methodology that will be implemented here is the 
assessment of 3-D chromatin structure across to different brain regions and cell types, and 5 key epochs 
of normal brain development and in ASD brains. Our preliminary data strongly supports the value of these 
data and our ability to perform and analyze these experiments (see also40). We established an efficient Hi-C 
protocol and obtained high resolution data (10 kb resolution; via deep sequencing) from the fetal cortex from 3 
individuals dissected into two zones: cortical plate (CP) and germinal zones (GZ) at post-conception week (PCW) 
18 (total n = 12 samples: representative heatmap shown in Figure 3A). Demonstrating the data quality, principal 
component of the interchromosomal interaction matrix for GZ shows a high correlation with GC content (r=0.791, 
P<10–256), gene number (r=0.384, P<10–256), DNase I hypersensitivity (r=0.416, P<10–256), and to a lesser extent, 
gene expression (r=0.129, P=1.11x10–66; Figure 3B and C), recapitulating previous work in cell lines41. We next 
asked how chromatin interactions elicit transcriptional co-regulation. We hypothesized that highly interacting 
chromatin regions would be co-regulated at least in part by sharing chromatin remodelers and transcription 
factors (TFs). To test this, we binned chromatin interactions into top and bottom percentiles, and compared the 
distribution of correlation patterns for genes in the high and low interacting regions of chromatin. We observed 
that the high interacting regions were significantly biased toward positive correlations (Figure 4A), supporting 
the hypothesis that co-localization can predict co-expression. 
 We next integrated these data with the epigenomics map from the NIH Roadmap project42. By comparing the 
epigenetic mark combination matrix with the Hi-C contact matrix, we demonstrate that interacting regions exhibit 
shared epigenetic patterns: loci associated with transcriptional regulation and enhancers are significantly more 
likely to interact with each other (Figure 4B). Comparison of TF binding site (TFBS) combination matrix 
(generated from TFBS map reported in43) with the intrachromosomal contact matrix revealed distinct 

combinatorial patterns of TF binding likely to mediate 
chromosome interactions (Figure 4C), thus revealing new 
experimentally testable regulatory relationships.  
 To validate that Hi-C data can identify target genes 
regulated by single nucleotide polymorphisms (SNPs) in a 
general setting, we determined if SNPs with a significant 
effect on gene expression were also identified as 

Figure 3. Chromosome conformation in fetal brains (by Hi-
C). A. Representative heatmap of chromosome contact matrix of 
GZ. Normalized contact frequency (Contact enrichment) is color-
coded according to the legend on the right. B. Spearman 
correlation of PC1 of chromatin interaction profile of fetal brain 
(GZ) with GC content (GC), gene number, DNase I 
hypersensitivity (DHS), and gene expression level of fetal brains. 
These data show relationship of 3D structure to key known 
functional elements as has been previously shown in other 
systems. C. Gene ontology (GO) enrichment (GO Elite) of genes 
located in the top 5% of highly interacting inter-chromosomal 
regions specific to GZ vs. CP (top), and ES vs. CP (bottom), 
indicating that genes located on dynamic chromosomal regions 
are enriched for neuronal function in CP, which contains the 
more differentiated laminae. Please see Won et al. 2015 in 
Appendix for higher magnification figure. 



interacting by Hi-C using cis-expression quantitative trait loci (eQTL) data from adult frontal cortex44. Indeed, Hi-
CeQTL genes were significantly over-represented with known associated genes from the eQTL study and eQTL 
SNP-transcript pairs exhibit significantly higher chromatin contact frequency than the null across all distance 
ranges measured, further supporting the utility of Hi-C to infer the gene or region of activity for regulatory 
variation.  In addition we asked whether significant physical cis-chromosomal contacts identified with Hi-C could 
inform functional annotation of 108 genome-wide significant schizophrenia loci, most of which lie far outside 
known coding or other functional regions of the genome. 

 Although SNPs are typically assigned to the closest 
genes, or those within the LD block, Hi-C indicated 
that about 50% of the variants were neither adjacent 
to the index SNPs (most-associated SNP within a 
locus), nor in LD. Interestingly, Hi-CSCZ genes 
significantly overlap with ASD de novo likely gene-
disrupting (LGD) targets26,45 (CP: OR=2.4, 
P=1.6x10-5, GZ: OR=1.8, P=0.006), indicating a 
shared genetic etiology between ASD and 
schizophrenia46. The fact that genes with LGD 
mutations in ASD are associated with regulatory 
variants in schizophrenia suggests that complete 
abrogation of these genes may cause 
developmental defects as in ASD, while regulatory 
changes in these genes may cause later-onset of 
neuropsychiatric symptoms as in schizophrenia. 
Collectively, these preliminary data demonstrate 
that we can conduct and analyze genome-wide Hi-
C experiments, integrate these data with other 
epigenetic and transcriptomic data, and use 
chromatin architecture elucidated by Hi-C to provide 
novel genome-wide insights into the regulatory 
mechanisms occurring during neuronal 
differentiation and disease pathogenesis. 
 
Experimental design and methods: In subaim 
1.1., we will profile the transcriptome (by RNA-seq), 
cis-regulatory elements (ChIP-seq) and 3D 
chromatin architecture (Hi-C) in the control 
neurotypical dorsolateral prefrontal cortex (dlPFC), 
posterior superior temporal cortex (pSTC) and 
striatum (STR). These regions have been implicated 
in the risk for ASD and schizophrenia35 and in the 
cases of dlPFC and pSTC shown to have 
dysregulated transcriptional patterns in ASD9. 
Recent studies have also highlighted the late mid-

fetal frontal cortex as most enriched for co-expression of ASD and schizophrenia de novo hits15,31,35. Brains from 
at least 5 key epochs of development representing mid-fetal, infancy, childhood, adolescence and adult brain, 
and a minimum of 6 subjects (balancing sex when possible) from each of these 5 epochs (30 brains in total) will 
be profiled.  

Cell-type specific chromatin, epigenetic and transcriptome assays are at the core of this project. Mario 
Skarica, a talented research associate scientist in the Sestan lab, has developed a protocol to isolate high quality 
nuclei with preserved chromatin and RNA from archival fresh frozen fetal and postnatal human brains. Using this 
approach he has obtained, on average, 2.57 +-0.8 and 6.93+-3.3 million intact nuclei from 100 mg of the fetal or 
adult prefrontal gray matter (i.e., fetal CP or adult cortical layers 1 to 6 with a small part of underlying white 
matter), respectively (Figure 5A). Furthermore, we separated neuronal and non-neuronal nuclei, by 
immunostaining with the NeuN antisera against pan-neuronal splicing protein RBFOX3 (Figure 5B and C) and 
sorting on BD FACSAria IIU Three-Laser System. Starting with infancy and onwards, postnatal gray matter tissue 
corresponding to six-layered postnatal cortex and small part of adjacent white matter from dlPFC and pSTC, or 
STR (corresponding to the caudate-putamen with the internal capsule at the septal level) will be processed. 

Figure 4. Highly interacting regions share co-expression 
patterns, which is mediated by epigenetic regulation. A. 
The top 10,000 highest interacting regions (intH) in fetal 
brains both at GZ and CP show positive correlation in their 
gene expression patterns, while the top 10,000 lowest 
interacting regions (intL) and top 10,000 highly variant 
regions (intV) have no skew in the distribution, consistent 
with random interactions. P-value, Kolmogorov-Smirnov 
test. B-C. Epigenetic state combination (B) and TFBS 
combination (C) for intrachromosomal interacting regions. 
The epigenetic state matrix and TFBS combination matrix 
were generated by marking loci where two interacting 
chromosomal bins share epigenetic signature. For example, 
the epigenetic combination matrix between the active 
transcription start site (TssA) and active enhancers (EnhA1) 
is generated by marking where interacting loci have TssA 
and EnhA1. Intrachromosomal contact frequency map is 
compared to the epigenetic state combination matrix by 
Fisher’s exact test to calculate the enrichment of shared 
epigenetic combinations in interacting regions. Odds ratio 
(OR) and P-values are depicted in the heatmaps (Please see 
Won et al. 2015 in Appendix for higher magnification figure). 



Tissue samples will be dissected directly from frozen tissue blocks using custom dental tools and protocol 
described in Kang et al., 201147. These dissections will be performed by Nenad Sestan, who has over 2 decades 
of experience in human neuroanatomy and tissue processing and has microdissected over 1600 tissue samples 
for exon array profiling of the human brain transcriptome47.   Given the high proportion of neurons in the cortical 
plate of the mid-fetal brain (approaching 95% or more), and relatively few neurons that are positive for NeuN at 
17-20 PCW in neocortical CP or STR48,  we will not sort NeuN+ and NeuN- nuclei from mid-fetal brains, but 
instead analyze tissue homogenate and unsorted nuclei from CP of prospective dlPFC and pSTC as well as 
STR, separately, from corresponding neocortical and striatal GZ (i.e., VZ and SVZ) containing a mixed population 
of dividing neural stem/progenitor cells with a minor contribution of newborn neurons and glia.  

Tissue samples will be pulverized and processed to release nuclei, which will be purified by 
ultracentrifugation  and processed for RNA-seq in the case of mid-fetal samples or in the case of all postnatal 
specimens (infancy and onwards) sorted into a NeuN+ (predominantly neurons) and NeuN- (mostly glia) 
fractions. In the past year, we have obtained on average 23.45+-7.2 percentage of NeuN+ nuclei from PFC 
(Figure 5C). This approach will provide unbiased quantitative assessments of cell types in healthy and ASD 
brains. This approach allows us to simultaneously collect molecularly defined cell type-specific nuclei and isolate 
DNA, chromatin, and nuclear RNAs. Bulk tissue level RNA-seq is available for dlPFC, pSTC and STR in control 
and ASD brains as part of psychENCODE phase 1 studies38, has already been added to enhance the scope of 
the resource. All brains necessary for this project are currently available in the Geschwind and Sestan labs (see 
Facilities and Resources section for the list). 

Total RNA will be extracted from 1 million nuclei 
using Norgen’s Cytoplasmic & Nuclear RNA Purification Kit. 
RNA from tissue and cell populations will be depleted of 
rRNA and sequencing libraries prepared with TruSeq 
Stranded Total RNA with Ribo-Zero Gold and SMARTer 
Stranded RNA-Seq Kit, respectively. As expected, our 
preliminary nuclear RNA-seq analyses revealed higher 
percentage of unspliced primary transcripts and extensive 
identification of nuclear-retained long non-coding RNAs 
(Figure 5D). Importantly, we detected robust cell type-
specific expression differences, including those of ASD-
associated genes (Figure 5 E). RNA-seq libraries will be 
sequenced on the Illumina HiSeq 2500 at the Yale Center 
for Genome Analysis (http://ycga.yale.edu/) to generate 
100 bp strand specific paired-end sequence at over 40 
million reads per end for each sample. For ChIP-seq, 1 
million nuclei will be processed through our established 
protocol using well-characterized ChIP-grade H3K27ac and 
H3K4me3 antibodies that have been used in 
psychENCODE phase 1 tissue-level experiments. ChIP-
seq libraries will be sequence at HiSeq 2500 at Yale at >40 
million reads per sample.  Using the standard pipelines 
developed in the Sestan and collaborating labs, we will 
perform QC analyses and compare the transcriptome and 
epigenetic data from different time points and regions to 

construct spatiotemporal gene and disease state profiles and co-expression networks using computational 
methods described in Aim 2. 

For Hi-C, 2 million nuclei will be prepared from each sample and cross-linked in 1% formaldehyde for 10 
min. Cross-linked DNA will then be restriction digested using HindIII, digested chromatin ends filled with biotin-
14-dCTP, and resulting blunt-end fragments ligated under dilute conditions to minimize random intermolecular 
ligations. Following this, crosslinking will be reversed, unligated ends removed by exonuclease digestion (T4), 
DNA sheared by sonication, and 300-600bp fragments selected. The intermolecular ligation products containing 
biotin-tagged DNA will be pulled down with streptavidin beads and ligated with Illumina paired end adapters and 
the library sequenced by Illumina 50bp paired-end sequencing over 3 lanes of the HiSeq 25000 at UCLA, a 
depth necessary to facilitate sufficient hi-resolution analysis (300-500 million mapped reads), which can also be 
augmented by pooling samples to increase depth as needed. 

 

Figure 5. Fluorescence-activated nuclei sorting 
(FANS) and nuclear RNA-seq of human dlPFC. A. 
Collection of single nuclei (see insert) from fetal (n=6) 
and adult (n=29) PFC. B. FANS plot for NeuN 
immunopositive nuclei.  C. Percentage of NeuN+ 
nuclei collected across different experiments. D. 
Coverage for exon, intron and intergenic regions of 
different sequencing technologies. E) Differential 
expression comparison between NeuN+/- FANS 
nuclei for neuronal, glial and ASD-related genes. 



In subaim 1.2, complementary genomic analyses will be done on the FANS nuclei from control, and syndromic 
and idiopathic ASD brains, to identify transcripts, regulatory elements, and 3D chromatin structures altered in 
ASD in brain region and cell type-specific manners. We will conduct RNA-seq, ChIP-seq and Hi-C on sorted 
neuronal and non-neuronal nuclei from 2 cortical regions, dlPFC and pSTC, and STR from 20 matched control 
and 20 ASD individuals, including 5 dup15q cases. We will select 10 ASD cases manifesting the shared pattern 
of transcriptional dysregulation observed, 10 without this pattern, and match them to controls to account for 
potential confounders (sex, age, postmortem interval [PMI], and RNA integrity numbers [RIN]). We will select 5 
dup15q brains with most similar breakpoint structures. Hi-C will be performed on sorted nuclei using the identical 
experimental methods as in subaim 1.1.  
Pitfalls and alternatives: The techniques in these proposed experiments are commonly used in our laboratories 
and we do not expect complications. One potential issue is the obtainment of adequate samples.  The Sestan 
lab has almost 200 high quality frozen human prenatal, early postnatal and adult brain specimens from clinically 
unremarkable (neurotypical) control donors. Control brains from this collection were used for different BrainSpan 
and psychENCODE phase 1 projects (see example studies12,47,49,50 and Resources and Facilities section). Both 
Geschwind and Sestan labs have tissue samples from over 50 post mortem ASD cases and matched controls 
with good quality RNA, and have participated in the new initiative at the Simons Foundation to collect additional 
postmortem ASD brains.  A related concern is whether the 20 ASD brains we propose to analyze are sufficient, 
given the heterogeneity typical of ASD, to detect robust differences between these samples and our controls.  
However, we were able to detect transcriptional dysregulation in 2/3rds of ASD brains in a smaller cohort17, and 
by directly comparing ASD brains exhibiting hallmarks of dysregulated transcription with those that do not, we 
expect to have sufficient statistical power to assess the extent to which 3D chromatin structure contributes to the 
observed transcriptional changes.  Further, the use of 5 dup15q cases provides an additional homogeneous 
cohort, and as our preliminary results on transcriptome analysis of this cohort demonstrate (appendix), such 
sample sizes are sufficient. The main pitfall of Hi-C is that it averages chromosome contact population from 
millions of nuclei. Single-cell Hi-C can complement this limitation51, but it can capture only one interaction for a 
given locus. Homogenous population of cells can be achieved by FANS and thus we propose this approach 
here.  Additionally, Hi-C offers other benefits, including the ability to analyze interactions mediated by multiple 
TFs en masse in Hi-C, that are not easily achievable with other methods such as ChIA-PET. While our FANS 
approach, which follows standards accepted across the psychENCODE projects, is limited to two major groups 
of cells, we have been implementing the use of other cell type specific nuclear antibodies and single nuclear 
RNA-seq.  Finally, we realize that other regions, including the thalamus, hypothalamus, and hippocampus, may 
be affected in ASD. We believe our work on the neocortex and STR will develop a framework for understanding 
of the molecular neuropathology of ASD which can then be extended to include other regions in the future.   
 
Aim 2. Integrated analyses of transcriptome, epigenome and chromatin structure in control and ASD 
brains. 
Rationale: We will analyze the data generated in the previous aim to (1) identify developmentally regulated and 
cell type specific changes in the transcriptome, epigenome and the 3D chromatin structure (2) integrate the three 
types of datasets to gain comprehensive insights into the underlying mechanisms of transcriptional regulation 
and dysregulation in development and disease, respectively. 
  
Experimental design and methods: In subaim 2.1, several first order analyses will be done for quality control 
and to provide the data as a processed resource in addition to the raw data. We will use Illumina CASAVA to 
purify the low-quality and non-identified reads and Fastqc (http://www.bioinformatics.babraham.ac.uk/ 
projects/fastqc/), to report fundamental quality parameters. Next, Tophat52 will be employed to uniquely align the 
filtered reads to their reference genome and RSEQtools53 to quantify expression profiles of each type of 
annotation entry retrieved from the latest release of the GENCODE project. The R package DESeq 
(http://bioconductor.org/packages/release/bioc/html/DESeq.html) will be used to identify differentially expressed 
(DEX) genes and well established methods including MATs to identify differential splicing10,37. DEX genes will be 
detected from the reliably expressed coding and non-coding transcripts, which are defined as transcripts with 
RPKM ≥ 1 in at least 2 samples of different developmental period. ChIP-seq reads will be aligned to the genome 
by Bowtie. After filtering of low score reads, we will use the MACS platform to call peaks enriched over the input 
library, and peaks with high empirical FDR will be excluded from further analysis. Thus, we will catalog all 
potential cis-regulatory elements from our genome-wide histone modification maps in all brain regions across 
developmental periods.  
For Hi-C analysis, hiclib (https://bitbucket.org/mirnylab/hiclib) will be used to perform all initial analysis on Hi-C 
data from mapping to filtering and bias correction (see also40). Sequenced reads will be mapped to the human 
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genome by Bowtie2 (with increased stringency, --score-min -L 0.6,0.2--very-sensitive) through iterative mapping 
and read pairs allocated to HindIII restriction enzyme fragments. Self-ligated and unligated fragments, fragments 
from repeated regions of the genome, PCR artifacts, and genome assembly errors will be removed. Filtered 
reads will be binned at 10kb, 40kb, and 100kb resolution to build a genome-wide contact matrix at a given bin 
size. This contact map depicts contact frequency between any two genomic loci. To decompose biases from the 
contact matrix and yield a true contact probability map, filtered bins are subjected to iterative correction41. Bias 
correction and normalization results in a corrected heatmap of bin-level resolution. 100kb resolution bins are 
assessed for inter-chromosomal interactions, 40kb for TAD analysis, and 10kb for gene loop detection. For TAD-
level analysis32, we will quantify the directionality index by calculating the degree of upstream or downstream 
(2Mb) interaction bias of a given bin, which will be processed by a hidden Markov model (HMM) to remove 
hidden directionality bias. For gene loop detection, aggregate peak analysis (APA) will be performed that 
quantifies the aggregate enrichment of putative peak sets by calculating the sum of a series of submatrices 
derived from a contact matrix34. Resulting inter- and intra-chromosomal interaction matrices as well as genome-
wide TADs and gene loops will be used for integrative analysis. 
Developmental and cell type-specific changes: Pearson’s correlations between the first principal components 
(PC1) from different stages and neuronal and non-neuronal cell types, as well as with our own and other 
published data will be calculated to compare similarities between different cell types. We will explore alternative 
transcriptional mechanisms or post-transcriptional modifications occurring in normal (and ASD-affected, see 
below) regions/cells and time points. These can include up- or down-regulating expression, altered 
spatiotemporal gene expression, imbalanced expression of different alleles (allele-specific expression [ASE]), 
aberrant splicing events, modified RNA editing sites, fusion transcripts, or loss of function due to frameshift 
mutations. RNA and epigenome data will also be compared with tissue level psychENCODE phase 1 and 
BrainSpan’s RNA-seq and ChIP-seq data. We will follow up with an analysis of the relative enrichment of each 
cell-specific marker genes in each subpopulation and use the expression profiles of these genes to guide the 
identification of an expanded set of cell-type specific markers. 
Integrated analyses: Spearman’s correlations between PC1/PC2 and biological traits (gene expression, 
histonemark enrichment, GC content, gene density, DNase I hypersensitivity [DHS]) will be calculated. Gene 
expression and histone mark data generated in subaim 1.1 along with DHS of fetal brain from Epigenomic 
roadmap54 will be used and average values per 100kb bin calculated. In addition to the putative cis-elements 
identified in the same samples, we will also use the 15 state epigenetic marks from Epigenomic Roadmap54 in 
genomic regions classified based on compartments averaged across 40kb bins, as well as subject specific 
psychENCODE data. Epigenetic state counts54 for one compartment category are normalized by total epigenetic 
mark number of that compartment category and compared between samples.  
Dysregulation in ASD brains. Two main data analyses will be performed with the transcriptome data. We will use 
the same approach as in subaim 2.1 to identify DEX coding and non-coding transcripts (by DESeq) between 
ASD and matched controls. Gene function enrichment analysis will be performed for these DEX genes. Finally, 
we will also perform Weighted Gene Co-expression Network Analysis (WGCNA; http://labs.genetics.ucla.edu/ 
horvath/CoexpressionNetwork/) to identify modules of differentially co-expressed genes in ASD cases. For ChIP-
seq data, once peaks are called and filtered for quality and reproducibility, we will identify and catalog all putative 
enhancer and promoter sites gained or lost in ASD brains compared to matched control brains, as well as what 
genes they are associated with.  
 In Hi-C data, we will assess if compartments, TADs, and contact domain structures are abrogated in ASD 
brains. Interaction partners for ASD risk genes, as well as gene loops involving ASD risk gene regulatory 
elements will be examined. Genome-wide interchromosomal contact matrices at high resolution (approximately 
10kb) will be compared between ASD and control to identify bins that exhibit the largest chromosomal interaction 
changes in ASD (here we refer to ASD-specific bins). Gene ontology for these genes as well as their gene 
expression pattern in ASD may provide novel insights on ASD mechanism. The same approach will be applied 
to intrachromosomal contact matrices at 10-40kb resolution. TADs in ASD vs. controls will be also compared. 
The directionality index around ASD-specific TAD boundaries will be calculated to check significance. Moreover, 
we will examine gene expression level and histone marks on TAD boundaries as well as histone marks on TADs 
that contain ASD risk genes. Both inter- and intra-chromosomal interaction patterns of the bins that contain 
differentially expressed genes in ASD or ASD risk genes will be examined in ASD vs. controls. Gene expression 
pattern and histone states of genomic loci that highly interact with dup15q region will be assessed. This approach 
of integrating chromosome interactomes to transcriptomic and epigenetic profiles may delineate epigenetic 
mechanism behind gene dysregulation in ASD. 



 We will also perform integrative network analyses of these multi-level genomic data with genetic variation to 
understand the causal mechanism of transcriptional alterations in ASD (see also Aim 3). This will include 
integration of DNA sequence, methylation, chromatin contacts, eQTL and hQTL by this collaborative team of 
investigators (e.g. to include new hQTL methods by S. Prabhakar and colleagues55. Gene loops detected in 
control and ASD will be also interrogated. Gene loops that are specific to ASD or specific to controls may directly 
point out aberrant enhancer-promoter interactions, TF binding, or compartmentalization of genome. We will 
check if ASD-specific gene loops contain any ASD-associated variants (mostly common SNV at this point, 
although as more whole genome sequencing (WGS) data is available over the next 12 months, we can use these 
data to annotate potential functions of noncoding variants (Aim 3). 
   
In subaim 2.2., we will integrate and harmonize data across psychENCODE projects and other relevant genomic 
resources. In this aim, the DAC will integrate and harmonize our datasets with other psychENCODE studies and 
large-scale genomic datasets, such as BrainSpan, CommonMind, ENCODE, GTEx and REMC. The 
PsychENCODE DAC is led by Mark Gerstein and Nenad Sestan (Yale), Zhiping Weng (University of 
Massachusetts), who are part of this proposal and Kevin White (University of Chicago). DAC will summarize the 
major analysis results produced from psychENCODE and organize them into an encyclopedia of regulatory 
elements in the developing and adult human brain. We are currently building such an encyclopedia for the 
ENCODE consortium, and we will be able to leverage the methods that we are building for ENCODE and modify 
them to best serve psychENCODE data. The psychENCODE encyclopedia will include several components. 
The first component is the raw experimental data, including the expressed transcripts in neuronal and glial cells 
in various brain regions, the peaks (enriched regions) of an array of histone marks, the open chromatin regions 
detected using ATAC-seq, the differentially enriched histone mark peaks and open chromatin regions in ASD, 
BD and SCZ (diseases covered by psychENCODE projects. This component will largely result from a series of 
uniform processing pipelines, which we will build for analyzing psychENCODE data. The second component will 
include results that require the integration across multiple data types, including the enhancers in each cell type, 
the chromatin states called using a combination of histone marks and ATAC-seq data, and the topologically 
associated domains and compartments called by combining histone marks, ATAC-seq and Hi-C data. The third 
component of the encyclopedia will provide a higher-order organization to the elements in the first two 
components. Specifically we will derive the target genes for enhancers in a cell type specific manner, and identify 
the enhancer-gene links that are disrupted in the three diseases. We will also identify the variations that are 
linked with difference in gene expression (eQTLs) that are within enhancers that target the corresponding genes. 
Finally, we will develop a portal to guide the user through the components of the psychENCODE encyclopedia, 
with multiple entry points, such as genes, GWAS SNPs, or a specific regulatory region in the genome. 
Pitfalls and alternatives: Proposed computational approaches are well established in our team and we already 
have a considerable expertise and collaborative history therefore we foresee no complications in performing this 
aim. Furthermore, Sestan, State and Geschwind have been part of the BrainSpan project and Ernst, Gerstein 
and Weng has been part of several other relevant genomic consortia, such ENCODE. 
 
Aim 3. Spatiotemporal analysis in ASD. 
Rationale and preliminary supporting data: Over the past few years genomic analyses by our labs and others 
have made rapid progress in identifying genes associated with ASD, in particular through the identification of de 
novo mutations in ASD cases13,17,26,30,45. Despite the identification of these ASD-associated genes, progressing 
to an understanding of ASD neurobiology remains a challenge. Aims 1 and 2 described one approach to 
discovering this neurobiology through the identification of ASD-specific networks in post mortem brains. In Aim 
3 we propose a complementary approach through the identification of genomic loci, brain regions, developmental 
stages, cell types, and neurobiological processes that are enriched for ASD mutations in genes (subaim 3.1) 
and non-coding loci (subaims 3.2 and 3.3) in neurotypical brains. Finally, we will test the hypothesis that ASD 
specific networks observed in post mortem brains from Aims 1 and 2 will be enriched for ASD associated 
mutations (subaim 3.4) thus demonstrating that the disruption of this network precedes the diagnosis of ASD 
and is therefore likely to be a cause of ASD rather than a consequence.  

1) Detection of ASD-associated genetic loci. We identified rare and de novo variants in exome data from 
5,563 ASD cases and 13,321 controls alongside rare and de novo copy number variants in microarray data from 
4,687 ASD cases and 2,100 controls17. Comparison of these two data sets showed that small de novo deletions 
in ASD targeted the same set of genes as de novo loss of function point mutations in exome data. A combined 
analysis of exome data and small de novo deletions was performed using the Transmitted and De novo 
Association (TADA) method to identify ASD-associated genes. 28 ASD-associated genes were identified with 
very high confidence (false discovery rate (FDR) ≤ 0.01) and 65 ASD-associated genes were identified with high 



confidence (FDR ≤ 0.1). These 65 genes formed a protein-protein interaction (PPI) network with two distinct 
subnetworks, enriched for chromatin regulatory genes and synaptic genes respectively (Figure 6A).  

2) Detection of ASD-associated non-coding variants in whole-genome sequencing (WGS) data. We 
analyzed WGS data for 40 simplex ASD quartets composed of both parents, an affected child and an unaffected 
sibling control. The families were selected from the Simons Simplex Collection on the basis of no previous de 
novo loss of function or CNV mutations in exome and microarray data and high paternal age. The samples were 
sequenced to greater than 30x mean coverage (mean±standard 35.7±5.8). Raw data were aligned to hg19 
human reference genome using BWA-mem56. Duplicate reads were removed with Picard 
(http://broadinstitute.github.io/picard/); GATK best practices57 were used for all downstream steps including, local 
realignment, base quality score recalibration, SNV and indel calling, cohort-wide joint genotyping, and variant 
quality score recalibration. Data were normalized within families by only analyzing bases with at least 20 unique 
reads in all family members. A combination of PLINK/SEQ (https://atgu.mgh.harvard.edu/plinkseq/) and in-house 
scripts were used to identify autosomal de novo variants based on stringent criteria designed to maximize 
specificity: minimum genotype likelihood (GQ) ≥20, alternate allele frequency (AB) ≤0.05 in the parents, and 0.3-
0.7 in the child, minimum map quality (MQ) ≥30 in all family members, and allelic depth for the alternate allele 
(AD) ≥8. Approximately 7,000 de novo mutations were identified at a rate of 87.0±13.5 de novo mutations per 
child. Confirmation with Sanger sequencing was attempted on 10% of these variants (700) selected at random 
and achieved a >95% confirmation rate across both SNVs and indels, suggesting identification of de novo 
mutations with accuracy. We used tissue-level ChIP-seq for the histone modification H3K27ac from human 
dlPFC (psychENCODE phase 1) to identify active enhancers. We observed an increased burden of mutations 
in cases compared to sibling controls (p=0.02, Figure 6B) within these active enhancers. This association was 
especially strong for insertion/deletions (indels), possibly due to the greater functional impact of disrupting 
multiple nucleotides (p=0.007, Figure 6C).  

3) Analysis of gene co-expression to identify spatiotemporal convergence of ASD-associated genes. We 
considered the convergence between 9 ASD genes15 for gene expression data from 57 neurotypical brains that 
spanned 15 developmental periods and 16 brain regions47. To identify spatiotemporal windows whilst retaining 
sufficient numbers of samples for co-expression analysis we used hierarchical clustering to identify four groups 
of brain regions and considered each of these in 13 overlapping time periods each composed of three 
developmental periods (Figure 7A). Within each of the resulting 52 (4 x 13) spatiotemporal windows we built 
networks around nine high confidence ASD genes by selecting the top 20 co-expressed genes. We assessed 
these 52 windows for spatiotemporal convergence related to ASD etiology through the degree of enrichment for 
126 independent low confidence ASD genes (Figure 7A). We observed strong spatiotemporal convergence 
between ASD risk genes in the prefrontal and primary motor-somatosensory cortex during mid-fetal development 
(Figure 7A)15. Analysis of cell type specific marker genes within this network showed enrichment for cortical 
projection neurons. This result that has been replicated by three complementary techniques: WGCNA31, cell 
specific enrichment analysis58, and NETBAG+ systems analysis59.  

4) Comparison of ASD-related gene sets and gene expression analysis of post-mortem ASD brains. Two 
prior analyses have identified gene co-expression WGCNA modules that are differentially expressed in the brain 
in ASD cases compared with controls. The microarray analysis by Voineagu et al.9 identified a module enriched 

Figure 6. ASD associated de novo mutations. 
A. 65 ASD risk genes9 (red) form a single protein-
protein interaction network composed of two 
subnetworks. The genes in the left subnetwork are 
enriched for chromatin regulatory gene ontology 
terms. The genes in the right subnetwork are 
enriched for synaptic terms. B. De novo mutations 
were identified in WGS data for 40 ASD families. 
The median number of SNV and indel mutations 
per individual is shown within active enhancers that 
were identified by bulk tissue ChIP-Seq for 
H3K27ac in human dlPFC (psychENCODE phase 
1 studies). P-values are calculated using linear 
regression with for paternal age and total de novo 
mutations per individual included as co-variates. C. 
The analysis was repeated for indels only.  
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for synaptic genes (M12) that overlaps with three modules (M1, M2, and M6) identified using RNA-seq in Gupta 
et al60 (Figure 7B). Similarly, one module enriched for microglial genes (M16) was observed in the Voineagu et 
al.9 paper and this overlaps with two modules (M5 and M7) identified in the Gupta analysis (Figure 7B). We 
compared these seven WGCNA modules with four sets of ASD-related genes: the chromatin and synaptic 
modules from our recent analysis of exome and CNV data (Figure 6A)17, RNA targets of the fragile X protein 
FMRP61 that are strongly enriched within ASD-associated genes26, and genes that are downregulated in CHD8 
knockdown but not bound by CHD8 on ChIP-Seq analysis that have been described as targeting synaptic genes 
associated with ASD62. The synaptic module and FMRP targets are strongly enriched through the synaptic 
WGCNA modules suggesting these modules may represent causal factors that persist in the ASD brain. Further 
analysis is required to determine if these modules are causal or simply a consequence of ASD.  
 
Experimental design and methods:  In subaim 3.1, we will increase the spatiotemporal resolution of co-
expression analysis of ASD neurobiology. Our prior analysis of spatiotemporal convergence, described in detail 
under preliminary data15, was based on 57 neurotypical brains, 9 high confidence ASD genes (FDR ≤0.05), and 
126 low confidence ASD genes (FDR ≤0.3)17. These data enabled us to examine 4 groups of brain regions 
spanning multiple developmental periods (Figure 7A). The data from Aim 1 and our progress in ASD gene 
discovery will allow us to perform this analysis using 87 neurotypical brains, 28 high confidence ASD genes 
(FDR ≤0.01), and 151 low confidence ASD genes (FDR ≤0.3). As before (Figure 7A), the gene expression 
samples will be divided into spatiotemporal windows using hierarchical clustering to group related brain regions 
(spatial) and considering overlapping developmental windows (temporal). In each spatiotemporal window we will 
identify the top 20 co-expressed genes around 28 high confidence ASD genes and, following the logic that a 
spatiotemporal network relevant to ASD should be enriched for other ASD genes, we will assess the enrichment 
of the 151 low confidence ASD genes (FDR ≤0.3). The expanded number of brain samples will enable us to use 
small subdivisions of brain regions and developmental time regions to increase the resolution of the analysis, for 
example windows spanning one or two developmental periods. In addition, the larger list of high confidence ASD 
genes will allow us to perform the analysis by building the spatiotemporal networks around subsets of these 28 
genes and improve the accuracy of the analysis through cross validation. In addition, we will divide the 28 high 
confidence genes by the two main functional categories observed, specifically chromatin regulators and synaptic 
genes, to assess the spatiotemporal dynamics of each functional category separately. The outcome of this aim 
will be refined gene co-expression networks that show spatial and temporal convergence among ASD risk genes.  
Pitfalls and alternatives: The analytical methods described here have been applied to the BrainSpan data 
using 9 high confidence genes resulting in the discovery of spatiotemporal convergence in the frontal cortex of 
the mid-fetal brain. This finding has been replicated using complementary methods58,59. In this aim we will be 
increasing the resolution through the inclusion of additional gene expression data and novel ASD-associated 
genes17, therefore we do not foresee complications. An alternative ‘top down’ methodology such as WGCNA, in 
which co-expression modules are generated from the complete dataset and are then assessed for enrichment 

Figure 7. Enrichment of ASD-associated 
genes in gene expression data. A. 
Spatiotemporal co-expression networks were 
formed around nine high confidence ASD 
genes for 4 groups of brain regions (x-axis) and 
13 overlapping developmental periods (y-axis). 
The –log(P) value for enrichment with 126 low 
confidence ASD genes is shown by the size 
and shade of the circle. Strong enrichment is 
observed in the mid-fetal PFC and primary 
motor-sensory cortex (PFC-MSC). B. Four 
ASD related gene sets9,52,53  compared to seven 
WGCNA co-expression modules that are 
differentially expression in post mortem ASD 
brains (right). Fold enrichment is indicated by 
the size and shade of the circle. A synaptic and 
microglial module are indicated by the black 
rectangles. Small black circles show gene sets 
that are non-overlapping by definition (e.g. 
WGCNA modules in the same analysis).   



of ASD genes, has yielded similar findings31. We will also apply this complementary WGCNA method across 
spatiotemporal windows.  
 
In subaim 3.2, we will identify ASD-associated non-coding de novo mutations in regulatory loci. Under pre-
existing funding arrangements we will have access to whole-genome sequencing (WGS) data for 5,120 
individuals from 1,280 quartet families composed of two parents, an affected child, and an unaffected sibling 
control. We have previously reported an increased burden of de novo mutations between the affected and 
unaffected siblings17 and we have observed this for de novo CNVs in microarray data and de novo loss of function 
mutations in exome data. To identify functional non-coding de novo mutations in regulatory loci, we will leverage 
the integrated RNA-Seq, ChIP-Seq, and HiC data from Aims 1 and 2 with the de novo mutation identification 
approach described in our preliminary data (Figure 6). To maximize our ability to discover compartments of the 
genome that carry risk we will assess de novo burden in three sets of loci: 1) All regulatory loci identified in 
neurotypical brain divided by function (e.g. promoter, 3`UTR); 2) Regulatory loci identified in neurotypical brain 
with a relationship to 28 high-confidence ASD genes; and 3) Regulatory loci identified in neurotypical brain with 
a relationship to the points of convergence for ASD genes identified in Subaim 3.1 such as prefrontal cortex in 
mid-fetal development. The outcome of this aim will be non-coding mutations and regulatory loci that show 
association with ASD. 
Pitfalls and alternatives: Our methods for identifying de novo mutations in whole genome sequencing data are 
well developed and we have demonstrated a >95% confirmation rate for the mutations predicated. Additionally, 
our preliminary data, based on 40 families, shows evidence of ASD association for de novo mutations within 
enhancers active in human dlPFC (Figure 6B and C).  This suggests the proposed study of 1,280 families will 
offer sufficient power even if the overall contribution of de novo mutations in the non-coding genome to ASD 
etiology is relatively weak. To maximize our chance of identifying ASD associated non-coding variants we will 
assess only the loci with the strongest evidence of functional activity, including the larger mutations, such as 
indels, that may carry the greatest risk. Concurrently, Dr. Sanders has an established collaboration with Mike 
Talkowski and the GATK CNV/SV working group to develop methods that maximize our sensitivity for detecting 
indels and small CNVs in whole genome sequence data. 
 
In subaim 3.3, we will identify points of spatiotemporal convergence using ASD associated non-coding 
mutations: Non-coding elements such as enhancers frequently show a degree of specificity to particular 
developmental time points, brain regions, or cell types63. We will use the ASD-associated non-coding de novo 
mutations in regulatory loci and regulatory loci related to ASD associated genes to assess which integrated 
regulatory networks from Aim 2 show the greatest enrichment for these non-coding mutations. By considering 
the brain regions and developmental epochs in which these networks exist we will assess points of 
spatiotemporal convergence critical to ASD. The outcome of this aim will be an independent analysis of points 
of spatiotemporal convergence in ASD based on non-coding mutations and regulatory loci. 
Pitfalls and alternatives: This aim relies on the discovery of specific ASD-associated regulatory loci through 
the discovery of numerous de novo mutations in cases. Due to the small size of regulatory regions we may not 
see this clustering in a single regulatory element. Should this be the case we will use genomic annotation to rank 
the regulatory loci with a single mutation, for example considering conservation, constraint 64, and large mutations 
such as indels that are more likely to disrupt the element (Figure 6C).  
 
In subaim 3.4, we will assess regulatory networks that are observed in the post mortem ASD brain. Aims 3.1 to 
3.3 focus on neurotypical brains and their association with ASD-associated mutations. In this aim we will assess 
the enrichment of ASD-associated genes, non-coding mutations and regulatory networks that differ between 
post mortem ASD and neurotypical brains (Figure 6).  Because genetic variants associated with ASD precede 
the onset of ASD symptoms, enrichment for these mutations will suggest that such networks are causal (Figure 
7) to the ASD phenotype. Conversely, a lack of enrichment for these mutations in ASD-relevant networks will 
suggest the network is consequential to ASD.  The outcome of this aim will therefore be to distinguish ASD-
specific regulatory networks that are likely to be causal from those that may be consequential. 
Pitfalls and alternatives: Methods for assessing such enrichment are well established and we already have a 
large list of ASD-associated genes; we foresee no complications in performing this aim. The main challenge lies 
in the interpretation of a regulatory network that does not enrich for ASD-associated genes (e.g. microglia in 
existing post mortem analyses, Figure 7B), since this may indicate a non-causal relationship or reflect and 
incomplete list of ASD-associated genes. We will therefore focus on networks with positive enrichment for these 
genes and acknowledge the complexities of interpreting a negative result.  
 
TIMELINE AND MILESTONES SECTION See Other Attachments 
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RESEARCH STRATEGY 
 

SIGNIFICANCE 
Neuropsychiatric disorders such as autism spectrum disorder (ASD), bipolar disorder (BD), and schizophrenia 
(SCZ) are complex and devastating illnesses with considerable morbidity and mortality, as well as high personal 
and societal costs. Many of them are also polygenic, with multiple variants, both rare and common, spread 
throughout the genome influencing the disease risk3. Recent studies have identified rare variants contributing to 
psychiatric disorders that are enriched in genes involved in global gene regulation and chromatin modification, 
and many common risk variants are enriched in regulatory regions of the human genome, regions whose 
functions are poorly understood. The interpretations of these variations in regulatory regions will certainly be 
improved with better maps of RNA transcripts, regulatory elements, and chromatin states in the human brain. 
The age of onset and progression of major psychiatric disorders also varies (Figure 1) necessitating the study 
of the temporal dynamics of gene regulation during human brain development and recognizing the 
developmental context of psychiatric disorders. An emerging body of research indicates that many aspects of 
the development and physiology of the human brain are not well recapitulated in model organisms20-24 and 
therefore it is increasingly apparent that psychiatric disorders need to be understood in the broader 
context of human brain development and physiology.  

In recent years, considerable effort has been made by many studies, including large-scale efforts by 
ENCODE, NIH Roadmap (REMC) and GTEx projects to survey the diversity of cis-acting regulatory regions and 
RNA species of the human genome across different tissues and time points. However, a comprehensive catalog 
of transcripts, regulatory elements, epigenetic modifications, and chromatin structure from the human brain 
during development and in distinct brain regions and cell types is lacking. The PsychENCODE (phase 1) projects 
have initiated these efforts.  

PsychENCODE consortium projects. The key goals of the PsychENCODE project are to provide an 
enhanced framework of regulatory elements, catalog epigenetic modifications, and quantitate coding and non-
coding RNA and protein expression in a tissue- and cell-type specific manner from neurotypical (healthy) control 
brains and diseased post-mortem human brains25. These efforts will be complemented with integrative analyses, 
as well as with functional characterizations of disease-associated genomic elements using human neural cell 
systems or the developing mouse brain. However, the human brain is heterogeneous cellularly and its 
development is regionally asynchronous and prolonged. To overcome issues that hamper the potential benefits 
of initial psychENCODE studies, we will apply several approaches to address regional and cellular heterogeneity, 
prolonged development, and new genomic methods in the context of brain development and ASD.  

Here we focus on neurotypical (control) brain and ASD, which is a complex developmental syndrome 
with a significant genetic contribution. Although considerable genetic and phenotypic heterogeneity has 
complicated efforts to establish the biological substrates of the syndrome, the emergence of reliable genetic 
findings has started to shed light on potential pathogenic mechanisms, providing an extraordinary opportunity 
for developing a mechanistic understanding of the disorder. Recent studies suggest that over 500 rare, de novo 
mutations contribute to ASD risk and no single genetic mutation accounts for more than 1% of ASD 
cases13,17,26-30, consistent with significant heterogeneity in this, and other neuropsychiatric disorders3. Despite 
this heterogeneity, mapping ASD risk genes onto co-expression networks that represent normal human 
brain development has revealed that ASD genes coalesce in modules related to chromatin remodeling 
and transcriptional regulation during early fetal brain development, suggesting potential convergent 
pathways in the disorder9,15,27,31. Another remarkable finding that parallels the convergence of genetic findings 
in developmental pathways is the identification and validation of shared transcriptional changes in postmortem 
brain in ASD9. This transcriptional dysregulation, coupled with the evidence that large effect size de novo ASD 

Figure 1. Psychiatric and 
neurological disorders have 
discrete ages of onset. The bars 
indicate the age range that each 
disorder commonly affects, with less 
frequent ages of diagnosis denoted 
as dotted lines. This variability is 
indicative of dysregulation of tightly 
controlled developmental processes 
and highlights the necessity of 
defining the spatio-temporal 
molecular processes in human brain.  



risk genes are highly enriched in chromatin modifying genes (many of which are expressed in early fetal brain 
development), emphasizes the importance of understanding the nature and extent of chromatin disorganization 
in ASD brain and in normal brain development. Further, since these data suggest distinct neuronal and glial 
gene dysregulation, it is crucial to delineate the profiles of these major cell types. In addition to our ongoing 
efforts in PsychENCODE phase I project, this proposal provides critical advances in our understanding of the 
role(s) of non-coding functional elements in the pathophysiology of ASD and a scaffold for understanding 
chromatin structure and gene regulation across normal brain development. Overall, the approach proposed here 
will provide mechanistic insights that connect distinct transcriptional programs associated with ASD 
pathogenesis, and will provide a resource of the mechanisms of gene regulation across brain development to 
inform other neuropsychiatric disorders, a key goal of psychENCODE. This work also leverages 
psychENCODE phase 1 projects by adding significant new data to expand the value of the resource and 
by directly addressing key areas of interest in control and ASD brains as outlined in RFA-MH-16-230: 1) 
Generation of comprehensive, high resolution human brain region/cell type and age-specific maps of different 
classes of RNA transcripts, regulatory elements, chromatin states, chromatin conformation, and chromatin 
interactions;  2)  Identification of human brain region/cell type and age-specific molecular processes; 3) 
Integration of these newly generated multi-omic datasets, from diseased and healthy control brains, with large-
scale genomic resources; 4) Generation and analysis of high-depth, whole genome sequencing data to allow for 
improved evaluation of various genetic alterations; and 5) Development of comprehensive molecular models of 
disease (i.e., ASD) using systems biology approaches.  

 

INNOVATION 
This proposal is innovative in several aspects. First, to the best of our knowledge, the systematic discovery and 
functional characterization of genomic non-coding elements and 3D chromatin architecture has not been 
performed in healthy developing human brains or ASD brains at a cell type-specific resolution. For example, we 
use Hi-C, which combines chromosome conformation capture and NextGen sequencing to identify physical 
interactions that capture multiple levels of chromosome architecture ranging from nuclear configuration 
(“compartments” of about 5Mb) to TADs (domains of 500kb on average) and gene loops (often reflect enhancer 
promotor relationships; 40kb average), and is the only such method that spans all of these levels, genome-
wide32-34. Second, this project will conduct direct analysis of one of the largest collection of well-characterized 
high quality healthy as well as syndromic and idiopathic ASD postmortem brains. Third, we will combine 
fluorescence-activated nuclei sorting (FANS) with advanced genomic techniques to analyze multiple genomic 
features in archived development control and ASD brains. Fourth, we will leverage these analyses with our 
ongoing psychENCODE phase 1 tissue level analyses and other recent large-scale genomic resources, such as 
BrainSpan, ENCODE, GTEx and Roadmap project. Therefore, our proposed data and integrated analyses has 
potential to improve our understanding of genomic processes and normal human brain development as well as 
diagnostics, neurobiology and treatment of ASD. 
 

COLLABORATION 
This collaboration brings together multiple groups with long standing expertise in developmental neurobiology, 
psychiatry, human biobanking, genetics and genomics, statistics, bioinformatics, and systems biology that have 
worked closely with one another for almost a decade as evidenced by many co-publications.  Several key 
conceptual threads have been apparent in our work together related to human brain development and 
neuropsychiatric disorders: 1) Revealed new insights into human neurodevelopment through functional genomic 
profiling of postmortem tissue and cell culture models12-16; 2) Assessed rare and de novo mutations for ASD 
association13,17,18; 3) Identified the neural processes and pathways that are altered in the presence of ASD-
associated mutations, as well as when and where these processes and pathways occur in the developing human 
brain15,17,19. In addition, M. Gerstein (Yale) and Z. Weng (University of Massachusetts), experts in bioinformatics 
and computational biology, are leaders of the PsychENCODE DAC, which will normalize the data to remove 
batch effects, establish uniform data processing pipelines and build calibration resources for all assays to enable 
comparison and integration of the data generated by all psychENCODE groups. The efforts of each group will 
be tightly integrated in order to communicate progress and results, design and implement analytical tools, and 
transfer data. Given the complexity of human neurodevelopment and genetics/neurobiology of ASD, we believe 
that integrating the respective expertise of these groups, and their respective collaborators at UCLA (Ernst and 
Geschwind), UCSF (Sanders, State and Willsey), UMass (Weng), and Yale (Gerstein and Sestan), offers the 
best opportunity to better understand human brain development and ASD through functional genomics. Here, 
we propose to leverage our expertise and continue this highly productive collaboration and expand 
psychENCODE phase 1. 
 



ELEMENTS UNIQUE TO THIS SITE (UCSF; State, PI; Sanders and Willsey, co-investigators) 
The UCSF team will combine the data from Aims 1 and 2 with whole-genome sequencing (WGS) data for 5,120 
individuals in 1,280 ASD families to identify when, where, and in which cells the etiology of ASD occurs. In 
Subaim 3.1 they will use the additional gene expression data and ASD gene discovery to increase the resolution 
of their prior spatiotemporal analysis that implicated prefrontal cortex during mid-fetal development. In Subaim 
3.2 they will use regulatory loci from Aims 1 and 2 to filter de novo mutations in non-coding regions in the WGS 
data. In Subaim 3.3 they will use the non-coding mutations from Subaim 3.2 and the integrated analysis of 
regulatory networks from Aim 2 to perform an independent spatiotemporal analysis of when, where, and in which 
cells ASD etiology occurs. Finally in Subaim 3.4 they will assess the enrichment of coding and non-coding 
mutations from WGS in the integrated regulatory, transcriptional and molecular networks in ASD brains to 
provide evidence for these networks being a cause rather than a consequence of ASD. 
 
APPROACH 
The objective of this proposal is to extend our ongoing tissue level analyses of healthy and ASD brains under 
the psychENCODE consortium with the inclusion of additional genomic methods, brain regions, developmental 
time points, and cell-type specific analyses. By performing three integrated aims (Figure 2) we propose to 
enhance this public resource and improve our understanding of the molecular processes underlying normal 
human neurodevelopment and ASD.  

    Figure 2. Schematic workflow of three specific aims. 
 
Aim 1. Time, region and cell type-specific molecular profiling of control and ASD brains.  
Rationale and preliminary supporting data: Three major observations provide motivation for this aim. The first 
is the recognition that genomic data, including transcriptomic, epigenetic and physical chromatin structure, from 
the relevant neurotypical tissue (control), spanning the key epochs of neurodevelopment and function from fetal 
to adult periods, provide a new and previously unobtainable view of genetic risk for psychiatric 
disease10,15,16,31,35,36. The second is that brain is comprised of an extremely heterogeneous mixture of cell types 
that exhibit distinct molecular profiles, including glia-to-neuron ratios that could show considerable fluctuations 
across normal development or in certain disease states. The third is the observations of differences in 
transcriptome organization via tissue-level gene co-expression network analysis conducted between ASD and 
normal brains9. Thus, here we propose to create a region and cell type-specific normal developmental 
scaffolding on which to frame disease variants via transcriptional (RNA-seq), epigenetic (ChIP-seq) and 
chromatin architecture (HiC) profiling of neuronal and non-neuronal cells at key epochs in human brain 
development (subaim 1.1), as well as compare these profiles in ASD and matched control brains (subaim 
1.2) to help elucidate the mechanisms by which genetic variation alters brain development and function, 
leading to ASD and related neuropsychiatric conditions. While several genomic features are currently being 
analyzed in control and ASD brains by our and other groups in the psychENCODE consortium, cellular 
heterogeneity during development, other genomic features (e.g. 3D chromatin contacts), have yet to be 
addressed. To address these issues, we will utilize our large, high quality, phenotypically well-characterized 
human brain collection (see Facilities and Resources section), as well as newly implemented methods to collect 
molecularly defined cell type specific nuclei from archival human postmortem brains in this collection.   

Our preliminary data demonstrates a clear pattern of transcriptional dysregulation is observed in 
2/3 of ASD brains9, which we have now confirmed in our psychENCODE phase 1 projects (in a more than 



double sized sample of cases and controls) using tissue level RNA-seq and ChIP-seq (H3K4me3 and 
H3K27ac) in multiple brain regions in 43 idiopathic ASD cases, 8 cases with chromosome 15q11-13 duplication 
syndrome (dup15q) and ASD, and 63 controls37,38. We also observe that post mortem brain from patients with 
ASD caused by (dup)15q11-13 share this same pattern at all levels of differential protein coding gene expression, 
splicing and lncRNA38. As the first step in exploring potential mechanisms, we performed epigenetic profiling of 
ASD vs. control brains with H3K27ac marks, which indicate active enhancers39. Genes with differential H3K27ac 
peaks in their promoter regions (5000bp upstream of the transcription start site) were enriched with neuronal 
genes with changes in expression. This result demonstrates that transcriptional dysregulation in ASD is partially 
mediated by changes in histone/chromatin modifications. Furthermore, the two major groupings of modules 
derived from whole tissue gene expression analysis sort into those up-regulated and expressed in glia, and those 
down-regulated in neurons9,38, strongly motivating our plan for transcriptional, epigenetic and Hi-C profiling in 
neurons and non-neuronal (glial) cells independently.   

Another of the important advances in methodology that will be implemented here is the 
assessment of 3-D chromatin structure across to different brain regions and cell types, and 5 key epochs 
of normal brain development and in ASD brains. Our preliminary data strongly supports the value of these 
data and our ability to perform and analyze these experiments (see also40). We established an efficient Hi-C 
protocol and obtained high resolution data (10 kb resolution; via deep sequencing) from the fetal cortex from 3 
individuals dissected into two zones: cortical plate (CP) and germinal zones (GZ) at post-conception week (PCW) 
18 (total n = 12 samples: representative heatmap shown in Figure 3A). Demonstrating the data quality, principal 
component of the interchromosomal interaction matrix for GZ shows a high correlation with GC content (r=0.791, 
P<10–256), gene number (r=0.384, P<10–256), DNase I hypersensitivity (r=0.416, P<10–256), and to a lesser extent, 
gene expression (r=0.129, P=1.11x10–66; Figure 3B and C), recapitulating previous work in cell lines41. We next 
asked how chromatin interactions elicit transcriptional co-regulation. We hypothesized that highly interacting 
chromatin regions would be co-regulated at least in part by sharing chromatin remodelers and transcription 
factors (TFs). To test this, we binned chromatin interactions into top and bottom percentiles, and compared the 
distribution of correlation patterns for genes in the high and low interacting regions of chromatin. We observed 
that the high interacting regions were significantly biased toward positive correlations (Figure 4A), supporting 
the hypothesis that co-localization can predict co-expression. 
 We next integrated these data with the epigenomics map from the NIH Roadmap project42. By comparing the 
epigenetic mark combination matrix with the Hi-C contact matrix, we demonstrate that interacting regions exhibit 
shared epigenetic patterns: loci associated with transcriptional regulation and enhancers are significantly more 
likely to interact with each other (Figure 4B). Comparison of TF binding site (TFBS) combination matrix 
(generated from TFBS map reported in43) with the intrachromosomal contact matrix revealed distinct 

combinatorial patterns of TF binding likely to mediate 
chromosome interactions (Figure 4C), thus revealing new 
experimentally testable regulatory relationships.  
 To validate that Hi-C data can identify target genes 
regulated by single nucleotide polymorphisms (SNPs) in a 
general setting, we determined if SNPs with a significant 
effect on gene expression were also identified as 

Figure 3. Chromosome conformation in fetal brains (by Hi-
C). A. Representative heatmap of chromosome contact matrix of 
GZ. Normalized contact frequency (Contact enrichment) is color-
coded according to the legend on the right. B. Spearman 
correlation of PC1 of chromatin interaction profile of fetal brain 
(GZ) with GC content (GC), gene number, DNase I 
hypersensitivity (DHS), and gene expression level of fetal brains. 
These data show relationship of 3D structure to key known 
functional elements as has been previously shown in other 
systems. C. Gene ontology (GO) enrichment (GO Elite) of genes 
located in the top 5% of highly interacting inter-chromosomal 
regions specific to GZ vs. CP (top), and ES vs. CP (bottom), 
indicating that genes located on dynamic chromosomal regions 
are enriched for neuronal function in CP, which contains the 
more differentiated laminae. Please see Won et al. 2015 in 
Appendix for higher magnification figure. 



interacting by Hi-C using cis-expression quantitative trait loci (eQTL) data from adult frontal cortex44. Indeed, Hi-
CeQTL genes were significantly over-represented with known associated genes from the eQTL study and eQTL 
SNP-transcript pairs exhibit significantly higher chromatin contact frequency than the null across all distance 
ranges measured, further supporting the utility of Hi-C to infer the gene or region of activity for regulatory 
variation.  In addition we asked whether significant physical cis-chromosomal contacts identified with Hi-C could 
inform functional annotation of 108 genome-wide significant schizophrenia loci, most of which lie far outside 
known coding or other functional regions of the genome. 

 Although SNPs are typically assigned to the closest 
genes, or those within the LD block, Hi-C indicated 
that about 50% of the variants were neither adjacent 
to the index SNPs (most-associated SNP within a 
locus), nor in LD. Interestingly, Hi-CSCZ genes 
significantly overlap with ASD de novo likely gene-
disrupting (LGD) targets26,45 (CP: OR=2.4, 
P=1.6x10-5, GZ: OR=1.8, P=0.006), indicating a 
shared genetic etiology between ASD and 
schizophrenia46. The fact that genes with LGD 
mutations in ASD are associated with regulatory 
variants in schizophrenia suggests that complete 
abrogation of these genes may cause 
developmental defects as in ASD, while regulatory 
changes in these genes may cause later-onset of 
neuropsychiatric symptoms as in schizophrenia. 
Collectively, these preliminary data demonstrate 
that we can conduct and analyze genome-wide Hi-
C experiments, integrate these data with other 
epigenetic and transcriptomic data, and use 
chromatin architecture elucidated by Hi-C to provide 
novel genome-wide insights into the regulatory 
mechanisms occurring during neuronal 
differentiation and disease pathogenesis. 
 
Experimental design and methods: In subaim 
1.1., we will profile the transcriptome (by RNA-seq), 
cis-regulatory elements (ChIP-seq) and 3D 
chromatin architecture (Hi-C) in the control 
neurotypical dorsolateral prefrontal cortex (dlPFC), 
posterior superior temporal cortex (pSTC) and 
striatum (STR). These regions have been implicated 
in the risk for ASD and schizophrenia35 and in the 
cases of dlPFC and pSTC shown to have 
dysregulated transcriptional patterns in ASD9. 
Recent studies have also highlighted the late mid-

fetal frontal cortex as most enriched for co-expression of ASD and schizophrenia de novo hits15,31,35. Brains from 
at least 5 key epochs of development representing mid-fetal, infancy, childhood, adolescence and adult brain, 
and a minimum of 6 subjects (balancing sex when possible) from each of these 5 epochs (30 brains in total) will 
be profiled.  

Cell-type specific chromatin, epigenetic and transcriptome assays are at the core of this project. Mario 
Skarica, a talented research associate scientist in the Sestan lab, has developed a protocol to isolate high quality 
nuclei with preserved chromatin and RNA from archival fresh frozen fetal and postnatal human brains. Using this 
approach he has obtained, on average, 2.57 +-0.8 and 6.93+-3.3 million intact nuclei from 100 mg of the fetal or 
adult prefrontal gray matter (i.e., fetal CP or adult cortical layers 1 to 6 with a small part of underlying white 
matter), respectively (Figure 5A). Furthermore, we separated neuronal and non-neuronal nuclei, by 
immunostaining with the NeuN antisera against pan-neuronal splicing protein RBFOX3 (Figure 5B and C) and 
sorting on BD FACSAria IIU Three-Laser System. Starting with infancy and onwards, postnatal gray matter tissue 
corresponding to six-layered postnatal cortex and small part of adjacent white matter from dlPFC and pSTC, or 
STR (corresponding to the caudate-putamen with the internal capsule at the septal level) will be processed. 

Figure 4. Highly interacting regions share co-expression 
patterns, which is mediated by epigenetic regulation. A. 
The top 10,000 highest interacting regions (intH) in fetal 
brains both at GZ and CP show positive correlation in their 
gene expression patterns, while the top 10,000 lowest 
interacting regions (intL) and top 10,000 highly variant 
regions (intV) have no skew in the distribution, consistent 
with random interactions. P-value, Kolmogorov-Smirnov 
test. B-C. Epigenetic state combination (B) and TFBS 
combination (C) for intrachromosomal interacting regions. 
The epigenetic state matrix and TFBS combination matrix 
were generated by marking loci where two interacting 
chromosomal bins share epigenetic signature. For example, 
the epigenetic combination matrix between the active 
transcription start site (TssA) and active enhancers (EnhA1) 
is generated by marking where interacting loci have TssA 
and EnhA1. Intrachromosomal contact frequency map is 
compared to the epigenetic state combination matrix by 
Fisher’s exact test to calculate the enrichment of shared 
epigenetic combinations in interacting regions. Odds ratio 
(OR) and P-values are depicted in the heatmaps (Please see 
Won et al. 2015 in Appendix for higher magnification figure). 



Tissue samples will be dissected directly from frozen tissue blocks using custom dental tools and protocol 
described in Kang et al., 201147. These dissections will be performed by Nenad Sestan, who has over 2 decades 
of experience in human neuroanatomy and tissue processing and has microdissected over 1600 tissue samples 
for exon array profiling of the human brain transcriptome47.   Given the high proportion of neurons in the cortical 
plate of the mid-fetal brain (approaching 95% or more), and relatively few neurons that are positive for NeuN at 
17-20 PCW in neocortical CP or STR48,  we will not sort NeuN+ and NeuN- nuclei from mid-fetal brains, but 
instead analyze tissue homogenate and unsorted nuclei from CP of prospective dlPFC and pSTC as well as 
STR, separately, from corresponding neocortical and striatal GZ (i.e., VZ and SVZ) containing a mixed population 
of dividing neural stem/progenitor cells with a minor contribution of newborn neurons and glia.  

Tissue samples will be pulverized and processed to release nuclei, which will be purified by 
ultracentrifugation  and processed for RNA-seq in the case of mid-fetal samples or in the case of all postnatal 
specimens (infancy and onwards) sorted into a NeuN+ (predominantly neurons) and NeuN- (mostly glia) 
fractions. In the past year, we have obtained on average 23.45+-7.2 percentage of NeuN+ nuclei from PFC 
(Figure 5C). This approach will provide unbiased quantitative assessments of cell types in healthy and ASD 
brains. This approach allows us to simultaneously collect molecularly defined cell type-specific nuclei and isolate 
DNA, chromatin, and nuclear RNAs. Bulk tissue level RNA-seq is available for dlPFC, pSTC and STR in control 
and ASD brains as part of psychENCODE phase 1 studies38, has already been added to enhance the scope of 
the resource. All brains necessary for this project are currently available in the Geschwind and Sestan labs (see 
Facilities and Resources section for the list). 

Total RNA will be extracted from 1 million nuclei 
using Norgen’s Cytoplasmic & Nuclear RNA Purification Kit. 
RNA from tissue and cell populations will be depleted of 
rRNA and sequencing libraries prepared with TruSeq 
Stranded Total RNA with Ribo-Zero Gold and SMARTer 
Stranded RNA-Seq Kit, respectively. As expected, our 
preliminary nuclear RNA-seq analyses revealed higher 
percentage of unspliced primary transcripts and extensive 
identification of nuclear-retained long non-coding RNAs 
(Figure 5D). Importantly, we detected robust cell type-
specific expression differences, including those of ASD-
associated genes (Figure 5 E). RNA-seq libraries will be 
sequenced on the Illumina HiSeq 2500 at the Yale Center 
for Genome Analysis (http://ycga.yale.edu/) to generate 
100 bp strand specific paired-end sequence at over 40 
million reads per end for each sample. For ChIP-seq, 1 
million nuclei will be processed through our established 
protocol using well-characterized ChIP-grade H3K27ac and 
H3K4me3 antibodies that have been used in 
psychENCODE phase 1 tissue-level experiments. ChIP-
seq libraries will be sequence at HiSeq 2500 at Yale at >40 
million reads per sample.  Using the standard pipelines 
developed in the Sestan and collaborating labs, we will 
perform QC analyses and compare the transcriptome and 
epigenetic data from different time points and regions to 

construct spatiotemporal gene and disease state profiles and co-expression networks using computational 
methods described in Aim 2. 

For Hi-C, 2 million nuclei will be prepared from each sample and cross-linked in 1% formaldehyde for 10 
min. Cross-linked DNA will then be restriction digested using HindIII, digested chromatin ends filled with biotin-
14-dCTP, and resulting blunt-end fragments ligated under dilute conditions to minimize random intermolecular 
ligations. Following this, crosslinking will be reversed, unligated ends removed by exonuclease digestion (T4), 
DNA sheared by sonication, and 300-600bp fragments selected. The intermolecular ligation products containing 
biotin-tagged DNA will be pulled down with streptavidin beads and ligated with Illumina paired end adapters and 
the library sequenced by Illumina 50bp paired-end sequencing over 3 lanes of the HiSeq 25000 at UCLA, a 
depth necessary to facilitate sufficient hi-resolution analysis (300-500 million mapped reads), which can also be 
augmented by pooling samples to increase depth as needed. 

 

Figure 5. Fluorescence-activated nuclei sorting 
(FANS) and nuclear RNA-seq of human dlPFC. A. 
Collection of single nuclei (see insert) from fetal (n=6) 
and adult (n=29) PFC. B. FANS plot for NeuN 
immunopositive nuclei.  C. Percentage of NeuN+ 
nuclei collected across different experiments. D. 
Coverage for exon, intron and intergenic regions of 
different sequencing technologies. E) Differential 
expression comparison between NeuN+/- FANS 
nuclei for neuronal, glial and ASD-related genes. 



In subaim 1.2, complementary genomic analyses will be done on the FANS nuclei from control, and syndromic 
and idiopathic ASD brains, to identify transcripts, regulatory elements, and 3D chromatin structures altered in 
ASD in brain region and cell type-specific manners. We will conduct RNA-seq, ChIP-seq and Hi-C on sorted 
neuronal and non-neuronal nuclei from 2 cortical regions, dlPFC and pSTC, and STR from 20 matched control 
and 20 ASD individuals, including 5 dup15q cases. We will select 10 ASD cases manifesting the shared pattern 
of transcriptional dysregulation observed, 10 without this pattern, and match them to controls to account for 
potential confounders (sex, age, postmortem interval [PMI], and RNA integrity numbers [RIN]). We will select 5 
dup15q brains with most similar breakpoint structures. Hi-C will be performed on sorted nuclei using the identical 
experimental methods as in subaim 1.1.  
Pitfalls and alternatives: The techniques in these proposed experiments are commonly used in our laboratories 
and we do not expect complications. One potential issue is the obtainment of adequate samples.  The Sestan 
lab has almost 200 high quality frozen human prenatal, early postnatal and adult brain specimens from clinically 
unremarkable (neurotypical) control donors. Control brains from this collection were used for different BrainSpan 
and psychENCODE phase 1 projects (see example studies12,47,49,50 and Resources and Facilities section). Both 
Geschwind and Sestan labs have tissue samples from over 50 post mortem ASD cases and matched controls 
with good quality RNA, and have participated in the new initiative at the Simons Foundation to collect additional 
postmortem ASD brains.  A related concern is whether the 20 ASD brains we propose to analyze are sufficient, 
given the heterogeneity typical of ASD, to detect robust differences between these samples and our controls.  
However, we were able to detect transcriptional dysregulation in 2/3rds of ASD brains in a smaller cohort17, and 
by directly comparing ASD brains exhibiting hallmarks of dysregulated transcription with those that do not, we 
expect to have sufficient statistical power to assess the extent to which 3D chromatin structure contributes to the 
observed transcriptional changes.  Further, the use of 5 dup15q cases provides an additional homogeneous 
cohort, and as our preliminary results on transcriptome analysis of this cohort demonstrate (appendix), such 
sample sizes are sufficient. The main pitfall of Hi-C is that it averages chromosome contact population from 
millions of nuclei. Single-cell Hi-C can complement this limitation51, but it can capture only one interaction for a 
given locus. Homogenous population of cells can be achieved by FANS and thus we propose this approach 
here.  Additionally, Hi-C offers other benefits, including the ability to analyze interactions mediated by multiple 
TFs en masse in Hi-C, that are not easily achievable with other methods such as ChIA-PET. While our FANS 
approach, which follows standards accepted across the psychENCODE projects, is limited to two major groups 
of cells, we have been implementing the use of other cell type specific nuclear antibodies and single nuclear 
RNA-seq.  Finally, we realize that other regions, including the thalamus, hypothalamus, and hippocampus, may 
be affected in ASD. We believe our work on the neocortex and STR will develop a framework for understanding 
of the molecular neuropathology of ASD which can then be extended to include other regions in the future.   
 
Aim 2. Integrated analyses of transcriptome, epigenome and chromatin structure in control and ASD 
brains. 
Rationale: We will analyze the data generated in the previous aim to (1) identify developmentally regulated and 
cell type specific changes in the transcriptome, epigenome and the 3D chromatin structure (2) integrate the three 
types of datasets to gain comprehensive insights into the underlying mechanisms of transcriptional regulation 
and dysregulation in development and disease, respectively. 
  
Experimental design and methods: In subaim 2.1, several first order analyses will be done for quality control 
and to provide the data as a processed resource in addition to the raw data. We will use Illumina CASAVA to 
purify the low-quality and non-identified reads and Fastqc (http://www.bioinformatics.babraham.ac.uk/ 
projects/fastqc/), to report fundamental quality parameters. Next, Tophat52 will be employed to uniquely align the 
filtered reads to their reference genome and RSEQtools53 to quantify expression profiles of each type of 
annotation entry retrieved from the latest release of the GENCODE project. The R package DESeq 
(http://bioconductor.org/packages/release/bioc/html/DESeq.html) will be used to identify differentially expressed 
(DEX) genes and well established methods including MATs to identify differential splicing10,37. DEX genes will be 
detected from the reliably expressed coding and non-coding transcripts, which are defined as transcripts with 
RPKM ≥ 1 in at least 2 samples of different developmental period. ChIP-seq reads will be aligned to the genome 
by Bowtie. After filtering of low score reads, we will use the MACS platform to call peaks enriched over the input 
library, and peaks with high empirical FDR will be excluded from further analysis. Thus, we will catalog all 
potential cis-regulatory elements from our genome-wide histone modification maps in all brain regions across 
developmental periods.  
For Hi-C analysis, hiclib (https://bitbucket.org/mirnylab/hiclib) will be used to perform all initial analysis on Hi-C 
data from mapping to filtering and bias correction (see also40). Sequenced reads will be mapped to the human 
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genome by Bowtie2 (with increased stringency, --score-min -L 0.6,0.2--very-sensitive) through iterative mapping 
and read pairs allocated to HindIII restriction enzyme fragments. Self-ligated and unligated fragments, fragments 
from repeated regions of the genome, PCR artifacts, and genome assembly errors will be removed. Filtered 
reads will be binned at 10kb, 40kb, and 100kb resolution to build a genome-wide contact matrix at a given bin 
size. This contact map depicts contact frequency between any two genomic loci. To decompose biases from the 
contact matrix and yield a true contact probability map, filtered bins are subjected to iterative correction41. Bias 
correction and normalization results in a corrected heatmap of bin-level resolution. 100kb resolution bins are 
assessed for inter-chromosomal interactions, 40kb for TAD analysis, and 10kb for gene loop detection. For TAD-
level analysis32, we will quantify the directionality index by calculating the degree of upstream or downstream 
(2Mb) interaction bias of a given bin, which will be processed by a hidden Markov model (HMM) to remove 
hidden directionality bias. For gene loop detection, aggregate peak analysis (APA) will be performed that 
quantifies the aggregate enrichment of putative peak sets by calculating the sum of a series of submatrices 
derived from a contact matrix34. Resulting inter- and intra-chromosomal interaction matrices as well as genome-
wide TADs and gene loops will be used for integrative analysis. 
Developmental and cell type-specific changes: Pearson’s correlations between the first principal components 
(PC1) from different stages and neuronal and non-neuronal cell types, as well as with our own and other 
published data will be calculated to compare similarities between different cell types. We will explore alternative 
transcriptional mechanisms or post-transcriptional modifications occurring in normal (and ASD-affected, see 
below) regions/cells and time points. These can include up- or down-regulating expression, altered 
spatiotemporal gene expression, imbalanced expression of different alleles (allele-specific expression [ASE]), 
aberrant splicing events, modified RNA editing sites, fusion transcripts, or loss of function due to frameshift 
mutations. RNA and epigenome data will also be compared with tissue level psychENCODE phase 1 and 
BrainSpan’s RNA-seq and ChIP-seq data. We will follow up with an analysis of the relative enrichment of each 
cell-specific marker genes in each subpopulation and use the expression profiles of these genes to guide the 
identification of an expanded set of cell-type specific markers. 
Integrated analyses: Spearman’s correlations between PC1/PC2 and biological traits (gene expression, 
histonemark enrichment, GC content, gene density, DNase I hypersensitivity [DHS]) will be calculated. Gene 
expression and histone mark data generated in subaim 1.1 along with DHS of fetal brain from Epigenomic 
roadmap54 will be used and average values per 100kb bin calculated. In addition to the putative cis-elements 
identified in the same samples, we will also use the 15 state epigenetic marks from Epigenomic Roadmap54 in 
genomic regions classified based on compartments averaged across 40kb bins, as well as subject specific 
psychENCODE data. Epigenetic state counts54 for one compartment category are normalized by total epigenetic 
mark number of that compartment category and compared between samples.  
Dysregulation in ASD brains. Two main data analyses will be performed with the transcriptome data. We will use 
the same approach as in subaim 2.1 to identify DEX coding and non-coding transcripts (by DESeq) between 
ASD and matched controls. Gene function enrichment analysis will be performed for these DEX genes. Finally, 
we will also perform Weighted Gene Co-expression Network Analysis (WGCNA; http://labs.genetics.ucla.edu/ 
horvath/CoexpressionNetwork/) to identify modules of differentially co-expressed genes in ASD cases. For ChIP-
seq data, once peaks are called and filtered for quality and reproducibility, we will identify and catalog all putative 
enhancer and promoter sites gained or lost in ASD brains compared to matched control brains, as well as what 
genes they are associated with.  
 In Hi-C data, we will assess if compartments, TADs, and contact domain structures are abrogated in ASD 
brains. Interaction partners for ASD risk genes, as well as gene loops involving ASD risk gene regulatory 
elements will be examined. Genome-wide interchromosomal contact matrices at high resolution (approximately 
10kb) will be compared between ASD and control to identify bins that exhibit the largest chromosomal interaction 
changes in ASD (here we refer to ASD-specific bins). Gene ontology for these genes as well as their gene 
expression pattern in ASD may provide novel insights on ASD mechanism. The same approach will be applied 
to intrachromosomal contact matrices at 10-40kb resolution. TADs in ASD vs. controls will be also compared. 
The directionality index around ASD-specific TAD boundaries will be calculated to check significance. Moreover, 
we will examine gene expression level and histone marks on TAD boundaries as well as histone marks on TADs 
that contain ASD risk genes. Both inter- and intra-chromosomal interaction patterns of the bins that contain 
differentially expressed genes in ASD or ASD risk genes will be examined in ASD vs. controls. Gene expression 
pattern and histone states of genomic loci that highly interact with dup15q region will be assessed. This approach 
of integrating chromosome interactomes to transcriptomic and epigenetic profiles may delineate epigenetic 
mechanism behind gene dysregulation in ASD. 



 We will also perform integrative network analyses of these multi-level genomic data with genetic variation to 
understand the causal mechanism of transcriptional alterations in ASD (see also Aim 3). This will include 
integration of DNA sequence, methylation, chromatin contacts, eQTL and hQTL by this collaborative team of 
investigators (e.g. to include new hQTL methods by S. Prabhakar and colleagues55. Gene loops detected in 
control and ASD will be also interrogated. Gene loops that are specific to ASD or specific to controls may directly 
point out aberrant enhancer-promoter interactions, TF binding, or compartmentalization of genome. We will 
check if ASD-specific gene loops contain any ASD-associated variants (mostly common SNV at this point, 
although as more whole genome sequencing (WGS) data is available over the next 12 months, we can use these 
data to annotate potential functions of noncoding variants (Aim 3). 
   
In subaim 2.2., we will integrate and harmonize data across psychENCODE projects and other relevant genomic 
resources. In this aim, the DAC will integrate and harmonize our datasets with other psychENCODE studies and 
large-scale genomic datasets, such as BrainSpan, CommonMind, ENCODE, GTEx and REMC. The 
PsychENCODE DAC is led by Mark Gerstein and Nenad Sestan (Yale), Zhiping Weng (University of 
Massachusetts), who are part of this proposal and Kevin White (University of Chicago). DAC will summarize the 
major analysis results produced from psychENCODE and organize them into an encyclopedia of regulatory 
elements in the developing and adult human brain. We are currently building such an encyclopedia for the 
ENCODE consortium, and we will be able to leverage the methods that we are building for ENCODE and modify 
them to best serve psychENCODE data. The psychENCODE encyclopedia will include several components. 
The first component is the raw experimental data, including the expressed transcripts in neuronal and glial cells 
in various brain regions, the peaks (enriched regions) of an array of histone marks, the open chromatin regions 
detected using ATAC-seq, the differentially enriched histone mark peaks and open chromatin regions in ASD, 
BD and SCZ (diseases covered by psychENCODE projects. This component will largely result from a series of 
uniform processing pipelines, which we will build for analyzing psychENCODE data. The second component will 
include results that require the integration across multiple data types, including the enhancers in each cell type, 
the chromatin states called using a combination of histone marks and ATAC-seq data, and the topologically 
associated domains and compartments called by combining histone marks, ATAC-seq and Hi-C data. The third 
component of the encyclopedia will provide a higher-order organization to the elements in the first two 
components. Specifically we will derive the target genes for enhancers in a cell type specific manner, and identify 
the enhancer-gene links that are disrupted in the three diseases. We will also identify the variations that are 
linked with difference in gene expression (eQTLs) that are within enhancers that target the corresponding genes. 
Finally, we will develop a portal to guide the user through the components of the psychENCODE encyclopedia, 
with multiple entry points, such as genes, GWAS SNPs, or a specific regulatory region in the genome. 
Pitfalls and alternatives: Proposed computational approaches are well established in our team and we already 
have a considerable expertise and collaborative history therefore we foresee no complications in performing this 
aim. Furthermore, Sestan, State and Geschwind have been part of the BrainSpan project and Ernst, Gerstein 
and Weng has been part of several other relevant genomic consortia, such ENCODE. 
 
Aim 3. Spatiotemporal analysis in ASD. 
Rationale and preliminary supporting data: Over the past few years genomic analyses by our labs and others 
have made rapid progress in identifying genes associated with ASD, in particular through the identification of de 
novo mutations in ASD cases13,17,26,30,45. Despite the identification of these ASD-associated genes, progressing 
to an understanding of ASD neurobiology remains a challenge. Aims 1 and 2 described one approach to 
discovering this neurobiology through the identification of ASD-specific networks in post mortem brains. In Aim 
3 we propose a complementary approach through the identification of genomic loci, brain regions, developmental 
stages, cell types, and neurobiological processes that are enriched for ASD mutations in genes (subaim 3.1) 
and non-coding loci (subaims 3.2 and 3.3) in neurotypical brains. Finally, we will test the hypothesis that ASD 
specific networks observed in post mortem brains from Aims 1 and 2 will be enriched for ASD associated 
mutations (subaim 3.4) thus demonstrating that the disruption of this network precedes the diagnosis of ASD 
and is therefore likely to be a cause of ASD rather than a consequence.  

1) Detection of ASD-associated genetic loci. We identified rare and de novo variants in exome data from 
5,563 ASD cases and 13,321 controls alongside rare and de novo copy number variants in microarray data from 
4,687 ASD cases and 2,100 controls17. Comparison of these two data sets showed that small de novo deletions 
in ASD targeted the same set of genes as de novo loss of function point mutations in exome data. A combined 
analysis of exome data and small de novo deletions was performed using the Transmitted and De novo 
Association (TADA) method to identify ASD-associated genes. 28 ASD-associated genes were identified with 
very high confidence (false discovery rate (FDR) ≤ 0.01) and 65 ASD-associated genes were identified with high 



confidence (FDR ≤ 0.1). These 65 genes formed a protein-protein interaction (PPI) network with two distinct 
subnetworks, enriched for chromatin regulatory genes and synaptic genes respectively (Figure 6A).  

2) Detection of ASD-associated non-coding variants in whole-genome sequencing (WGS) data. We 
analyzed WGS data for 40 simplex ASD quartets composed of both parents, an affected child and an unaffected 
sibling control. The families were selected from the Simons Simplex Collection on the basis of no previous de 
novo loss of function or CNV mutations in exome and microarray data and high paternal age. The samples were 
sequenced to greater than 30x mean coverage (mean±standard 35.7±5.8). Raw data were aligned to hg19 
human reference genome using BWA-mem56. Duplicate reads were removed with Picard 
(http://broadinstitute.github.io/picard/); GATK best practices57 were used for all downstream steps including, local 
realignment, base quality score recalibration, SNV and indel calling, cohort-wide joint genotyping, and variant 
quality score recalibration. Data were normalized within families by only analyzing bases with at least 20 unique 
reads in all family members. A combination of PLINK/SEQ (https://atgu.mgh.harvard.edu/plinkseq/) and in-house 
scripts were used to identify autosomal de novo variants based on stringent criteria designed to maximize 
specificity: minimum genotype likelihood (GQ) ≥20, alternate allele frequency (AB) ≤0.05 in the parents, and 0.3-
0.7 in the child, minimum map quality (MQ) ≥30 in all family members, and allelic depth for the alternate allele 
(AD) ≥8. Approximately 7,000 de novo mutations were identified at a rate of 87.0±13.5 de novo mutations per 
child. Confirmation with Sanger sequencing was attempted on 10% of these variants (700) selected at random 
and achieved a >95% confirmation rate across both SNVs and indels, suggesting identification of de novo 
mutations with accuracy. We used tissue-level ChIP-seq for the histone modification H3K27ac from human 
dlPFC (psychENCODE phase 1) to identify active enhancers. We observed an increased burden of mutations 
in cases compared to sibling controls (p=0.02, Figure 6B) within these active enhancers. This association was 
especially strong for insertion/deletions (indels), possibly due to the greater functional impact of disrupting 
multiple nucleotides (p=0.007, Figure 6C).  

3) Analysis of gene co-expression to identify spatiotemporal convergence of ASD-associated genes. We 
considered the convergence between 9 ASD genes15 for gene expression data from 57 neurotypical brains that 
spanned 15 developmental periods and 16 brain regions47. To identify spatiotemporal windows whilst retaining 
sufficient numbers of samples for co-expression analysis we used hierarchical clustering to identify four groups 
of brain regions and considered each of these in 13 overlapping time periods each composed of three 
developmental periods (Figure 7A). Within each of the resulting 52 (4 x 13) spatiotemporal windows we built 
networks around nine high confidence ASD genes by selecting the top 20 co-expressed genes. We assessed 
these 52 windows for spatiotemporal convergence related to ASD etiology through the degree of enrichment for 
126 independent low confidence ASD genes (Figure 7A). We observed strong spatiotemporal convergence 
between ASD risk genes in the prefrontal and primary motor-somatosensory cortex during mid-fetal development 
(Figure 7A)15. Analysis of cell type specific marker genes within this network showed enrichment for cortical 
projection neurons. This result that has been replicated by three complementary techniques: WGCNA31, cell 
specific enrichment analysis58, and NETBAG+ systems analysis59.  

4) Comparison of ASD-related gene sets and gene expression analysis of post-mortem ASD brains. Two 
prior analyses have identified gene co-expression WGCNA modules that are differentially expressed in the brain 
in ASD cases compared with controls. The microarray analysis by Voineagu et al.9 identified a module enriched 

Figure 6. ASD associated de novo mutations. 
A. 65 ASD risk genes9 (red) form a single protein-
protein interaction network composed of two 
subnetworks. The genes in the left subnetwork are 
enriched for chromatin regulatory gene ontology 
terms. The genes in the right subnetwork are 
enriched for synaptic terms. B. De novo mutations 
were identified in WGS data for 40 ASD families. 
The median number of SNV and indel mutations 
per individual is shown within active enhancers that 
were identified by bulk tissue ChIP-Seq for 
H3K27ac in human dlPFC (psychENCODE phase 
1 studies). P-values are calculated using linear 
regression with for paternal age and total de novo 
mutations per individual included as co-variates. C. 
The analysis was repeated for indels only.  
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for synaptic genes (M12) that overlaps with three modules (M1, M2, and M6) identified using RNA-seq in Gupta 
et al60 (Figure 7B). Similarly, one module enriched for microglial genes (M16) was observed in the Voineagu et 
al.9 paper and this overlaps with two modules (M5 and M7) identified in the Gupta analysis (Figure 7B). We 
compared these seven WGCNA modules with four sets of ASD-related genes: the chromatin and synaptic 
modules from our recent analysis of exome and CNV data (Figure 6A)17, RNA targets of the fragile X protein 
FMRP61 that are strongly enriched within ASD-associated genes26, and genes that are downregulated in CHD8 
knockdown but not bound by CHD8 on ChIP-Seq analysis that have been described as targeting synaptic genes 
associated with ASD62. The synaptic module and FMRP targets are strongly enriched through the synaptic 
WGCNA modules suggesting these modules may represent causal factors that persist in the ASD brain. Further 
analysis is required to determine if these modules are causal or simply a consequence of ASD.  
 
Experimental design and methods:  In subaim 3.1, we will increase the spatiotemporal resolution of co-
expression analysis of ASD neurobiology. Our prior analysis of spatiotemporal convergence, described in detail 
under preliminary data15, was based on 57 neurotypical brains, 9 high confidence ASD genes (FDR ≤0.05), and 
126 low confidence ASD genes (FDR ≤0.3)17. These data enabled us to examine 4 groups of brain regions 
spanning multiple developmental periods (Figure 7A). The data from Aim 1 and our progress in ASD gene 
discovery will allow us to perform this analysis using 87 neurotypical brains, 28 high confidence ASD genes 
(FDR ≤0.01), and 151 low confidence ASD genes (FDR ≤0.3). As before (Figure 7A), the gene expression 
samples will be divided into spatiotemporal windows using hierarchical clustering to group related brain regions 
(spatial) and considering overlapping developmental windows (temporal). In each spatiotemporal window we will 
identify the top 20 co-expressed genes around 28 high confidence ASD genes and, following the logic that a 
spatiotemporal network relevant to ASD should be enriched for other ASD genes, we will assess the enrichment 
of the 151 low confidence ASD genes (FDR ≤0.3). The expanded number of brain samples will enable us to use 
small subdivisions of brain regions and developmental time regions to increase the resolution of the analysis, for 
example windows spanning one or two developmental periods. In addition, the larger list of high confidence ASD 
genes will allow us to perform the analysis by building the spatiotemporal networks around subsets of these 28 
genes and improve the accuracy of the analysis through cross validation. In addition, we will divide the 28 high 
confidence genes by the two main functional categories observed, specifically chromatin regulators and synaptic 
genes, to assess the spatiotemporal dynamics of each functional category separately. The outcome of this aim 
will be refined gene co-expression networks that show spatial and temporal convergence among ASD risk genes.  
Pitfalls and alternatives: The analytical methods described here have been applied to the BrainSpan data 
using 9 high confidence genes resulting in the discovery of spatiotemporal convergence in the frontal cortex of 
the mid-fetal brain. This finding has been replicated using complementary methods58,59. In this aim we will be 
increasing the resolution through the inclusion of additional gene expression data and novel ASD-associated 
genes17, therefore we do not foresee complications. An alternative ‘top down’ methodology such as WGCNA, in 
which co-expression modules are generated from the complete dataset and are then assessed for enrichment 

Figure 7. Enrichment of ASD-associated 
genes in gene expression data. A. 
Spatiotemporal co-expression networks were 
formed around nine high confidence ASD 
genes for 4 groups of brain regions (x-axis) and 
13 overlapping developmental periods (y-axis). 
The –log(P) value for enrichment with 126 low 
confidence ASD genes is shown by the size 
and shade of the circle. Strong enrichment is 
observed in the mid-fetal PFC and primary 
motor-sensory cortex (PFC-MSC). B. Four 
ASD related gene sets9,52,53  compared to seven 
WGCNA co-expression modules that are 
differentially expression in post mortem ASD 
brains (right). Fold enrichment is indicated by 
the size and shade of the circle. A synaptic and 
microglial module are indicated by the black 
rectangles. Small black circles show gene sets 
that are non-overlapping by definition (e.g. 
WGCNA modules in the same analysis).   



of ASD genes, has yielded similar findings31. We will also apply this complementary WGCNA method across 
spatiotemporal windows.  
 
In subaim 3.2, we will identify ASD-associated non-coding de novo mutations in regulatory loci. Under pre-
existing funding arrangements we will have access to whole-genome sequencing (WGS) data for 5,120 
individuals from 1,280 quartet families composed of two parents, an affected child, and an unaffected sibling 
control. We have previously reported an increased burden of de novo mutations between the affected and 
unaffected siblings17 and we have observed this for de novo CNVs in microarray data and de novo loss of function 
mutations in exome data. To identify functional non-coding de novo mutations in regulatory loci, we will leverage 
the integrated RNA-Seq, ChIP-Seq, and HiC data from Aims 1 and 2 with the de novo mutation identification 
approach described in our preliminary data (Figure 6). To maximize our ability to discover compartments of the 
genome that carry risk we will assess de novo burden in three sets of loci: 1) All regulatory loci identified in 
neurotypical brain divided by function (e.g. promoter, 3`UTR); 2) Regulatory loci identified in neurotypical brain 
with a relationship to 28 high-confidence ASD genes; and 3) Regulatory loci identified in neurotypical brain with 
a relationship to the points of convergence for ASD genes identified in Subaim 3.1 such as prefrontal cortex in 
mid-fetal development. The outcome of this aim will be non-coding mutations and regulatory loci that show 
association with ASD. 
Pitfalls and alternatives: Our methods for identifying de novo mutations in whole genome sequencing data are 
well developed and we have demonstrated a >95% confirmation rate for the mutations predicated. Additionally, 
our preliminary data, based on 40 families, shows evidence of ASD association for de novo mutations within 
enhancers active in human dlPFC (Figure 6B and C).  This suggests the proposed study of 1,280 families will 
offer sufficient power even if the overall contribution of de novo mutations in the non-coding genome to ASD 
etiology is relatively weak. To maximize our chance of identifying ASD associated non-coding variants we will 
assess only the loci with the strongest evidence of functional activity, including the larger mutations, such as 
indels, that may carry the greatest risk. Concurrently, Dr. Sanders has an established collaboration with Mike 
Talkowski and the GATK CNV/SV working group to develop methods that maximize our sensitivity for detecting 
indels and small CNVs in whole genome sequence data. 
 
In subaim 3.3, we will identify points of spatiotemporal convergence using ASD associated non-coding 
mutations: Non-coding elements such as enhancers frequently show a degree of specificity to particular 
developmental time points, brain regions, or cell types63. We will use the ASD-associated non-coding de novo 
mutations in regulatory loci and regulatory loci related to ASD associated genes to assess which integrated 
regulatory networks from Aim 2 show the greatest enrichment for these non-coding mutations. By considering 
the brain regions and developmental epochs in which these networks exist we will assess points of 
spatiotemporal convergence critical to ASD. The outcome of this aim will be an independent analysis of points 
of spatiotemporal convergence in ASD based on non-coding mutations and regulatory loci. 
Pitfalls and alternatives: This aim relies on the discovery of specific ASD-associated regulatory loci through 
the discovery of numerous de novo mutations in cases. Due to the small size of regulatory regions we may not 
see this clustering in a single regulatory element. Should this be the case we will use genomic annotation to rank 
the regulatory loci with a single mutation, for example considering conservation, constraint 64, and large mutations 
such as indels that are more likely to disrupt the element (Figure 6C).  
 
In subaim 3.4, we will assess regulatory networks that are observed in the post mortem ASD brain. Aims 3.1 to 
3.3 focus on neurotypical brains and their association with ASD-associated mutations. In this aim we will assess 
the enrichment of ASD-associated genes, non-coding mutations and regulatory networks that differ between 
post mortem ASD and neurotypical brains (Figure 6).  Because genetic variants associated with ASD precede 
the onset of ASD symptoms, enrichment for these mutations will suggest that such networks are causal (Figure 
7) to the ASD phenotype. Conversely, a lack of enrichment for these mutations in ASD-relevant networks will 
suggest the network is consequential to ASD.  The outcome of this aim will therefore be to distinguish ASD-
specific regulatory networks that are likely to be causal from those that may be consequential. 
Pitfalls and alternatives: Methods for assessing such enrichment are well established and we already have a 
large list of ASD-associated genes; we foresee no complications in performing this aim. The main challenge lies 
in the interpretation of a regulatory network that does not enrich for ASD-associated genes (e.g. microglia in 
existing post mortem analyses, Figure 7B), since this may indicate a non-causal relationship or reflect and 
incomplete list of ASD-associated genes. We will therefore focus on networks with positive enrichment for these 
genes and acknowledge the complexities of interpreting a negative result.  
 
TIMELINE AND MILESTONES SECTION See Other Attachments 



SPECIFIC AIMS 
The necessity for understanding gene regulation in human brain development is supported by several recent 
discoveries.  For example, most inherited common genetic variation underlying neuropsychiatric diseases lies in 
non-coding regions and is presumed to exert pathogenic effects via the regulation of gene expression and 
splicing1-4. Additionally, most non-inherited (de novo) highly penetrant ASD risk genes are enriched in co-
expression modules and protein interaction networks related to chromatin remodeling and transcriptional 
regulation3-8. Moreover, a specific shared pattern of transcriptional dysregulation is observed in the cerebral 
cortex in slightly more than 2/3 of post-mortem ASD cases9,10. Taken together, these observations emphasize 
the importance of integrating transcriptomic and epigenomic data with higher-order chromatin interactions to 
better understand the putative mechanisms underlying dysregulated genes and networks in ASD and other 
psychiatric disorders, a fundamental goal of psychENCODE. The primary goal of this application is to extend 
our ongoing analyses of healthy and ASD brains under the psychENCODE consortium with the inclusion 
of additional genomic features, brain regions, developmental time points and cell-type specific analyses. 
By performing these analyses we will enhance this public resource and improve our understanding of the 
molecular processes underlying normal human neurodevelopment and ASD.  
 Our group has been collaborating closely for a decade11-15, bringing together expertise in developmental 
neurobiology, human tissue biobanking, genetics and genomics, statistics, bioinformatics and systems biology. 
Several key conceptual threads have been apparent in our work together: 1) Revealed new insights into human 
neurodevelopment through functional genomic profiling of postmortem tissue and cell culture models12,16; 2) 
Assessed rare and de novo mutations for ASD association13,17,18, based on the notion that down-stream analyses 
are only as good as the genes that go into them; 3) Identified the neural processes and pathways that are altered 
in the presence of ASD-associated mutations, as well as when and where these processes and pathways occur 
in the developing human brain15,17,19. Here, we propose to continue this highly productive collaboration and 
expand psychENCODE phase 1 efforts through three integrated aims. 
Aim 1. Time, region and cell type-specific molecular profiling of control and ASD brains. In subaim 1.1, 
we will profile the transcriptome (by RNA-seq), cis-regulatory elements (ChIP-seq) and 3D chromatin architecture 
(Hi-C) in neurotypical dorsolateral prefrontal cortex (dlPFC), posterior superior temporal cortex (pSTC) and 
striatum (STR) during mid-fetal development, infancy, childhood, adolescence and adulthood. To address 
cellular heterogeneity and to complement the psychENCODE phase 1 tissue level data analyses, we will obtain 
these data from neuronal and non-neuronal nuclei collected with fluorescence-activated nuclei sorting (FANS). 
In subaim 1.2., complementary genomic analyses will be done on the FANS nuclei from syndromic and idiopathic 
ASD brains and matched control brains, to identify transcripts, regulatory elements, and 3D chromatin structures 
altered in ASD in brain region and cell type-specific manners. 

Aim 2. Integrated analyses of transcriptome, epigenome and chromatin structure in control and ASD 
brains.  In subaim 2.1, each dataset generated in Aim 1 will be analyzed to identify differences between the 
developmental stages and two major cell types in healthy and ASD tissue. Furthermore, these datasets will be 
integrated to gain comprehensive insights into the underlying mechanisms; Hi-C defined physical 
intrachromosomal interactions will be intersected with ChIP-seq to identify functional interactions between 
regulatory sequences potentially associated with transcriptional changes. In subaim 2.2, we will harmonize and 
integrate our multi-omic datasets with other psychENCODE studies and large-scale genomic datasets, such as 
BrainSpan, CommonMind, ENCODE, GTEx and REMC.  

Aim 3. Spatiotemporal analysis in ASD. Our prior work assessed the enrichment of ASD genes in 
spatiotemporal co-expression networks to identify the frontal cortex during mid-fetal development as a critical 
window in ASD etiology. In subaim 3.1, we will use the neurotypical gene expression data and our expanded list 
of ASD associated genes to increase the resolution of this spatiotemporal analysis. In subaim 3.2 we will use 
whole-genome data for 5,120 individuals in ASD families to identify non-coding de novo mutations within the 
regulatory loci identified in neurotypical brains in Aims 1 and 2. In subaim 3.3 we will use these non-coding 
mutations and the regulatory networks from Aim 2 to perform an independent assessment of spatiotemporal 
convergence in ASD to complement our gene-based analysis in subaim 3.1. Finally, in subaim 3.4 we will use 
the regulatory networks that are specific to the ASD brain identified in Aim 2 to assess enrichment of ASD-
associated genes and non-coding mutations thus demonstrating that such networks are causally linked to ASD 
rather than simply a consequence of ASD. At the completion of this aim we will have three independent 
assessments of spatiotemporal convergence in ASD from ASD-associated genes, ASD-associated regulatory 
loci, and ASD-associated networks in the post mortem brain. 
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the importance of integrating transcriptomic and epigenomic data with higher-order chromatin interactions to 
better understand the putative mechanisms underlying dysregulated genes and networks in ASD and other 
psychiatric disorders, a fundamental goal of psychENCODE. The primary goal of this application is to extend 
our ongoing analyses of healthy and ASD brains under the psychENCODE consortium with the inclusion 
of additional genomic features, brain regions, developmental time points and cell-type specific analyses. 
By performing these analyses we will enhance this public resource and improve our understanding of the 
molecular processes underlying normal human neurodevelopment and ASD.  
 Our group has been collaborating closely for a decade11-15, bringing together expertise in developmental 
neurobiology, human tissue biobanking, genetics and genomics, statistics, bioinformatics and systems biology. 
Several key conceptual threads have been apparent in our work together: 1) Revealed new insights into human 
neurodevelopment through functional genomic profiling of postmortem tissue and cell culture models12,16; 2) 
Assessed rare and de novo mutations for ASD association13,17,18, based on the notion that down-stream analyses 
are only as good as the genes that go into them; 3) Identified the neural processes and pathways that are altered 
in the presence of ASD-associated mutations, as well as when and where these processes and pathways occur 
in the developing human brain15,17,19. Here, we propose to continue this highly productive collaboration and 
expand psychENCODE phase 1 efforts through three integrated aims. 
Aim 1. Time, region and cell type-specific molecular profiling of control and ASD brains. In subaim 1.1, 
we will profile the transcriptome (by RNA-seq), cis-regulatory elements (ChIP-seq) and 3D chromatin architecture 
(Hi-C) in neurotypical dorsolateral prefrontal cortex (dlPFC), posterior superior temporal cortex (pSTC) and 
striatum (STR) during mid-fetal development, infancy, childhood, adolescence and adulthood. To address 
cellular heterogeneity and to complement the psychENCODE phase 1 tissue level data analyses, we will obtain 
these data from neuronal and non-neuronal nuclei collected with fluorescence-activated nuclei sorting (FANS). 
In subaim 1.2., complementary genomic analyses will be done on the FANS nuclei from syndromic and idiopathic 
ASD brains and matched control brains, to identify transcripts, regulatory elements, and 3D chromatin structures 
altered in ASD in brain region and cell type-specific manners. 

Aim 2. Integrated analyses of transcriptome, epigenome and chromatin structure in control and ASD 
brains.  In subaim 2.1, each dataset generated in Aim 1 will be analyzed to identify differences between the 
developmental stages and two major cell types in healthy and ASD tissue. Furthermore, these datasets will be 
integrated to gain comprehensive insights into the underlying mechanisms; Hi-C defined physical 
intrachromosomal interactions will be intersected with ChIP-seq to identify functional interactions between 
regulatory sequences potentially associated with transcriptional changes. In subaim 2.2, we will harmonize and 
integrate our multi-omic datasets with other psychENCODE studies and large-scale genomic datasets, such as 
BrainSpan, CommonMind, ENCODE, GTEx and REMC.  

Aim 3. Spatiotemporal analysis in ASD. Our prior work assessed the enrichment of ASD genes in 
spatiotemporal co-expression networks to identify the frontal cortex during mid-fetal development as a critical 
window in ASD etiology. In subaim 3.1, we will use the neurotypical gene expression data and our expanded list 
of ASD associated genes to increase the resolution of this spatiotemporal analysis. In subaim 3.2 we will use 
whole-genome data for 5,120 individuals in ASD families to identify non-coding de novo mutations within the 
regulatory loci identified in neurotypical brains in Aims 1 and 2. In subaim 3.3 we will use these non-coding 
mutations and the regulatory networks from Aim 2 to perform an independent assessment of spatiotemporal 
convergence in ASD to complement our gene-based analysis in subaim 3.1. Finally, in subaim 3.4 we will use 
the regulatory networks that are specific to the ASD brain identified in Aim 2 to assess enrichment of ASD-
associated genes and non-coding mutations thus demonstrating that such networks are causally linked to ASD 
rather than simply a consequence of ASD. At the completion of this aim we will have three independent 
assessments of spatiotemporal convergence in ASD from ASD-associated genes, ASD-associated regulatory 
loci, and ASD-associated networks in the post mortem brain. 
 
 



RESEARCH STRATEGY 
 

SIGNIFICANCE 
Neuropsychiatric disorders such as autism spectrum disorder (ASD), bipolar disorder (BD), and schizophrenia 
(SCZ) are complex and devastating illnesses with considerable morbidity and mortality, as well as high personal 
and societal costs. Many of them are also polygenic, with multiple variants, both rare and common, spread 
throughout the genome influencing the disease risk3. Recent studies have identified rare variants contributing to 
psychiatric disorders that are enriched in genes involved in global gene regulation and chromatin modification, 
and many common risk variants are enriched in regulatory regions of the human genome, regions whose 
functions are poorly understood. The interpretations of these variations in regulatory regions will certainly be 
improved with better maps of RNA transcripts, regulatory elements, and chromatin states in the human brain. 
The age of onset and progression of major psychiatric disorders also varies (Figure 1) necessitating the study 
of the temporal dynamics of gene regulation during human brain development and recognizing the 
developmental context of psychiatric disorders. An emerging body of research indicates that many aspects of 
the development and physiology of the human brain are not well recapitulated in model organisms20-24 and 
therefore it is increasingly apparent that psychiatric disorders need to be understood in the broader 
context of human brain development and physiology.  

In recent years, considerable effort has been made by many studies, including large-scale efforts by 
ENCODE, NIH Roadmap (REMC) and GTEx projects to survey the diversity of cis-acting regulatory regions and 
RNA species of the human genome across different tissues and time points. However, a comprehensive catalog 
of transcripts, regulatory elements, epigenetic modifications, and chromatin structure from the human brain 
during development and in distinct brain regions and cell types is lacking. The PsychENCODE (phase 1) projects 
have initiated these efforts.  

PsychENCODE consortium projects. The key goals of the PsychENCODE project are to provide an 
enhanced framework of regulatory elements, catalog epigenetic modifications, and quantitate coding and non-
coding RNA and protein expression in a tissue- and cell-type specific manner from neurotypical (healthy) control 
brains and diseased post-mortem human brains25. These efforts will be complemented with integrative analyses, 
as well as with functional characterizations of disease-associated genomic elements using human neural cell 
systems or the developing mouse brain. However, the human brain is heterogeneous cellularly and its 
development is regionally asynchronous and prolonged. To overcome issues that hamper the potential benefits 
of initial psychENCODE studies, we will apply several approaches to address regional and cellular heterogeneity, 
prolonged development, and new genomic methods in the context of brain development and ASD.  

Here we focus on neurotypical (control) brain and ASD, which is a complex developmental syndrome 
with a significant genetic contribution. Although considerable genetic and phenotypic heterogeneity has 
complicated efforts to establish the biological substrates of the syndrome, the emergence of reliable genetic 
findings has started to shed light on potential pathogenic mechanisms, providing an extraordinary opportunity 
for developing a mechanistic understanding of the disorder. Recent studies suggest that over 500 rare, de novo 
mutations contribute to ASD risk and no single genetic mutation accounts for more than 1% of ASD 
cases13,17,26-30, consistent with significant heterogeneity in this, and other neuropsychiatric disorders3. Despite 
this heterogeneity, mapping ASD risk genes onto co-expression networks that represent normal human 
brain development has revealed that ASD genes coalesce in modules related to chromatin remodeling 
and transcriptional regulation during early fetal brain development, suggesting potential convergent 
pathways in the disorder9,15,27,31. Another remarkable finding that parallels the convergence of genetic findings 
in developmental pathways is the identification and validation of shared transcriptional changes in postmortem 
brain in ASD9. This transcriptional dysregulation, coupled with the evidence that large effect size de novo ASD 

Figure 1. Psychiatric and 
neurological disorders have 
discrete ages of onset. The bars 
indicate the age range that each 
disorder commonly affects, with less 
frequent ages of diagnosis denoted 
as dotted lines. This variability is 
indicative of dysregulation of tightly 
controlled developmental processes 
and highlights the necessity of 
defining the spatio-temporal 
molecular processes in human brain.  



risk genes are highly enriched in chromatin modifying genes (many of which are expressed in early fetal brain 
development), emphasizes the importance of understanding the nature and extent of chromatin disorganization 
in ASD brain and in normal brain development. Further, since these data suggest distinct neuronal and glial 
gene dysregulation, it is crucial to delineate the profiles of these major cell types. In addition to our ongoing 
efforts in PsychENCODE phase I project, this proposal provides critical advances in our understanding of the 
role(s) of non-coding functional elements in the pathophysiology of ASD and a scaffold for understanding 
chromatin structure and gene regulation across normal brain development. Overall, the approach proposed here 
will provide mechanistic insights that connect distinct transcriptional programs associated with ASD 
pathogenesis, and will provide a resource of the mechanisms of gene regulation across brain development to 
inform other neuropsychiatric disorders, a key goal of psychENCODE. This work also leverages 
psychENCODE phase 1 projects by adding significant new data to expand the value of the resource and 
by directly addressing key areas of interest in control and ASD brains as outlined in RFA-MH-16-230: 1) 
Generation of comprehensive, high resolution human brain region/cell type and age-specific maps of different 
classes of RNA transcripts, regulatory elements, chromatin states, chromatin conformation, and chromatin 
interactions;  2)  Identification of human brain region/cell type and age-specific molecular processes; 3) 
Integration of these newly generated multi-omic datasets, from diseased and healthy control brains, with large-
scale genomic resources; 4) Generation and analysis of high-depth, whole genome sequencing data to allow for 
improved evaluation of various genetic alterations; and 5) Development of comprehensive molecular models of 
disease (i.e., ASD) using systems biology approaches.  

 

INNOVATION 
This proposal is innovative in several aspects. First, to the best of our knowledge, the systematic discovery and 
functional characterization of genomic non-coding elements and 3D chromatin architecture has not been 
performed in healthy developing human brains or ASD brains at a cell type-specific resolution. For example, we 
use Hi-C, which combines chromosome conformation capture and NextGen sequencing to identify physical 
interactions that capture multiple levels of chromosome architecture ranging from nuclear configuration 
(“compartments” of about 5Mb) to TADs (domains of 500kb on average) and gene loops (often reflect enhancer 
promotor relationships; 40kb average), and is the only such method that spans all of these levels, genome-
wide32-34. Second, this project will conduct direct analysis of one of the largest collection of well-characterized 
high quality healthy as well as syndromic and idiopathic ASD postmortem brains. Third, we will combine 
fluorescence-activated nuclei sorting (FANS) with advanced genomic techniques to analyze multiple genomic 
features in archived development control and ASD brains. Fourth, we will leverage these analyses with our 
ongoing psychENCODE phase 1 tissue level analyses and other recent large-scale genomic resources, such as 
BrainSpan, ENCODE, GTEx and Roadmap project. Therefore, our proposed data and integrated analyses has 
potential to improve our understanding of genomic processes and normal human brain development as well as 
diagnostics, neurobiology and treatment of ASD. 
 

COLLABORATION 
This collaboration brings together multiple groups with long standing expertise in developmental neurobiology, 
psychiatry, human biobanking, genetics and genomics, statistics, bioinformatics, and systems biology that have 
worked closely with one another for almost a decade as evidenced by many co-publications.  Several key 
conceptual threads have been apparent in our work together related to human brain development and 
neuropsychiatric disorders: 1) Revealed new insights into human neurodevelopment through functional genomic 
profiling of postmortem tissue and cell culture models12-16; 2) Assessed rare and de novo mutations for ASD 
association13,17,18; 3) Identified the neural processes and pathways that are altered in the presence of ASD-
associated mutations, as well as when and where these processes and pathways occur in the developing human 
brain15,17,19. In addition, M. Gerstein (Yale) and Z. Weng (University of Massachusetts), experts in bioinformatics 
and computational biology, are leaders of the PsychENCODE DAC, which will normalize the data to remove 
batch effects, establish uniform data processing pipelines and build calibration resources for all assays to enable 
comparison and integration of the data generated by all psychENCODE groups. The efforts of each group will 
be tightly integrated in order to communicate progress and results, design and implement analytical tools, and 
transfer data. Given the complexity of human neurodevelopment and genetics/neurobiology of ASD, we believe 
that integrating the respective expertise of these groups, and their respective collaborators at UCLA (Ernst and 
Geschwind), UCSF (Sanders, State and Willsey), UMass (Weng), and Yale (Gerstein and Sestan), offers the 
best opportunity to better understand human brain development and ASD through functional genomics. Here, 
we propose to leverage our expertise and continue this highly productive collaboration and expand 
psychENCODE phase 1. 
 



ELEMENTS UNIQUE TO THIS SITE (Yale; Sestan, PI; Gerstein and Weng, co-investigators) 
In subaim 1.1, the Sestan lab will apply RNA-seq to profile of neuronal and non-neuronal transcriptomes of the 
developing and adult dorsolateral prefrontal cortex (dlPFC), posterior superior temporal cortex (pSTC) and 
striatum (STR) using FANS. ChIP-seq will identify putative enhancers and promoters in the same samples.  
In subaim 1.2, the Sestan lab will perform complementary studies in ASD and matched control brains.   
In Aim 2, the Yale and University of Massachusetts members of the psychENCODE data analysis center (DAC), 
Mark Gesrtein, Nenad Sestan and Zhiping Weng, will implement computational approaches to elucidate common 
and cell type specific regulatory, transcriptional and molecular networks that are active during brain development 
and are compromised in ASD. We will also leverage the tissue level transcriptome and epigenome datasets 
generated in the BrainSpan and PsychENCODE 1 as well as integrate these newly generated multi-omic 
datasets, from ASD and healthy control brains, with several large-scale genomic resources. 
 
APPROACH 
The objective of this proposal is to extend our ongoing tissue level analyses of healthy and ASD brains under 
the psychENCODE consortium with the inclusion of additional genomic methods, brain regions, developmental 
time points, and cell-type specific analyses. By performing three integrated aims (Figure 2) we propose to 
enhance this public resource and improve our understanding of the molecular processes underlying normal 
human neurodevelopment and ASD.  

    Figure 2. Schematic workflow of three specific aims. 
 
Aim 1. Time, region and cell type-specific molecular profiling of control and ASD brains.  
Rationale and preliminary supporting data: Three major observations provide motivation for this aim. The first 
is the recognition that genomic data, including transcriptomic, epigenetic and physical chromatin structure, from 
the relevant neurotypical tissue (control), spanning the key epochs of neurodevelopment and function from fetal 
to adult periods, provide a new and previously unobtainable view of genetic risk for psychiatric 
disease10,15,16,31,35,36. The second is that brain is comprised of an extremely heterogeneous mixture of cell types 
that exhibit distinct molecular profiles, including glia-to-neuron ratios that could show considerable fluctuations 
across normal development or in certain disease states. The third is the observations of differences in 
transcriptome organization via tissue-level gene co-expression network analysis conducted between ASD and 
normal brains9. Thus, here we propose to create a region and cell type-specific normal developmental 
scaffolding on which to frame disease variants via transcriptional (RNA-seq), epigenetic (ChIP-seq) and 
chromatin architecture (HiC) profiling of neuronal and non-neuronal cells at key epochs in human brain 
development (subaim 1.1), as well as compare these profiles in ASD and matched control brains (subaim 
1.2) to help elucidate the mechanisms by which genetic variation alters brain development and function, 
leading to ASD and related neuropsychiatric conditions. While several genomic features are currently being 
analyzed in control and ASD brains by our and other groups in the psychENCODE consortium, cellular 
heterogeneity during development, other genomic features (e.g. 3D chromatin contacts), have yet to be 
addressed. To address these issues, we will utilize our large, high quality, phenotypically well-characterized 
human brain collection (see Facilities and Resources section), as well as newly implemented methods to collect 
molecularly defined cell type specific nuclei from archival human postmortem brains in this collection.   

Our preliminary data demonstrates a clear pattern of transcriptional dysregulation is observed in 
2/3 of ASD brains9, which we have now confirmed in our psychENCODE phase 1 projects (in a more than 



double sized sample of cases and controls) using tissue level RNA-seq and ChIP-seq (H3K4me3 and 
H3K27ac) in multiple brain regions in 43 idiopathic ASD cases, 8 cases with chromosome 15q11-13 duplication 
syndrome (dup15q) and ASD, and 63 controls37,38. We also observe that post mortem brain from patients with 
ASD caused by (dup)15q11-13 share this same pattern at all levels of differential protein coding gene expression, 
splicing and lncRNA38. As the first step in exploring potential mechanisms, we performed epigenetic profiling of 
ASD vs. control brains with H3K27ac marks, which indicate active enhancers39. Genes with differential H3K27ac 
peaks in their promoter regions (5000bp upstream of the transcription start site) were enriched with neuronal 
genes with changes in expression. This result demonstrates that transcriptional dysregulation in ASD is partially 
mediated by changes in histone/chromatin modifications. Furthermore, the two major groupings of modules 
derived from whole tissue gene expression analysis sort into those up-regulated and expressed in glia, and those 
down-regulated in neurons9,38, strongly motivating our plan for transcriptional, epigenetic and Hi-C profiling in 
neurons and non-neuronal (glial) cells independently.   

Another of the important advances in methodology that will be implemented here is the 
assessment of 3-D chromatin structure across to different brain regions and cell types, and 5 key epochs 
of normal brain development and in ASD brains. Our preliminary data strongly supports the value of these 
data and our ability to perform and analyze these experiments (see also40). We established an efficient Hi-C 
protocol and obtained high resolution data (10 kb resolution; via deep sequencing) from the fetal cortex from 3 
individuals dissected into two zones: cortical plate (CP) and germinal zones (GZ) at post-conception week (PCW) 
18 (total n = 12 samples: representative heatmap shown in Figure 3A). Demonstrating the data quality, principal 
component of the interchromosomal interaction matrix for GZ shows a high correlation with GC content (r=0.791, 
P<10–256), gene number (r=0.384, P<10–256), DNase I hypersensitivity (r=0.416, P<10–256), and to a lesser extent, 
gene expression (r=0.129, P=1.11x10–66; Figure 3B and C), recapitulating previous work in cell lines41. We next 
asked how chromatin interactions elicit transcriptional co-regulation. We hypothesized that highly interacting 
chromatin regions would be co-regulated at least in part by sharing chromatin remodelers and transcription 
factors (TFs). To test this, we binned chromatin interactions into top and bottom percentiles, and compared the 
distribution of correlation patterns for genes in the high and low interacting regions of chromatin. We observed 
that the high interacting regions were significantly biased toward positive correlations (Figure 4A), supporting 
the hypothesis that co-localization can predict co-expression. 
 We next integrated these data with the epigenomics map from the NIH Roadmap project42. By comparing the 
epigenetic mark combination matrix with the Hi-C contact matrix, we demonstrate that interacting regions exhibit 
shared epigenetic patterns: loci associated with transcriptional regulation and enhancers are significantly more 
likely to interact with each other (Figure 4B). Comparison of TF binding site (TFBS) combination matrix 
(generated from TFBS map reported in43) with the intrachromosomal contact matrix revealed distinct 

combinatorial patterns of TF binding likely to mediate 
chromosome interactions (Figure 4C), thus revealing new 
experimentally testable regulatory relationships.  
 To validate that Hi-C data can identify target genes 
regulated by single nucleotide polymorphisms (SNPs) in a 
general setting, we determined if SNPs with a significant 
effect on gene expression were also identified as 

Figure 3. Chromosome conformation in fetal brains (by Hi-
C). A. Representative heatmap of chromosome contact matrix of 
GZ. Normalized contact frequency (Contact enrichment) is color-
coded according to the legend on the right. B. Spearman 
correlation of PC1 of chromatin interaction profile of fetal brain 
(GZ) with GC content (GC), gene number, DNase I 
hypersensitivity (DHS), and gene expression level of fetal brains. 
These data show relationship of 3D structure to key known 
functional elements as has been previously shown in other 
systems. C. Gene ontology (GO) enrichment (GO Elite) of genes 
located in the top 5% of highly interacting inter-chromosomal 
regions specific to GZ vs. CP (top), and ES vs. CP (bottom), 
indicating that genes located on dynamic chromosomal regions 
are enriched for neuronal function in CP, which contains the 
more differentiated laminae. Please see Won et al. 2015 in 
Appendix for higher magnification figure. 



interacting by Hi-C using cis-expression quantitative trait loci (eQTL) data from adult frontal cortex44. Indeed, Hi-
CeQTL genes were significantly over-represented with known associated genes from the eQTL study and eQTL 
SNP-transcript pairs exhibit significantly higher chromatin contact frequency than the null across all distance 
ranges measured, further supporting the utility of Hi-C to infer the gene or region of activity for regulatory 
variation.  In addition we asked whether significant physical cis-chromosomal contacts identified with Hi-C could 
inform functional annotation of 108 genome-wide significant schizophrenia loci, most of which lie far outside 
known coding or other functional regions of the genome. 

 Although SNPs are typically assigned to the closest 
genes, or those within the LD block, Hi-C indicated 
that about 50% of the variants were neither adjacent 
to the index SNPs (most-associated SNP within a 
locus), nor in LD. Interestingly, Hi-CSCZ genes 
significantly overlap with ASD de novo likely gene-
disrupting (LGD) targets26,45 (CP: OR=2.4, 
P=1.6x10-5, GZ: OR=1.8, P=0.006), indicating a 
shared genetic etiology between ASD and 
schizophrenia46. The fact that genes with LGD 
mutations in ASD are associated with regulatory 
variants in schizophrenia suggests that complete 
abrogation of these genes may cause 
developmental defects as in ASD, while regulatory 
changes in these genes may cause later-onset of 
neuropsychiatric symptoms as in schizophrenia. 
Collectively, these preliminary data demonstrate 
that we can conduct and analyze genome-wide Hi-
C experiments, integrate these data with other 
epigenetic and transcriptomic data, and use 
chromatin architecture elucidated by Hi-C to provide 
novel genome-wide insights into the regulatory 
mechanisms occurring during neuronal 
differentiation and disease pathogenesis. 
 
Experimental design and methods: In subaim 
1.1., we will profile the transcriptome (by RNA-seq), 
cis-regulatory elements (ChIP-seq) and 3D 
chromatin architecture (Hi-C) in the control 
neurotypical dorsolateral prefrontal cortex (dlPFC), 
posterior superior temporal cortex (pSTC) and 
striatum (STR). These regions have been implicated 
in the risk for ASD and schizophrenia35 and in the 
cases of dlPFC and pSTC shown to have 
dysregulated transcriptional patterns in ASD9. 
Recent studies have also highlighted the late mid-

fetal frontal cortex as most enriched for co-expression of ASD and schizophrenia de novo hits15,31,35. Brains from 
at least 5 key epochs of development representing mid-fetal, infancy, childhood, adolescence and adult brain, 
and a minimum of 6 subjects (balancing sex when possible) from each of these 5 epochs (30 brains in total) will 
be profiled.  

Cell-type specific chromatin, epigenetic and transcriptome assays are at the core of this project. Mario 
Skarica, a talented research associate scientist in the Sestan lab, has developed a protocol to isolate high quality 
nuclei with preserved chromatin and RNA from archival fresh frozen fetal and postnatal human brains. Using this 
approach he has obtained, on average, 2.57 +-0.8 and 6.93+-3.3 million intact nuclei from 100 mg of the fetal or 
adult prefrontal gray matter (i.e., fetal CP or adult cortical layers 1 to 6 with a small part of underlying white 
matter), respectively (Figure 5A). Furthermore, we separated neuronal and non-neuronal nuclei, by 
immunostaining with the NeuN antisera against pan-neuronal splicing protein RBFOX3 (Figure 5B and C) and 
sorting on BD FACSAria IIU Three-Laser System. Starting with infancy and onwards, postnatal gray matter tissue 
corresponding to six-layered postnatal cortex and small part of adjacent white matter from dlPFC and pSTC, or 
STR (corresponding to the caudate-putamen with the internal capsule at the septal level) will be processed. 

Figure 4. Highly interacting regions share co-expression 
patterns, which is mediated by epigenetic regulation. A. 
The top 10,000 highest interacting regions (intH) in fetal 
brains both at GZ and CP show positive correlation in their 
gene expression patterns, while the top 10,000 lowest 
interacting regions (intL) and top 10,000 highly variant 
regions (intV) have no skew in the distribution, consistent 
with random interactions. P-value, Kolmogorov-Smirnov 
test. B-C. Epigenetic state combination (B) and TFBS 
combination (C) for intrachromosomal interacting regions. 
The epigenetic state matrix and TFBS combination matrix 
were generated by marking loci where two interacting 
chromosomal bins share epigenetic signature. For example, 
the epigenetic combination matrix between the active 
transcription start site (TssA) and active enhancers (EnhA1) 
is generated by marking where interacting loci have TssA 
and EnhA1. Intrachromosomal contact frequency map is 
compared to the epigenetic state combination matrix by 
Fisher’s exact test to calculate the enrichment of shared 
epigenetic combinations in interacting regions. Odds ratio 
(OR) and P-values are depicted in the heatmaps (Please see 
Won et al. 2015 in Appendix for higher magnification figure). 



Tissue samples will be dissected directly from frozen tissue blocks using custom dental tools and protocol 
described in Kang et al., 201147. These dissections will be performed by Nenad Sestan, who has over 2 decades 
of experience in human neuroanatomy and tissue processing and has microdissected over 1600 tissue samples 
for exon array profiling of the human brain transcriptome47.   Given the high proportion of neurons in the cortical 
plate of the mid-fetal brain (approaching 95% or more), and relatively few neurons that are positive for NeuN at 
17-20 PCW in neocortical CP or STR48,  we will not sort NeuN+ and NeuN- nuclei from mid-fetal brains, but 
instead analyze tissue homogenate and unsorted nuclei from CP of prospective dlPFC and pSTC as well as 
STR, separately, from corresponding neocortical and striatal GZ (i.e., VZ and SVZ) containing a mixed population 
of dividing neural stem/progenitor cells with a minor contribution of newborn neurons and glia.  

Tissue samples will be pulverized and processed to release nuclei, which will be purified by 
ultracentrifugation  and processed for RNA-seq in the case of mid-fetal samples or in the case of all postnatal 
specimens (infancy and onwards) sorted into a NeuN+ (predominantly neurons) and NeuN- (mostly glia) 
fractions. In the past year, we have obtained on average 23.45+-7.2 percentage of NeuN+ nuclei from PFC 
(Figure 5C). This approach will provide unbiased quantitative assessments of cell types in healthy and ASD 
brains. This approach allows us to simultaneously collect molecularly defined cell type-specific nuclei and isolate 
DNA, chromatin, and nuclear RNAs. Bulk tissue level RNA-seq is available for dlPFC, pSTC and STR in control 
and ASD brains as part of psychENCODE phase 1 studies38, has already been added to enhance the scope of 
the resource. All brains necessary for this project are currently available in the Geschwind and Sestan labs (see 
Facilities and Resources section for the list). 

Total RNA will be extracted from 1 million nuclei 
using Norgen’s Cytoplasmic & Nuclear RNA Purification Kit. 
RNA from tissue and cell populations will be depleted of 
rRNA and sequencing libraries prepared with TruSeq 
Stranded Total RNA with Ribo-Zero Gold and SMARTer 
Stranded RNA-Seq Kit, respectively. As expected, our 
preliminary nuclear RNA-seq analyses revealed higher 
percentage of unspliced primary transcripts and extensive 
identification of nuclear-retained long non-coding RNAs 
(Figure 5D). Importantly, we detected robust cell type-
specific expression differences, including those of ASD-
associated genes (Figure 5 E). RNA-seq libraries will be 
sequenced on the Illumina HiSeq 2500 at the Yale Center 
for Genome Analysis (http://ycga.yale.edu/) to generate 
100 bp strand specific paired-end sequence at over 40 
million reads per end for each sample. For ChIP-seq, 1 
million nuclei will be processed through our established 
protocol using well-characterized ChIP-grade H3K27ac and 
H3K4me3 antibodies that have been used in 
psychENCODE phase 1 tissue-level experiments. ChIP-
seq libraries will be sequence at HiSeq 2500 at Yale at >40 
million reads per sample.  Using the standard pipelines 
developed in the Sestan and collaborating labs, we will 
perform QC analyses and compare the transcriptome and 
epigenetic data from different time points and regions to 

construct spatiotemporal gene and disease state profiles and co-expression networks using computational 
methods described in Aim 2. 

For Hi-C, 2 million nuclei will be prepared from each sample and cross-linked in 1% formaldehyde for 10 
min. Cross-linked DNA will then be restriction digested using HindIII, digested chromatin ends filled with biotin-
14-dCTP, and resulting blunt-end fragments ligated under dilute conditions to minimize random intermolecular 
ligations. Following this, crosslinking will be reversed, unligated ends removed by exonuclease digestion (T4), 
DNA sheared by sonication, and 300-600bp fragments selected. The intermolecular ligation products containing 
biotin-tagged DNA will be pulled down with streptavidin beads and ligated with Illumina paired end adapters and 
the library sequenced by Illumina 50bp paired-end sequencing over 3 lanes of the HiSeq 25000 at UCLA, a 
depth necessary to facilitate sufficient hi-resolution analysis (300-500 million mapped reads), which can also be 
augmented by pooling samples to increase depth as needed. 

 

Figure 5. Fluorescence-activated nuclei sorting 
(FANS) and nuclear RNA-seq of human dlPFC. A. 
Collection of single nuclei (see insert) from fetal (n=6) 
and adult (n=29) PFC. B. FANS plot for NeuN 
immunopositive nuclei.  C. Percentage of NeuN+ 
nuclei collected across different experiments. D. 
Coverage for exon, intron and intergenic regions of 
different sequencing technologies. E) Differential 
expression comparison between NeuN+/- FANS 
nuclei for neuronal, glial and ASD-related genes. 



In subaim 1.2, complementary genomic analyses will be done on the FANS nuclei from control, and syndromic 
and idiopathic ASD brains, to identify transcripts, regulatory elements, and 3D chromatin structures altered in 
ASD in brain region and cell type-specific manners. We will conduct RNA-seq, ChIP-seq and Hi-C on sorted 
neuronal and non-neuronal nuclei from 2 cortical regions, dlPFC and pSTC, and STR from 20 matched control 
and 20 ASD individuals, including 5 dup15q cases. We will select 10 ASD cases manifesting the shared pattern 
of transcriptional dysregulation observed, 10 without this pattern, and match them to controls to account for 
potential confounders (sex, age, postmortem interval [PMI], and RNA integrity numbers [RIN]). We will select 5 
dup15q brains with most similar breakpoint structures. Hi-C will be performed on sorted nuclei using the identical 
experimental methods as in subaim 1.1.  
Pitfalls and alternatives: The techniques in these proposed experiments are commonly used in our laboratories 
and we do not expect complications. One potential issue is the obtainment of adequate samples.  The Sestan 
lab has almost 200 high quality frozen human prenatal, early postnatal and adult brain specimens from clinically 
unremarkable (neurotypical) control donors. Control brains from this collection were used for different BrainSpan 
and psychENCODE phase 1 projects (see example studies12,47,49,50 and Resources and Facilities section). Both 
Geschwind and Sestan labs have tissue samples from over 50 post mortem ASD cases and matched controls 
with good quality RNA, and have participated in the new initiative at the Simons Foundation to collect additional 
postmortem ASD brains.  A related concern is whether the 20 ASD brains we propose to analyze are sufficient, 
given the heterogeneity typical of ASD, to detect robust differences between these samples and our controls.  
However, we were able to detect transcriptional dysregulation in 2/3rds of ASD brains in a smaller cohort17, and 
by directly comparing ASD brains exhibiting hallmarks of dysregulated transcription with those that do not, we 
expect to have sufficient statistical power to assess the extent to which 3D chromatin structure contributes to the 
observed transcriptional changes.  Further, the use of 5 dup15q cases provides an additional homogeneous 
cohort, and as our preliminary results on transcriptome analysis of this cohort demonstrate (appendix), such 
sample sizes are sufficient. The main pitfall of Hi-C is that it averages chromosome contact population from 
millions of nuclei. Single-cell Hi-C can complement this limitation51, but it can capture only one interaction for a 
given locus. Homogenous population of cells can be achieved by FANS and thus we propose this approach 
here.  Additionally, Hi-C offers other benefits, including the ability to analyze interactions mediated by multiple 
TFs en masse in Hi-C, that are not easily achievable with other methods such as ChIA-PET. While our FANS 
approach, which follows standards accepted across the psychENCODE projects, is limited to two major groups 
of cells, we have been implementing the use of other cell type specific nuclear antibodies and single nuclear 
RNA-seq.  Finally, we realize that other regions, including the thalamus, hypothalamus, and hippocampus, may 
be affected in ASD. We believe our work on the neocortex and STR will develop a framework for understanding 
of the molecular neuropathology of ASD which can then be extended to include other regions in the future.   
 
Aim 2. Integrated analyses of transcriptome, epigenome and chromatin structure in control and ASD 
brains. 
Rationale: We will analyze the data generated in the previous aim to (1) identify developmentally regulated and 
cell type specific changes in the transcriptome, epigenome and the 3D chromatin structure (2) integrate the three 
types of datasets to gain comprehensive insights into the underlying mechanisms of transcriptional regulation 
and dysregulation in development and disease, respectively. 
  
Experimental design and methods: In subaim 2.1, several first order analyses will be done for quality control 
and to provide the data as a processed resource in addition to the raw data. We will use Illumina CASAVA to 
purify the low-quality and non-identified reads and Fastqc (http://www.bioinformatics.babraham.ac.uk/ 
projects/fastqc/), to report fundamental quality parameters. Next, Tophat52 will be employed to uniquely align the 
filtered reads to their reference genome and RSEQtools53 to quantify expression profiles of each type of 
annotation entry retrieved from the latest release of the GENCODE project. The R package DESeq 
(http://bioconductor.org/packages/release/bioc/html/DESeq.html) will be used to identify differentially expressed 
(DEX) genes and well established methods including MATs to identify differential splicing10,37. DEX genes will be 
detected from the reliably expressed coding and non-coding transcripts, which are defined as transcripts with 
RPKM ≥ 1 in at least 2 samples of different developmental period. ChIP-seq reads will be aligned to the genome 
by Bowtie. After filtering of low score reads, we will use the MACS platform to call peaks enriched over the input 
library, and peaks with high empirical FDR will be excluded from further analysis. Thus, we will catalog all 
potential cis-regulatory elements from our genome-wide histone modification maps in all brain regions across 
developmental periods.  
For Hi-C analysis, hiclib (https://bitbucket.org/mirnylab/hiclib) will be used to perform all initial analysis on Hi-C 
data from mapping to filtering and bias correction (see also40). Sequenced reads will be mapped to the human 
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genome by Bowtie2 (with increased stringency, --score-min -L 0.6,0.2--very-sensitive) through iterative mapping 
and read pairs allocated to HindIII restriction enzyme fragments. Self-ligated and unligated fragments, fragments 
from repeated regions of the genome, PCR artifacts, and genome assembly errors will be removed. Filtered 
reads will be binned at 10kb, 40kb, and 100kb resolution to build a genome-wide contact matrix at a given bin 
size. This contact map depicts contact frequency between any two genomic loci. To decompose biases from the 
contact matrix and yield a true contact probability map, filtered bins are subjected to iterative correction41. Bias 
correction and normalization results in a corrected heatmap of bin-level resolution. 100kb resolution bins are 
assessed for inter-chromosomal interactions, 40kb for TAD analysis, and 10kb for gene loop detection. For TAD-
level analysis32, we will quantify the directionality index by calculating the degree of upstream or downstream 
(2Mb) interaction bias of a given bin, which will be processed by a hidden Markov model (HMM) to remove 
hidden directionality bias. For gene loop detection, aggregate peak analysis (APA) will be performed that 
quantifies the aggregate enrichment of putative peak sets by calculating the sum of a series of submatrices 
derived from a contact matrix34. Resulting inter- and intra-chromosomal interaction matrices as well as genome-
wide TADs and gene loops will be used for integrative analysis. 
Developmental and cell type-specific changes: Pearson’s correlations between the first principal components 
(PC1) from different stages and neuronal and non-neuronal cell types, as well as with our own and other 
published data will be calculated to compare similarities between different cell types. We will explore alternative 
transcriptional mechanisms or post-transcriptional modifications occurring in normal (and ASD-affected, see 
below) regions/cells and time points. These can include up- or down-regulating expression, altered 
spatiotemporal gene expression, imbalanced expression of different alleles (allele-specific expression [ASE]), 
aberrant splicing events, modified RNA editing sites, fusion transcripts, or loss of function due to frameshift 
mutations. RNA and epigenome data will also be compared with tissue level psychENCODE phase 1 and 
BrainSpan’s RNA-seq and ChIP-seq data. We will follow up with an analysis of the relative enrichment of each 
cell-specific marker genes in each subpopulation and use the expression profiles of these genes to guide the 
identification of an expanded set of cell-type specific markers. 
Integrated analyses: Spearman’s correlations between PC1/PC2 and biological traits (gene expression, 
histonemark enrichment, GC content, gene density, DNase I hypersensitivity [DHS]) will be calculated. Gene 
expression and histone mark data generated in subaim 1.1 along with DHS of fetal brain from Epigenomic 
roadmap54 will be used and average values per 100kb bin calculated. In addition to the putative cis-elements 
identified in the same samples, we will also use the 15 state epigenetic marks from Epigenomic Roadmap54 in 
genomic regions classified based on compartments averaged across 40kb bins, as well as subject specific 
psychENCODE data. Epigenetic state counts54 for one compartment category are normalized by total epigenetic 
mark number of that compartment category and compared between samples.  
Dysregulation in ASD brains. Two main data analyses will be performed with the transcriptome data. We will use 
the same approach as in subaim 2.1 to identify DEX coding and non-coding transcripts (by DESeq) between 
ASD and matched controls. Gene function enrichment analysis will be performed for these DEX genes. Finally, 
we will also perform Weighted Gene Co-expression Network Analysis (WGCNA; http://labs.genetics.ucla.edu/ 
horvath/CoexpressionNetwork/) to identify modules of differentially co-expressed genes in ASD cases. For ChIP-
seq data, once peaks are called and filtered for quality and reproducibility, we will identify and catalog all putative 
enhancer and promoter sites gained or lost in ASD brains compared to matched control brains, as well as what 
genes they are associated with.  
 In Hi-C data, we will assess if compartments, TADs, and contact domain structures are abrogated in ASD 
brains. Interaction partners for ASD risk genes, as well as gene loops involving ASD risk gene regulatory 
elements will be examined. Genome-wide interchromosomal contact matrices at high resolution (approximately 
10kb) will be compared between ASD and control to identify bins that exhibit the largest chromosomal interaction 
changes in ASD (here we refer to ASD-specific bins). Gene ontology for these genes as well as their gene 
expression pattern in ASD may provide novel insights on ASD mechanism. The same approach will be applied 
to intrachromosomal contact matrices at 10-40kb resolution. TADs in ASD vs. controls will be also compared. 
The directionality index around ASD-specific TAD boundaries will be calculated to check significance. Moreover, 
we will examine gene expression level and histone marks on TAD boundaries as well as histone marks on TADs 
that contain ASD risk genes. Both inter- and intra-chromosomal interaction patterns of the bins that contain 
differentially expressed genes in ASD or ASD risk genes will be examined in ASD vs. controls. Gene expression 
pattern and histone states of genomic loci that highly interact with dup15q region will be assessed. This approach 
of integrating chromosome interactomes to transcriptomic and epigenetic profiles may delineate epigenetic 
mechanism behind gene dysregulation in ASD. 



 We will also perform integrative network analyses of these multi-level genomic data with genetic variation to 
understand the causal mechanism of transcriptional alterations in ASD (see also Aim 3). This will include 
integration of DNA sequence, methylation, chromatin contacts, eQTL and hQTL by this collaborative team of 
investigators (e.g. to include new hQTL methods by S. Prabhakar and colleagues55. Gene loops detected in 
control and ASD will be also interrogated. Gene loops that are specific to ASD or specific to controls may directly 
point out aberrant enhancer-promoter interactions, TF binding, or compartmentalization of genome. We will 
check if ASD-specific gene loops contain any ASD-associated variants (mostly common SNV at this point, 
although as more whole genome sequencing (WGS) data is available over the next 12 months, we can use these 
data to annotate potential functions of noncoding variants (Aim 3). 
   
In subaim 2.2., we will integrate and harmonize data across psychENCODE projects and other relevant genomic 
resources. In this aim, the DAC will integrate and harmonize our datasets with other psychENCODE studies and 
large-scale genomic datasets, such as BrainSpan, CommonMind, ENCODE, GTEx and REMC. The 
PsychENCODE DAC is led by Mark Gerstein and Nenad Sestan (Yale), Zhiping Weng (University of 
Massachusetts), who are part of this proposal and Kevin White (University of Chicago). DAC will summarize the 
major analysis results produced from psychENCODE and organize them into an encyclopedia of regulatory 
elements in the developing and adult human brain. We are currently building such an encyclopedia for the 
ENCODE consortium, and we will be able to leverage the methods that we are building for ENCODE and modify 
them to best serve psychENCODE data. The psychENCODE encyclopedia will include several components. 
The first component is the raw experimental data, including the expressed transcripts in neuronal and glial cells 
in various brain regions, the peaks (enriched regions) of an array of histone marks, the open chromatin regions 
detected using ATAC-seq, the differentially enriched histone mark peaks and open chromatin regions in ASD, 
BD and SCZ (diseases covered by psychENCODE projects. This component will largely result from a series of 
uniform processing pipelines, which we will build for analyzing psychENCODE data. The second component will 
include results that require the integration across multiple data types, including the enhancers in each cell type, 
the chromatin states called using a combination of histone marks and ATAC-seq data, and the topologically 
associated domains and compartments called by combining histone marks, ATAC-seq and Hi-C data. The third 
component of the encyclopedia will provide a higher-order organization to the elements in the first two 
components. Specifically we will derive the target genes for enhancers in a cell type specific manner, and identify 
the enhancer-gene links that are disrupted in the three diseases. We will also identify the variations that are 
linked with difference in gene expression (eQTLs) that are within enhancers that target the corresponding genes. 
Finally, we will develop a portal to guide the user through the components of the psychENCODE encyclopedia, 
with multiple entry points, such as genes, GWAS SNPs, or a specific regulatory region in the genome. 
Pitfalls and alternatives: Proposed computational approaches are well established in our team and we already 
have a considerable expertise and collaborative history therefore we foresee no complications in performing this 
aim. Furthermore, Sestan, State and Geschwind have been part of the BrainSpan project and Ernst, Gerstein 
and Weng has been part of several other relevant genomic consortia, such ENCODE. 
 
Aim 3. Spatiotemporal analysis in ASD. 
Rationale and preliminary supporting data: Over the past few years genomic analyses by our labs and others 
have made rapid progress in identifying genes associated with ASD, in particular through the identification of de 
novo mutations in ASD cases13,17,26,30,45. Despite the identification of these ASD-associated genes, progressing 
to an understanding of ASD neurobiology remains a challenge. Aims 1 and 2 described one approach to 
discovering this neurobiology through the identification of ASD-specific networks in post mortem brains. In Aim 
3 we propose a complementary approach through the identification of genomic loci, brain regions, developmental 
stages, cell types, and neurobiological processes that are enriched for ASD mutations in genes (subaim 3.1) 
and non-coding loci (subaims 3.2 and 3.3) in neurotypical brains. Finally, we will test the hypothesis that ASD 
specific networks observed in post mortem brains from Aims 1 and 2 will be enriched for ASD associated 
mutations (subaim 3.4) thus demonstrating that the disruption of this network precedes the diagnosis of ASD 
and is therefore likely to be a cause of ASD rather than a consequence.  

1) Detection of ASD-associated genetic loci. We identified rare and de novo variants in exome data from 
5,563 ASD cases and 13,321 controls alongside rare and de novo copy number variants in microarray data from 
4,687 ASD cases and 2,100 controls17. Comparison of these two data sets showed that small de novo deletions 
in ASD targeted the same set of genes as de novo loss of function point mutations in exome data. A combined 
analysis of exome data and small de novo deletions was performed using the Transmitted and De novo 
Association (TADA) method to identify ASD-associated genes. 28 ASD-associated genes were identified with 
very high confidence (false discovery rate (FDR) ≤ 0.01) and 65 ASD-associated genes were identified with high 



confidence (FDR ≤ 0.1). These 65 genes formed a protein-protein interaction (PPI) network with two distinct 
subnetworks, enriched for chromatin regulatory genes and synaptic genes respectively (Figure 6A).  

2) Detection of ASD-associated non-coding variants in whole-genome sequencing (WGS) data. We 
analyzed WGS data for 40 simplex ASD quartets composed of both parents, an affected child and an unaffected 
sibling control. The families were selected from the Simons Simplex Collection on the basis of no previous de 
novo loss of function or CNV mutations in exome and microarray data and high paternal age. The samples were 
sequenced to greater than 30x mean coverage (mean±standard 35.7±5.8). Raw data were aligned to hg19 
human reference genome using BWA-mem56. Duplicate reads were removed with Picard 
(http://broadinstitute.github.io/picard/); GATK best practices57 were used for all downstream steps including, local 
realignment, base quality score recalibration, SNV and indel calling, cohort-wide joint genotyping, and variant 
quality score recalibration. Data were normalized within families by only analyzing bases with at least 20 unique 
reads in all family members. A combination of PLINK/SEQ (https://atgu.mgh.harvard.edu/plinkseq/) and in-house 
scripts were used to identify autosomal de novo variants based on stringent criteria designed to maximize 
specificity: minimum genotype likelihood (GQ) ≥20, alternate allele frequency (AB) ≤0.05 in the parents, and 0.3-
0.7 in the child, minimum map quality (MQ) ≥30 in all family members, and allelic depth for the alternate allele 
(AD) ≥8. Approximately 7,000 de novo mutations were identified at a rate of 87.0±13.5 de novo mutations per 
child. Confirmation with Sanger sequencing was attempted on 10% of these variants (700) selected at random 
and achieved a >95% confirmation rate across both SNVs and indels, suggesting identification of de novo 
mutations with accuracy. We used tissue-level ChIP-seq for the histone modification H3K27ac from human 
dlPFC (psychENCODE phase 1) to identify active enhancers. We observed an increased burden of mutations 
in cases compared to sibling controls (p=0.02, Figure 6B) within these active enhancers. This association was 
especially strong for insertion/deletions (indels), possibly due to the greater functional impact of disrupting 
multiple nucleotides (p=0.007, Figure 6C).  

3) Analysis of gene co-expression to identify spatiotemporal convergence of ASD-associated genes. We 
considered the convergence between 9 ASD genes15 for gene expression data from 57 neurotypical brains that 
spanned 15 developmental periods and 16 brain regions47. To identify spatiotemporal windows whilst retaining 
sufficient numbers of samples for co-expression analysis we used hierarchical clustering to identify four groups 
of brain regions and considered each of these in 13 overlapping time periods each composed of three 
developmental periods (Figure 7A). Within each of the resulting 52 (4 x 13) spatiotemporal windows we built 
networks around nine high confidence ASD genes by selecting the top 20 co-expressed genes. We assessed 
these 52 windows for spatiotemporal convergence related to ASD etiology through the degree of enrichment for 
126 independent low confidence ASD genes (Figure 7A). We observed strong spatiotemporal convergence 
between ASD risk genes in the prefrontal and primary motor-somatosensory cortex during mid-fetal development 
(Figure 7A)15. Analysis of cell type specific marker genes within this network showed enrichment for cortical 
projection neurons. This result that has been replicated by three complementary techniques: WGCNA31, cell 
specific enrichment analysis58, and NETBAG+ systems analysis59.  

4) Comparison of ASD-related gene sets and gene expression analysis of post-mortem ASD brains. Two 
prior analyses have identified gene co-expression WGCNA modules that are differentially expressed in the brain 
in ASD cases compared with controls. The microarray analysis by Voineagu et al.9 identified a module enriched 

Figure 6. ASD associated de novo mutations. 
A. 65 ASD risk genes9 (red) form a single protein-
protein interaction network composed of two 
subnetworks. The genes in the left subnetwork are 
enriched for chromatin regulatory gene ontology 
terms. The genes in the right subnetwork are 
enriched for synaptic terms. B. De novo mutations 
were identified in WGS data for 40 ASD families. 
The median number of SNV and indel mutations 
per individual is shown within active enhancers that 
were identified by bulk tissue ChIP-Seq for 
H3K27ac in human dlPFC (psychENCODE phase 
1 studies). P-values are calculated using linear 
regression with for paternal age and total de novo 
mutations per individual included as co-variates. C. 
The analysis was repeated for indels only.  
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for synaptic genes (M12) that overlaps with three modules (M1, M2, and M6) identified using RNA-seq in Gupta 
et al60 (Figure 7B). Similarly, one module enriched for microglial genes (M16) was observed in the Voineagu et 
al.9 paper and this overlaps with two modules (M5 and M7) identified in the Gupta analysis (Figure 7B). We 
compared these seven WGCNA modules with four sets of ASD-related genes: the chromatin and synaptic 
modules from our recent analysis of exome and CNV data (Figure 6A)17, RNA targets of the fragile X protein 
FMRP61 that are strongly enriched within ASD-associated genes26, and genes that are downregulated in CHD8 
knockdown but not bound by CHD8 on ChIP-Seq analysis that have been described as targeting synaptic genes 
associated with ASD62. The synaptic module and FMRP targets are strongly enriched through the synaptic 
WGCNA modules suggesting these modules may represent causal factors that persist in the ASD brain. Further 
analysis is required to determine if these modules are causal or simply a consequence of ASD.  
 
Experimental design and methods:  In subaim 3.1, we will increase the spatiotemporal resolution of co-
expression analysis of ASD neurobiology. Our prior analysis of spatiotemporal convergence, described in detail 
under preliminary data15, was based on 57 neurotypical brains, 9 high confidence ASD genes (FDR ≤0.05), and 
126 low confidence ASD genes (FDR ≤0.3)17. These data enabled us to examine 4 groups of brain regions 
spanning multiple developmental periods (Figure 7A). The data from Aim 1 and our progress in ASD gene 
discovery will allow us to perform this analysis using 87 neurotypical brains, 28 high confidence ASD genes 
(FDR ≤0.01), and 151 low confidence ASD genes (FDR ≤0.3). As before (Figure 7A), the gene expression 
samples will be divided into spatiotemporal windows using hierarchical clustering to group related brain regions 
(spatial) and considering overlapping developmental windows (temporal). In each spatiotemporal window we will 
identify the top 20 co-expressed genes around 28 high confidence ASD genes and, following the logic that a 
spatiotemporal network relevant to ASD should be enriched for other ASD genes, we will assess the enrichment 
of the 151 low confidence ASD genes (FDR ≤0.3). The expanded number of brain samples will enable us to use 
small subdivisions of brain regions and developmental time regions to increase the resolution of the analysis, for 
example windows spanning one or two developmental periods. In addition, the larger list of high confidence ASD 
genes will allow us to perform the analysis by building the spatiotemporal networks around subsets of these 28 
genes and improve the accuracy of the analysis through cross validation. In addition, we will divide the 28 high 
confidence genes by the two main functional categories observed, specifically chromatin regulators and synaptic 
genes, to assess the spatiotemporal dynamics of each functional category separately. The outcome of this aim 
will be refined gene co-expression networks that show spatial and temporal convergence among ASD risk genes.  
Pitfalls and alternatives: The analytical methods described here have been applied to the BrainSpan data 
using 9 high confidence genes resulting in the discovery of spatiotemporal convergence in the frontal cortex of 
the mid-fetal brain. This finding has been replicated using complementary methods58,59. In this aim we will be 
increasing the resolution through the inclusion of additional gene expression data and novel ASD-associated 
genes17, therefore we do not foresee complications. An alternative ‘top down’ methodology such as WGCNA, in 
which co-expression modules are generated from the complete dataset and are then assessed for enrichment 

Figure 7. Enrichment of ASD-associated 
genes in gene expression data. A. 
Spatiotemporal co-expression networks were 
formed around nine high confidence ASD 
genes for 4 groups of brain regions (x-axis) and 
13 overlapping developmental periods (y-axis). 
The –log(P) value for enrichment with 126 low 
confidence ASD genes is shown by the size 
and shade of the circle. Strong enrichment is 
observed in the mid-fetal PFC and primary 
motor-sensory cortex (PFC-MSC). B. Four 
ASD related gene sets9,52,53  compared to seven 
WGCNA co-expression modules that are 
differentially expression in post mortem ASD 
brains (right). Fold enrichment is indicated by 
the size and shade of the circle. A synaptic and 
microglial module are indicated by the black 
rectangles. Small black circles show gene sets 
that are non-overlapping by definition (e.g. 
WGCNA modules in the same analysis).   



of ASD genes, has yielded similar findings31. We will also apply this complementary WGCNA method across 
spatiotemporal windows.  
 
In subaim 3.2, we will identify ASD-associated non-coding de novo mutations in regulatory loci. Under pre-
existing funding arrangements we will have access to whole-genome sequencing (WGS) data for 5,120 
individuals from 1,280 quartet families composed of two parents, an affected child, and an unaffected sibling 
control. We have previously reported an increased burden of de novo mutations between the affected and 
unaffected siblings17 and we have observed this for de novo CNVs in microarray data and de novo loss of function 
mutations in exome data. To identify functional non-coding de novo mutations in regulatory loci, we will leverage 
the integrated RNA-Seq, ChIP-Seq, and HiC data from Aims 1 and 2 with the de novo mutation identification 
approach described in our preliminary data (Figure 6). To maximize our ability to discover compartments of the 
genome that carry risk we will assess de novo burden in three sets of loci: 1) All regulatory loci identified in 
neurotypical brain divided by function (e.g. promoter, 3`UTR); 2) Regulatory loci identified in neurotypical brain 
with a relationship to 28 high-confidence ASD genes; and 3) Regulatory loci identified in neurotypical brain with 
a relationship to the points of convergence for ASD genes identified in Subaim 3.1 such as prefrontal cortex in 
mid-fetal development. The outcome of this aim will be non-coding mutations and regulatory loci that show 
association with ASD. 
Pitfalls and alternatives: Our methods for identifying de novo mutations in whole genome sequencing data are 
well developed and we have demonstrated a >95% confirmation rate for the mutations predicated. Additionally, 
our preliminary data, based on 40 families, shows evidence of ASD association for de novo mutations within 
enhancers active in human dlPFC (Figure 6B and C).  This suggests the proposed study of 1,280 families will 
offer sufficient power even if the overall contribution of de novo mutations in the non-coding genome to ASD 
etiology is relatively weak. To maximize our chance of identifying ASD associated non-coding variants we will 
assess only the loci with the strongest evidence of functional activity, including the larger mutations, such as 
indels, that may carry the greatest risk. Concurrently, Dr. Sanders has an established collaboration with Mike 
Talkowski and the GATK CNV/SV working group to develop methods that maximize our sensitivity for detecting 
indels and small CNVs in whole genome sequence data. 
 
In subaim 3.3, we will identify points of spatiotemporal convergence using ASD associated non-coding 
mutations: Non-coding elements such as enhancers frequently show a degree of specificity to particular 
developmental time points, brain regions, or cell types63. We will use the ASD-associated non-coding de novo 
mutations in regulatory loci and regulatory loci related to ASD associated genes to assess which integrated 
regulatory networks from Aim 2 show the greatest enrichment for these non-coding mutations. By considering 
the brain regions and developmental epochs in which these networks exist we will assess points of 
spatiotemporal convergence critical to ASD. The outcome of this aim will be an independent analysis of points 
of spatiotemporal convergence in ASD based on non-coding mutations and regulatory loci. 
Pitfalls and alternatives: This aim relies on the discovery of specific ASD-associated regulatory loci through 
the discovery of numerous de novo mutations in cases. Due to the small size of regulatory regions we may not 
see this clustering in a single regulatory element. Should this be the case we will use genomic annotation to rank 
the regulatory loci with a single mutation, for example considering conservation, constraint 64, and large mutations 
such as indels that are more likely to disrupt the element (Figure 6C).  
 
In subaim 3.4, we will assess regulatory networks that are observed in the post mortem ASD brain. Aims 3.1 to 
3.3 focus on neurotypical brains and their association with ASD-associated mutations. In this aim we will assess 
the enrichment of ASD-associated genes, non-coding mutations and regulatory networks that differ between 
post mortem ASD and neurotypical brains (Figure 6).  Because genetic variants associated with ASD precede 
the onset of ASD symptoms, enrichment for these mutations will suggest that such networks are causal (Figure 
7) to the ASD phenotype. Conversely, a lack of enrichment for these mutations in ASD-relevant networks will 
suggest the network is consequential to ASD.  The outcome of this aim will therefore be to distinguish ASD-
specific regulatory networks that are likely to be causal from those that may be consequential. 
Pitfalls and alternatives: Methods for assessing such enrichment are well established and we already have a 
large list of ASD-associated genes; we foresee no complications in performing this aim. The main challenge lies 
in the interpretation of a regulatory network that does not enrich for ASD-associated genes (e.g. microglia in 
existing post mortem analyses, Figure 7B), since this may indicate a non-causal relationship or reflect and 
incomplete list of ASD-associated genes. We will therefore focus on networks with positive enrichment for these 
genes and acknowledge the complexities of interpreting a negative result.  
 
TIMELINE AND MILESTONES SECTION See Other Attachments 
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TIMELINE AND MILESTONES 
 
Timeline 
Aim 1 can start immediately (Y0) as the required control and ASD brain tissue samples are already available. 
Data generation will continue throughout the duration of the grant. Aim 2 can also start at Y0 based on 
preliminary data generated by the Geschwind and Sestan labs (see Preliminary data). Given the richness of the 
dataset, and the timeline of data generation, Aim 2 will continue throughout all years of the grant. We expect 
continued analyses to provide continued insights into integration of these networks and differences between the 
neurotypical and ASD brains. Aim 3 can also start at Y0 since the high confidence ASD genes have already 
been identified and can be used to increase the resolution of our spatiotemporal analysis using existing methods 
and gene expression data. The whole-genome sequencing data will be available at Y0 and we will leverage 
genomic data from psychENCODE phase 1 data and other relevant datasets such as BrainSpan, CommonMind, 
ENCODE, GTEx and REMC to inform our analysis of regulatory regions in which de novo mutations are enriched 
and the spatiotemporal dynamics of the regulatory loci identified. As with Aim 2, this aim will continue throughout 
the course of the grant allowing continued development of improved methodology for integrating these data and 
further insights into ASD etiology. All aims: The concurrent and parallel progress in all three aims will allow 
methods to be developed and refined throughout the course of the grant and for the results of each aim to inform 
the other aims. With analysis methods in place the analytic pipelines will enable rapid progress from the 
completed genomic data sets to finalized analyses. 
 
Milestones 
Every 6 months: Following the psychENCODE consortium policy on milestones and data releases (see 
www.psychENCODE.org or The PsychENCODE Consortium et al., 2015), cell type specific RNA-seq, ChIP-seq 
and Hi-C will be released to the broader research community at six-month intervals beginning from the start of 
the grant (Y0). See data sharing plan for details. End of Y1: A preliminary integrated analysis of gene expression 
and chromatin state data in neurotypical samples from psychENCODE phase 1 data and newly generated data 
from psychENCODE phase 2 will be completed to inform the discovery of de novo non-coding mutations in Aim 
3. All de novo mutations in the whole-genome sequencing data will be identified. End of Y2: The availability of 
50% of the phase 2 data from neurotypical and ASD brains will allow a preliminary analysis of gene expression, 
chromatin state, and 3D chromatin structure that are enriched in ASD brains for assessment of de novo 
enrichment in coding and non-coding loci in Aim 3. End of Y3: 75% of phase 2 data completed. A preliminary 
spatiotemporal analysis of ASD based on non-coding ASD loci will be completed in Aim 3 using preliminary 
integrated networks from Aim 2. End of Y4: All phase 2 data generated under Aim 1. Final integrated analysis 
of networks in the neurotypical brains and specific to the ASD brain completed under Aim 2. Final spatiotemporal 
analysis based on coding and non-coding loci integrated with the full psychENCODE phase 2 dataset under Aim 
3. 



ABSTRACT 
 
Genetic and genomic investigations have yielded important findings as to the genetic contributions to major 
psychiatric illnesses, illustrating significant etiological heterogeneity, as well as cross-disorder overlap. It has 
also become clear that understanding how this genetic variation leads to alterations in brain development and 
function that underlies psychiatric disease pathophysiology will be greatly advanced by a roadmap of the 
transcriptomic and epigenetic landscape of the human cerebral cortex across key developmental windows. 
Here, we propose, via a highly collaborative group of investigators, each with distinct areas of expertise and 
research focus, to create a scaffold of genomic data for understanding ASD pathophysiology, and psychiatric 
disorders more broadly. The work proposed here represents an ambitious multi-PI project (Yale, UCLA, and 
UCSF) that brings together three principal investigators and collaborators with strong publication records and 
expertise in all approaches necessary to perform this work using state-of-the-art and novel methodologies. We 
will perform time-, region-, and cell type-specific molecular profiling of control and ASD brains (Aim 1), 
including RNA-seq based transcriptomics, identifying cis-regulatory elements via ChIP-seq, and use Hi-C to 
determine the 3D chromatin architecture and physical relationships that underlie transcriptional regulation in 
three major regions implicated in neuropsychiatric disease (frontal and temporal cortex and striatum) across 
five major epochs representing disease-relevant stages in human brain development. This will include 
complementary genomic analyses in controls and matched post mortem ASD brain to identify genetic 
mechanisms underlying processes altered in ASD brain. We will address cellular heterogeneity via 
fluorescence-activated nuclear sorting (FANS) so as to profile neurons and non-neural cells separately, which 
will complement the whole tissue analyses. We will analyze and integrate these datasets to identify regional, 
developmental, and ASD-related processes to gain insight into underlying mechanisms, harmonizing these 
multi-omic data with other psychENCODE studies, as well as other large scale data sets, such as BrainSpan, 
ENCODE, GTEx and Roadmap Epigenomics Project (Aim 2). We will perform integrated analysis of germ-line 
ASD variations identified in more than 1000 families from the Simons Simplex Collection to characterize causal 
enrichments in developmental periods, brain regions, and cell types to better characterize the mechanisms by 
which genetic variation in humans alters brain development and function in health and disease (Aim 3). 
Completion of these aims will lead to a well-integrated resource across major periods in human cortical and 
striatal development that will permit generation of concrete testable hypotheses of ASD mechanisms, and 
inform our pathophysiological understanding of other related neuropsychiatric disorders. 
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Summary 1 
We apply transcriptome-wide RNA sequencing in postmortem autism spectrum disorder (ASD) 2 

brain and controls and identify convergent alterations in the noncoding transcriptome, including primate 3 
specific lncRNA, and transcript splicing in ASD cerebral cortex, but not cerebellum. We characterize an 4 
attenuation of patterning between frontal and temporal cortex in ASD and identify SOX5, a transcription 5 
factor involved in cortical neuron fate specification, as a likely driver of this pattern. We further show that a 6 
genetically defined subtype of ASD, Duplication 15q Syndrome, shares the core transcriptomic signature of 7 
idiopathic ASD, indicating that observed molecular convergence in autism brain is the likely consequence 8 
of manifold genetic alterations. Using co-expression network analysis, we show that diverse forms of 9 
genetic risk for ASD affect convergent, independently replicated, biological pathways and provide an 10 
unprecedented resource for understanding the molecular alterations associated with ASD in humans. 11 
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Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by deficits in 1 
social communication and mental flexibility1. Genetic risk factors contribute substantially to ASD risk, and 2 
recent studies support the potential contribution of more than a thousand genes to ASD risk2-4. However, 3 
given the shared cognitive and behavioral features across the autism spectrum, one hypothesis is that diverse 4 
risk factors may converge on common molecular, cellular, and circuit level pathways to result in the shared 5 
phenotype5,6. Analysis of the transcriptome has been used to identify common molecular pathways in the 6 
cerebral cortex (CTX) from postmortem human brain tissue in individuals with ASD7-11. However, all 7 
transcriptomic studies in ASD to date have been limited to evaluating highly expressed mRNAs 8 
corresponding to protein coding genes. Moreover, most lack rigorous replication and do not assess gene 9 
expression patterns across brain regions. 10 We used rRNA-depleted RNA-seq (Methods) to evaluate transcriptomes from a large set of ASD 11 
and control (CTL) brain samples including neocortex (frontal and temporal) and cerebellum across 79 12 
individuals (46 ASD, 33 CTL, 205 samples, Extended Data Fig. 1a-e, Supplementary Table 1). We first 13 
compared differential gene expression (DGE) between ASD and CTL individuals in CTX from a previously 14 
published7 microarray study against new, independent gene expression profiles from RNA-seq to evaluate 15 
global reproducibility of DGE in ASD. We found a high degree of replication of DGE fold changes between 16 
the sample sets, despite evaluation on different gene expression platforms (fold changes at P < 0.05 in 17 
previously evaluated data correlate with new data with R2 = 0.60, Extended Data Fig. 1f). We observed a 18 
much weaker overall signal and replication in cerebellum (R2 = 0.033, Extended Data Fig. 1g). These 19 
analyses confirm the existence of a reproducible DGE signature in ASD CTX across different platforms and 20 
in independent samples.  21 

We next combined samples from all individuals with idiopathic ASD into a covariate-matched 22 
“ASD Discovery Set” (Extended Data Fig. 1h) for CTX (106 samples, 26 ASD, 33 CTL individuals) and 23 
held out remaining samples for replication (“ASD Replication Set”, Methods). For DGE analysis, we used a 24 
linear mixed effects model that accounts for biological and technical covariates (Methods) to identify 1156 25 
genes differentially expressed in ASD CTX, 582 increased and 574 decreased (Benjamini-Hochberg FDR ≤ 26 
0.05, Supplementary Table 2). Importantly, DGE analysis with additional covariates or different 27 
assumptions about the distribution of the data and test statistics yielded similar results (Extended Data Fig. 28 
2a). Additionally this DGE signature clusters over two-thirds of ASD samples together and this clustering is 29 
not related to confounding factors such as cortical region, age, sex, and RNA quality (Figure 1a, Extended 30 
Data Fig. 2b). The most significantly down-regulated gene was PVALB (fold change = 0.53, FDR ≤ 0.05), a 31 
marker for GABAergic interneurons. SST, a marker for a different subpopulation of GABAergic 32 
interneurons, is also among the most downregulated (fold change = 0.61, FDR ≤ 0.05). Other down-33 
regulated genes at FDR ≤ 0.05 include NEUROD6, involved in neuronal differentiation (fold change = 34 
0.60), multiple ion channels, and KDM5D, a lysine demethylase (fold change = 0.66). In contrast, members 35 
of the complement cascade implicated in microglial-neuronal interactions (C4A, fold change = 1.94; C1QB, 36 
fold change = 1.65; both FDR ≤ 0.05) are upregulated in ASD CTX. Gene Ontology (GO) term enrichment 37 
analysis further supports the involvement of pathways implicated by these genes (Figure 1b), confirming 38 
previous findings7. Moreover, the upregulated set is enriched for astrocyte and microglia enriched genes, 39 
and the down-regulated set is enriched for synaptic genes (Extended Data Fig. 2c), consistent with previous 40 
observations7,11. 41 

We next sought to evaluate whether the transcriptional signature identified in the ASD Discovery Set 42 
generalizes to the ASD Replication set by assessing the 1st principal component of the DGE set, which 43 
summarizes the DGE expression pattern across all cortical samples. The ASD Discovery Set and ASD 44 
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Replication Set share this pattern, which is significantly different for both sets compared to CTL (Figure 1 
1c). Moreover, this pattern is highly associated with ASD diagnosis, but not other biological factors, 2 
technical factors, or scores on sub-domains of an ASD diagnostic tool (Figure 1d). These analyses 3 
demonstrate that convergent differences in ASD CTX are reproducible in independent samples and are not 4 
related to confounding factors.  5 
 We also detected 2715 lncRNAs expressed in cerebral cortex (after careful filtering for high-6 
confidence transcripts, Supplementary Information), of which 62 were significantly dysregulated between 7 
ASD and CTL (33 long intergenic RNAs, lincRNAs; 19 antisense transcripts; and 10 processed transcripts 8 
at FDR ≤ 0.05). Similar to the protein coding genes, these transcripts’ expression patterns cluster ASD and 9 
CTL samples (Figure 1e). Most of these lncRNAs are developmentally regulated12, have chromatin states 10 
indicative of transcription start sites (TSSs) near their 5´ end in brain13, and are identified in other 11 
datasets12,14 consistent with being valid, functional lncRNAs. Moreover, most (81%) exhibit primate-12 
specific expression patterns in brain15 (Supplementary Information). For example, Figure 1f depicts two 13 
lincRNAs, LINC00693 and LINC00689, which are typically downregulated during development, yet are 14 
upregulated in ASD CTX relative to controls (Figure 1g), which we validated by RT-PCR (Extended Data 15 
Fig. 2d). LINC00693 sequence is present, but poorly conserved in mouse, while LINC00689 is primate-16 
specific (present in macaque and other primates but not in any other species, Supplementary Information, 17 
Extended Data Fig. 3 for additional examples). These data indicate that dysregulation of lncRNAs, many of 18 
which are primate-specific and involved in brain development, is an important component of transcriptome 19 
dysregulation observed in ASD.  20 

Previous work suggested that alterations in transcript splicing may contribute to transcriptomic 21 
changes in ASD7,16,17 by evaluating splicing in a targeted manner and pooling samples across 22 
individuals7,16,17. Given the increased sequencing depth and reduced sequencing bias across transcript length 23 
in our dataset, we were able to perform an unbiased genome-wide analysis of differential alternative splicing 24 
(AS). We evaluated the percent spliced in (PSI, Extended Data Fig. 4a) for 34,025 AS events in CTX across 25 
the ASD Discovery Set, encompassing skipped exons (SE), alternative 5´ splice sites (A5SS), alternative 3´ 26 
splice sites (A3SS), and mutually exclusive exons (MXE) using the MATS pipeline18 (Supplementary 27 
Information). We first asked whether there was a global signal, finding significant enrichment over 28 
background (Extended Data Fig. 4b). We identified 1127 events in 833 genes at FDR ≤ 0.5 in CTX (similar 29 
to the number of events at uncorrected P < 0.005). Importantly, we obtained similar results with a different 30 
splice junction mapping and quantification approach (Extended Data Fig. 4c). 31 

We performed PCR validations with nine AS events from the differential splicing set (ASTN2, 32 
MEF2D, ERC2, MED31, SMARCC2, SYNE1, NRCAM, GRIN1, NCAM) and found that validated changes in 33 
splicing patterns were concordant with RNA-seq (Extended Data Fig. 4d-e), demonstrating that our 34 
approach identifies alterations in AS with high specificity. Similar to our observations with lncRNA and 35 
DGE, AS changes clustered the samples by diagnosis (Figure 2a). The most significantly different event 36 
was the inclusion of an exon in ASTN2 (ΔPSI = 5.8 indicating a mean of 5.8% difference in inclusion in 37 
ASD vs CTL; P = 7.8x10-6), a gene implicated by copy number variation (CNV) in ASD and other 38 
developmental disorders19. GO term analysis of the genes implicated by these pathways indicates 39 
involvement of biological processes related to neuronal projection, biological adhesion, and morphogenesis 40 
(Figure 2b), pathways where alternative isoforms are critical to specifying interactions between protein 41 
products. Moreover, the 1st principal component of the cortex differential splicing signature replicates in the 42 
ASD Replication Set and is not associated with other biological or technical factors (Figures 2c-d, Extended 43 
Data Fig. 5a). Importantly, many splicing alterations occur in genes that are not differentially expressed 44 
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between ASD and CTL; removing AS events on genes exhibiting even nominal DGE (P < 0.05), still 1 
identified a strong difference between ASD and CTL CTX  (Extended Data Fig. 5b). 2 

A parallel analysis in cerebellum evaluating 32,954 AS events found no differentially regulated 3 
events significant at any multiple comparison correction thresholds (Extended Data Fig. 5c, Supplementary 4 
Table 3). There was no detectable global overlap between cerebellum and CTX above chance for events 5 
significant at P < 0.05 in both comparisons (fold enrichment = 1.1, P = 0.21). This suggests that AS 6 
alterations in ASD are largely confined to CTX cell types, consistent with the stronger overall DGE patterns 7 
observed in CTX versus cerebellum. 8 

To further explore the underlying biology of AS dysregulation, we tested whether the shared splicing 9 
signature in ASD might be a product of perturbations in AS factors known to be important to neural 10 
development or preferentially expressed in neural tissue. We found that the expression levels of RBFOX1, 11 
RBFOX2, SRRM4, NOVA1, and PTBP1 all had high correlations (R2 > 0.35, FDR ≤ 0.05) to AS alterations 12 
in CTX (Figure 2e), but not in cerebellum (Figure 2f). Furthermore, enrichment analysis revealed that most 13 
changes in cortical AS occur in neuron-specific exons that are excluded in ASD (exons with ΔPSI > 50% in 14 
neurons overlap with exons excluded in ASD CTX, fold enrichment = 4.1, P = 1.8x10-7, Extended Data Fig. 15 
5d). 16 

To validate a regulatory relationship between splicing factors and these events, we evaluated 17 
experimental data from knockout, overexpression, and knockdown experiments for Rbfox120, SRRM421, 18 
and PTBP122, respectively . We found that exons regulated by each of these splicing factors were 19 
significantly enriched in the set of exons excluded in ASD (Figure 2g), while in contrast, there was no 20 
enrichment for targets of ESRP23, a splicing factor involved in epithelial cell differentiation but not 21 
expressed in CTX. This shows that alterations in three splicing factors dysregulated in ASD regulate AS of 22 
the neuron-specific exons whose inclusion is dysregulated in ASD in CTX and not cerebellum, indicating 23 
selective alteration of neuronal splicing in ASD CTX. Remarkably, the expression patterns of these three 24 
splicing factors (and others for which appropriate validation experiments were unavailable) results in 25 
distinct clusters (Extended Data Fig. 5e), suggesting that subsets of splicing factors act in different 26 
individuals to mediate a common downstream AS alteration. 27 

Taken together these results indicate global transcriptional alterations in ASD cerebral cortex, but 28 
not cerebellum at the level of protein coding transcripts, lncRNA and AS. Therefore, to determine how these 29 
different transcriptomic subcategories relate to each other in ASD, we compared the 1st PC for each type of 30 
transcriptomic alteration across individuals (Figure 2h).  Remarkably, the PCs are highly correlated (R2 > 31 
0.8) indicating that the transcriptomic alteration is a unitary phenomenon across protein coding, noncoding, 32 
and splicing levels, rather than distinct forms of molecular alteration. 33 

Previous analysis with gene expression microarrays in a small cohort suggested that the typical 34 
pattern of transcriptional differences between the frontal and temporal cortex may be attenuated in ASD7. 35 
To further test this possibility, we evaluated DGE between CTX regions (Supplementary Information) in 16 36 
matched frontal and temporal CTX sample pairs from ASD and CTL subjects and found 551 genes 37 
differentially expressed between regions in controls, but only 51 in ASD (FDR ≤ 0.05; Figure 3a). We refer 38 
to the set of 523 genes with this pattern in CTL, but not ASD as the “Attenuated Cortical Patterning” set. 39 
The attenuation of patterning is evident from the global distribution of test statistics between frontal and 40 
temporal CTX in ASD and CTL and genes in this set do not show a greater difference in variability in ASD 41 
versus controls compared to other genes (Kolmogorov-Smirnov test, two-tailed P = 0.11, Extended Data 42 
Fig. 6a).  43 
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We complemented this analysis with a machine learning approach using all 123 cortical samples, 1 
training a regularized regression model24 to classify frontal versus temporal CTX with independent gene 2 
expression data from BrainSpan25 (Extended Data Fig. 6b, Supplementary Information). Multiple 3 
approaches to training the classifier with BrainSpan can differentiate between frontal and temporal CTX in 4 
both CTL and ASD (Extended Data Fig. 6c-e), demonstrating that dissection and sample quality in our 5 
samples are of high quality. Loss of classification accuracy in ASD compared to CTL was observed when 6 
restricting the model to the genes with the most attenuated patterning in ASD (Extended Data Fig. 6f), 7 
demonstrating that attenuation of patterning generalizes across all samples. The Attenuated Cortical 8 
Patterning set includes multiple genes known to be involved in cell-cell communication and cortical 9 
patterning, such as PCDH10, PCDH17, CDH12, MET, and PDGFD, which was recently shown to mediate 10 
human specific aspects of cerebral cortical development26. GO term enrichment analysis of the Attenuated 11 
Cortical Patterning set identified enrichment for G protein coupled signaling, Wnt receptor signaling, and 12 
calcium binding, among several developmental processes (Figure 3b), and cell type enrichment analysis did 13 
not identify a strong preference for a particular cell type (Extended Data Fig. 6g).  14 

To identify potential drivers of the alteration in cortical patterning, we evaluated transcription factor 15 
binding site enrichment upstream of genes in the Attenuated Cortical Patterning set (Supplementary 16 
Information), and found an enrichment of SOX5 binding motifs (upstream of 364/523 genes, Figure 3c). 17 
Remarkably, SOX5 itself belongs to the Attenuated Cortical Patterning set: while SOX5 is differentially 18 
expressed between frontal and temporal CTX in CTL, it is not in ASD (Figure 3d). We thus predicted that if 19 
SOX5 regulates cortically patterned genes, its expression should correlate with target gene transcript levels. 20 
Consistent with this prediction, we found that genes in the Attenuated Cortical Patterning set are anti-21 
correlated with SOX5 in CTL CTX, but not in ASD CTX (Figure 3e, top left; Wilcoxon rank sum test of R 22 
values, P = 0.01), suggesting that the normal role of SOX5 as a transcriptional repressor may be disrupted in 23 
ASD. We reasoned that a true loss of SOX5-mediated cortical patterning would be specific to the predicted 24 
SOX5 targets. Consistent with this, we find a loss of correlations between SOX5 and predicted targets, but 25 
no difference in correlations between SOX5 and non-targets in the Attenuated Cortical Patterning set (Figure 26 
3e). Taken together, these findings show that a loss of regional patterning downstream of the transcriptional 27 
repressor SOX5, which plays a crucial role in glutamatergic neuron development27,28, contributes to the loss 28 
of regional identity in ASD.  29 

Gene expression changes in postmortem brain may be a consequence of genetic factors, 30 
environmental factors, or both. Brain tissue from individuals with ASD that harbor known, penetrant genetic 31 
causes are very rare. However, we were able to identify postmortem brain tissue from 8 subjects with one of 32 
the more common recurrent forms of ASD, Duplication 15q Syndrome (dup15q, which is present in about 33 
0.5-1% of ASD cases, see Extended Data Fig. 7a for characterization of duplications). We performed RNA-34 
seq across frontal and temporal cortex and compared DGE changes in dup15q with those observed in 35 
individuals with idiopathic ASD to better understand the extent to which the observed molecular pathology 36 
overlaps. As expected, most genes in the 15q11.1-13.2 duplicated region have higher expression in dup15q 37 
CTX compared to CTL (Figure 4a), although SNRPN and SNURF were notably downregulated. Conversely, 38 
no significant upregulation of genes in this region were identified in idiopathic ASD or controls. Strikingly, 39 
when we assessed genome-wide expression changes, we observed a strong signal of DGE in dup15q that 40 
widely overlaps with that of idiopathic ASD (fold changes at FDR ≤ 0.05 in dup15q correlate with 41 
idiopathic ASD with R2 = 0.79, Figure 4b). Moreover, the slope of the best-fit line through these changes is 42 
2.0, indicating that on average, the transcriptional changes in dup15q CTX are highly similar, but twice the 43 
magnitude of those observed in ASD CTX. 44 
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Next, we sought to evaluate AS changes in dup15q. There is only one significant splicing change in 1 
the dup15q region (Supplementary Table 3), consistent with the idea that duplication in this region 2 
duplicates all isoforms of the genes, resulting in minimal alteration of transcript structure. Similar to DGE, 3 
global AS analysis in dup15q CTX vs to CTL CTX revealed a stronger, but highly overlapping signature 4 
with idiopathic ASD CTX (fold changes at FDR ≤ 0.2 in dup15q agree correlate with idiopathic ASD with 5 
R2 = 0.66) indicating that splicing changes in dup15q syndrome recapitulate those of idiopathic ASD 6 
(Figure 4c). The slope of the best-fit line through the PSI for spliced exons in dup15q CTX compared to 7 
those in ASD CTX is 2.5 similar to DGE. Notably, both gene expression and AS changes in dup15q 8 
implicated similar pathways as those found in idiopathic ASD (Extended Data Fig. 7c-d). Clustering dup15q 9 
samples and CTL samples using both the DGE set and the differential AS set showed that all dup15q 10 
samples cluster together (Figure 4d), as opposed to the more variable clustering of idiopathic ASD, 11 
supporting the hypothesis that this shared genetic abnormality leads to a more homogeneous molecular 12 
phenotype. 13 

Next, to test whether this molecular ASD signature may be due to independent of postmortem or 14 
reactive effects (Supplementary Information), we compared our data with gene expression profiles from a 15 
iPSC-derived neurons (nIPSCs)29 from dup15q were available, we could use these data to definitively reveal 16 
which changes in dup15q CTX are independent of postmortem or reactive effects (Supplementary 17 
Information), since such effects are not present in vitro. We observe that DGE in the 15q region is 18 
concordant with that seen in the nIPSCs (Figure 4e), even though the sample size is small and the analysis is 19 
likely underpowered. Upregulated changes in dup15q are also seen in nIPSCs (Figure 4f), consistent with 20 
our other statistical analyses showing limited effects of potential confounders. The very immature, fetal state 21 
of the nIPSCs30 likely explains the absence of an enrichment signal for genes downregulated in postnatal 22 
ASD brain, which are enriched for genes involved in neurons with more mature synapses.  23 

We next applied gene network analysis to construct an organizing framework to understand shared 24 
biological functions across idiopathic ASD and dup15q (combining the ASD Discovery Set, ASD 25 
Replication Set, and dup15q set). We utilized Weighted Gene Co-expression Network Analysis (WGCNA), 26 
which identifies groups of genes with shared expression patterns across samples (modules) from which 27 
shared biological function is inferred.  Modules identified via WGCNA can than be related to a range of 28 
relevant phenotypes and potential confounders31,32. We applied signed co-expression analysis and used 29 
bootstrapping to ensure the network was robust, and not dependent on any subset of samples 30 
(Supplementary Information), while controlling for technical factors and RNA quality (“Adjusted FPKM” 31 
levels, Methods). WGCNA identified 16 co-expression modules (Extended Data Fig. 8a, Supplementary 32 
Table 2), which are further characterized by their association to ASD (Extended Data Fig. 8b), enrichment 33 
for cell-type specific genes (Extended Data Fig. 8c), and enrichment for GO terms (Extended Data Fig. 9). 34 
Of the downregulated modules, three are associated with ASD and dup15q (M1/10/17) and one with dup15q 35 
only (M11). Five of the upregulated modules are associated with ASD and dup15q (M4/5/6/9/12) and one is 36 
specific to dup15q (M13) (Figure 5a, top). Additionally, we identified a module strongly enriched for genes 37 
from the Attenuated Cortical Patterning set and Wnt signaling that contains SOX5 (M12; fold enrichment = 38 
3.0, P = 3x10-8), verifying the strong relationship observed between the Wnt pathway regulating TF SOX5 39 
and attenuation of cortical patterning33. 40 

Notably, the modules identified here significantly overlap with previous patterns identified in ASD 41 
(asdM12array and asdM16array

7; Figure 5a, middle). We found that the ASD-associated modules identified by 42 
our larger sample size and RNA-seq provide significant refinement of previous observations by identifying 43 
more discrete biological processes related to cortical development34, the post-synaptic density35, and 44 
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lncRNAs (Figure 5a, bottom). For example, M1 overlaps a subset of asdM12array (fold enrichment = 5.7) 1 
and developmental modules (devM16 fold enrichment = 3.7), and is enriched for proteins found in the PSD 2 
and genes involved in calcium signaling and gated ion channel signaling. Another subset of asdM12array, 3 
M10 (fold enrichment = 11) overlaps more with a mid-fetal upregulated cortical development module 4 
(devM13 fold enrichment = 4.0), and genes involved in secretory pathways and intracellular signaling. A 5 
third module, M17 shows the least overlap with asdM12array (fold enrichment = 2.2) and is related to energy 6 
metabolism. Notably, these three modules are enriched for neuron-specific genes (Extended Data Fig. 8c), 7 
but not all neuronal modules are down regulated in ASD (M3 is not altered in ASD CTX). Taken together, 8 
specific neurobiological processes are affected in individuals with ASD related to developmentally 9 
regulated neurodevelopmental processes. 10 

The most upregulated modules, M5 and M9, both strongly overlap (fold enrichments > 20) with 11 
previously identified upregulated co-expression module asdM16array. M5 is enriched for microglial cell 12 
markers and immune response pathways, whereas M9 is enriched for astrocyte markers and immune-13 
mediated signaling and immune cell activation (Extended Data Fig. 8c, Extended Data Fig. 9). This analysis 14 
clearly separates the contributions of the coordinated biological processes of microglial activation and 15 
reactive astrocytosis, which were previously not distinguishable as separate modules7. Thus, our analysis 16 
pinpoints more specific biological pathways in idiopathic ASD than those previously identified and reveals 17 
that similar changes occur downstream of the genetic perturbation in dup15q.  18 
 We evaluated the relationship between the five modules most strongly associated with ASD 19 
(M1/5/9/10/17, which are supported by module-trait association analysis and gene set enrichment analysis, 20 
Supplementary Information), and found that there was a remarkably high anti-correlation between the 21 
eigengene of M5 and downregulated modules, particularly M1 (R2 = 0.76) (Figure 5b). M1 (Figure 5c) is 22 
downregulated in ASD and enriched for genes at the PSD and genes involved in synaptic transmission, 23 
while M5 (Figure 5d) is enriched for microglial genes and cytokine activation. This strong anti-correlation 24 
between microglial signaling and synaptic signaling in ASD and dup15q provides evidence in humans for 25 
dysregulation of microglia-mediated synaptic pruning, as previously suggested36. 26 

Next, to determine the role of causal genetic variation, we evaluated enrichment of both rare genetic 27 
variants, focusing on genes affected by ASD associated gene disrupting (LGD) de novo mutations37, and 28 
common variants38,39. Genes within three modules, M1, M3, and M12, show enrichment for common 29 
variation signal for ASD (Figure 5e, Methods). Remarkably, M12 (Figure 5f), which is related to cortical 30 
patterning and Wnt signaling, also exhibit GWAS signal enrichment, providing the first evidence that risk 31 
conferred by common variation in ASD may affect regionalization of the cortex. Interestingly, M3 is 32 
significantly enriched for both schizophrenia (SCZ) and ASD common variants, is related to synaptic 33 
transmission, nervous system development, and regulation of ion channel activity (Extended Data Fig. 9), 34 
consistent with the notion that ASD and SCZ share common and rare genetic risk1,40-43. 35 

We only identified one module, M2 (Figure 5g), as significantly enriched in protein disrupting 36 
(nonsense, splice site, or frameshift) rare de novo variants previously associated with SCZ and ASD. M2 37 
overlaps with a cortical developmental module implicated in ASD34 (devM2 fold enrichment = 5.1). 38 
Notably, M2 is not differential between ASD and CTL in our dataset, consistent with the observation that 39 
these genes are primarily expressed during early neuronal development in fetal brain34. Remarkably, M2 40 
contains an unusually large fraction of lncRNAs (15% of the genes in M2 are classified as lncRNAs, while 41 
other modules are 1-5% lncRNA). We hypothesize that, in addition to protein coding genes involved in 42 
transcriptional and chromatin regulation, rare de novo variants may also affect lncRNAs in ASD, a 43 
prediction that will be testable once large sets of whole genome sequences are available. 44 
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 These combined transcriptomic and genetic analyses reveal that different forms of genetic variation 1 
affect biological processes involved in multiple stages of cortical development. Common genetic risk is 2 
enriched in M3, M1, and M12, which reflect early glutamatergic neurogenesis, later neuronal function, and 3 
cortical patterning, respectively. We also observe that rare de novo variation, which is enriched in M2, 4 
affects distinct biology related to transcriptional regulation and chromatin modification. These findings are 5 
consistent with transcriptomic analyses of early prenatal brain development and ASD risk mutations that 6 
implicate chromatin regulation and glutamatergic neuron development34,44.  7 

We provide the first comprehensive picture of largely unexplored aspects of transcription in ASD, 8 
lncRNA and alternative splicing, and identify a strong convergent signal in these, as well as protein coding 9 
genes7. These results will aid in interpreting genetic variation outside of the known exome, as whole 10 
genome sequencing supplants current methods. A role of lncRNAs has been previously explored in ASD45, 11 
but only two individuals were evaluated with targeted microarrays. We evaluate lncRNAs in an unbiased 12 
manner across many individuals, notably identifying an enrichment of lncRNAs in M2, most of which are 13 
uncharacterized in brain and arose on the primate lineage. The involvement of lncRNAs in this early 14 
developmental program that is enriched for de novo mutations implicated in ASD suggests their study will 15 
be particularly relevant to understanding the emergence of primate higher cognition on the mammalian 16 
lineage, and by extension human brain evolution15,46,47.  17 

We also provide the first confirmation of an attenuation of genes that typically show differential 18 
expression between frontal and temporal lobe in ASD CTX and further identified SOX5, known to regulate 19 
cortical laminar development50,51, as a putative regulator of this disruption. That M12, which is enriched for 20 
genes exhibiting cortical regionalization and is also enriched in ASD GWAS signal, supports the prediction 21 
that attenuation of patterning may be mediated by common genetic variation in or near the SOX5 target 22 
genes. Disruption of cortical lamination by direct effects on glutamatergic neurogenesis and function has 23 
been predicted by independent data, including network analyses of rare ASD associated variants identified 24 
in exome sequencing studies34,44. 25 

These data, in conjunction with previous studies, reveal a consistent picture of the ASD’s emerging 26 
postnatal and adult pathology. Specific neuronal signaling and synaptic molecules are downregulated and 27 
astrocyte and microglial genes are upregulated in over 2/3 of cases. Microglial infiltration has been observed 28 
in ASD cortex with independent methods52, and normal microglial pruning has been shown to be necessary 29 
for brain development36. Our findings further suggest that aberrant microglial-neuronal interactions may be 30 
pervasive in ASD and related to the gene expression signature seen in a majority of individuals. In our 31 
comprehensive AS analysis, we identify three splicing factors upstream of the altered splicing signature 32 
observed in ASD CTX. These factors are known to be involved in coordinating sequential processes in 33 
neuronal development17,21 and maintaining neuronal function48,49. It may therefore be sufficient to disrupt 34 
any one of these factors to induce a similar outcome during brain development, which would be consistent 35 
with the shared downstream perturbation observed here. 36 

Finally, evaluation of the transcriptome in dup15q supports the enormous value of the “genotype 37 
first” approach of studying syndromic forms of ASD, with known penetrant genetic lesions53. It is highly 38 
unlikely that the shared transcriptional dysregulation in dup15q is due to a shared environmental insult. 39 
Thus, the most parsimonious explanation for the convergent transcriptomic pathology seen in all dup15q 40 
and over 2/3 of the cases of idiopathic ASD is that it represents an adaptive or maladaptive response to a 41 
primary genetic insult, which in most cases of ASD will be genetic2,54. As future investigations pursue the 42 
full range of causal genetic variation contributing to ASD risk, these analyses and data will be valuable for 43 
interpreting genetic and epigenetic studies of ASD as well as those of other neuropsychiatric disorders.44 
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Figure Legends 1  2 
Figure 1 | Transcriptome-wide differential gene expression in ASD.  a, Average linkage hierarchical 3 
clustering of samples in the ASD Discovery Set using the top 100 upregulated and top 100 downregulated 4 
protein coding genes. b, Gene Ontology (GO) term enrichment analysis of upregulated and downregulated 5 
genes in ASD. *FDR ≤ 0.05 across all GO terms and gene sets. c, 1st principal component of the CTX DGE 6 
set (CTX DGE PC1) is able to distinguish ASD and CTL samples, including independent samples from the 7 
ASD Replication Set. d, CTX DGE PC1 is primarily associated with diagnosis, and not other factors. e, 8 
Average linkage hierarchical clustering of ASD Discovery Set using all lncRNAs in the DGE set. f, UCSC 9 
genome browser track displaying reads per million (RPM) in a representative ASD and CTL sample, 10 
superimposed over the gene models and sequence conservation for genomic regions including LINC00693 11 
and LINC00689. g, LINC00693 and LINC00689 are upregulated across ASD samples and downregulated 12 
during frontal cortex development. Abbreviations: FC, frontal cortex; TC, temporal cortex; RIN, RNA 13 
integrity number; ADI-R score, Autism Diagnostic Interview Revised score; FPKM, fragments per kilobase 14 
million mapped reads. 15  16 Figure 2 | Alteration of alternative splicing in ASD. a, Average linkage hierarchical clustering of ASD 17 
discovery set using top 100 differentially included and top 100 differentially excluded exons from the 18 
differential splicing (DS) set across the ASD Discovery Set. b, Gene Ontology term enrichment analysis of 19 
genes with DS in ASD. c, 1st principal component 1 of the CTX differential alternative splicing set (CTX 20 
DS PC1) is able to distinguish ASD and CTL samples using independent samples from the ASD Replication 21 
Set. d, CTX DS PC1 is primarily associated with diagnosis, and not other factors. e, Correlation between 22 
CTX DS PC1 and gene expression of neuronal splicing factors in CTX. f, Correlation between 1st principal 23 
component of cerebellum differential splicing (CB DS PC1) and gene expression of neuronal splicing 24 
factors in cerebellum. g, Overlap between DS set and splicing events regulated by splicing factors where 25 
experimental data was available. h, Scatterplots and correlations between the 1st principal component across 26 
the ASD versus CTL DGE sets for different transcriptome subcategories. Abbreviations: FC, frontal cortex; 27 
TC, temporal cortex; RIN, RNA integrity number; ADI-R score, Autism Diagnostic Interview Revised 28 
score; FPKM, fragments per kilobase million mapped reads. 29  30 Figure 3 | Attenuation of cortical patterning in ASD cortex. a, Heatmap of 551 genes exhibiting cortical 31 patterning between frontal cortex (FC) and temporal cortex (TC) in ASD, with samples sorted by 32 diagnostic status and brain region. b, Gene ontology term enrichment analysis of genes exhibiting 33 attenuated cortical patterning (ACP). c, Schematic of transcription factor motif enrichment upstream 34 of genes in the ACP set, with the SOX5 motif sequence logo. d, The SOX5 gene exhibits attenuated 35 cortical patterning in ASD CTX compared to CTLs. Lines connect FC-TC pairs that are from the same 36 individual. e, Correlation between SOX5 gene expression and predicted targets in CTL and ASD, with 37 all ACP genes (top left), SOX5 targets from the ACP set (top right),  SOX5 non-targets from the ACP set 38 (bottom left), and all genes not in the ACP set (bottom right). Plots show the difference in correlation 39 between SOX5 and other genes in ASD and CTL (ΔR). 40 
 41 
Figure 4 | Duplication 15q Syndrome recapitulates transcriptomic changes in idiopathic ASD. a, DGE 42 
changes across the 15q11-13.2 region for ASD and dup15q compared to CTL, error bars are +/- 95% 43 
confidence intervals for the fold changes. b, Comparison of effect sizes in dup15q vs CTL and ASD vs 44 
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CTL, with changes in dup15q at FDR ≤ 0.05 highlighted. c, Comparison of differential splicing (DS) 1 
changes in dup15q vs CTL and ASD vs CTL, highlighting 402 events at FDR ≤ 0.2 in dup15q. d, Average 2 
linkage hierarchical clustering of dup15q samples and controls using the DGE and DS gene sets. e, Plot of 3 
fold changes between induced pluripotent stem cells differentiated into neurons (nIPSCs) from dup15q vs 4 
CTL and postmortem CTX DGE from dup15q vs CTL in the 15q region. f,  Heatmap overlapping the top 5 
1000 genes up- and down- regulated in the nIPSC comparison to the up- and down- regulated genes in 6 
dup15q and idiopathic ASD CTX. 7 
 8 
Figure 5 | Co-expression network analysis across all ASD and CTL samples in CTX. a, Gene set enrichment 9 
analyses comparing the 16 co-expression modules with multiple gene sets from this RNA-seq study, from 10 
postmortem ASD CTX microarray, from human brain development, from the postsynaptic density and set of 11 
all brain-expressed lncRNAs. b, Comparison of five ASD-associated modules against each other by 12 
correlating module eigengenes. c, Module plot of M1 displaying the top 25 hub genes along with the 13 
module’s Gene Ontology term enrichment. d, similar to c, but for M5. e, Gene set enrichment analysis with 14 
genome-wide whole-exome sequencing data (Rare de novo hit genes) and genome-wide association study 15 
(GWAS) results in ASD, schizophrenia (SCZ), and intellectual disability (ID). Boxes are filled if the odds 16 
ratio is greater than 0, and the enrichment P < 0.05. Asterisks* indicate FDR ≤ 0.05 across all comparisons 17 
in a and e. f,g, similar to c, but for M12 and M2, respectively. Abbreviations: LGD, likely gene disrupting, 18 
genes affected by nonsense, nonsynonymous, or splice-site mutations or frame-shift indels; AGRE, 19 
AGP/CHOP, and PGC refer to consortia that collect genetic data (Supplementary Information for details). 20 
 21 
Methods 22  23 
Sample description: Brain tissue for ASD and control individuals was acquired from the Autism Tissue 24 
Program (ATP) brain bank at the Harvard Brain and Tissue Bank and the University of Maryland Brain and 25 
Tissue Bank (a Brain and Tissue Repository of the NIH NeuroBioBank). Sample acquisition protocols were 26 
followed for each brain bank, and samples were de-identified prior to acquisition. Brain sample and 27 
individual level metadata is available in Supplementary Table 1. 28 
 29 
RNA-seq methodology: Starting with 1ug of total RNA, samples were rRNA depleted (RiboZero Gold, 30 
Illumina) and libraries were prepared using the TruSeq v2 kit (Illumina) to construct unstranded libraries 31 
with a mean fragment size of 150bp (range 100-300bp) that underwent 50bp paired end sequencing on an 32 
Illumina HiSeq 2000 or 2500 machine. Paired-end reads were mapped to hg19 using Gencode v18 33 
annotations55 via Tophat256. Gene expression levels were quantified using union exon models with 34 
HTSeq57. For additional and information on sequencing and read alignment parameters, please see 35 
Supplementary Information. 36 
 37 
Sample sets for analysis: For differential gene expression and splicing analysis, we defined an age matched 38 
set, referred to as the ASD Discovery Set (106 samples in CTX, 51 in cerebellum) of idiopathic ASD and 39 
control samples for the discovery set, and held out younger or unmatched samples as the ASD Discovery 40 
Set (17 in CTX, 8 in cerebellum). Dup15q individuals were analysed separately, utilizing the full set of 41 
controls from the ASD Discovery Set. For co-expression network analysis, we combined the discovery set, 42 
replication set, and dup15q individuals for a total of 137 CTX samples and 59 cerebellum samples. 43 
 44 
Differential Gene Expression (DGE): DGE analysis was performed with expression levels adjusted for gene 45 
length, library size, and G+C content (referred to as “Normalized FPKM”) Supplementary Information. 46 
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CTX samples (frontal and temporal) were analyzed separately from cerebellum samples. A linear mixed 1 
effects model framework was used to assess differential expression in log2(Normalized FPKM) values for 2 
each gene for cortical regions (as multiple brain regions were available from the same individuals) and a 3 
linear model was used for cerebellum (where one brain region was available in each individual, with a 4 
handful of technical replicates removed). Individual brain ID was treated as a random effect, while age, sex, 5 
brain region (except in the case of cerebellum, where there is only one region), and diagnoses were treated 6 
as fixed effects. We also used technical covariates accounting for RNA quality, library preparation, and 7 
batch effects as fixed effects into this model (Supplementary Information). 8 
 9 
Reproducibility analyses: We assessed replication between datasets by evaluating the concordance between 10 
independent sample sets by comparing the squared correlation (R2) of fold changes of genes in each sample 11 
set at a non-stringent P value threshold. This general approach has been shown to be effective for 12 
identifying reproducible gene expression patterns58, and we modify it such that the P value threshold is set 13 
in one sample set (the x axis in the scatterplots), and the R2 with fold changes in these genes are evaluated in 14 
an independent sample set (the y axis in the scatterplots). 15 
 16 
Differential Splicing Analysis: Alternative splicing was quantified using the percent spliced in (PSI) metric 17 
using Multivariate Analysis of Transcript Splicing (MATS, v3.08)18. For each event, MATS reports counts 18 
supporting the inclusion (I) or exclusion (E) of a splicing event. To reduce spurious events due to low 19 
counts, we required at least 80% of samples to have I + S >= 10. For these events, the percent spliced in is 20 
calculated as PSI = I / (I + S) (Extended Data Fig. 4a).  Statistical analysis for differential splicing was 21 
performed utilizing the linear mixed effects model regression framework as described above for DGE. This 22 
approach is advantageous over existing methods as it allows modeling of covariates and takes into 23 
consideration the variability in PSI across samples when assessing event significance with ASD 24 
(Supplementary Information). 25 
 26 
Genotyping dup15q: For Dup15q samples, the type of duplication and copy number in the breakpoint 2-3 27 
region were available for these brains59.  To expand this to the regions between each of the recurrent 28 
breakpoint in these samples, 7/8 dup15q brains were genotyped (one was not genotyped due to limitations in 29 
tissue availability). The number of copies between each of the breakpoints is reported in Extended Data Fig. 30 
7a. 31 
 32 
Co-expression network analysis: The R package weighted gene co-expression network analysis (WGCNA) 33 
was used to construct co-expression networks using the technical variation normalized data31,60 (referred to 34 
as “Adjusted FPKM”). We used the biweight midcorrelation to assess correlations between 35 
log2(Normalized FPKM) and parameters for network analysis are described in Supplementary Information. 36 
Notably, we utilized a modified version of WGCNA that involves bootstrapping the underlying dataset 100 37 
times and constructing 100 networks. The consensus of these networks (50th percentile across all edges) was 38 
then used as the final network 32, ensuring that a handful of samples do not determine the network structure. 39 
For module-trait analyses, 1st principal component of each module (eigengene) was related to ASD 40 
diagnosis, age, sex, and brain region in a linear mixed effects framework as above, only replacing the 41 
expression values of each gene with the eigengene. 42 
 43 
Enrichment analysis of gene sets and GWAS: Enrichment analyses were performed either with Fisher’s 44 
exact test (cell type and splicing factor enrichments) or logistic regression (all enrichment analyses in Figure 45 
5). We used logistic regression in the latter case to control for gene length or other biases that may influence 46 
enrichment analysis (Supplementary Information). All GO term enrichment analysis was performed using 47 
GO Elite61 with 10,000 permutations. We focused on molecular function and biological process terms for 48 
display purposes. 49 
 50 
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Extended Data Figure Legends 1  2 
Extended Data Figure 1 | Methodology, quality control, and differential expression replication analysis. a, 3 
RNA-seq workflow, including RNA extraction, library preparation, sequencing, read alignment, and quality 4 
control. b, RNA-seq quality and alignment statistics from this study, including RNA integrity number 5 
(RIN), number of aligned reads, proportion of reads mapping to different genomic features (mRNA, 6 
intronic, intergenic), and bias in coverage from the 5’ to the 3’ end of the top 1000 expressed transcripts 7 
(statistics compiled using PicardTools). c, Similar statistics as in b for another RNA-seq study that utilized 8 
polyA tail selection mRNA-seq to evaluate the transcriptome in ASD cortex11 (primarily BA19, visual 9 
cortex, but also including some BA10/44 samples, frontal cortex). d, RNA-seq read coverage relative to 10 
normalized gene length across transcripts from the 5’ to the 3’ end in this study. e, Dependence between 11 
coverage and RIN across gene body (correlation between RIN and coverage in d across samples). f, 12 
Correlation of ASD vs CTL fold changes between previously evaluated and new ASD samples in CTX by 13 
microarray (left) and RNA-seq (right) using genes that were at P < 0.05 the samples from Voineagu et al., 14 
2011. g, Correlation between effect sizes as in f, but for cerebellum (CB) samples. h,i, Correlation between 15 
covariates and ASD vs CTL status in CTX (h) and CB (i) in the ASD Discovery Set. 16 
 17 
Extended Data Figure 2 | Transcriptome-wide differential gene expression (DGE) analysis in CTX. a, 18 
Comparison of P value rankings across different methods for DGE with Spearman’s correlation. From left 19 
to right: removal of three additional principal components of sequencing statistics (Supplementary 20 
Information) related to RNA-sequencing quality, application of a permutation analysis for DGE P value 21 
computation, application of variance-weighted linear regression for DGE62, and using surrogate variable 22 
analysis for DGE63. b, Average linkage hierarchical clustering heatmap using all genes DGE in the ASD 23 
Discovery Set, but including all idiopathic ASD frontal cortex (FC) and temporal cortex (TC) samples 24 
across 123 samples, combining the ASD Discovery set and the ASD Replication set. Bolded samples in the 25 
dendrogram are used for validation in d. c, Enrichment analysis of cell-type specific gene sets (5-fold 26 
enriched in the cell type compared to all other cells) with genes decreased and increased in ASD. d, RT-27 
PCR validation of the two lincRNAs shown in Figure 1f-g, P values are computed with the Wilcoxon rank-28 
sum test.  29 
 30 
Extended Data Figure 3 | Gene browser tracks for selected primate-specific lncRNAs. For each lncRNA, 31 
expression for representative samples for ASD vs CTL (top) in human, macaque (middle), and mouse 32 
(bottom) are shown. The genome location for macaque and mouse displayed is syntenic to the human 33 
region, with the expected location of the lncRNA highlighted. 34 
 35 
Extended Data Figure 4 | Splicing analyses and validation in ASD. a, Schematic describing how the percent 36 
spliced in (PSI) metric is computed. b, Distribution of P values for changes in the PSI between ASD and 37 
CTL in CTX for all events (left) and event subtypes (SE, spiced exon; A5SS, alternative 5’ splice site; 38 
A3SS, alternative 3’ splice site; MXE, mutually exclusive exons). c, Comparison of the CTX splicing 39 
analyses in when using PSI values obtained via read alignment by TopHat264 followed by the MATS18 40 
pipeline (used throughout this study) against read alignment by OLego followed by Quantas65. d, 41 
Comparison of ΔPSI values in nine splicing events between PCR and RNA-seq. e, PCR validation and 42 
sashimi plots for the nine splicing events delineated in d, from the samples highlighted in Extended Data 43 
Fig. 5a. 44 
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 1 
Extended Data Figure 5 | Additional splicing analyses in ASD. a, Average linkage hierarchical clustering 2 
heatmap using all differentially spiced (DS) events from the ASD Discovery Set, but including all idiopathic 3 
ASD neocortical samples (FC and TC) across 123 samples, combining the ASD Discovery set and the ASD 4 
Replication set. Bolded samples in the dendrogram were used for PCR validation in Extended Data Fig. 4. 5 
b, Top: difference between ASD and CTL in the DS set based on PC1 of the DS set at the PSI level, and 6 
PC1 of the gene expression levels of genes in the DS set. Bottom: Same comparison after differentially 7 
expressed genes (p < 0.05) are removed. c, Distribution of P values for changes in the PSI between ASD and 8 
CTL in cerebellum. d, Cell-type enrichment analysis of splicing events from CTX. e, Average-linkage 9 
hierarchical clustering using 1-(Pearson’s correlation) to compare the gene expression patterns of the 10 
splicing factors investigated in Figure 2. 11 
 12 
Extended Data Figure 6 | Attenuation of cortical patterning in ASD. a, Histograms of P values from paired 13 
Wilcoxon rank-sum test differential gene expression between 16 frontal cortex (FC) and 16 temporal cortex 14 
(TC) in CTL and ASD and a histogram of Bartlett’s test P values for differences in gene expression variance 15 
between ASD and CTL for all genes (white) and genes in the Attenuated Cortical Patterning (ACP) set 16 
(red). c, Approach to training the elastic net model on BrainSpan and application of the model on 123 17 
cortical samples in this study. c-e, Results of learned cortical region classifications with different starting 18 
gene sets, with the BrainSpan training set (left), CTL samples (middle), and ASD samples (right) in each 19 
panel and the Wilcoxon rank-sum test P value of FC vs TC difference for each comparison. f, Summary of 20 
results form c-e. g, Cell type enrichment analysis for genes in the ACP set. Abbreviations: A1C, primary 21 
auditory cortex; DFC, dorsolateral prefrontal cortex; MFC, medial prefrontal cortex; STC, superior temporal 22 
cortex; FC, frontal cortex; TC, temporal cortex; AUROC, area under the receiver-operator characteristic 23 
curve. 24 
 25 
Extended Data Figure 7 | Dup15q syndrome analyses. a, Copy number between breakpoints (BP) in the 15q 26 
region. Genome-wide CNV analysis allowed evaluation of copy number in additional regions from previous 27 
studies59,66. b, Differential expression across the 15q region of interest in dup15q vs CTL and ASD vs CTL 28 
cerebellum, note only 3 samples were available for dup15q cerebellum so additional analyses were not 29 
pursued. c, Gene Ontology term enrichment analysis for the dup15q CTX differential expression set. d, 30 
Gene Ontology term enrichment analysis for the dup15q CTX differential splicing (DS) set. e, Hierarchical 31 
clustering of iPSC-derived neurons from dup15q, Angelman syndrome, and a control29. 32 
 33 
Extended Data Figure 8 | Co-expression network analysis in ASD CTX. a, Modules identified from a 34 
dendrogram constructed from a consensus of 100 bootstrapped datasets using the 137 CTX samples. 35 
Correlations for each gene to each measured factor are delineated below the dendrogram (blue = negative, 36 
red = positive correlation). b, Module-trait associations as computed by a linear mixed effects model with all 37 
factors on the x-axis used as covariates. All P values are displayed where the coefficient passed p < 0.01. 38 
Note that this alternative approach to module-trait association agrees with the Fisher’s exact test used in 39 
Figure 5a when the fold enrichment for module overlap with DGE sets is > 2.8, and we use an intersection 40 
of both methods for the modules focused on in Figure 5b. c, Module enrichments for cell type specific gene 41 
expression patterns. 42 
 43 
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Extended Data Figure 9 | GO term enrichments for all modules. *FDR  < 0.05 across all GO enrichments 1 
across all modules. 2 
  3 
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Introduction 
The demonstration that chromatin exhibits a complex 3 dimensional organization, 
whereby short and long distance physical interactions correspond to complex gene 
regulatory processes has opened a new window on understanding the functional 
organization of the human genome1-4. Recently, chromatin remodeling has also been 
causally implicated in several neurodevelopmental disorders, including autism and 
schizophrenia5-7. However, it remains unclear whether knowledge of chromosome 
organization in a tissue specific manner might inform our understanding of gene 
regulation in brain development or disease. Here we determined the genome-wide 
landscape of chromosome conformation during early human cortical development by 
performing Hi-C analysis in the mitotically active and post mitotic laminae of human fetal 
brain. We integrate Hi-C data with transcriptomic and epigenomic data and utilize 
chromosome contact information to delineate physical gene-gene regulatory interactions 
for non-coding regulatory elements. We show how these data permit large-scale 
functional annotation of non-coding variants identified in schizophrenia GWAS and of 
human specific enhancers8,9. These data provide a rubric that illustrates the power of 
tissue-specific annotation of non-coding regulatory elements, as well as novel insights 
into the pathogenic mechanisms of neurodevelopmental disorders and the evolution of 
higher cognition.  
  



Recent advances in high-throughput sequencing have unveiled the epigenomic 
landscape of multiple human cell types, as well as 3 dimensional folding principles of 
chromatin10,11. In particular, chromosome conformation capture experiments 
demonstrate that chromatin is organized into hierarchical structures, which include 
compartments (a few megabase (Mb))1, topological associating domains (TADs, sub-
Mb)12, and loops (ranging from few kilobase (kb) to few hundred kb)2,4. These structures 
are thought to play a role in gene regulation and biological function by defining functional 
genomic units and mediating the effects of cis-regulatory elements via both short- and 
long-range physical interactions (e.g. promotor-enhancer interactions), relationships that 
cannot simply be predicted by linear adjacency in chromosomes. Coupled with 
epigenomic data, such higher order chromatin interactions should facilitate systemic 
annotation of cis-regulatory elements, as well as intergenic and intronic variants, which 
will further expand our understanding of tissue specific developmental programs, as well 
as disease pathogenesis. 
We constructed multiple Hi-C libraries in mid gestation fetal cerebral cortex from three 
individuals during the peak of neurogenesis and migration (gestation week, GW17-18). 
We reasoned that it would be useful to analyze mitotically active neuronal precursors 
involved in neurogenesis separately from post-mitotic migrating and maturing neurons, 
so we dissected the cortical anlage into two major structures: the cortical and subcortical 
plate (CP), consisting primarily of post mitotic neurons and the germinal zone (GZ), 
containing primarily mitotically active neural progenitors (representative heatmap in Fig. 
1a, Extended Data Fig. 1a-b). For comparison with non-neuronal cell types, we also 
used publicly available Hi-C data on human embryonic stem (ES) cells and IMR90 
cells11,12. To provide grounding for our data and compare global chromosome 
architecture between different cell types, we performed principal component analysis 
(PCA)13 on the genome-wide inter-chromosomal contact matrices of CP, GZ, ES, and 
IMR90. As previously demonstrated, global chromosome architecture does not change 
dramatically between different cell types13. However, the first principal components 
(PC1s) from neuronal tissues (CP and GZ) have significantly higher correlation than the 
PC1s between different cell types (Fig. 1b), consistent with the higher similarity between 
tissues from brain, versus the two other cell lines. 
3D chromatin structure reflects gene regulation during neural differentiation.  
Previous studies have shown that genome-wide chromosome conformation captures 
multiple levels of genomic features related to biological function, ranging from GC 
content and gene number to marks of open chromatin, such as DNase I hypersensitivity 
sites (DHS)13. Most human-relevant Hi-C has been conducted in cell lines1,2,4,11,12,14 and 
not in complex tissue, such as developing brain. As an initial first step to insure the 
quality and validity of our data, we analyzed the relationships between the major 
component of the inter-chromosomal interaction matrix with these major genomic 
features, finding high correlation with GC content, gene number, DHS10, and to a lesser 
extent, gene expression15 (Fig. 1c, Extended Data Fig. 2a), as has been previously 
observed in non-neural cell lines13.  
To further explore the biological significance of chromosome contact changes during 
neural differentiation, we explored whether the genes in regions of dynamic chromatin 
structure were related to neural differentiation by comparing the inter-chromosome 
contact matrices (binned to 100kb) in different cell types and selecting bins with the 
highest chromatin contact count changes between two cell types (Methods). Genes 
located in the regions of highest inter-chromosomal interaction changes between CP 
and GZ were enriched for neuronal genes, represented by the gene ontology (GO) 
categories of neuron recognition, axon guidance, central nervous system (CNS) 



development, and synapse (Fig. 1d, Extended Data Fig. 2b; Methods). Genes located 
in regions with highest inter-chromosomal interaction changes between CP and ES cells 
were enriched for developmental genes involved in forebrain development and 
chromatin organization (Fig. 1d, Extended Data Fig. 2b), indicating that these 
interactions reflect tissue relevant developmental gene regulation.  
To further explore how these physical chromatin interactions relate to biological function, 
we hypothesized that highly interacting chromatin regions would be more likely to be co-
regulated. To test this, we compared the distribution of correlation patterns for genes 
locating in (1) the regions of highest interaction values in both CP and GZ, (2) the lowest 
interacting regions in both CP and GZ, and (3) the regions of differential interaction 
values (the regions of highest interaction values in CP and lowest interaction values in 
GZ and vice versa). Highly interacting regions tend to be biased toward positive 
correlations, while there was no bias in correlation for low and differential interacting 
regions (Fig. 1e). Interestingly, the positive correlation for high interacting regions 
becomes even higher when more stringent cutoffs are used, supportive of the 
quantitative nature of interaction-driven co-expression, whereby the relationship between 
physical 3D chromatin interactions and expression is mostly driven by the top percentiles 
of interacting regions (Extended Data Fig. 2c). To further elucidate the epigenetic 
regulatory mechanisms behind the apparent interaction-mediated co-expression, we 
marked bins in which epigenetic marks from two loci appear together. By comparing the 
epigenetic mark combination matrix with the Hi-C contact matrix, we observed that 
interacting regions exhibit shared epigenetic patterns at the level of both inter- and intra-
chromosomal interactions (Fig. 1f, Extended Data Fig. 3; Methods). In particular, 
regions associated with positive transcriptional regulation and enhancers are more likely 
to physically interact with each other, consistent with their co-regulation.  
One of the core functional units of general genome organization recently uncovered by 
chromatin capture methods across a wide variety of cell types is the compartment, a 
relatively large, dynamic domain1, which is comprised of smaller, sub-Mb regions of 
topologically associating domains (TADs)12. Compartments are divided into two types, 
type A compartments that consist primarily of euchromatin and actively transcribed 
genes and type B compartments, which are heterochromatic and repressed. TADs have 
been previously shown to be relatively stable, whereas compartments have been shown 
to change during lineage specification in stem cells11. Consistent with this, we observed 
dynamic compartment switching between CP and GZ, enriched for GO categories 
related to neuronal genes and phosphatase activity (Fig. 2c), as well as compartment 
switching between CP and ES (Fig. 2a,d). Genes that change compartments from ES to 
CP are decreased for A to B transitions across differentiation and increased for changes 
from the B to A compartments (Fig. 2b), as expected. Compartment changes are also 
accompanied by epigenetic changes, so that the B to A compartment shift is associated 
with increased DHS and active epigenetic marks indicative of open chromatin, whereas 
the A to B shift is associated with decreased DHS and increased repressive marks (Fig. 
2b,e). The same pattern was observed for GZ vs. ES and CP vs. GZ (Fig. 2b,e, 
Extended Data Fig. 2d), demonstrating that gene expression changes across 
development are tightly linked to epigenetic changes coupled with compartment 
switching.  
TADs are thought to mediate co-transcriptional regulation primarily within their 
boundaries (100kb-1Mb) through physical “looping” interactions of promotors and 
enhancers in co-regulated genes4,16.  Since TAD boundaries are conserved across 
different cell types12, we hypothesized that changes in epigenetic marks in TADs, rather 
than the boundaries of TADs, would be most associated with gene expression changes 



across development. To test this, we divided genes based on their fold change in 
expression between ES and differentiated neurons17 (both increased and decreased), 
and assessed changes in epigenetic marks within the TADs where these genes reside 
(Extended Data Fig. 1c-e, Methods). Notably, active marks including enhancers and 
elements related to transcribed regions are increased in TADs that contain upregulated 
genes, whereas repressive marks are increased in TADs that contain downregulated 
genes (Fig. 2f). Collectively, these results indicate that our Hi-C data reflects the major 
elements of global chromosome architecture in fetal brains, providing a framework for 
exploring gene regulatory mechanism related to human neural development and 
function.  
Next, to demonstrate how knowledge of intra-chromosomal contacts could significantly 
advance understanding of important gene regulatory relationships in the nervous 
system, we performed two integrative experiments. In the first, we used these chromatin 
contact data to functionally annotate specific non-coding regulatory elements in the 
developing brain. We leveraged recent efforts that have identified >2000 developmental 
enhancers gained specifically in the human cerebral cortex, providing a remarkable 
resource for understanding the evolution of human cognition8. Usually, in the absence of 
such tissue specific data, regulatory elements are assigned to the closest gene18,19, a 
convention that we compared with our Hi-C derived interactions. We reasoned that our 
Hi-C data from fetal brain could be used to identify the target genes for many of these 
enhancers, which based on previously chromatin looping analyses in cell lines are often 
not the closest gene4,16,18,19. 
We derived an interaction map of human-gained enhancers, defined as significant 
interacting regions (at a 1% false discovery rate, FDR) compared to the null distribution 
generated by fitting the contact frequencies of all fetal brain enhancers identified in the 
same study8 (Extended Data Fig. 4a, Methods). We defined the search space as 
including the 1Mb flanking regions, since most enhancer-promoter interactions are within 
this range4. Although statistically significant interactions are increased upon proximity to 
the enhancer, the majority of interactions are at relatively long-ranges (>100kb, 
Extended Data Fig. 4b) and are not restricted to the adjacent genes. Indeed, ~65% of 
the closest genes to human-gained enhancers are not identified through fetal brain Hi-C 
interactions, revealing that the majority of enhancers are not interacting with the most 
adjacent gene (Fig. 3c). Compared to the original study8, which used human-gained 
enhancer hotspot TADs in ES cells and IMR90 cells due to the lack of Hi-C data from 
relevant tissue, our approach provides genes of action with higher resolution in the 
matching tissue (fetal cortices) from which evolutionary enhancers were identified. 
Human-gained enhancer-interacting regions were enriched with enhancers, promoters, 
and transcription start sites (TSSs) (Fig. 3a, Extended Data Fig. 4c), consistent with the 
previous findings that enhancers interact with promoters, as well as other enhancers16.  
The majority of interactions (>75%) were in the same TADs (Fig. 3b), also consistent 
with observations in cell lines that most enhancer-promoter interactions are in the same 
TAD16,19. Human-gained enhancer interacting genes (Hi-Cevol genes) are involved in 
GTPase regulation as well as G-protein coupled receptor (GPCR) and CREB signaling, 
and are enriched with GO terms representing synaptic and axon guidance genes (Fig. 
3e, representative interactions in Fig. 3d). One striking example is a human-gained 
enhancer that interacts with ARHGAP11B, a human-specific gene implicated in the 
expansion of human neocortex20 (Fig. 3d).  
Given the high conservation of protein-coding genes across the vertebrate lineage, 
comparative genomics have suggested that human-specific traits most likely result from 
changes in regulatory elements8,21. Indeed, protein-coding Hi-Cevol genes have a lower 



non-synonymous substitution (dN)/synonymous substitution (dS) ratio compared to Hi-C 
non-interacting protein-coding genes in multiple lineages (Extended Data Fig. 5). These 
results indicate that human-gained enhancers are interacting with protein-coding genes 
that undergo purifying selection, further supporting the hypothesis that non-coding 
elements undergo evolutionary selection to induce species-specific changes in gene 
expression8,21. We also investigated whether human-gained enhancers are interacting 
with lineage-specific long non-coding RNAs (lncRNAs)22. We observed that lineage-
specific interactions with human-gained enhancers were enriched for primate-specific 
lncRNAs, as well as evolutionary conserved lncRNAs (Fig. 3f, Extended Data Fig. 5). 
Thus, while human-gained enhancers interact and possibly regulate evolutionary 
conserved protein-coding genes, they are more likely to interact with primate-specific 
lncRNAs.  
Since the development of human higher cognition is dependent on the development of 
the human cerebral cortex via elaboration of novel gene regulatory relationships8,23, we 
reasoned, as have others8 that the genes regulated by these human specific enhancers 
would be associated with intellectual functioning in humans. Remarkably, we found that 
the Hi-Cevol genes in fetal brain, but not the genes defined by proximity to the enhancers 
are significantly enriched with intellectual disability (ID) risk genes6 (Fig. 3g). This result 
provides experimental support for the contention that human-gained enhancers are 
associated with the evolution of human cognitive function8. This enrichment was tissue-
specific, as Hi-Cevol genes defined by Hi-C interactions in ES cells did not show 
enrichment for ID risk genes (Fig. 3g). Indeed, ~56% of the Hi-Cevol genes in neuronal 
tissue were not identified through chromatin contacts in ES cells, emphasizing the 
importance of defining tissue-relevant chromatin contacts, as well as importance of using 
the relevant tissue for Hi-C analysis (Fig. 4c).  
Since most disease related common genetic variation is located in non-protein coding 
regions, we next assessed the ability of Hi-C data for functional annotation of common 
single nucleotide polymorphisms (SNPs). As a first line verification that Hi-C data could 
identify known functional relationships between SNPs and gene expression we used cis-
expression quantitative trait loci (eQTL) data from adult frontal cortex24, since such data 
is not yet available from fetal brain. For each significant eQTL locus, we obtained a set 
of significant eQTL SNPs with >95% likelihood of containing the causal SNP from 
association statistics and linkage disequilibrium (LD; 1000 Genomes) structure using 
CAVIAR25. We then identified genes interacting to likely causal eQTL SNPs via the 
chromatin contact matrix (Hi-CeQTL genes, Methods), and compared Hi-CeQTL genes with 
the known associated gene from the eQTL study, finding that Hi-CeQTL genes 
significantly overlapped with eQTL transcripts (Extended Data Fig. 6a). There were 
many Hi-CeQTL genes that were not identified as eQTL transcripts, likely due to a 
combination of factors, including low power of the eQTL sample, limited resolution of Hi-
C (SNP-transcript interactions within 20kb cannot be detected), and the difference in age 
of tissues used for each analysis. Indeed, eQTL SNPs identified by CAVIAR were highly 
enriched with adult frontal cortex, but not fetal brain, enhancers (Extended Data Fig. 
6b-d). Despite this, eQTL SNP-transcript pairs exhibit higher chromatin contact 
frequency than expected by chance across all distance ranges (Extended Data Fig. 6e), 
further supporting the utility of Hi-C to infer the biological function of regulatory variation.   
Next, we applied a similar logic to advance our understanding of 108 genome-wide 
significant schizophrenia-associated loci, most of which are in relatively uncharacterized 
non-coding regions of the genome9. We obtained credible SNPs using CAVIAR, and split 
SNPs into those without known function and likely functional SNPs (SNPs that cause 
missense, frameshift, and splice variants and SNPs that fall onto gene promoters; 



Methods). Credible SNPs were enriched with enhancers in fetal brain and adult frontal 
cortex, confirming the likely regulatory role of these SNPs in the brain (Extended Data 
Fig. 7). SNPs defined as likely functional SNPs and promoter SNPs were directly 
assigned to their target genes. For the remaining intergenic and intronic SNPs that were 
un-annotated, and therefore without clear function, we used the chromatin contact matrix 
to find genes with which the regions where the SNPs are located are physically 
interacting (diagram in Extended Data Fig. 7).  
Combining genes annotated as functional SNPs, promoter SNPs, and by Hi-C 
interactions, we obtained a total of ~900 genes (Hi-CSCZ genes) associated with 
schizophrenia risk variants. Hi-C contacts identified numerous genes that were neither 
adjacent to index SNPs nor in LD with them (Fig. 4a-c, Extended Data Fig. 9). While 
almost 70-80% of the LD genes and closest genes were identified as Hi-CSCZ genes, 
only half of them were identified by chromatin contacts, indicating that many of them 
were identified by functional SNPs residing in the genes. Moreover, 70-90% of the Hi-
CSCZ genes were not identified by using LD genes or the closest genes to the association 
signal, consistent with observations that the linear organization of genes and regulatory 
elements on the chromosome does not reflect regulatory interactions4,18,19.  
Hi-C analysis showed that schizophrenia-associated common variants converge into 
specific molecular pathways related to neuronal function, including the postsynaptic 
density, acetylcholine receptors, cell cycle, and chromatin remodelers (Fig. 4d-e, 
Extended Data Fig. 7-8). To insure that this was not an artifact of the method used for 
credible SNP selection, we used a different method to define the set of credible SNPs9 
(Extended Data Fig. 9) and found the same enrichments, demonstrating the robustness 
of the genes identified through the Hi-C analysis. One notable example is illustrated by 
credible SNPs (rs4245150, rs17602038, rs4938021, rs4936275, rs4936276) that reside 
upstream of the Dopamine D2 Receptor (DRD2), the target of antipsychotic drugs. 
Although these SNPs are close to the DRD2 TSS, they are not within the gene, which 
complicates interpretation of their biological function. Hi-C analysis demonstrates for the 
first time that indeed these SNPs are interacting with the TSS of DRD2 (Fig 4e), 
providing biological insights into the function of these SNPs.  
Another relevant example is an index SNP (rs79212538) interacting with GRIA1, an 
ionotropic glutamate receptor subunit, although GRIA1 is neither the closest gene nor in 
LD with the index SNP (Extended Data Fig. 8). Additionally, Hi-C shows that 
schizophrenia associated non-coding SNPs interact with multiple genes involved in 
excitatory synaptic transmission, including CACNA1C, GRIN2A, and NLGN4X, further 
supporting glutamatergic transmission defects in schizophrenia pathophysiology 
(Extended Data Fig. 8). Interestingly, Hi-CSCZ genes significantly overlap with ASD de 
novo likely gene-disrupting (LGD) targets (CP: OR=2.4, P=1.6x10-5, GZ: OR=1.8, 
P=0.006), consistent with a shared genetic etiology between ASD and schizophrenia26. 
The fact that genes with LGD mutations in ASD are associated with regulatory variants 
in schizophrenia suggests that complete abrogation of these genes may cause 
developmental defects as in ASD, while regulatory changes in these genes may cause 
later-onset of neuropsychiatric symptoms as in schizophrenia. Collectively, genes 
annotated by chromatin contact information provide novel insights into schizophrenia 
pathogenesis.  
In conclusion, we demonstrate how a comprehensive analysis of genome-wide 
chromatin configuration during human neural development informs our view of gene 
regulation. This chromatin contact landscape provides important biological insights on 
gene regulatory mechanisms, such that co-expressed genes share epigenetic co-
regulation of interacting regions, and that changes in functional epigenetic marks are 
tightly linked to TADs and compartment switching to induce changes in gene expression. 



We also annotated non-coding regulatory elements in the genome based on long-range 
chromatin contacts to identify enhancer-promoter interactions during human brain 
development, as well as genes of actions for eQTL. In turn, we show how these 
interactions can be used to inform our biological interpretation of risk variants for 
schizophrenia, which serves as a template for understanding the role of non-coding 
variation more broadly in neuropsychiatric disorders.  
  



Methods  
Fetal brain layer dissection  
Human fetal cortical tissues from three individuals were collected from frontoparietal 
cortex at gestation week (GW) 17-18 (one sample from GW17 and two samples from 
GW18). In cold DMEM/F-12 (ThermoFisher, 11320-033), frontoparietal cortex was first 
dissected to thin (~1mm) slices to visualize layers. Under the light field microscope, 
cortical slice was dissected to germinal zone (GZ) and cortical plates (CP). GZ contains 
ventricular zone and subventricular zone, and hence comprised of proliferating neurons. 
CP refers to intermediate zone, cortical plate, and marginal zone, which are mainly 
composed of differentiated and migrating neurons. By dissecting layers from same fetal 
cortices, we can compare progenitors to differentiated neurons with same genotype and 
minimize intersample heterogeneity.  
Hi-C  
Collected tissue was dissociated with trypsin and cell number was counted. Ten million 
cells were fixed in 1% formaldehyde for 10 min. Cross-linked DNA was digested by 
restriction enzyme HindIII (NEB, R0104). Digested chromatin ends were filled and 
marked with biotin-14-dCTP (ThermoFisher, 19518-018). Resulting blunt-end fragments 
were ligated under dilute concentration to minimize random intermolecular ligations. 
DNA purified after crosslinking was reversed by proteinase K (NEB, P8107) treatment. 
Biotins from unligated ends were removed by exonuclease activity of T4 DNA 
polymerase (ThermoFisher, 18005). DNA was sheared by sonication (Covaris, M220) 
and 300-600bp fragments were selected. Biotin-tagged DNA, which is intermolecular 
ligation products, was pulled down with streptavidin beads (Invitrogen, 65001), and 
ligated with Illumina paired end adapters. Resulting Hi-C library was amplified by PCR 
(KAPA Biosystems HiFi HotStart PCR kit, KK2502) with the minimum number of cycle 
(typically 12-13 cycles), and sequenced by Illumina 50bp paired-end sequencing. 
Hi-C reads mapping and pre-processing 
Note that mapping and filtering of the reads, as well as normalization of experimental 
and intrinsic biases of Hi-C contact matrices were conducted with the following method 
regardless of cell types to minimize potential variance in the data obtained from different 
platforms. We implemented hiclib (https://bitbucket.org/mirnylab/hiclib) to perform initial 
analysis on Hi-C data from mapping to filtering and bias correction. Briefly, quality 
analysis was performed using a phred score, and sequenced reads were mapped to 
hg19 human genome by Bowtie2 (with increased stringency, --score-min -L 0.6,0.2--
very-sensitive) through iterative mapping. Read pairs were then allocated to HindIII 
restriction enzyme fragments. Self-ligated and unligated fragments, fragments from 
repeated regions of the genome, PCR artifacts, and genome assembly errors were 
removed. Filtered reads were binned at 10kb, 40kb, and 100kb resolution to build a 
genome-wide contact matrix at a given bin size. This contact map depicts contact 
frequency between any two genomic loci. Biases can be introduced to contact matrices 
by experimental procedures and intrinsic properties of the genome. To decompose 
biases from the contact matrix and yield a true contact probability map, filtered bins were 
subjected to iterative correction13, the basic assumption of which is that each locus has 
uniform coverage. Bias correction and normalization results in a corrected heatmap of 
bin-level resolution. 100kb resolution bins were assessed for inter-chromosomal 
interactions, 40kb for TAD analysis, and 10kb for gene loop detection.  
Inter-chromosomal principal component analysis 
Principal component analysis (PCA) was conducted in a genome-wide inter-
chromosome contact map (100kb binned) as described previously13. Since intra-



chromosome conformation may drive the PCA results, cis contacts were iteratively 
replaced to random trans counts. After removing diagonal and poorly covered regions, 
we performed PCA using hiclib command doEig.  
Pearson’s correlations between the first principal components (PC1) from different cell 
types (CP, GZ, ES, and IMR9012) were calculated to compare similarities in inter-
chromosomal interactions between different cell types.  
Spearman’s correlations between PC1/PC2 and biological traits (GC content, gene 
density, DNase I hypersensitivity (DHS), gene expression) were calculated. GC content 
(%) for each 100kb bin was calculated by gcContentCalc command from R package 
Repitools. Gene density (number of genes in 100kb bin) was obtained based on longest 
isoforms from GENCODE19. DHS of fetal brains from Epigenomic roadmap10 and gene 
expression level of prenatal cortical layers from Miller et al.15 were used and average 
values per 100kb bin were calculated. 
Gene enrichment analysis  
Gene ontology (GO) enrichment was performed by GO-Elite Pathway Analysis 
(http://www.genmapp.org/go_elite/). All genes in the genome except the ones located in 
the chromosome Y and mitochondrial DNA were used as a background gene list. 
Because Hi-C interaction is measured in bins, sometimes we cannot dissect the 
individual genes when they are clustered in the genome (i.e. PCDH locus). To prevent 
several gene clusters overriding entire GO terms, we removed GO mainly defined by 
gene clusters (for 100kb or 40kb binned data) or we randomly included one gene per 
cluster (e.g. PCDHA1 for PCDHA1-13 cluster) prior to GO analysis (for 10kb binned 
data).  
Gene enrichment for the curated gene lists was performed using binomial generalized 
linear model to regress out exome length. Autism spectrum disorder (ASD) de novo 
gene list and intellectual disability (ID) curated gene list from Iossifov et al.27 and 
Pariskshak et al.6 were used for the enrichment test, respectively. Protein-coding genes 
based on biomaRt were used as a background gene list.  
Identification of the regions with largest inter-chromosomal conformation 
changes  
Chromosome contact matrix was normalized with the total interaction counts between 
two cell types for comparison. Intra-chromosomal interactions were masked from the 
genome-wide contact matrix, and top 1000 bins with the largest interaction changes 
between different cell types (GZ vs. CP or ES vs. CP) were selected. As one bin is 
comprised of two loci that are interacting with each other, this would give ~2000 sites in 
the genome. Genes located in those ~2000 sites were combined to perform GO 
analysis.  
Co-expression of inter-chromosomal interacting regions 
Using transcriptome from fetal cortical layers28, average expression values per 100kb bin 
were calculated. Pearson correlation matrix was calculated from 100kb binned 
expression data from all layers to generate gene co-expression matrix. At this step, gene 
co-expression matrix has the same dimension as inter-chromosomal contact matrix.  
We hypothesized that genes would be co-expressed across the layers when they are 
interacting in all stages (both in CP and GZ), so we selected top 2% highest interacting 
regions of fetal brains both at GZ and CP (high interacting regions). We also selected (1) 
low interacting regions: top lowest interacting regions (0 interaction from normalized Hi-C 
contact matrix) of fetal brains both at GZ and CP, as well as (2) variant interacting 
regions: top 2% highest interacting regions from one stage (e.g. GZ) that are top 2% 



lowest interacting regions from the other stage (e.g. CP) for comparison. Expression 
correlation values of the same regions were selected from the gene co-expression 
matrix, and expression correlations between different states (high interacting regions vs. 
low interacting regions and high interacting regions vs. variant interacting regions) were 
compared by two-sample Kolmogorov-Smirnov test.  
Epigenetic state enrichment for inter-chromosomal interacting regions  
The fetal brain epigenetic 25 state model from Epigenomic roadmap10 was used to 
generate the epigenetic state combination matrix, which was generated by marking loci 
where two interacting chromosomal bins (defined as bins with (1) interaction counts > 
75% quantile interaction count for inter-chromosome and (2) interaction counts > 0 for 
intra-chromosome) share epigenetic signature. For example, the epigenetic combination 
matrix between the active transcription start site (TssA) and active enhancers (EnhA1) 
was generated by marking where interacting loci have TssA on one locus and EnhA1 on 
the other locus. Intra- and inter-chromosomal contact frequency maps were then 
compared to epigenetic state matrix by Fisher’s exact test to calculate enrichment of 
shared epigenetic combinations in interacting regions.  
Compartment analysis 
Expected interaction frequency was calculated from the normalized intra-chromosomal 
40kb binned contact matrix based on the distance between two bins. We summed series 
of submatrices of 400kb window size with 40kb step size from the normalized Hi-C maps 
to generate observed and expected matrices. The Pearson’s correlation matrix was 
computed from the observed/expected matrix, and PCA was conducted on correlation 
matrix. PC1 from each chromosome was used to identify compartments. Eigenvalues 
positively correlated with the gene density were set as compartment A, while those that 
are negatively correlated were set as compartment B. 
Gene expression and epigenetic state change across different compartments 
Genomic regions were classified into three categories according to compartments: 
compartment A in cell type1 that changes to compartment B in cell type2 (A to B), 
compartment B in cell type1 that changes to compartment B in cell type2 (B to A), 
regions that do not change compartment between two cell types (stable).  
Genes residing in each compartment category were selected and GO enrichment was 
performed. Gene expression fold-change (FC) between different cell types was 
calculated from Miller et al.15 (comparison for CP vs. GZ) and CORTECON17 
(comparison for ES vs. CP and ES vs. GZ). Distribution of gene expression FC for genes 
in different compartment categories was compared by one-way ANOVA and Tukey’s 
posthoc test.  
15 state epigenetic marks from Epigenomic Roadmap10 in genomic regions classified 
based on compartments were averaged across 40kb bins. The DHS FC10 between 
different cell types (ES vs. CP and ES vs. GZ) was calculated and statistically evaluated 
as in the gene expression comparison. Each epigenetic state counts10 for one 
compartment category was normalized by total epigenetic mark number of that 
compartment category and compared between ES and fetal brains.  
TAD analysis 
We conducted TAD-level analysis as described previously12. Shortly, we quantified the 
directionality index by calculating the degree of upstream or downstream (2Mb) 
interaction bias of a given bin, which was processed by a hidden Markov model (HMM) 
to remove hidden directionality bias.  



Regions in between TADs are titled as TAD boundaries when the regions are smaller 
than 400kb and unorganized chromatin when the regions are larger than 400kb.  
TAD-based epigenetic changes upon differentially expressed genes 
Genes were subdivided into 20 groups based on expression FC between ES and most 
differentiated neuronal states in CORTECON17: genes that are upregulated and 
downregulated upon differentiation were grouped into 10 quantiles, respectively, based 
on the FC. TADs into which genes from one subdivision reside were selected, and 
epigenetic state changes (from Epigenomic roadmap’s 15 state epigenetic marks in ES 
and fetal brains10) in those TADs were normalized with TAD length and compared 
between ES and fetal brains. As different types of epigenetic marks have different 
absolute numbers (e.g. there are more quiescent states than enhancer states in the 
genome), each epigenetic state change was scaled across different quantiles to allow 
comparison between different states.  
Identification of Hi-C interacting regions  
We identified Hi-C interacting regions and target genes for (1) human-gained 
enhancers8, (2) expression quantitative trait loci (eQTL) SNPs24, and (3) schizophrenia 
SNPs9. As the highest resolution available for the current Hi-C data was 10kb, we 
assigned these enhancers/SNPs to 10kb bins, obtained Hi-C interaction profile for 1Mb 
flanking region (1Mb upstream to 1Mb downstream) of each bin. We also made a 
background Hi-C interaction profile by pooling (1) 255,698 H3K27ac sites from frontal 
and occipital cortex at 12 PCW for human-gained enhancers8 and (2) 9,444,230 imputed 
SNPs for eQTL and schizophrenia SNPs9. To avoid significant Hi-C interactions affecting 
the distribution fitting as well as parameter estimation, we used the lowest 95 percentiles 
of Hi-C contacts and removed zero contact values. Using these background Hi-C 
interaction profiles, we fit the distribution of Hi-C contacts at each distance for each 
chromosome using fitdistrplus package (Extended Data Fig. 4a). Significance for a 
given Hi-C contact was calculated as the probability of observing a stronger contact 
under the fitted Weibull distribution matched by chromosome and distance. P-values 
were adjusted by computing FDR, and Hi-C contacts with FDR<0.01 were selected as 
significant interactions. Significant Hi-C interacting regions were overlapped with 
GENCODE19 gene coordinates (including 2kb upstream to transcription start sites 
(TSS) to allow detection of enhancer-promoter interactions) to identify interacting genes. 
Same analysis was performed on Hi-C contact maps from CP, GZ, and ES11. To 
address the functional significance of target genes, GO enrichment was performed for 
the interacting genes.  
Protein-coding genes interacting with human-specific evolutionary enhancers  
Protein-coding genes based on biomaRt (GENCODE19) were selected and non-
synonymous substitution (dN)/synonymous substitution (dS) ratio was calculated for 
homologs in mouse, rhesus macaque, and chimpanzee for representation of mammals, 
primates, and great apes, respectively. Log2(dN/dS) distributions for protein-coding 
genes interacting vs. non-interacting to human-specific evolutionary enhancers in each 
lineage were then compared by two-sample Kolmogorov-Smirnov test. 
LncRNAs interacting with human-specific evolutionary enhancers  
Long non-coding RNAs (lncRNAs) classified according to evolutionary lineages22 were 
used to assess whether lineage-specific lncRNAs are interacting to human-specific 
evolutionary enhancers. We randomly selected the same number of enhancers (2,104) 
to the human-specific ones from the total enhancer pool (255,698), identified interacting 
regions based on the null distribution generated from a background enhancer interaction 
profile. Significant interacting regions (FDR<0.01) identified by Hi-C were intersected 



with lncRNA coordinates22 and interacting lncRNAs for each lineage were counted. This 
step was repeated for 3,000 times to obtain the lncRNA lineage distribution. LncRNAs 
interacting with human-specific evolutionary enhancers were also identified and 
enrichment was tested by calculating P-values as the probability of observing more 
interacting lncRNAs for a given lineage under the null lncRNA lineage distribution.  
Epigenetic state enrichment for Hi-C interacting regions 
The functional framework for (1) eQTL SNPs, (2) schizophrenia SNPs, and (3) human-
gained enhancers-interacting regions was assessed for epigenetic state enrichment. We 
implemented the same approach as in GREAT29 to analyze the epigenetic state 
enrichment for cis-regulatory regions. For example, to evaluate whether schizophrenia 
SNPs are enriched with DHS, fraction of genome annotated with DHS (p), the number of 
schizophrenia SNPs (n), and number of schizophrenia SNPs overlapping with DHS (s) 
were calculated. Significance of the overlaps was tested by binomial probability of P = 
Prbinom (k ≥ s | n = n, p = p)29. Histone marks and 15-chromatin states from fetal brains, 
adult frontal cortex, and IMR9010 were used for epigenetic state enrichment.  
eQTL analysis 
To address whether co-localization mediates gene regulation, we compared the 
association between chromosome conformation with eQTL. Although fetal brain eQTL 
data would be optimal, since this data is currently not available, we analyzed adult 
frontal cortex cis-acting eQTL data24. We selected SNPs associated with gene 
expression (FDR<0.01) and clustered them with association P<1×10-5 and r2>0.6 to 
obtain index SNPs. Using summary association statistics and linkage disequilibrium (LD) 
structure for each index SNP, we applied CAVIAR25 to quantify the probability of each 
variant to be causal. Among 121,273,364 SNP-transcript pairs from frontal cortex eQTL 
data, this process resulted in 42,190 SNP-transcript pairs (267 transcripts and 14,882 
SNPs) that are potentially credible. We refer to 14,882 credible SNPs as credible SNPs. 
Credible SNP interacting genes were identified as described in “identification of Hi-C 
interacting regions” section.  
Fisher’s exact test was performed to evaluate the significance of the overlap between Hi-
C interacting genes and eQTL transcripts. The background gene list for Fisher’s exact 
test includes genes located in 1Mb flanking regions to credible SNPs that are also tested 
in eQTL analysis. 
For 42,190 SNP-transcript pairs, we assigned credible SNPs and genes into 10kb bins, 
and obtained Hi-C contacts between credible SNPs and genes from the 10kb binned Hi-
C contact maps. As a gene can span across multiple 10kb bins, the highest interaction in 
the gene to a credible SNP was selected as Hi-C contacts as previously defined30. We 
also calculated expected interaction frequency from the normalized 10kb binned contact 
matrix based on the distance between two bins. Opposite interaction frequency was 
calculated by obtaining Hi-C contacts for the opposite site to the credible SNP with the 
same distance. Because interaction counts differ in different chromosomes as well as in 
different cell types, we normalized interaction by chromosomes and cell types. We 
performed one-way ANOVA and Tukey’s posthoc test for the comparison between 
different interaction paradigms.    
Identification of credible SNPs for schizophrenia GWAS loci  
128 LD-independent SNPs with genome-wide significance (P<5×10-8)9 were used as 
index SNPs to obtain schizophrenia credible SNPs. All SNPs that are associated with 
P<1×10-5 and in LD (r2>0.6) with an index SNP were selected, and correlations among 
this set of SNPs (LD structure) were calculated. CAVIAR was applied to summary 
association statistics and LD structure for each index SNP, and potentially causal SNPs 



for each index SNP were identified. Among 55,000 SNPs that are in LD with 128 index 
SNPs, 7,613 SNPs were selected as causal by CAVIAR. Here we refer to these 
CAVIAR-identified SNPs as credible SNPs. Genes interacting to credible SNPs were 
identified as described in “identification of Hi-C interacting regions” section for CP, GZ, 
and ES. A separate set of credible SNPs initially reported from the original study was 
also processed with the same method9. 
Identification of schizophrenia GWAS SNP-associated genes  
We classified credible SNPs based on potential functionality (flow chart in Extended 
Data Fig. 7). For credible SNPs classified as functional (stop gained variant, frameshift 
variant, splice donor variant, NMD transcript variant, and missense variant) from 
biomaRt, we selected genes in which those SNPs locate. For those that are not directly 
affecting the gene function, we selected SNPs that fall onto the promoter and TSS of 
genes (2kb upstream-1kb downstream to TSS). Remaining SNPs were tested for Hi-C 
interaction so that Hi-C interacting genes were identified. This pipeline gives total ~900 
genes potentially associated with GWAS SNPs.  
Identification of closest genes and LD genes 
Closest genes to human-gained enhancers and schizophrenia index SNPs were 
obtained by closestBed command from bedtools. Gene coordinates from GENCODE19 
including 2kb upstream to TSS were used to identify the closest genes.  
LD genes refer to all genes in the LD. Here, LD is defined as physically distinct 
schizophrenia-associated 108 genome-wide significant regions9. We overlapped gene 
coordinates from GENCODE19 with LD regions to find genes that reside in LD.  
Closest genes and LD genes were compared with Hi-C interacting genes. Venn 
diagrams were generated by Vennerable package in R. Only protein-coding genes were 
included in plotting Venn diagrams.  
Calculation of distance between SNPs and genes  
For LD genes and closest genes, the shortest distance between an index SNP and a 
target gene was selected. For credible SNPs, (1) the distance between functional 
credible SNPs and target genes was set as 0, because functional SNPs reside in the 
gene, (2) the distance between promoter credible SNPs and target genes was calculated 
as the distance between SNPs and TSS of a gene, (3) the distance between credible 
SNPs and Hi-C interacting genes was calculated based on the distance between SNPs 
and Hi-C interacting bins (note that this distance has a unit of 10kb). We then combined 
the distance distributions from the 3 categories.  
  



Figure Legends 
Figure 1. Chromosome conformation in fetal brains reflects genomic features. a. 
Representative heatmap of the chromosome contact matrix of CP. Normalized contact 
frequency (contact enrichment) is color-coded according to the legend on the right. b. 
Pearson correlation of the leading principle component (PC1) of inter-chromosomal 
contacts at 100kb resolution between in vivo cortical layers and non-neuronal cell types 
(ES and IMR90). c. Spearman correlation of PC1 of chromatin interaction profile of fetal 
brain (GZ) with GC content (GC), gene number, DNase I hypersensitivity (DHS) of fetal 
brain, and gene expression level in fetal laminae. d. GO enrichment of genes located in 
the top 1000 highly interacting inter-chromosomal regions specific to CP vs. GZ (left), 
and CP vs. ES (right), indicating that genes located on dynamic chromosomal regions 
are enriched for neuronal development. e. The top 2% highest interacting regions of fetal 
brains both at GZ and CP (High) show positive correlation in gene expression, while the 
top 2% lowest interacting regions (Low) and top 2% highly variant regions (Variant) have 
no skew in distribution. P-values from Kolmogorov–Smirnov test. f. The epigenetic state 
combination in inter-chromosomal interacting regions in GZ. Inter-chromosomal contact 
frequency map is compared to epigenetic state combination matrix by Fisher’s exact test 
to calculate the enrichment of shared epigenetic combinations in interacting regions. 
Enhancers (TxEnh5', TxEnh3', TxEnhW, EnhA1), transcriptional regulators (TxReg), and 
transcribed regions (Tx) interact highly to each other as marked in red. Colored bars on 
the left represent epigenetic marks associated with promoters and transcribed regions 
(orange), enhancers (red), and repressive marks (blue). Chr, chromosome. Annotation 
for epigenetic marks described in 

http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  

 

Figure 2. Compartment and TADs provide insights into gene regulatory 
mechanism. a. Leading principal component (PC1) of the intra-chromosomal contact 
matrix in CP, GZ, and ES, with the DNase I hypersensitivity (DHS) fold change (FC) 
between ES and fetal brain (FB). PC1 values indicate compartment status of a given 
region, where positive PC1 represents compartment A (red), and negative PC1 
represents compartment B (green). b.  Distribution of gene expression FC (left) and DHS 
FC (right) for genes/regions that change compartment status (“A to B” or “B to A”) or that 
remain the same (“stable”) in different cell types. P-values from one-way ANOVA. c. GO 
enrichment of genes that change compartment status from A to B (top) and B to A 
(bottom) in CP to GZ. d. Heatmap of PC1 values of the genome that change 
compartment status in different cell types. e. Percentage of epigenetic marks for 
genomic regions that change compartment status between ES and CP. Note that B to A 
shift in ES to CP is associated with increased proportion of active transcribed regions 
(TssA and Tx) and enhancers (Enh, top), while A to B shift in ES to CP is associated 
with increased proportions of repressive marks (Het and ReprPCWk, bottom). P-values 
from Fisher’s exact test. f. Epigenetic changes in topological associating domains 
(TADs) mediate gene expression changes during neuronal differentiation. Genes were 
divided by expression FC between ES and differentiated neurons, and epigenetic marks 
in the TADs containing genes in each group were counted and compared between ES 
and CP. Upregulated genes in neurons locate in TADs with more active epigenetic 
marks in CP than in ES, while downregulated genes in neurons locate in TADs with 
more repressive marks in CP than in ES. Epigenetic states associated with activation 
and transcription of the genes were marked as a red bar, while those associated with 
repression were marked as blue bars on the right. Annotation for epigenetic marks 



described in http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp. 

 

Figure 3. Genetic architecture of human-gained enhancers. a. Fraction of epigenetic 
states for regions interacting to human-gained enhancers in CP and GZ. b. Proportions 
of whether human-gained enhancers and interacting regions are within the same 
topological associating domain (TAD) vs. outside of the TAD. c. Overlap between 
human-gained enhancer interacting genes (Hi-Cevol genes) in CP and GZ with closest 
genes to human-gained enhancers (left) and Hi-Cevol genes in ES (right). d. 
Representative interaction map of a 10kb bin, in which human-gained enhancers reside, 
with the corresponding 1Mb flanking regions. This interactome map provides genes of 
action that interact with human-gained enhancers. Chromosome ideogram and genomic 
axis on the top; Gene Model, gene model based on GENCODE19, possible target genes 
in red; Evol, genomic coordinate for a 10kb bin in which human-gained enhancers 
reside; -log10(P-value), P-value for the significance of the interaction between human-
gained enhancers and each 10kb bin, grey dotted line for FDR=0.01; TAD, TAD borders 
in CP, GZ, and ES. e. GO enrichment for Hi-Cevol genes in CP (left) and GZ (right). f. 
Number of primate-specific long non-coding RNAs (lncRNAs) interacting with human-
gained enhancers in CP (red vertical lines in the graph) against a background control 
generated from 3,000 permutations, where the number of lncRNAs interacting with the 
same number of enhancers pooled from all fetal brain enhancers was counted. g. 
Overrepresentation of Hi-Cevol genes in different tissues and closest genes with a 
curated set of intellectual disability (ID) risk genes. *P<0.05, **P<0.01, *** P<0.001. TSS, 
transcription start site; OR, odds ratio; GPCR, G-protein coupled receptor; Hi-C genes: 
GZ, CP, ES, Hi-Cevol genes in each tissue; Hi-C genes: FB, union of Hi-Cevol genes in GZ 
and CP; Hi-C genes: ES-specific, Hi-Cevol genes in ES but not in fetal brain (FB); Hi-C 
genes: FB-specific, Hi-Cevol genes in FB (union) but not in ES; Closest genes, closest 
genes to human-gained enhancers.  

 

Figure 4. Annotation of significant chromatin interactions for schizophrenia-
associated loci. a. Overlap between closest genes to index SNPs (Closest), genes 
locating in linkage disequilibrium (LD), and genes identified through SNP categorization 
and chromatin contacts in CP and GZ (Hi-CSCZ genes, diagram in Extended Data Fig. 
7). b. Number of closest genes and LD genes that interact to credible SNPs (Hi-C 
supported) and those that do not interact to credible SNPs (Hi-C non-supported, top). 
Number of genes that interact to credible SNPs that are closest to or in LD with index 
SNPs (Hi-C genes), and not closest to or in LD with index SNPs (Hi-C genes not, 
bottom). Note that Hi-C genes here contain physically interacting genes, but not genes 
identified by functional SNPs or promoter SNPs. c. Distance between CAVIAR/index 
SNPs and their target genes for closest genes to index SNPs (Closest), genes locating 
in linkage disequilibrium (LD), and Hi-CSCZ genes in CP (CP) and GZ (GZ) d. GO 
enrichment for Hi-CSCZ genes in CP (left) and GZ (right). e. Representative interaction 
map of a 10kb bin, in which credible SNPs reside, to the corresponding 1Mb flanking 
regions. This interactome provides target genes interacting to credible SNPs-containing 
region. Chromosome ideogram and genomic axis on the top; Gene Model, gene model 
based on GENCODE19, possible target genes in red; SNP, genomic coordinate for a 
10kb bin in which credible SNPs locate; -log10(P-value), P-value for the significance of 
the interaction between credible SNPs and each 10kb bin, grey dotted line for 
FDR=0.01; GWAS loci, LD region for the index SNP; TAD, topological associating 
domain borders in CP, GZ, and ES. 
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Extended Data Figure 1. Basic characterization of Hi-C libary. a. Hi-C library 
sequencing information. Percentage for double-stranded (DS) reads indicates 
percentage of DS reads to all reads, and percentage for valid pairs and filtered reads 
indicates percentage of valid pairs and filtered reads to DS reads. b. Frequency 
distribution of Hi-C contacts in GZ (left) and CP (right) c. Size distribution of topological 
associating domains (TADs) in GZ (left) and CP (right). d. Size distribution of genomic 
regions in between TADs that are less than 400kb (TAD boundaries) in GZ (left) and CP 
(right). e. Size distribution of genomic regions in between TADs that are bigger than 
400kb (unorganized chromosome) in GZ (left) and CP (right). Cis ratio, ratio of cis (intra-
chromosomal) reads to the total number of reads; chr, chromosome. 
Extended Data Figure 2. Chromosome conformation is associated with various 
genomic features. a. Spearman correlation of principal components (PCs) of chromatin 
interaction profile of CP with GC content (GC), gene number, DNase I hypersensitivity 
(DHS), and gene expression level of fetal brains. b. GO enrichment of genes located in 
the top 1000 regions that gain inter-chromosomal interactions in CP compared to ES 
(upper left), ES compared to CP (upper right), CP compared to GZ (lower left), and GZ 
compared to CP (lower right). c. Top 5% (left) and 10% (middle) highest interacting 
regions both in GZ and CP (High) show positive correlation in gene expression, while 
low interacting regions (Low) and variant interacting regions (Variant) have no skew in 
distribution. (Right) Mean (top) and median (bottom) values for gene expression 
correlation for high, low, and variant interacting regions with different cutoffs, indicating 
that higher the interaction, higher the correlation of gene expression. d. Percentage of 
epigenetic marks for genomic regions that change compartment status between ES and 
GZ. Note that B to A shift in ES to GZ is associated with increased proportion of active 
transcribed regions (TssA and Tx) and enhancers (Enh, top), while A to B shift in ES to 
GZ is associated with increased proportions of repressive marks (Het and ReprPCWk, 
bottom). P-values from Fisher’s exact test. Annotation for epigenetic marks described in 
a core 15-state model from  
http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  
Extended Data Figure 3. Interacting regions share epigenetic states. a. Epigenetic 
state combination in inter-chromosomal interacting regions in CP. Enhancers (TxEnh5', 
TxEnh3', TxEnhW, EnhA1), transcriptional regulatory regions (TxReg), and transcribed 
regions (Tx) interact highly to each other as marked in red. b-c. Epigenetic state 
combination in intra-chromosomal interacting regions in GZ (b) and CP (c). Enhancers 
(TxEnh5', TxEnh3', TxEnhW, EnhA1) and transcriptional regulatory regions (TxReg) 
interact highly to promoters (PromD1, PromD2) and transcribed regions (Tx5', Tx) as 
marked in red. Inter- and intra-chromosomal contact frequency map is compared to 
epigenetic state combination matrix by Fisher’s exact test to calculate the enrichment of 
shared epigenetic combinations in interacting regions. Colored bars on the left represent 
epigenetic marks associated with promoters and transcribed regions (orange), 
enhancers (red), and repressive marks (blue). Annotation for epigenetic marks described 
in a 25-state model from 
http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  
Extended Data Figure 4. Characterization of chromatin interactome of human-
gained enhancers. a. Distribution fitting of normalized chromatin interaction frequency 
between human-gained enhancers with 1Mb upstream (top) and 100kb upstream 
(bottom) regions. Weibull distribution (red line) fits Hi-C interaction frequency the best for 
every distance range. b. Distribution of the number of significant interacting loci to 
human-gained enhancers in GZ (top), CP (middle), and ES (bottom). c. Fraction of 
histone states (left) and epigenetic mark enrichment (right) for regions interacting with 



human-gained enhancers in GZ and CP. CDF, cumulative distribution function; 
Annotation for epigenetic marks described in  
http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  
Extended Data Figure 5. Human-gained enhancers interact to evolutionary 
lineage-specific long non-coding RNAs (lncRNAs). a. Protein-coding genes 
interacting with human-gained enhancers in CP (CP) and GZ (GZ) have lower	   non-
synonymous substitutions (dN)/synonymous substitutions (dS) ratio compared to 
protein-coding genes non-interacting to human-gained enhancers (All) in mammals 
(mouse), primates (rhesus macaque), and great apes (chimpanzee), indicative of 
purifying selection. b. Number of lineage-specific lncRNAs interacting to human-gained 
enhancers (red vertical lines in the graph) in GZ (top) and CP (bottom). Null distribution 
generated from 3,000 permutations, where the number of lncRNAs interacting to the 
same number of enhancers pooled from all fetal brain enhancers was counted. 
Extended Data Figure 6. Association between eQTL and Hi-C interaction. a. 
Overlap between eQTL transcripts and genes physically interacting to eQTL SNPs in CP 
and GZ. Significance of the overlap between eQTL transcripts and Hi-C interacting 
genes described in the upper right (Fisher’s exact test). Background gene list for Fisher’s 
exact test is all transcripts assessed in eQTL study within 1Mb from eQTL SNPs. b-d. 
Histone state enrichment for eQTL SNPs in adult frontal cortex (FCTX, b), fetal brain 
(FB, c), and IMR90 (d). e. Hi-C interaction frequency between eQTL SNPs and 
transcripts is greater than expected by chance in the relevant cell type. Lowess smooth 
curve plotted with actual data points. CP, chromatin contact frequency in CP; GZ, 
chromatin contact frequency in GZ; ES, chromatin contact frequency in ES; Exp, 
expected interaction frequency given the distance between two regions; Opp, opposite 
interaction frequency: interaction frequency of SNPs and transcripts when the position of 
genes was mirrored relative to the eQTL SNP. ***P<0.001, P-values from repeated 
measure of ANOVA. 
Extended Data Figure 7. Defining schizophrenia risk genes based on functional 
annotation of credible SNPs. Credible SNPs were selected using CAVIAR and 
categorized into functional SNPs, SNPs that fall onto gene promoters, and un-annotated 
SNPs. Histone state enrichment of credible SNPs was assessed in fetal brain (FB) and 
adult frontal cortex (FCTX). Functional SNPs and promoter SNPs were directly assigned 
to the target genes, while un-annotated SNPs were assigned to the target genes via Hi-
C interactions in CP and GZ. GO enrichment for genes identified by each category is 
shown in the bottom. NMD, nonsense-mediated decay; TSS, transcription start site.  
Extended Data Figure 8. Representative interaction maps for credible SNPs to 1Mb 
flanking regions. Interaction maps provide gene of actions for credible SNPs based on 
physical interaction. Chromosome ideogram and genomic axis on the top; Gene Model, 
gene model based on GENCODE19, possible target genes in red; SNP, genomic 
coordinate for a 10kb bin in which credible SNPs locate; -log10(P-value), P-value for the 
significance of the interaction between credible SNPs and each 10kb bin, grey dashed 
line for FDR=0.01; GWAS loci, linkage disequilibrium (LD) region with the index SNP; 
TAD, TAD borders in CP, GZ, and ES.  
Extended Data Figure 9. GO enrichment for schizophrenia risk genes curated by 
various methods. a-b. GO enrichment for the closest genes to index SNPs (a) and 
genes in linkage disequilibrium (LD) with index SNPs (b) that are identified by a 
schizophrenia risk gene assessment pipeline in Extended Data Fig. 7 (right) vs. not 
(left). c. GO enrichment for schizophrenia risk genes identified by a pipeline in Extended 
Data Fig. 7 that are neither the closest genes nor in LD to index SNPs. Intersect and 



union between CP and GZ in left and right, respectively. Venn diagrams are marked in 
orange to depict the gene list assessed for GO enrichment.  
Extended Data Figure 10. Defining schizophrenia risk genes based on functional 
annotation of another set of credible SNPs. Credible SNPs defined in the original 
study were categorized into functional SNPs, SNPs that fall onto gene promoters, and 
un-annotated SNPs. Overlap between credible SNPs identified by CAVIAR and credible 
SNPs originally identified indicates that two credible SNP lists overlap with each other. 
Histone state enrichment of credible SNPs in fetal brain (FB) and adult frontal cortex 
(FCTX). Functional SNPs and promoter SNPs were directly assigned to the target 
genes, while un-annotated SNPs were assigned to the target genes via Hi-C interactions 
in CP and GZ. GO enrichment for genes identified by each category and combined gene 
list is shown in the bottom. NMD, nonsense-mediated decay; TSS, transcription start 
site.  
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 2

Summary 1 
We apply transcriptome-wide RNA sequencing in postmortem autism spectrum disorder (ASD) 2 

brain and controls and identify convergent alterations in the noncoding transcriptome, including primate 3 
specific lncRNA, and transcript splicing in ASD cerebral cortex, but not cerebellum. We characterize an 4 
attenuation of patterning between frontal and temporal cortex in ASD and identify SOX5, a transcription 5 
factor involved in cortical neuron fate specification, as a likely driver of this pattern. We further show that a 6 
genetically defined subtype of ASD, Duplication 15q Syndrome, shares the core transcriptomic signature of 7 
idiopathic ASD, indicating that observed molecular convergence in autism brain is the likely consequence 8 
of manifold genetic alterations. Using co-expression network analysis, we show that diverse forms of 9 
genetic risk for ASD affect convergent, independently replicated, biological pathways and provide an 10 
unprecedented resource for understanding the molecular alterations associated with ASD in humans. 11 



 3

Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by deficits in 1 
social communication and mental flexibility1. Genetic risk factors contribute substantially to ASD risk, and 2 
recent studies support the potential contribution of more than a thousand genes to ASD risk2-4. However, 3 
given the shared cognitive and behavioral features across the autism spectrum, one hypothesis is that diverse 4 
risk factors may converge on common molecular, cellular, and circuit level pathways to result in the shared 5 
phenotype5,6. Analysis of the transcriptome has been used to identify common molecular pathways in the 6 
cerebral cortex (CTX) from postmortem human brain tissue in individuals with ASD7-11. However, all 7 
transcriptomic studies in ASD to date have been limited to evaluating highly expressed mRNAs 8 
corresponding to protein coding genes. Moreover, most lack rigorous replication and do not assess gene 9 
expression patterns across brain regions. 10 We used rRNA-depleted RNA-seq (Methods) to evaluate transcriptomes from a large set of ASD 11 
and control (CTL) brain samples including neocortex (frontal and temporal) and cerebellum across 79 12 
individuals (46 ASD, 33 CTL, 205 samples, Extended Data Fig. 1a-e, Supplementary Table 1). We first 13 
compared differential gene expression (DGE) between ASD and CTL individuals in CTX from a previously 14 
published7 microarray study against new, independent gene expression profiles from RNA-seq to evaluate 15 
global reproducibility of DGE in ASD. We found a high degree of replication of DGE fold changes between 16 
the sample sets, despite evaluation on different gene expression platforms (fold changes at P < 0.05 in 17 
previously evaluated data correlate with new data with R2 = 0.60, Extended Data Fig. 1f). We observed a 18 
much weaker overall signal and replication in cerebellum (R2 = 0.033, Extended Data Fig. 1g). These 19 
analyses confirm the existence of a reproducible DGE signature in ASD CTX across different platforms and 20 
in independent samples.  21 

We next combined samples from all individuals with idiopathic ASD into a covariate-matched 22 
“ASD Discovery Set” (Extended Data Fig. 1h) for CTX (106 samples, 26 ASD, 33 CTL individuals) and 23 
held out remaining samples for replication (“ASD Replication Set”, Methods). For DGE analysis, we used a 24 
linear mixed effects model that accounts for biological and technical covariates (Methods) to identify 1156 25 
genes differentially expressed in ASD CTX, 582 increased and 574 decreased (Benjamini-Hochberg FDR ≤ 26 
0.05, Supplementary Table 2). Importantly, DGE analysis with additional covariates or different 27 
assumptions about the distribution of the data and test statistics yielded similar results (Extended Data Fig. 28 
2a). Additionally this DGE signature clusters over two-thirds of ASD samples together and this clustering is 29 
not related to confounding factors such as cortical region, age, sex, and RNA quality (Figure 1a, Extended 30 
Data Fig. 2b). The most significantly down-regulated gene was PVALB (fold change = 0.53, FDR ≤ 0.05), a 31 
marker for GABAergic interneurons. SST, a marker for a different subpopulation of GABAergic 32 
interneurons, is also among the most downregulated (fold change = 0.61, FDR ≤ 0.05). Other down-33 
regulated genes at FDR ≤ 0.05 include NEUROD6, involved in neuronal differentiation (fold change = 34 
0.60), multiple ion channels, and KDM5D, a lysine demethylase (fold change = 0.66). In contrast, members 35 
of the complement cascade implicated in microglial-neuronal interactions (C4A, fold change = 1.94; C1QB, 36 
fold change = 1.65; both FDR ≤ 0.05) are upregulated in ASD CTX. Gene Ontology (GO) term enrichment 37 
analysis further supports the involvement of pathways implicated by these genes (Figure 1b), confirming 38 
previous findings7. Moreover, the upregulated set is enriched for astrocyte and microglia enriched genes, 39 
and the down-regulated set is enriched for synaptic genes (Extended Data Fig. 2c), consistent with previous 40 
observations7,11. 41 

We next sought to evaluate whether the transcriptional signature identified in the ASD Discovery Set 42 
generalizes to the ASD Replication set by assessing the 1st principal component of the DGE set, which 43 
summarizes the DGE expression pattern across all cortical samples. The ASD Discovery Set and ASD 44 
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Replication Set share this pattern, which is significantly different for both sets compared to CTL (Figure 1 
1c). Moreover, this pattern is highly associated with ASD diagnosis, but not other biological factors, 2 
technical factors, or scores on sub-domains of an ASD diagnostic tool (Figure 1d). These analyses 3 
demonstrate that convergent differences in ASD CTX are reproducible in independent samples and are not 4 
related to confounding factors.  5 
 We also detected 2715 lncRNAs expressed in cerebral cortex (after careful filtering for high-6 
confidence transcripts, Supplementary Information), of which 62 were significantly dysregulated between 7 
ASD and CTL (33 long intergenic RNAs, lincRNAs; 19 antisense transcripts; and 10 processed transcripts 8 
at FDR ≤ 0.05). Similar to the protein coding genes, these transcripts’ expression patterns cluster ASD and 9 
CTL samples (Figure 1e). Most of these lncRNAs are developmentally regulated12, have chromatin states 10 
indicative of transcription start sites (TSSs) near their 5´ end in brain13, and are identified in other 11 
datasets12,14 consistent with being valid, functional lncRNAs. Moreover, most (81%) exhibit primate-12 
specific expression patterns in brain15 (Supplementary Information). For example, Figure 1f depicts two 13 
lincRNAs, LINC00693 and LINC00689, which are typically downregulated during development, yet are 14 
upregulated in ASD CTX relative to controls (Figure 1g), which we validated by RT-PCR (Extended Data 15 
Fig. 2d). LINC00693 sequence is present, but poorly conserved in mouse, while LINC00689 is primate-16 
specific (present in macaque and other primates but not in any other species, Supplementary Information, 17 
Extended Data Fig. 3 for additional examples). These data indicate that dysregulation of lncRNAs, many of 18 
which are primate-specific and involved in brain development, is an important component of transcriptome 19 
dysregulation observed in ASD.  20 

Previous work suggested that alterations in transcript splicing may contribute to transcriptomic 21 
changes in ASD7,16,17 by evaluating splicing in a targeted manner and pooling samples across 22 
individuals7,16,17. Given the increased sequencing depth and reduced sequencing bias across transcript length 23 
in our dataset, we were able to perform an unbiased genome-wide analysis of differential alternative splicing 24 
(AS). We evaluated the percent spliced in (PSI, Extended Data Fig. 4a) for 34,025 AS events in CTX across 25 
the ASD Discovery Set, encompassing skipped exons (SE), alternative 5´ splice sites (A5SS), alternative 3´ 26 
splice sites (A3SS), and mutually exclusive exons (MXE) using the MATS pipeline18 (Supplementary 27 
Information). We first asked whether there was a global signal, finding significant enrichment over 28 
background (Extended Data Fig. 4b). We identified 1127 events in 833 genes at FDR ≤ 0.5 in CTX (similar 29 
to the number of events at uncorrected P < 0.005). Importantly, we obtained similar results with a different 30 
splice junction mapping and quantification approach (Extended Data Fig. 4c). 31 

We performed PCR validations with nine AS events from the differential splicing set (ASTN2, 32 
MEF2D, ERC2, MED31, SMARCC2, SYNE1, NRCAM, GRIN1, NCAM) and found that validated changes in 33 
splicing patterns were concordant with RNA-seq (Extended Data Fig. 4d-e), demonstrating that our 34 
approach identifies alterations in AS with high specificity. Similar to our observations with lncRNA and 35 
DGE, AS changes clustered the samples by diagnosis (Figure 2a). The most significantly different event 36 
was the inclusion of an exon in ASTN2 (ΔPSI = 5.8 indicating a mean of 5.8% difference in inclusion in 37 
ASD vs CTL; P = 7.8x10-6), a gene implicated by copy number variation (CNV) in ASD and other 38 
developmental disorders19. GO term analysis of the genes implicated by these pathways indicates 39 
involvement of biological processes related to neuronal projection, biological adhesion, and morphogenesis 40 
(Figure 2b), pathways where alternative isoforms are critical to specifying interactions between protein 41 
products. Moreover, the 1st principal component of the cortex differential splicing signature replicates in the 42 
ASD Replication Set and is not associated with other biological or technical factors (Figures 2c-d, Extended 43 
Data Fig. 5a). Importantly, many splicing alterations occur in genes that are not differentially expressed 44 
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between ASD and CTL; removing AS events on genes exhibiting even nominal DGE (P < 0.05), still 1 
identified a strong difference between ASD and CTL CTX  (Extended Data Fig. 5b). 2 

A parallel analysis in cerebellum evaluating 32,954 AS events found no differentially regulated 3 
events significant at any multiple comparison correction thresholds (Extended Data Fig. 5c, Supplementary 4 
Table 3). There was no detectable global overlap between cerebellum and CTX above chance for events 5 
significant at P < 0.05 in both comparisons (fold enrichment = 1.1, P = 0.21). This suggests that AS 6 
alterations in ASD are largely confined to CTX cell types, consistent with the stronger overall DGE patterns 7 
observed in CTX versus cerebellum. 8 

To further explore the underlying biology of AS dysregulation, we tested whether the shared splicing 9 
signature in ASD might be a product of perturbations in AS factors known to be important to neural 10 
development or preferentially expressed in neural tissue. We found that the expression levels of RBFOX1, 11 
RBFOX2, SRRM4, NOVA1, and PTBP1 all had high correlations (R2 > 0.35, FDR ≤ 0.05) to AS alterations 12 
in CTX (Figure 2e), but not in cerebellum (Figure 2f). Furthermore, enrichment analysis revealed that most 13 
changes in cortical AS occur in neuron-specific exons that are excluded in ASD (exons with ΔPSI > 50% in 14 
neurons overlap with exons excluded in ASD CTX, fold enrichment = 4.1, P = 1.8x10-7, Extended Data Fig. 15 
5d). 16 

To validate a regulatory relationship between splicing factors and these events, we evaluated 17 
experimental data from knockout, overexpression, and knockdown experiments for Rbfox120, SRRM421, 18 
and PTBP122, respectively . We found that exons regulated by each of these splicing factors were 19 
significantly enriched in the set of exons excluded in ASD (Figure 2g), while in contrast, there was no 20 
enrichment for targets of ESRP23, a splicing factor involved in epithelial cell differentiation but not 21 
expressed in CTX. This shows that alterations in three splicing factors dysregulated in ASD regulate AS of 22 
the neuron-specific exons whose inclusion is dysregulated in ASD in CTX and not cerebellum, indicating 23 
selective alteration of neuronal splicing in ASD CTX. Remarkably, the expression patterns of these three 24 
splicing factors (and others for which appropriate validation experiments were unavailable) results in 25 
distinct clusters (Extended Data Fig. 5e), suggesting that subsets of splicing factors act in different 26 
individuals to mediate a common downstream AS alteration. 27 

Taken together these results indicate global transcriptional alterations in ASD cerebral cortex, but 28 
not cerebellum at the level of protein coding transcripts, lncRNA and AS. Therefore, to determine how these 29 
different transcriptomic subcategories relate to each other in ASD, we compared the 1st PC for each type of 30 
transcriptomic alteration across individuals (Figure 2h).  Remarkably, the PCs are highly correlated (R2 > 31 
0.8) indicating that the transcriptomic alteration is a unitary phenomenon across protein coding, noncoding, 32 
and splicing levels, rather than distinct forms of molecular alteration. 33 

Previous analysis with gene expression microarrays in a small cohort suggested that the typical 34 
pattern of transcriptional differences between the frontal and temporal cortex may be attenuated in ASD7. 35 
To further test this possibility, we evaluated DGE between CTX regions (Supplementary Information) in 16 36 
matched frontal and temporal CTX sample pairs from ASD and CTL subjects and found 551 genes 37 
differentially expressed between regions in controls, but only 51 in ASD (FDR ≤ 0.05; Figure 3a). We refer 38 
to the set of 523 genes with this pattern in CTL, but not ASD as the “Attenuated Cortical Patterning” set. 39 
The attenuation of patterning is evident from the global distribution of test statistics between frontal and 40 
temporal CTX in ASD and CTL and genes in this set do not show a greater difference in variability in ASD 41 
versus controls compared to other genes (Kolmogorov-Smirnov test, two-tailed P = 0.11, Extended Data 42 
Fig. 6a).  43 
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We complemented this analysis with a machine learning approach using all 123 cortical samples, 1 
training a regularized regression model24 to classify frontal versus temporal CTX with independent gene 2 
expression data from BrainSpan25 (Extended Data Fig. 6b, Supplementary Information). Multiple 3 
approaches to training the classifier with BrainSpan can differentiate between frontal and temporal CTX in 4 
both CTL and ASD (Extended Data Fig. 6c-e), demonstrating that dissection and sample quality in our 5 
samples are of high quality. Loss of classification accuracy in ASD compared to CTL was observed when 6 
restricting the model to the genes with the most attenuated patterning in ASD (Extended Data Fig. 6f), 7 
demonstrating that attenuation of patterning generalizes across all samples. The Attenuated Cortical 8 
Patterning set includes multiple genes known to be involved in cell-cell communication and cortical 9 
patterning, such as PCDH10, PCDH17, CDH12, MET, and PDGFD, which was recently shown to mediate 10 
human specific aspects of cerebral cortical development26. GO term enrichment analysis of the Attenuated 11 
Cortical Patterning set identified enrichment for G protein coupled signaling, Wnt receptor signaling, and 12 
calcium binding, among several developmental processes (Figure 3b), and cell type enrichment analysis did 13 
not identify a strong preference for a particular cell type (Extended Data Fig. 6g).  14 

To identify potential drivers of the alteration in cortical patterning, we evaluated transcription factor 15 
binding site enrichment upstream of genes in the Attenuated Cortical Patterning set (Supplementary 16 
Information), and found an enrichment of SOX5 binding motifs (upstream of 364/523 genes, Figure 3c). 17 
Remarkably, SOX5 itself belongs to the Attenuated Cortical Patterning set: while SOX5 is differentially 18 
expressed between frontal and temporal CTX in CTL, it is not in ASD (Figure 3d). We thus predicted that if 19 
SOX5 regulates cortically patterned genes, its expression should correlate with target gene transcript levels. 20 
Consistent with this prediction, we found that genes in the Attenuated Cortical Patterning set are anti-21 
correlated with SOX5 in CTL CTX, but not in ASD CTX (Figure 3e, top left; Wilcoxon rank sum test of R 22 
values, P = 0.01), suggesting that the normal role of SOX5 as a transcriptional repressor may be disrupted in 23 
ASD. We reasoned that a true loss of SOX5-mediated cortical patterning would be specific to the predicted 24 
SOX5 targets. Consistent with this, we find a loss of correlations between SOX5 and predicted targets, but 25 
no difference in correlations between SOX5 and non-targets in the Attenuated Cortical Patterning set (Figure 26 
3e). Taken together, these findings show that a loss of regional patterning downstream of the transcriptional 27 
repressor SOX5, which plays a crucial role in glutamatergic neuron development27,28, contributes to the loss 28 
of regional identity in ASD.  29 

Gene expression changes in postmortem brain may be a consequence of genetic factors, 30 
environmental factors, or both. Brain tissue from individuals with ASD that harbor known, penetrant genetic 31 
causes are very rare. However, we were able to identify postmortem brain tissue from 8 subjects with one of 32 
the more common recurrent forms of ASD, Duplication 15q Syndrome (dup15q, which is present in about 33 
0.5-1% of ASD cases, see Extended Data Fig. 7a for characterization of duplications). We performed RNA-34 
seq across frontal and temporal cortex and compared DGE changes in dup15q with those observed in 35 
individuals with idiopathic ASD to better understand the extent to which the observed molecular pathology 36 
overlaps. As expected, most genes in the 15q11.1-13.2 duplicated region have higher expression in dup15q 37 
CTX compared to CTL (Figure 4a), although SNRPN and SNURF were notably downregulated. Conversely, 38 
no significant upregulation of genes in this region were identified in idiopathic ASD or controls. Strikingly, 39 
when we assessed genome-wide expression changes, we observed a strong signal of DGE in dup15q that 40 
widely overlaps with that of idiopathic ASD (fold changes at FDR ≤ 0.05 in dup15q correlate with 41 
idiopathic ASD with R2 = 0.79, Figure 4b). Moreover, the slope of the best-fit line through these changes is 42 
2.0, indicating that on average, the transcriptional changes in dup15q CTX are highly similar, but twice the 43 
magnitude of those observed in ASD CTX. 44 



 7

Next, we sought to evaluate AS changes in dup15q. There is only one significant splicing change in 1 
the dup15q region (Supplementary Table 3), consistent with the idea that duplication in this region 2 
duplicates all isoforms of the genes, resulting in minimal alteration of transcript structure. Similar to DGE, 3 
global AS analysis in dup15q CTX vs to CTL CTX revealed a stronger, but highly overlapping signature 4 
with idiopathic ASD CTX (fold changes at FDR ≤ 0.2 in dup15q agree correlate with idiopathic ASD with 5 
R2 = 0.66) indicating that splicing changes in dup15q syndrome recapitulate those of idiopathic ASD 6 
(Figure 4c). The slope of the best-fit line through the PSI for spliced exons in dup15q CTX compared to 7 
those in ASD CTX is 2.5 similar to DGE. Notably, both gene expression and AS changes in dup15q 8 
implicated similar pathways as those found in idiopathic ASD (Extended Data Fig. 7c-d). Clustering dup15q 9 
samples and CTL samples using both the DGE set and the differential AS set showed that all dup15q 10 
samples cluster together (Figure 4d), as opposed to the more variable clustering of idiopathic ASD, 11 
supporting the hypothesis that this shared genetic abnormality leads to a more homogeneous molecular 12 
phenotype. 13 

Next, to test whether this molecular ASD signature may be due to independent of postmortem or 14 
reactive effects (Supplementary Information), we compared our data with gene expression profiles from a 15 
iPSC-derived neurons (nIPSCs)29 from dup15q were available, we could use these data to definitively reveal 16 
which changes in dup15q CTX are independent of postmortem or reactive effects (Supplementary 17 
Information), since such effects are not present in vitro. We observe that DGE in the 15q region is 18 
concordant with that seen in the nIPSCs (Figure 4e), even though the sample size is small and the analysis is 19 
likely underpowered. Upregulated changes in dup15q are also seen in nIPSCs (Figure 4f), consistent with 20 
our other statistical analyses showing limited effects of potential confounders. The very immature, fetal state 21 
of the nIPSCs30 likely explains the absence of an enrichment signal for genes downregulated in postnatal 22 
ASD brain, which are enriched for genes involved in neurons with more mature synapses.  23 

We next applied gene network analysis to construct an organizing framework to understand shared 24 
biological functions across idiopathic ASD and dup15q (combining the ASD Discovery Set, ASD 25 
Replication Set, and dup15q set). We utilized Weighted Gene Co-expression Network Analysis (WGCNA), 26 
which identifies groups of genes with shared expression patterns across samples (modules) from which 27 
shared biological function is inferred.  Modules identified via WGCNA can than be related to a range of 28 
relevant phenotypes and potential confounders31,32. We applied signed co-expression analysis and used 29 
bootstrapping to ensure the network was robust, and not dependent on any subset of samples 30 
(Supplementary Information), while controlling for technical factors and RNA quality (“Adjusted FPKM” 31 
levels, Methods). WGCNA identified 16 co-expression modules (Extended Data Fig. 8a, Supplementary 32 
Table 2), which are further characterized by their association to ASD (Extended Data Fig. 8b), enrichment 33 
for cell-type specific genes (Extended Data Fig. 8c), and enrichment for GO terms (Extended Data Fig. 9). 34 
Of the downregulated modules, three are associated with ASD and dup15q (M1/10/17) and one with dup15q 35 
only (M11). Five of the upregulated modules are associated with ASD and dup15q (M4/5/6/9/12) and one is 36 
specific to dup15q (M13) (Figure 5a, top). Additionally, we identified a module strongly enriched for genes 37 
from the Attenuated Cortical Patterning set and Wnt signaling that contains SOX5 (M12; fold enrichment = 38 
3.0, P = 3x10-8), verifying the strong relationship observed between the Wnt pathway regulating TF SOX5 39 
and attenuation of cortical patterning33. 40 

Notably, the modules identified here significantly overlap with previous patterns identified in ASD 41 
(asdM12array and asdM16array

7; Figure 5a, middle). We found that the ASD-associated modules identified by 42 
our larger sample size and RNA-seq provide significant refinement of previous observations by identifying 43 
more discrete biological processes related to cortical development34, the post-synaptic density35, and 44 
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lncRNAs (Figure 5a, bottom). For example, M1 overlaps a subset of asdM12array (fold enrichment = 5.7) 1 
and developmental modules (devM16 fold enrichment = 3.7), and is enriched for proteins found in the PSD 2 
and genes involved in calcium signaling and gated ion channel signaling. Another subset of asdM12array, 3 
M10 (fold enrichment = 11) overlaps more with a mid-fetal upregulated cortical development module 4 
(devM13 fold enrichment = 4.0), and genes involved in secretory pathways and intracellular signaling. A 5 
third module, M17 shows the least overlap with asdM12array (fold enrichment = 2.2) and is related to energy 6 
metabolism. Notably, these three modules are enriched for neuron-specific genes (Extended Data Fig. 8c), 7 
but not all neuronal modules are down regulated in ASD (M3 is not altered in ASD CTX). Taken together, 8 
specific neurobiological processes are affected in individuals with ASD related to developmentally 9 
regulated neurodevelopmental processes. 10 

The most upregulated modules, M5 and M9, both strongly overlap (fold enrichments > 20) with 11 
previously identified upregulated co-expression module asdM16array. M5 is enriched for microglial cell 12 
markers and immune response pathways, whereas M9 is enriched for astrocyte markers and immune-13 
mediated signaling and immune cell activation (Extended Data Fig. 8c, Extended Data Fig. 9). This analysis 14 
clearly separates the contributions of the coordinated biological processes of microglial activation and 15 
reactive astrocytosis, which were previously not distinguishable as separate modules7. Thus, our analysis 16 
pinpoints more specific biological pathways in idiopathic ASD than those previously identified and reveals 17 
that similar changes occur downstream of the genetic perturbation in dup15q.  18 
 We evaluated the relationship between the five modules most strongly associated with ASD 19 
(M1/5/9/10/17, which are supported by module-trait association analysis and gene set enrichment analysis, 20 
Supplementary Information), and found that there was a remarkably high anti-correlation between the 21 
eigengene of M5 and downregulated modules, particularly M1 (R2 = 0.76) (Figure 5b). M1 (Figure 5c) is 22 
downregulated in ASD and enriched for genes at the PSD and genes involved in synaptic transmission, 23 
while M5 (Figure 5d) is enriched for microglial genes and cytokine activation. This strong anti-correlation 24 
between microglial signaling and synaptic signaling in ASD and dup15q provides evidence in humans for 25 
dysregulation of microglia-mediated synaptic pruning, as previously suggested36. 26 

Next, to determine the role of causal genetic variation, we evaluated enrichment of both rare genetic 27 
variants, focusing on genes affected by ASD associated gene disrupting (LGD) de novo mutations37, and 28 
common variants38,39. Genes within three modules, M1, M3, and M12, show enrichment for common 29 
variation signal for ASD (Figure 5e, Methods). Remarkably, M12 (Figure 5f), which is related to cortical 30 
patterning and Wnt signaling, also exhibit GWAS signal enrichment, providing the first evidence that risk 31 
conferred by common variation in ASD may affect regionalization of the cortex. Interestingly, M3 is 32 
significantly enriched for both schizophrenia (SCZ) and ASD common variants, is related to synaptic 33 
transmission, nervous system development, and regulation of ion channel activity (Extended Data Fig. 9), 34 
consistent with the notion that ASD and SCZ share common and rare genetic risk1,40-43. 35 

We only identified one module, M2 (Figure 5g), as significantly enriched in protein disrupting 36 
(nonsense, splice site, or frameshift) rare de novo variants previously associated with SCZ and ASD. M2 37 
overlaps with a cortical developmental module implicated in ASD34 (devM2 fold enrichment = 5.1). 38 
Notably, M2 is not differential between ASD and CTL in our dataset, consistent with the observation that 39 
these genes are primarily expressed during early neuronal development in fetal brain34. Remarkably, M2 40 
contains an unusually large fraction of lncRNAs (15% of the genes in M2 are classified as lncRNAs, while 41 
other modules are 1-5% lncRNA). We hypothesize that, in addition to protein coding genes involved in 42 
transcriptional and chromatin regulation, rare de novo variants may also affect lncRNAs in ASD, a 43 
prediction that will be testable once large sets of whole genome sequences are available. 44 
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 These combined transcriptomic and genetic analyses reveal that different forms of genetic variation 1 
affect biological processes involved in multiple stages of cortical development. Common genetic risk is 2 
enriched in M3, M1, and M12, which reflect early glutamatergic neurogenesis, later neuronal function, and 3 
cortical patterning, respectively. We also observe that rare de novo variation, which is enriched in M2, 4 
affects distinct biology related to transcriptional regulation and chromatin modification. These findings are 5 
consistent with transcriptomic analyses of early prenatal brain development and ASD risk mutations that 6 
implicate chromatin regulation and glutamatergic neuron development34,44.  7 

We provide the first comprehensive picture of largely unexplored aspects of transcription in ASD, 8 
lncRNA and alternative splicing, and identify a strong convergent signal in these, as well as protein coding 9 
genes7. These results will aid in interpreting genetic variation outside of the known exome, as whole 10 
genome sequencing supplants current methods. A role of lncRNAs has been previously explored in ASD45, 11 
but only two individuals were evaluated with targeted microarrays. We evaluate lncRNAs in an unbiased 12 
manner across many individuals, notably identifying an enrichment of lncRNAs in M2, most of which are 13 
uncharacterized in brain and arose on the primate lineage. The involvement of lncRNAs in this early 14 
developmental program that is enriched for de novo mutations implicated in ASD suggests their study will 15 
be particularly relevant to understanding the emergence of primate higher cognition on the mammalian 16 
lineage, and by extension human brain evolution15,46,47.  17 

We also provide the first confirmation of an attenuation of genes that typically show differential 18 
expression between frontal and temporal lobe in ASD CTX and further identified SOX5, known to regulate 19 
cortical laminar development50,51, as a putative regulator of this disruption. That M12, which is enriched for 20 
genes exhibiting cortical regionalization and is also enriched in ASD GWAS signal, supports the prediction 21 
that attenuation of patterning may be mediated by common genetic variation in or near the SOX5 target 22 
genes. Disruption of cortical lamination by direct effects on glutamatergic neurogenesis and function has 23 
been predicted by independent data, including network analyses of rare ASD associated variants identified 24 
in exome sequencing studies34,44. 25 

These data, in conjunction with previous studies, reveal a consistent picture of the ASD’s emerging 26 
postnatal and adult pathology. Specific neuronal signaling and synaptic molecules are downregulated and 27 
astrocyte and microglial genes are upregulated in over 2/3 of cases. Microglial infiltration has been observed 28 
in ASD cortex with independent methods52, and normal microglial pruning has been shown to be necessary 29 
for brain development36. Our findings further suggest that aberrant microglial-neuronal interactions may be 30 
pervasive in ASD and related to the gene expression signature seen in a majority of individuals. In our 31 
comprehensive AS analysis, we identify three splicing factors upstream of the altered splicing signature 32 
observed in ASD CTX. These factors are known to be involved in coordinating sequential processes in 33 
neuronal development17,21 and maintaining neuronal function48,49. It may therefore be sufficient to disrupt 34 
any one of these factors to induce a similar outcome during brain development, which would be consistent 35 
with the shared downstream perturbation observed here. 36 

Finally, evaluation of the transcriptome in dup15q supports the enormous value of the “genotype 37 
first” approach of studying syndromic forms of ASD, with known penetrant genetic lesions53. It is highly 38 
unlikely that the shared transcriptional dysregulation in dup15q is due to a shared environmental insult. 39 
Thus, the most parsimonious explanation for the convergent transcriptomic pathology seen in all dup15q 40 
and over 2/3 of the cases of idiopathic ASD is that it represents an adaptive or maladaptive response to a 41 
primary genetic insult, which in most cases of ASD will be genetic2,54. As future investigations pursue the 42 
full range of causal genetic variation contributing to ASD risk, these analyses and data will be valuable for 43 
interpreting genetic and epigenetic studies of ASD as well as those of other neuropsychiatric disorders.44 
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Figure Legends 1  2 
Figure 1 | Transcriptome-wide differential gene expression in ASD.  a, Average linkage hierarchical 3 
clustering of samples in the ASD Discovery Set using the top 100 upregulated and top 100 downregulated 4 
protein coding genes. b, Gene Ontology (GO) term enrichment analysis of upregulated and downregulated 5 
genes in ASD. *FDR ≤ 0.05 across all GO terms and gene sets. c, 1st principal component of the CTX DGE 6 
set (CTX DGE PC1) is able to distinguish ASD and CTL samples, including independent samples from the 7 
ASD Replication Set. d, CTX DGE PC1 is primarily associated with diagnosis, and not other factors. e, 8 
Average linkage hierarchical clustering of ASD Discovery Set using all lncRNAs in the DGE set. f, UCSC 9 
genome browser track displaying reads per million (RPM) in a representative ASD and CTL sample, 10 
superimposed over the gene models and sequence conservation for genomic regions including LINC00693 11 
and LINC00689. g, LINC00693 and LINC00689 are upregulated across ASD samples and downregulated 12 
during frontal cortex development. Abbreviations: FC, frontal cortex; TC, temporal cortex; RIN, RNA 13 
integrity number; ADI-R score, Autism Diagnostic Interview Revised score; FPKM, fragments per kilobase 14 
million mapped reads. 15  16 Figure 2 | Alteration of alternative splicing in ASD. a, Average linkage hierarchical clustering of ASD 17 
discovery set using top 100 differentially included and top 100 differentially excluded exons from the 18 
differential splicing (DS) set across the ASD Discovery Set. b, Gene Ontology term enrichment analysis of 19 
genes with DS in ASD. c, 1st principal component 1 of the CTX differential alternative splicing set (CTX 20 
DS PC1) is able to distinguish ASD and CTL samples using independent samples from the ASD Replication 21 
Set. d, CTX DS PC1 is primarily associated with diagnosis, and not other factors. e, Correlation between 22 
CTX DS PC1 and gene expression of neuronal splicing factors in CTX. f, Correlation between 1st principal 23 
component of cerebellum differential splicing (CB DS PC1) and gene expression of neuronal splicing 24 
factors in cerebellum. g, Overlap between DS set and splicing events regulated by splicing factors where 25 
experimental data was available. h, Scatterplots and correlations between the 1st principal component across 26 
the ASD versus CTL DGE sets for different transcriptome subcategories. Abbreviations: FC, frontal cortex; 27 
TC, temporal cortex; RIN, RNA integrity number; ADI-R score, Autism Diagnostic Interview Revised 28 
score; FPKM, fragments per kilobase million mapped reads. 29  30 Figure 3 | Attenuation of cortical patterning in ASD cortex. a, Heatmap of 551 genes exhibiting cortical 31 patterning between frontal cortex (FC) and temporal cortex (TC) in ASD, with samples sorted by 32 diagnostic status and brain region. b, Gene ontology term enrichment analysis of genes exhibiting 33 attenuated cortical patterning (ACP). c, Schematic of transcription factor motif enrichment upstream 34 of genes in the ACP set, with the SOX5 motif sequence logo. d, The SOX5 gene exhibits attenuated 35 cortical patterning in ASD CTX compared to CTLs. Lines connect FC-TC pairs that are from the same 36 individual. e, Correlation between SOX5 gene expression and predicted targets in CTL and ASD, with 37 all ACP genes (top left), SOX5 targets from the ACP set (top right),  SOX5 non-targets from the ACP set 38 (bottom left), and all genes not in the ACP set (bottom right). Plots show the difference in correlation 39 between SOX5 and other genes in ASD and CTL (ΔR). 40 
 41 
Figure 4 | Duplication 15q Syndrome recapitulates transcriptomic changes in idiopathic ASD. a, DGE 42 
changes across the 15q11-13.2 region for ASD and dup15q compared to CTL, error bars are +/- 95% 43 
confidence intervals for the fold changes. b, Comparison of effect sizes in dup15q vs CTL and ASD vs 44 
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CTL, with changes in dup15q at FDR ≤ 0.05 highlighted. c, Comparison of differential splicing (DS) 1 
changes in dup15q vs CTL and ASD vs CTL, highlighting 402 events at FDR ≤ 0.2 in dup15q. d, Average 2 
linkage hierarchical clustering of dup15q samples and controls using the DGE and DS gene sets. e, Plot of 3 
fold changes between induced pluripotent stem cells differentiated into neurons (nIPSCs) from dup15q vs 4 
CTL and postmortem CTX DGE from dup15q vs CTL in the 15q region. f,  Heatmap overlapping the top 5 
1000 genes up- and down- regulated in the nIPSC comparison to the up- and down- regulated genes in 6 
dup15q and idiopathic ASD CTX. 7 
 8 
Figure 5 | Co-expression network analysis across all ASD and CTL samples in CTX. a, Gene set enrichment 9 
analyses comparing the 16 co-expression modules with multiple gene sets from this RNA-seq study, from 10 
postmortem ASD CTX microarray, from human brain development, from the postsynaptic density and set of 11 
all brain-expressed lncRNAs. b, Comparison of five ASD-associated modules against each other by 12 
correlating module eigengenes. c, Module plot of M1 displaying the top 25 hub genes along with the 13 
module’s Gene Ontology term enrichment. d, similar to c, but for M5. e, Gene set enrichment analysis with 14 
genome-wide whole-exome sequencing data (Rare de novo hit genes) and genome-wide association study 15 
(GWAS) results in ASD, schizophrenia (SCZ), and intellectual disability (ID). Boxes are filled if the odds 16 
ratio is greater than 0, and the enrichment P < 0.05. Asterisks* indicate FDR ≤ 0.05 across all comparisons 17 
in a and e. f,g, similar to c, but for M12 and M2, respectively. Abbreviations: LGD, likely gene disrupting, 18 
genes affected by nonsense, nonsynonymous, or splice-site mutations or frame-shift indels; AGRE, 19 
AGP/CHOP, and PGC refer to consortia that collect genetic data (Supplementary Information for details). 20 
 21 
Methods 22  23 
Sample description: Brain tissue for ASD and control individuals was acquired from the Autism Tissue 24 
Program (ATP) brain bank at the Harvard Brain and Tissue Bank and the University of Maryland Brain and 25 
Tissue Bank (a Brain and Tissue Repository of the NIH NeuroBioBank). Sample acquisition protocols were 26 
followed for each brain bank, and samples were de-identified prior to acquisition. Brain sample and 27 
individual level metadata is available in Supplementary Table 1. 28 
 29 
RNA-seq methodology: Starting with 1ug of total RNA, samples were rRNA depleted (RiboZero Gold, 30 
Illumina) and libraries were prepared using the TruSeq v2 kit (Illumina) to construct unstranded libraries 31 
with a mean fragment size of 150bp (range 100-300bp) that underwent 50bp paired end sequencing on an 32 
Illumina HiSeq 2000 or 2500 machine. Paired-end reads were mapped to hg19 using Gencode v18 33 
annotations55 via Tophat256. Gene expression levels were quantified using union exon models with 34 
HTSeq57. For additional and information on sequencing and read alignment parameters, please see 35 
Supplementary Information. 36 
 37 
Sample sets for analysis: For differential gene expression and splicing analysis, we defined an age matched 38 
set, referred to as the ASD Discovery Set (106 samples in CTX, 51 in cerebellum) of idiopathic ASD and 39 
control samples for the discovery set, and held out younger or unmatched samples as the ASD Discovery 40 
Set (17 in CTX, 8 in cerebellum). Dup15q individuals were analysed separately, utilizing the full set of 41 
controls from the ASD Discovery Set. For co-expression network analysis, we combined the discovery set, 42 
replication set, and dup15q individuals for a total of 137 CTX samples and 59 cerebellum samples. 43 
 44 
Differential Gene Expression (DGE): DGE analysis was performed with expression levels adjusted for gene 45 
length, library size, and G+C content (referred to as “Normalized FPKM”) Supplementary Information. 46 
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CTX samples (frontal and temporal) were analyzed separately from cerebellum samples. A linear mixed 1 
effects model framework was used to assess differential expression in log2(Normalized FPKM) values for 2 
each gene for cortical regions (as multiple brain regions were available from the same individuals) and a 3 
linear model was used for cerebellum (where one brain region was available in each individual, with a 4 
handful of technical replicates removed). Individual brain ID was treated as a random effect, while age, sex, 5 
brain region (except in the case of cerebellum, where there is only one region), and diagnoses were treated 6 
as fixed effects. We also used technical covariates accounting for RNA quality, library preparation, and 7 
batch effects as fixed effects into this model (Supplementary Information). 8 
 9 
Reproducibility analyses: We assessed replication between datasets by evaluating the concordance between 10 
independent sample sets by comparing the squared correlation (R2) of fold changes of genes in each sample 11 
set at a non-stringent P value threshold. This general approach has been shown to be effective for 12 
identifying reproducible gene expression patterns58, and we modify it such that the P value threshold is set 13 
in one sample set (the x axis in the scatterplots), and the R2 with fold changes in these genes are evaluated in 14 
an independent sample set (the y axis in the scatterplots). 15 
 16 
Differential Splicing Analysis: Alternative splicing was quantified using the percent spliced in (PSI) metric 17 
using Multivariate Analysis of Transcript Splicing (MATS, v3.08)18. For each event, MATS reports counts 18 
supporting the inclusion (I) or exclusion (E) of a splicing event. To reduce spurious events due to low 19 
counts, we required at least 80% of samples to have I + S >= 10. For these events, the percent spliced in is 20 
calculated as PSI = I / (I + S) (Extended Data Fig. 4a).  Statistical analysis for differential splicing was 21 
performed utilizing the linear mixed effects model regression framework as described above for DGE. This 22 
approach is advantageous over existing methods as it allows modeling of covariates and takes into 23 
consideration the variability in PSI across samples when assessing event significance with ASD 24 
(Supplementary Information). 25 
 26 
Genotyping dup15q: For Dup15q samples, the type of duplication and copy number in the breakpoint 2-3 27 
region were available for these brains59.  To expand this to the regions between each of the recurrent 28 
breakpoint in these samples, 7/8 dup15q brains were genotyped (one was not genotyped due to limitations in 29 
tissue availability). The number of copies between each of the breakpoints is reported in Extended Data Fig. 30 
7a. 31 
 32 
Co-expression network analysis: The R package weighted gene co-expression network analysis (WGCNA) 33 
was used to construct co-expression networks using the technical variation normalized data31,60 (referred to 34 
as “Adjusted FPKM”). We used the biweight midcorrelation to assess correlations between 35 
log2(Normalized FPKM) and parameters for network analysis are described in Supplementary Information. 36 
Notably, we utilized a modified version of WGCNA that involves bootstrapping the underlying dataset 100 37 
times and constructing 100 networks. The consensus of these networks (50th percentile across all edges) was 38 
then used as the final network 32, ensuring that a handful of samples do not determine the network structure. 39 
For module-trait analyses, 1st principal component of each module (eigengene) was related to ASD 40 
diagnosis, age, sex, and brain region in a linear mixed effects framework as above, only replacing the 41 
expression values of each gene with the eigengene. 42 
 43 
Enrichment analysis of gene sets and GWAS: Enrichment analyses were performed either with Fisher’s 44 
exact test (cell type and splicing factor enrichments) or logistic regression (all enrichment analyses in Figure 45 
5). We used logistic regression in the latter case to control for gene length or other biases that may influence 46 
enrichment analysis (Supplementary Information). All GO term enrichment analysis was performed using 47 
GO Elite61 with 10,000 permutations. We focused on molecular function and biological process terms for 48 
display purposes. 49 
 50 
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Extended Data Figure Legends 1  2 
Extended Data Figure 1 | Methodology, quality control, and differential expression replication analysis. a, 3 
RNA-seq workflow, including RNA extraction, library preparation, sequencing, read alignment, and quality 4 
control. b, RNA-seq quality and alignment statistics from this study, including RNA integrity number 5 
(RIN), number of aligned reads, proportion of reads mapping to different genomic features (mRNA, 6 
intronic, intergenic), and bias in coverage from the 5’ to the 3’ end of the top 1000 expressed transcripts 7 
(statistics compiled using PicardTools). c, Similar statistics as in b for another RNA-seq study that utilized 8 
polyA tail selection mRNA-seq to evaluate the transcriptome in ASD cortex11 (primarily BA19, visual 9 
cortex, but also including some BA10/44 samples, frontal cortex). d, RNA-seq read coverage relative to 10 
normalized gene length across transcripts from the 5’ to the 3’ end in this study. e, Dependence between 11 
coverage and RIN across gene body (correlation between RIN and coverage in d across samples). f, 12 
Correlation of ASD vs CTL fold changes between previously evaluated and new ASD samples in CTX by 13 
microarray (left) and RNA-seq (right) using genes that were at P < 0.05 the samples from Voineagu et al., 14 
2011. g, Correlation between effect sizes as in f, but for cerebellum (CB) samples. h,i, Correlation between 15 
covariates and ASD vs CTL status in CTX (h) and CB (i) in the ASD Discovery Set. 16 
 17 
Extended Data Figure 2 | Transcriptome-wide differential gene expression (DGE) analysis in CTX. a, 18 
Comparison of P value rankings across different methods for DGE with Spearman’s correlation. From left 19 
to right: removal of three additional principal components of sequencing statistics (Supplementary 20 
Information) related to RNA-sequencing quality, application of a permutation analysis for DGE P value 21 
computation, application of variance-weighted linear regression for DGE62, and using surrogate variable 22 
analysis for DGE63. b, Average linkage hierarchical clustering heatmap using all genes DGE in the ASD 23 
Discovery Set, but including all idiopathic ASD frontal cortex (FC) and temporal cortex (TC) samples 24 
across 123 samples, combining the ASD Discovery set and the ASD Replication set. Bolded samples in the 25 
dendrogram are used for validation in d. c, Enrichment analysis of cell-type specific gene sets (5-fold 26 
enriched in the cell type compared to all other cells) with genes decreased and increased in ASD. d, RT-27 
PCR validation of the two lincRNAs shown in Figure 1f-g, P values are computed with the Wilcoxon rank-28 
sum test.  29 
 30 
Extended Data Figure 3 | Gene browser tracks for selected primate-specific lncRNAs. For each lncRNA, 31 
expression for representative samples for ASD vs CTL (top) in human, macaque (middle), and mouse 32 
(bottom) are shown. The genome location for macaque and mouse displayed is syntenic to the human 33 
region, with the expected location of the lncRNA highlighted. 34 
 35 
Extended Data Figure 4 | Splicing analyses and validation in ASD. a, Schematic describing how the percent 36 
spliced in (PSI) metric is computed. b, Distribution of P values for changes in the PSI between ASD and 37 
CTL in CTX for all events (left) and event subtypes (SE, spiced exon; A5SS, alternative 5’ splice site; 38 
A3SS, alternative 3’ splice site; MXE, mutually exclusive exons). c, Comparison of the CTX splicing 39 
analyses in when using PSI values obtained via read alignment by TopHat264 followed by the MATS18 40 
pipeline (used throughout this study) against read alignment by OLego followed by Quantas65. d, 41 
Comparison of ΔPSI values in nine splicing events between PCR and RNA-seq. e, PCR validation and 42 
sashimi plots for the nine splicing events delineated in d, from the samples highlighted in Extended Data 43 
Fig. 5a. 44 
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 1 
Extended Data Figure 5 | Additional splicing analyses in ASD. a, Average linkage hierarchical clustering 2 
heatmap using all differentially spiced (DS) events from the ASD Discovery Set, but including all idiopathic 3 
ASD neocortical samples (FC and TC) across 123 samples, combining the ASD Discovery set and the ASD 4 
Replication set. Bolded samples in the dendrogram were used for PCR validation in Extended Data Fig. 4. 5 
b, Top: difference between ASD and CTL in the DS set based on PC1 of the DS set at the PSI level, and 6 
PC1 of the gene expression levels of genes in the DS set. Bottom: Same comparison after differentially 7 
expressed genes (p < 0.05) are removed. c, Distribution of P values for changes in the PSI between ASD and 8 
CTL in cerebellum. d, Cell-type enrichment analysis of splicing events from CTX. e, Average-linkage 9 
hierarchical clustering using 1-(Pearson’s correlation) to compare the gene expression patterns of the 10 
splicing factors investigated in Figure 2. 11 
 12 
Extended Data Figure 6 | Attenuation of cortical patterning in ASD. a, Histograms of P values from paired 13 
Wilcoxon rank-sum test differential gene expression between 16 frontal cortex (FC) and 16 temporal cortex 14 
(TC) in CTL and ASD and a histogram of Bartlett’s test P values for differences in gene expression variance 15 
between ASD and CTL for all genes (white) and genes in the Attenuated Cortical Patterning (ACP) set 16 
(red). c, Approach to training the elastic net model on BrainSpan and application of the model on 123 17 
cortical samples in this study. c-e, Results of learned cortical region classifications with different starting 18 
gene sets, with the BrainSpan training set (left), CTL samples (middle), and ASD samples (right) in each 19 
panel and the Wilcoxon rank-sum test P value of FC vs TC difference for each comparison. f, Summary of 20 
results form c-e. g, Cell type enrichment analysis for genes in the ACP set. Abbreviations: A1C, primary 21 
auditory cortex; DFC, dorsolateral prefrontal cortex; MFC, medial prefrontal cortex; STC, superior temporal 22 
cortex; FC, frontal cortex; TC, temporal cortex; AUROC, area under the receiver-operator characteristic 23 
curve. 24 
 25 
Extended Data Figure 7 | Dup15q syndrome analyses. a, Copy number between breakpoints (BP) in the 15q 26 
region. Genome-wide CNV analysis allowed evaluation of copy number in additional regions from previous 27 
studies59,66. b, Differential expression across the 15q region of interest in dup15q vs CTL and ASD vs CTL 28 
cerebellum, note only 3 samples were available for dup15q cerebellum so additional analyses were not 29 
pursued. c, Gene Ontology term enrichment analysis for the dup15q CTX differential expression set. d, 30 
Gene Ontology term enrichment analysis for the dup15q CTX differential splicing (DS) set. e, Hierarchical 31 
clustering of iPSC-derived neurons from dup15q, Angelman syndrome, and a control29. 32 
 33 
Extended Data Figure 8 | Co-expression network analysis in ASD CTX. a, Modules identified from a 34 
dendrogram constructed from a consensus of 100 bootstrapped datasets using the 137 CTX samples. 35 
Correlations for each gene to each measured factor are delineated below the dendrogram (blue = negative, 36 
red = positive correlation). b, Module-trait associations as computed by a linear mixed effects model with all 37 
factors on the x-axis used as covariates. All P values are displayed where the coefficient passed p < 0.01. 38 
Note that this alternative approach to module-trait association agrees with the Fisher’s exact test used in 39 
Figure 5a when the fold enrichment for module overlap with DGE sets is > 2.8, and we use an intersection 40 
of both methods for the modules focused on in Figure 5b. c, Module enrichments for cell type specific gene 41 
expression patterns. 42 
 43 
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Extended Data Figure 9 | GO term enrichments for all modules. *FDR  < 0.05 across all GO enrichments 1 
across all modules. 2 
  3 
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Introduction 
The demonstration that chromatin exhibits a complex 3 dimensional organization, 
whereby short and long distance physical interactions correspond to complex gene 
regulatory processes has opened a new window on understanding the functional 
organization of the human genome1-4. Recently, chromatin remodeling has also been 
causally implicated in several neurodevelopmental disorders, including autism and 
schizophrenia5-7. However, it remains unclear whether knowledge of chromosome 
organization in a tissue specific manner might inform our understanding of gene 
regulation in brain development or disease. Here we determined the genome-wide 
landscape of chromosome conformation during early human cortical development by 
performing Hi-C analysis in the mitotically active and post mitotic laminae of human fetal 
brain. We integrate Hi-C data with transcriptomic and epigenomic data and utilize 
chromosome contact information to delineate physical gene-gene regulatory interactions 
for non-coding regulatory elements. We show how these data permit large-scale 
functional annotation of non-coding variants identified in schizophrenia GWAS and of 
human specific enhancers8,9. These data provide a rubric that illustrates the power of 
tissue-specific annotation of non-coding regulatory elements, as well as novel insights 
into the pathogenic mechanisms of neurodevelopmental disorders and the evolution of 
higher cognition.  
  



Recent advances in high-throughput sequencing have unveiled the epigenomic 
landscape of multiple human cell types, as well as 3 dimensional folding principles of 
chromatin10,11. In particular, chromosome conformation capture experiments 
demonstrate that chromatin is organized into hierarchical structures, which include 
compartments (a few megabase (Mb))1, topological associating domains (TADs, sub-
Mb)12, and loops (ranging from few kilobase (kb) to few hundred kb)2,4. These structures 
are thought to play a role in gene regulation and biological function by defining functional 
genomic units and mediating the effects of cis-regulatory elements via both short- and 
long-range physical interactions (e.g. promotor-enhancer interactions), relationships that 
cannot simply be predicted by linear adjacency in chromosomes. Coupled with 
epigenomic data, such higher order chromatin interactions should facilitate systemic 
annotation of cis-regulatory elements, as well as intergenic and intronic variants, which 
will further expand our understanding of tissue specific developmental programs, as well 
as disease pathogenesis. 
We constructed multiple Hi-C libraries in mid gestation fetal cerebral cortex from three 
individuals during the peak of neurogenesis and migration (gestation week, GW17-18). 
We reasoned that it would be useful to analyze mitotically active neuronal precursors 
involved in neurogenesis separately from post-mitotic migrating and maturing neurons, 
so we dissected the cortical anlage into two major structures: the cortical and subcortical 
plate (CP), consisting primarily of post mitotic neurons and the germinal zone (GZ), 
containing primarily mitotically active neural progenitors (representative heatmap in Fig. 
1a, Extended Data Fig. 1a-b). For comparison with non-neuronal cell types, we also 
used publicly available Hi-C data on human embryonic stem (ES) cells and IMR90 
cells11,12. To provide grounding for our data and compare global chromosome 
architecture between different cell types, we performed principal component analysis 
(PCA)13 on the genome-wide inter-chromosomal contact matrices of CP, GZ, ES, and 
IMR90. As previously demonstrated, global chromosome architecture does not change 
dramatically between different cell types13. However, the first principal components 
(PC1s) from neuronal tissues (CP and GZ) have significantly higher correlation than the 
PC1s between different cell types (Fig. 1b), consistent with the higher similarity between 
tissues from brain, versus the two other cell lines. 
3D chromatin structure reflects gene regulation during neural differentiation.  
Previous studies have shown that genome-wide chromosome conformation captures 
multiple levels of genomic features related to biological function, ranging from GC 
content and gene number to marks of open chromatin, such as DNase I hypersensitivity 
sites (DHS)13. Most human-relevant Hi-C has been conducted in cell lines1,2,4,11,12,14 and 
not in complex tissue, such as developing brain. As an initial first step to insure the 
quality and validity of our data, we analyzed the relationships between the major 
component of the inter-chromosomal interaction matrix with these major genomic 
features, finding high correlation with GC content, gene number, DHS10, and to a lesser 
extent, gene expression15 (Fig. 1c, Extended Data Fig. 2a), as has been previously 
observed in non-neural cell lines13.  
To further explore the biological significance of chromosome contact changes during 
neural differentiation, we explored whether the genes in regions of dynamic chromatin 
structure were related to neural differentiation by comparing the inter-chromosome 
contact matrices (binned to 100kb) in different cell types and selecting bins with the 
highest chromatin contact count changes between two cell types (Methods). Genes 
located in the regions of highest inter-chromosomal interaction changes between CP 
and GZ were enriched for neuronal genes, represented by the gene ontology (GO) 
categories of neuron recognition, axon guidance, central nervous system (CNS) 



development, and synapse (Fig. 1d, Extended Data Fig. 2b; Methods). Genes located 
in regions with highest inter-chromosomal interaction changes between CP and ES cells 
were enriched for developmental genes involved in forebrain development and 
chromatin organization (Fig. 1d, Extended Data Fig. 2b), indicating that these 
interactions reflect tissue relevant developmental gene regulation.  
To further explore how these physical chromatin interactions relate to biological function, 
we hypothesized that highly interacting chromatin regions would be more likely to be co-
regulated. To test this, we compared the distribution of correlation patterns for genes 
locating in (1) the regions of highest interaction values in both CP and GZ, (2) the lowest 
interacting regions in both CP and GZ, and (3) the regions of differential interaction 
values (the regions of highest interaction values in CP and lowest interaction values in 
GZ and vice versa). Highly interacting regions tend to be biased toward positive 
correlations, while there was no bias in correlation for low and differential interacting 
regions (Fig. 1e). Interestingly, the positive correlation for high interacting regions 
becomes even higher when more stringent cutoffs are used, supportive of the 
quantitative nature of interaction-driven co-expression, whereby the relationship between 
physical 3D chromatin interactions and expression is mostly driven by the top percentiles 
of interacting regions (Extended Data Fig. 2c). To further elucidate the epigenetic 
regulatory mechanisms behind the apparent interaction-mediated co-expression, we 
marked bins in which epigenetic marks from two loci appear together. By comparing the 
epigenetic mark combination matrix with the Hi-C contact matrix, we observed that 
interacting regions exhibit shared epigenetic patterns at the level of both inter- and intra-
chromosomal interactions (Fig. 1f, Extended Data Fig. 3; Methods). In particular, 
regions associated with positive transcriptional regulation and enhancers are more likely 
to physically interact with each other, consistent with their co-regulation.  
One of the core functional units of general genome organization recently uncovered by 
chromatin capture methods across a wide variety of cell types is the compartment, a 
relatively large, dynamic domain1, which is comprised of smaller, sub-Mb regions of 
topologically associating domains (TADs)12. Compartments are divided into two types, 
type A compartments that consist primarily of euchromatin and actively transcribed 
genes and type B compartments, which are heterochromatic and repressed. TADs have 
been previously shown to be relatively stable, whereas compartments have been shown 
to change during lineage specification in stem cells11. Consistent with this, we observed 
dynamic compartment switching between CP and GZ, enriched for GO categories 
related to neuronal genes and phosphatase activity (Fig. 2c), as well as compartment 
switching between CP and ES (Fig. 2a,d). Genes that change compartments from ES to 
CP are decreased for A to B transitions across differentiation and increased for changes 
from the B to A compartments (Fig. 2b), as expected. Compartment changes are also 
accompanied by epigenetic changes, so that the B to A compartment shift is associated 
with increased DHS and active epigenetic marks indicative of open chromatin, whereas 
the A to B shift is associated with decreased DHS and increased repressive marks (Fig. 
2b,e). The same pattern was observed for GZ vs. ES and CP vs. GZ (Fig. 2b,e, 
Extended Data Fig. 2d), demonstrating that gene expression changes across 
development are tightly linked to epigenetic changes coupled with compartment 
switching.  
TADs are thought to mediate co-transcriptional regulation primarily within their 
boundaries (100kb-1Mb) through physical “looping” interactions of promotors and 
enhancers in co-regulated genes4,16.  Since TAD boundaries are conserved across 
different cell types12, we hypothesized that changes in epigenetic marks in TADs, rather 
than the boundaries of TADs, would be most associated with gene expression changes 



across development. To test this, we divided genes based on their fold change in 
expression between ES and differentiated neurons17 (both increased and decreased), 
and assessed changes in epigenetic marks within the TADs where these genes reside 
(Extended Data Fig. 1c-e, Methods). Notably, active marks including enhancers and 
elements related to transcribed regions are increased in TADs that contain upregulated 
genes, whereas repressive marks are increased in TADs that contain downregulated 
genes (Fig. 2f). Collectively, these results indicate that our Hi-C data reflects the major 
elements of global chromosome architecture in fetal brains, providing a framework for 
exploring gene regulatory mechanism related to human neural development and 
function.  
Next, to demonstrate how knowledge of intra-chromosomal contacts could significantly 
advance understanding of important gene regulatory relationships in the nervous 
system, we performed two integrative experiments. In the first, we used these chromatin 
contact data to functionally annotate specific non-coding regulatory elements in the 
developing brain. We leveraged recent efforts that have identified >2000 developmental 
enhancers gained specifically in the human cerebral cortex, providing a remarkable 
resource for understanding the evolution of human cognition8. Usually, in the absence of 
such tissue specific data, regulatory elements are assigned to the closest gene18,19, a 
convention that we compared with our Hi-C derived interactions. We reasoned that our 
Hi-C data from fetal brain could be used to identify the target genes for many of these 
enhancers, which based on previously chromatin looping analyses in cell lines are often 
not the closest gene4,16,18,19. 
We derived an interaction map of human-gained enhancers, defined as significant 
interacting regions (at a 1% false discovery rate, FDR) compared to the null distribution 
generated by fitting the contact frequencies of all fetal brain enhancers identified in the 
same study8 (Extended Data Fig. 4a, Methods). We defined the search space as 
including the 1Mb flanking regions, since most enhancer-promoter interactions are within 
this range4. Although statistically significant interactions are increased upon proximity to 
the enhancer, the majority of interactions are at relatively long-ranges (>100kb, 
Extended Data Fig. 4b) and are not restricted to the adjacent genes. Indeed, ~65% of 
the closest genes to human-gained enhancers are not identified through fetal brain Hi-C 
interactions, revealing that the majority of enhancers are not interacting with the most 
adjacent gene (Fig. 3c). Compared to the original study8, which used human-gained 
enhancer hotspot TADs in ES cells and IMR90 cells due to the lack of Hi-C data from 
relevant tissue, our approach provides genes of action with higher resolution in the 
matching tissue (fetal cortices) from which evolutionary enhancers were identified. 
Human-gained enhancer-interacting regions were enriched with enhancers, promoters, 
and transcription start sites (TSSs) (Fig. 3a, Extended Data Fig. 4c), consistent with the 
previous findings that enhancers interact with promoters, as well as other enhancers16.  
The majority of interactions (>75%) were in the same TADs (Fig. 3b), also consistent 
with observations in cell lines that most enhancer-promoter interactions are in the same 
TAD16,19. Human-gained enhancer interacting genes (Hi-Cevol genes) are involved in 
GTPase regulation as well as G-protein coupled receptor (GPCR) and CREB signaling, 
and are enriched with GO terms representing synaptic and axon guidance genes (Fig. 
3e, representative interactions in Fig. 3d). One striking example is a human-gained 
enhancer that interacts with ARHGAP11B, a human-specific gene implicated in the 
expansion of human neocortex20 (Fig. 3d).  
Given the high conservation of protein-coding genes across the vertebrate lineage, 
comparative genomics have suggested that human-specific traits most likely result from 
changes in regulatory elements8,21. Indeed, protein-coding Hi-Cevol genes have a lower 



non-synonymous substitution (dN)/synonymous substitution (dS) ratio compared to Hi-C 
non-interacting protein-coding genes in multiple lineages (Extended Data Fig. 5). These 
results indicate that human-gained enhancers are interacting with protein-coding genes 
that undergo purifying selection, further supporting the hypothesis that non-coding 
elements undergo evolutionary selection to induce species-specific changes in gene 
expression8,21. We also investigated whether human-gained enhancers are interacting 
with lineage-specific long non-coding RNAs (lncRNAs)22. We observed that lineage-
specific interactions with human-gained enhancers were enriched for primate-specific 
lncRNAs, as well as evolutionary conserved lncRNAs (Fig. 3f, Extended Data Fig. 5). 
Thus, while human-gained enhancers interact and possibly regulate evolutionary 
conserved protein-coding genes, they are more likely to interact with primate-specific 
lncRNAs.  
Since the development of human higher cognition is dependent on the development of 
the human cerebral cortex via elaboration of novel gene regulatory relationships8,23, we 
reasoned, as have others8 that the genes regulated by these human specific enhancers 
would be associated with intellectual functioning in humans. Remarkably, we found that 
the Hi-Cevol genes in fetal brain, but not the genes defined by proximity to the enhancers 
are significantly enriched with intellectual disability (ID) risk genes6 (Fig. 3g). This result 
provides experimental support for the contention that human-gained enhancers are 
associated with the evolution of human cognitive function8. This enrichment was tissue-
specific, as Hi-Cevol genes defined by Hi-C interactions in ES cells did not show 
enrichment for ID risk genes (Fig. 3g). Indeed, ~56% of the Hi-Cevol genes in neuronal 
tissue were not identified through chromatin contacts in ES cells, emphasizing the 
importance of defining tissue-relevant chromatin contacts, as well as importance of using 
the relevant tissue for Hi-C analysis (Fig. 4c).  
Since most disease related common genetic variation is located in non-protein coding 
regions, we next assessed the ability of Hi-C data for functional annotation of common 
single nucleotide polymorphisms (SNPs). As a first line verification that Hi-C data could 
identify known functional relationships between SNPs and gene expression we used cis-
expression quantitative trait loci (eQTL) data from adult frontal cortex24, since such data 
is not yet available from fetal brain. For each significant eQTL locus, we obtained a set 
of significant eQTL SNPs with >95% likelihood of containing the causal SNP from 
association statistics and linkage disequilibrium (LD; 1000 Genomes) structure using 
CAVIAR25. We then identified genes interacting to likely causal eQTL SNPs via the 
chromatin contact matrix (Hi-CeQTL genes, Methods), and compared Hi-CeQTL genes with 
the known associated gene from the eQTL study, finding that Hi-CeQTL genes 
significantly overlapped with eQTL transcripts (Extended Data Fig. 6a). There were 
many Hi-CeQTL genes that were not identified as eQTL transcripts, likely due to a 
combination of factors, including low power of the eQTL sample, limited resolution of Hi-
C (SNP-transcript interactions within 20kb cannot be detected), and the difference in age 
of tissues used for each analysis. Indeed, eQTL SNPs identified by CAVIAR were highly 
enriched with adult frontal cortex, but not fetal brain, enhancers (Extended Data Fig. 
6b-d). Despite this, eQTL SNP-transcript pairs exhibit higher chromatin contact 
frequency than expected by chance across all distance ranges (Extended Data Fig. 6e), 
further supporting the utility of Hi-C to infer the biological function of regulatory variation.   
Next, we applied a similar logic to advance our understanding of 108 genome-wide 
significant schizophrenia-associated loci, most of which are in relatively uncharacterized 
non-coding regions of the genome9. We obtained credible SNPs using CAVIAR, and split 
SNPs into those without known function and likely functional SNPs (SNPs that cause 
missense, frameshift, and splice variants and SNPs that fall onto gene promoters; 



Methods). Credible SNPs were enriched with enhancers in fetal brain and adult frontal 
cortex, confirming the likely regulatory role of these SNPs in the brain (Extended Data 
Fig. 7). SNPs defined as likely functional SNPs and promoter SNPs were directly 
assigned to their target genes. For the remaining intergenic and intronic SNPs that were 
un-annotated, and therefore without clear function, we used the chromatin contact matrix 
to find genes with which the regions where the SNPs are located are physically 
interacting (diagram in Extended Data Fig. 7).  
Combining genes annotated as functional SNPs, promoter SNPs, and by Hi-C 
interactions, we obtained a total of ~900 genes (Hi-CSCZ genes) associated with 
schizophrenia risk variants. Hi-C contacts identified numerous genes that were neither 
adjacent to index SNPs nor in LD with them (Fig. 4a-c, Extended Data Fig. 9). While 
almost 70-80% of the LD genes and closest genes were identified as Hi-CSCZ genes, 
only half of them were identified by chromatin contacts, indicating that many of them 
were identified by functional SNPs residing in the genes. Moreover, 70-90% of the Hi-
CSCZ genes were not identified by using LD genes or the closest genes to the association 
signal, consistent with observations that the linear organization of genes and regulatory 
elements on the chromosome does not reflect regulatory interactions4,18,19.  
Hi-C analysis showed that schizophrenia-associated common variants converge into 
specific molecular pathways related to neuronal function, including the postsynaptic 
density, acetylcholine receptors, cell cycle, and chromatin remodelers (Fig. 4d-e, 
Extended Data Fig. 7-8). To insure that this was not an artifact of the method used for 
credible SNP selection, we used a different method to define the set of credible SNPs9 
(Extended Data Fig. 9) and found the same enrichments, demonstrating the robustness 
of the genes identified through the Hi-C analysis. One notable example is illustrated by 
credible SNPs (rs4245150, rs17602038, rs4938021, rs4936275, rs4936276) that reside 
upstream of the Dopamine D2 Receptor (DRD2), the target of antipsychotic drugs. 
Although these SNPs are close to the DRD2 TSS, they are not within the gene, which 
complicates interpretation of their biological function. Hi-C analysis demonstrates for the 
first time that indeed these SNPs are interacting with the TSS of DRD2 (Fig 4e), 
providing biological insights into the function of these SNPs.  
Another relevant example is an index SNP (rs79212538) interacting with GRIA1, an 
ionotropic glutamate receptor subunit, although GRIA1 is neither the closest gene nor in 
LD with the index SNP (Extended Data Fig. 8). Additionally, Hi-C shows that 
schizophrenia associated non-coding SNPs interact with multiple genes involved in 
excitatory synaptic transmission, including CACNA1C, GRIN2A, and NLGN4X, further 
supporting glutamatergic transmission defects in schizophrenia pathophysiology 
(Extended Data Fig. 8). Interestingly, Hi-CSCZ genes significantly overlap with ASD de 
novo likely gene-disrupting (LGD) targets (CP: OR=2.4, P=1.6x10-5, GZ: OR=1.8, 
P=0.006), consistent with a shared genetic etiology between ASD and schizophrenia26. 
The fact that genes with LGD mutations in ASD are associated with regulatory variants 
in schizophrenia suggests that complete abrogation of these genes may cause 
developmental defects as in ASD, while regulatory changes in these genes may cause 
later-onset of neuropsychiatric symptoms as in schizophrenia. Collectively, genes 
annotated by chromatin contact information provide novel insights into schizophrenia 
pathogenesis.  
In conclusion, we demonstrate how a comprehensive analysis of genome-wide 
chromatin configuration during human neural development informs our view of gene 
regulation. This chromatin contact landscape provides important biological insights on 
gene regulatory mechanisms, such that co-expressed genes share epigenetic co-
regulation of interacting regions, and that changes in functional epigenetic marks are 
tightly linked to TADs and compartment switching to induce changes in gene expression. 



We also annotated non-coding regulatory elements in the genome based on long-range 
chromatin contacts to identify enhancer-promoter interactions during human brain 
development, as well as genes of actions for eQTL. In turn, we show how these 
interactions can be used to inform our biological interpretation of risk variants for 
schizophrenia, which serves as a template for understanding the role of non-coding 
variation more broadly in neuropsychiatric disorders.  
  



Methods  
Fetal brain layer dissection  
Human fetal cortical tissues from three individuals were collected from frontoparietal 
cortex at gestation week (GW) 17-18 (one sample from GW17 and two samples from 
GW18). In cold DMEM/F-12 (ThermoFisher, 11320-033), frontoparietal cortex was first 
dissected to thin (~1mm) slices to visualize layers. Under the light field microscope, 
cortical slice was dissected to germinal zone (GZ) and cortical plates (CP). GZ contains 
ventricular zone and subventricular zone, and hence comprised of proliferating neurons. 
CP refers to intermediate zone, cortical plate, and marginal zone, which are mainly 
composed of differentiated and migrating neurons. By dissecting layers from same fetal 
cortices, we can compare progenitors to differentiated neurons with same genotype and 
minimize intersample heterogeneity.  
Hi-C  
Collected tissue was dissociated with trypsin and cell number was counted. Ten million 
cells were fixed in 1% formaldehyde for 10 min. Cross-linked DNA was digested by 
restriction enzyme HindIII (NEB, R0104). Digested chromatin ends were filled and 
marked with biotin-14-dCTP (ThermoFisher, 19518-018). Resulting blunt-end fragments 
were ligated under dilute concentration to minimize random intermolecular ligations. 
DNA purified after crosslinking was reversed by proteinase K (NEB, P8107) treatment. 
Biotins from unligated ends were removed by exonuclease activity of T4 DNA 
polymerase (ThermoFisher, 18005). DNA was sheared by sonication (Covaris, M220) 
and 300-600bp fragments were selected. Biotin-tagged DNA, which is intermolecular 
ligation products, was pulled down with streptavidin beads (Invitrogen, 65001), and 
ligated with Illumina paired end adapters. Resulting Hi-C library was amplified by PCR 
(KAPA Biosystems HiFi HotStart PCR kit, KK2502) with the minimum number of cycle 
(typically 12-13 cycles), and sequenced by Illumina 50bp paired-end sequencing. 
Hi-C reads mapping and pre-processing 
Note that mapping and filtering of the reads, as well as normalization of experimental 
and intrinsic biases of Hi-C contact matrices were conducted with the following method 
regardless of cell types to minimize potential variance in the data obtained from different 
platforms. We implemented hiclib (https://bitbucket.org/mirnylab/hiclib) to perform initial 
analysis on Hi-C data from mapping to filtering and bias correction. Briefly, quality 
analysis was performed using a phred score, and sequenced reads were mapped to 
hg19 human genome by Bowtie2 (with increased stringency, --score-min -L 0.6,0.2--
very-sensitive) through iterative mapping. Read pairs were then allocated to HindIII 
restriction enzyme fragments. Self-ligated and unligated fragments, fragments from 
repeated regions of the genome, PCR artifacts, and genome assembly errors were 
removed. Filtered reads were binned at 10kb, 40kb, and 100kb resolution to build a 
genome-wide contact matrix at a given bin size. This contact map depicts contact 
frequency between any two genomic loci. Biases can be introduced to contact matrices 
by experimental procedures and intrinsic properties of the genome. To decompose 
biases from the contact matrix and yield a true contact probability map, filtered bins were 
subjected to iterative correction13, the basic assumption of which is that each locus has 
uniform coverage. Bias correction and normalization results in a corrected heatmap of 
bin-level resolution. 100kb resolution bins were assessed for inter-chromosomal 
interactions, 40kb for TAD analysis, and 10kb for gene loop detection.  
Inter-chromosomal principal component analysis 
Principal component analysis (PCA) was conducted in a genome-wide inter-
chromosome contact map (100kb binned) as described previously13. Since intra-



chromosome conformation may drive the PCA results, cis contacts were iteratively 
replaced to random trans counts. After removing diagonal and poorly covered regions, 
we performed PCA using hiclib command doEig.  
Pearson’s correlations between the first principal components (PC1) from different cell 
types (CP, GZ, ES, and IMR9012) were calculated to compare similarities in inter-
chromosomal interactions between different cell types.  
Spearman’s correlations between PC1/PC2 and biological traits (GC content, gene 
density, DNase I hypersensitivity (DHS), gene expression) were calculated. GC content 
(%) for each 100kb bin was calculated by gcContentCalc command from R package 
Repitools. Gene density (number of genes in 100kb bin) was obtained based on longest 
isoforms from GENCODE19. DHS of fetal brains from Epigenomic roadmap10 and gene 
expression level of prenatal cortical layers from Miller et al.15 were used and average 
values per 100kb bin were calculated. 
Gene enrichment analysis  
Gene ontology (GO) enrichment was performed by GO-Elite Pathway Analysis 
(http://www.genmapp.org/go_elite/). All genes in the genome except the ones located in 
the chromosome Y and mitochondrial DNA were used as a background gene list. 
Because Hi-C interaction is measured in bins, sometimes we cannot dissect the 
individual genes when they are clustered in the genome (i.e. PCDH locus). To prevent 
several gene clusters overriding entire GO terms, we removed GO mainly defined by 
gene clusters (for 100kb or 40kb binned data) or we randomly included one gene per 
cluster (e.g. PCDHA1 for PCDHA1-13 cluster) prior to GO analysis (for 10kb binned 
data).  
Gene enrichment for the curated gene lists was performed using binomial generalized 
linear model to regress out exome length. Autism spectrum disorder (ASD) de novo 
gene list and intellectual disability (ID) curated gene list from Iossifov et al.27 and 
Pariskshak et al.6 were used for the enrichment test, respectively. Protein-coding genes 
based on biomaRt were used as a background gene list.  
Identification of the regions with largest inter-chromosomal conformation 
changes  
Chromosome contact matrix was normalized with the total interaction counts between 
two cell types for comparison. Intra-chromosomal interactions were masked from the 
genome-wide contact matrix, and top 1000 bins with the largest interaction changes 
between different cell types (GZ vs. CP or ES vs. CP) were selected. As one bin is 
comprised of two loci that are interacting with each other, this would give ~2000 sites in 
the genome. Genes located in those ~2000 sites were combined to perform GO 
analysis.  
Co-expression of inter-chromosomal interacting regions 
Using transcriptome from fetal cortical layers28, average expression values per 100kb bin 
were calculated. Pearson correlation matrix was calculated from 100kb binned 
expression data from all layers to generate gene co-expression matrix. At this step, gene 
co-expression matrix has the same dimension as inter-chromosomal contact matrix.  
We hypothesized that genes would be co-expressed across the layers when they are 
interacting in all stages (both in CP and GZ), so we selected top 2% highest interacting 
regions of fetal brains both at GZ and CP (high interacting regions). We also selected (1) 
low interacting regions: top lowest interacting regions (0 interaction from normalized Hi-C 
contact matrix) of fetal brains both at GZ and CP, as well as (2) variant interacting 
regions: top 2% highest interacting regions from one stage (e.g. GZ) that are top 2% 



lowest interacting regions from the other stage (e.g. CP) for comparison. Expression 
correlation values of the same regions were selected from the gene co-expression 
matrix, and expression correlations between different states (high interacting regions vs. 
low interacting regions and high interacting regions vs. variant interacting regions) were 
compared by two-sample Kolmogorov-Smirnov test.  
Epigenetic state enrichment for inter-chromosomal interacting regions  
The fetal brain epigenetic 25 state model from Epigenomic roadmap10 was used to 
generate the epigenetic state combination matrix, which was generated by marking loci 
where two interacting chromosomal bins (defined as bins with (1) interaction counts > 
75% quantile interaction count for inter-chromosome and (2) interaction counts > 0 for 
intra-chromosome) share epigenetic signature. For example, the epigenetic combination 
matrix between the active transcription start site (TssA) and active enhancers (EnhA1) 
was generated by marking where interacting loci have TssA on one locus and EnhA1 on 
the other locus. Intra- and inter-chromosomal contact frequency maps were then 
compared to epigenetic state matrix by Fisher’s exact test to calculate enrichment of 
shared epigenetic combinations in interacting regions.  
Compartment analysis 
Expected interaction frequency was calculated from the normalized intra-chromosomal 
40kb binned contact matrix based on the distance between two bins. We summed series 
of submatrices of 400kb window size with 40kb step size from the normalized Hi-C maps 
to generate observed and expected matrices. The Pearson’s correlation matrix was 
computed from the observed/expected matrix, and PCA was conducted on correlation 
matrix. PC1 from each chromosome was used to identify compartments. Eigenvalues 
positively correlated with the gene density were set as compartment A, while those that 
are negatively correlated were set as compartment B. 
Gene expression and epigenetic state change across different compartments 
Genomic regions were classified into three categories according to compartments: 
compartment A in cell type1 that changes to compartment B in cell type2 (A to B), 
compartment B in cell type1 that changes to compartment B in cell type2 (B to A), 
regions that do not change compartment between two cell types (stable).  
Genes residing in each compartment category were selected and GO enrichment was 
performed. Gene expression fold-change (FC) between different cell types was 
calculated from Miller et al.15 (comparison for CP vs. GZ) and CORTECON17 
(comparison for ES vs. CP and ES vs. GZ). Distribution of gene expression FC for genes 
in different compartment categories was compared by one-way ANOVA and Tukey’s 
posthoc test.  
15 state epigenetic marks from Epigenomic Roadmap10 in genomic regions classified 
based on compartments were averaged across 40kb bins. The DHS FC10 between 
different cell types (ES vs. CP and ES vs. GZ) was calculated and statistically evaluated 
as in the gene expression comparison. Each epigenetic state counts10 for one 
compartment category was normalized by total epigenetic mark number of that 
compartment category and compared between ES and fetal brains.  
TAD analysis 
We conducted TAD-level analysis as described previously12. Shortly, we quantified the 
directionality index by calculating the degree of upstream or downstream (2Mb) 
interaction bias of a given bin, which was processed by a hidden Markov model (HMM) 
to remove hidden directionality bias.  



Regions in between TADs are titled as TAD boundaries when the regions are smaller 
than 400kb and unorganized chromatin when the regions are larger than 400kb.  
TAD-based epigenetic changes upon differentially expressed genes 
Genes were subdivided into 20 groups based on expression FC between ES and most 
differentiated neuronal states in CORTECON17: genes that are upregulated and 
downregulated upon differentiation were grouped into 10 quantiles, respectively, based 
on the FC. TADs into which genes from one subdivision reside were selected, and 
epigenetic state changes (from Epigenomic roadmap’s 15 state epigenetic marks in ES 
and fetal brains10) in those TADs were normalized with TAD length and compared 
between ES and fetal brains. As different types of epigenetic marks have different 
absolute numbers (e.g. there are more quiescent states than enhancer states in the 
genome), each epigenetic state change was scaled across different quantiles to allow 
comparison between different states.  
Identification of Hi-C interacting regions  
We identified Hi-C interacting regions and target genes for (1) human-gained 
enhancers8, (2) expression quantitative trait loci (eQTL) SNPs24, and (3) schizophrenia 
SNPs9. As the highest resolution available for the current Hi-C data was 10kb, we 
assigned these enhancers/SNPs to 10kb bins, obtained Hi-C interaction profile for 1Mb 
flanking region (1Mb upstream to 1Mb downstream) of each bin. We also made a 
background Hi-C interaction profile by pooling (1) 255,698 H3K27ac sites from frontal 
and occipital cortex at 12 PCW for human-gained enhancers8 and (2) 9,444,230 imputed 
SNPs for eQTL and schizophrenia SNPs9. To avoid significant Hi-C interactions affecting 
the distribution fitting as well as parameter estimation, we used the lowest 95 percentiles 
of Hi-C contacts and removed zero contact values. Using these background Hi-C 
interaction profiles, we fit the distribution of Hi-C contacts at each distance for each 
chromosome using fitdistrplus package (Extended Data Fig. 4a). Significance for a 
given Hi-C contact was calculated as the probability of observing a stronger contact 
under the fitted Weibull distribution matched by chromosome and distance. P-values 
were adjusted by computing FDR, and Hi-C contacts with FDR<0.01 were selected as 
significant interactions. Significant Hi-C interacting regions were overlapped with 
GENCODE19 gene coordinates (including 2kb upstream to transcription start sites 
(TSS) to allow detection of enhancer-promoter interactions) to identify interacting genes. 
Same analysis was performed on Hi-C contact maps from CP, GZ, and ES11. To 
address the functional significance of target genes, GO enrichment was performed for 
the interacting genes.  
Protein-coding genes interacting with human-specific evolutionary enhancers  
Protein-coding genes based on biomaRt (GENCODE19) were selected and non-
synonymous substitution (dN)/synonymous substitution (dS) ratio was calculated for 
homologs in mouse, rhesus macaque, and chimpanzee for representation of mammals, 
primates, and great apes, respectively. Log2(dN/dS) distributions for protein-coding 
genes interacting vs. non-interacting to human-specific evolutionary enhancers in each 
lineage were then compared by two-sample Kolmogorov-Smirnov test. 
LncRNAs interacting with human-specific evolutionary enhancers  
Long non-coding RNAs (lncRNAs) classified according to evolutionary lineages22 were 
used to assess whether lineage-specific lncRNAs are interacting to human-specific 
evolutionary enhancers. We randomly selected the same number of enhancers (2,104) 
to the human-specific ones from the total enhancer pool (255,698), identified interacting 
regions based on the null distribution generated from a background enhancer interaction 
profile. Significant interacting regions (FDR<0.01) identified by Hi-C were intersected 



with lncRNA coordinates22 and interacting lncRNAs for each lineage were counted. This 
step was repeated for 3,000 times to obtain the lncRNA lineage distribution. LncRNAs 
interacting with human-specific evolutionary enhancers were also identified and 
enrichment was tested by calculating P-values as the probability of observing more 
interacting lncRNAs for a given lineage under the null lncRNA lineage distribution.  
Epigenetic state enrichment for Hi-C interacting regions 
The functional framework for (1) eQTL SNPs, (2) schizophrenia SNPs, and (3) human-
gained enhancers-interacting regions was assessed for epigenetic state enrichment. We 
implemented the same approach as in GREAT29 to analyze the epigenetic state 
enrichment for cis-regulatory regions. For example, to evaluate whether schizophrenia 
SNPs are enriched with DHS, fraction of genome annotated with DHS (p), the number of 
schizophrenia SNPs (n), and number of schizophrenia SNPs overlapping with DHS (s) 
were calculated. Significance of the overlaps was tested by binomial probability of P = 
Prbinom (k ≥ s | n = n, p = p)29. Histone marks and 15-chromatin states from fetal brains, 
adult frontal cortex, and IMR9010 were used for epigenetic state enrichment.  
eQTL analysis 
To address whether co-localization mediates gene regulation, we compared the 
association between chromosome conformation with eQTL. Although fetal brain eQTL 
data would be optimal, since this data is currently not available, we analyzed adult 
frontal cortex cis-acting eQTL data24. We selected SNPs associated with gene 
expression (FDR<0.01) and clustered them with association P<1×10-5 and r2>0.6 to 
obtain index SNPs. Using summary association statistics and linkage disequilibrium (LD) 
structure for each index SNP, we applied CAVIAR25 to quantify the probability of each 
variant to be causal. Among 121,273,364 SNP-transcript pairs from frontal cortex eQTL 
data, this process resulted in 42,190 SNP-transcript pairs (267 transcripts and 14,882 
SNPs) that are potentially credible. We refer to 14,882 credible SNPs as credible SNPs. 
Credible SNP interacting genes were identified as described in “identification of Hi-C 
interacting regions” section.  
Fisher’s exact test was performed to evaluate the significance of the overlap between Hi-
C interacting genes and eQTL transcripts. The background gene list for Fisher’s exact 
test includes genes located in 1Mb flanking regions to credible SNPs that are also tested 
in eQTL analysis. 
For 42,190 SNP-transcript pairs, we assigned credible SNPs and genes into 10kb bins, 
and obtained Hi-C contacts between credible SNPs and genes from the 10kb binned Hi-
C contact maps. As a gene can span across multiple 10kb bins, the highest interaction in 
the gene to a credible SNP was selected as Hi-C contacts as previously defined30. We 
also calculated expected interaction frequency from the normalized 10kb binned contact 
matrix based on the distance between two bins. Opposite interaction frequency was 
calculated by obtaining Hi-C contacts for the opposite site to the credible SNP with the 
same distance. Because interaction counts differ in different chromosomes as well as in 
different cell types, we normalized interaction by chromosomes and cell types. We 
performed one-way ANOVA and Tukey’s posthoc test for the comparison between 
different interaction paradigms.    
Identification of credible SNPs for schizophrenia GWAS loci  
128 LD-independent SNPs with genome-wide significance (P<5×10-8)9 were used as 
index SNPs to obtain schizophrenia credible SNPs. All SNPs that are associated with 
P<1×10-5 and in LD (r2>0.6) with an index SNP were selected, and correlations among 
this set of SNPs (LD structure) were calculated. CAVIAR was applied to summary 
association statistics and LD structure for each index SNP, and potentially causal SNPs 



for each index SNP were identified. Among 55,000 SNPs that are in LD with 128 index 
SNPs, 7,613 SNPs were selected as causal by CAVIAR. Here we refer to these 
CAVIAR-identified SNPs as credible SNPs. Genes interacting to credible SNPs were 
identified as described in “identification of Hi-C interacting regions” section for CP, GZ, 
and ES. A separate set of credible SNPs initially reported from the original study was 
also processed with the same method9. 
Identification of schizophrenia GWAS SNP-associated genes  
We classified credible SNPs based on potential functionality (flow chart in Extended 
Data Fig. 7). For credible SNPs classified as functional (stop gained variant, frameshift 
variant, splice donor variant, NMD transcript variant, and missense variant) from 
biomaRt, we selected genes in which those SNPs locate. For those that are not directly 
affecting the gene function, we selected SNPs that fall onto the promoter and TSS of 
genes (2kb upstream-1kb downstream to TSS). Remaining SNPs were tested for Hi-C 
interaction so that Hi-C interacting genes were identified. This pipeline gives total ~900 
genes potentially associated with GWAS SNPs.  
Identification of closest genes and LD genes 
Closest genes to human-gained enhancers and schizophrenia index SNPs were 
obtained by closestBed command from bedtools. Gene coordinates from GENCODE19 
including 2kb upstream to TSS were used to identify the closest genes.  
LD genes refer to all genes in the LD. Here, LD is defined as physically distinct 
schizophrenia-associated 108 genome-wide significant regions9. We overlapped gene 
coordinates from GENCODE19 with LD regions to find genes that reside in LD.  
Closest genes and LD genes were compared with Hi-C interacting genes. Venn 
diagrams were generated by Vennerable package in R. Only protein-coding genes were 
included in plotting Venn diagrams.  
Calculation of distance between SNPs and genes  
For LD genes and closest genes, the shortest distance between an index SNP and a 
target gene was selected. For credible SNPs, (1) the distance between functional 
credible SNPs and target genes was set as 0, because functional SNPs reside in the 
gene, (2) the distance between promoter credible SNPs and target genes was calculated 
as the distance between SNPs and TSS of a gene, (3) the distance between credible 
SNPs and Hi-C interacting genes was calculated based on the distance between SNPs 
and Hi-C interacting bins (note that this distance has a unit of 10kb). We then combined 
the distance distributions from the 3 categories.  
  



Figure Legends 
Figure 1. Chromosome conformation in fetal brains reflects genomic features. a. 
Representative heatmap of the chromosome contact matrix of CP. Normalized contact 
frequency (contact enrichment) is color-coded according to the legend on the right. b. 
Pearson correlation of the leading principle component (PC1) of inter-chromosomal 
contacts at 100kb resolution between in vivo cortical layers and non-neuronal cell types 
(ES and IMR90). c. Spearman correlation of PC1 of chromatin interaction profile of fetal 
brain (GZ) with GC content (GC), gene number, DNase I hypersensitivity (DHS) of fetal 
brain, and gene expression level in fetal laminae. d. GO enrichment of genes located in 
the top 1000 highly interacting inter-chromosomal regions specific to CP vs. GZ (left), 
and CP vs. ES (right), indicating that genes located on dynamic chromosomal regions 
are enriched for neuronal development. e. The top 2% highest interacting regions of fetal 
brains both at GZ and CP (High) show positive correlation in gene expression, while the 
top 2% lowest interacting regions (Low) and top 2% highly variant regions (Variant) have 
no skew in distribution. P-values from Kolmogorov–Smirnov test. f. The epigenetic state 
combination in inter-chromosomal interacting regions in GZ. Inter-chromosomal contact 
frequency map is compared to epigenetic state combination matrix by Fisher’s exact test 
to calculate the enrichment of shared epigenetic combinations in interacting regions. 
Enhancers (TxEnh5', TxEnh3', TxEnhW, EnhA1), transcriptional regulators (TxReg), and 
transcribed regions (Tx) interact highly to each other as marked in red. Colored bars on 
the left represent epigenetic marks associated with promoters and transcribed regions 
(orange), enhancers (red), and repressive marks (blue). Chr, chromosome. Annotation 
for epigenetic marks described in 

http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  

 

Figure 2. Compartment and TADs provide insights into gene regulatory 
mechanism. a. Leading principal component (PC1) of the intra-chromosomal contact 
matrix in CP, GZ, and ES, with the DNase I hypersensitivity (DHS) fold change (FC) 
between ES and fetal brain (FB). PC1 values indicate compartment status of a given 
region, where positive PC1 represents compartment A (red), and negative PC1 
represents compartment B (green). b.  Distribution of gene expression FC (left) and DHS 
FC (right) for genes/regions that change compartment status (“A to B” or “B to A”) or that 
remain the same (“stable”) in different cell types. P-values from one-way ANOVA. c. GO 
enrichment of genes that change compartment status from A to B (top) and B to A 
(bottom) in CP to GZ. d. Heatmap of PC1 values of the genome that change 
compartment status in different cell types. e. Percentage of epigenetic marks for 
genomic regions that change compartment status between ES and CP. Note that B to A 
shift in ES to CP is associated with increased proportion of active transcribed regions 
(TssA and Tx) and enhancers (Enh, top), while A to B shift in ES to CP is associated 
with increased proportions of repressive marks (Het and ReprPCWk, bottom). P-values 
from Fisher’s exact test. f. Epigenetic changes in topological associating domains 
(TADs) mediate gene expression changes during neuronal differentiation. Genes were 
divided by expression FC between ES and differentiated neurons, and epigenetic marks 
in the TADs containing genes in each group were counted and compared between ES 
and CP. Upregulated genes in neurons locate in TADs with more active epigenetic 
marks in CP than in ES, while downregulated genes in neurons locate in TADs with 
more repressive marks in CP than in ES. Epigenetic states associated with activation 
and transcription of the genes were marked as a red bar, while those associated with 
repression were marked as blue bars on the right. Annotation for epigenetic marks 



described in http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp. 

 

Figure 3. Genetic architecture of human-gained enhancers. a. Fraction of epigenetic 
states for regions interacting to human-gained enhancers in CP and GZ. b. Proportions 
of whether human-gained enhancers and interacting regions are within the same 
topological associating domain (TAD) vs. outside of the TAD. c. Overlap between 
human-gained enhancer interacting genes (Hi-Cevol genes) in CP and GZ with closest 
genes to human-gained enhancers (left) and Hi-Cevol genes in ES (right). d. 
Representative interaction map of a 10kb bin, in which human-gained enhancers reside, 
with the corresponding 1Mb flanking regions. This interactome map provides genes of 
action that interact with human-gained enhancers. Chromosome ideogram and genomic 
axis on the top; Gene Model, gene model based on GENCODE19, possible target genes 
in red; Evol, genomic coordinate for a 10kb bin in which human-gained enhancers 
reside; -log10(P-value), P-value for the significance of the interaction between human-
gained enhancers and each 10kb bin, grey dotted line for FDR=0.01; TAD, TAD borders 
in CP, GZ, and ES. e. GO enrichment for Hi-Cevol genes in CP (left) and GZ (right). f. 
Number of primate-specific long non-coding RNAs (lncRNAs) interacting with human-
gained enhancers in CP (red vertical lines in the graph) against a background control 
generated from 3,000 permutations, where the number of lncRNAs interacting with the 
same number of enhancers pooled from all fetal brain enhancers was counted. g. 
Overrepresentation of Hi-Cevol genes in different tissues and closest genes with a 
curated set of intellectual disability (ID) risk genes. *P<0.05, **P<0.01, *** P<0.001. TSS, 
transcription start site; OR, odds ratio; GPCR, G-protein coupled receptor; Hi-C genes: 
GZ, CP, ES, Hi-Cevol genes in each tissue; Hi-C genes: FB, union of Hi-Cevol genes in GZ 
and CP; Hi-C genes: ES-specific, Hi-Cevol genes in ES but not in fetal brain (FB); Hi-C 
genes: FB-specific, Hi-Cevol genes in FB (union) but not in ES; Closest genes, closest 
genes to human-gained enhancers.  

 

Figure 4. Annotation of significant chromatin interactions for schizophrenia-
associated loci. a. Overlap between closest genes to index SNPs (Closest), genes 
locating in linkage disequilibrium (LD), and genes identified through SNP categorization 
and chromatin contacts in CP and GZ (Hi-CSCZ genes, diagram in Extended Data Fig. 
7). b. Number of closest genes and LD genes that interact to credible SNPs (Hi-C 
supported) and those that do not interact to credible SNPs (Hi-C non-supported, top). 
Number of genes that interact to credible SNPs that are closest to or in LD with index 
SNPs (Hi-C genes), and not closest to or in LD with index SNPs (Hi-C genes not, 
bottom). Note that Hi-C genes here contain physically interacting genes, but not genes 
identified by functional SNPs or promoter SNPs. c. Distance between CAVIAR/index 
SNPs and their target genes for closest genes to index SNPs (Closest), genes locating 
in linkage disequilibrium (LD), and Hi-CSCZ genes in CP (CP) and GZ (GZ) d. GO 
enrichment for Hi-CSCZ genes in CP (left) and GZ (right). e. Representative interaction 
map of a 10kb bin, in which credible SNPs reside, to the corresponding 1Mb flanking 
regions. This interactome provides target genes interacting to credible SNPs-containing 
region. Chromosome ideogram and genomic axis on the top; Gene Model, gene model 
based on GENCODE19, possible target genes in red; SNP, genomic coordinate for a 
10kb bin in which credible SNPs locate; -log10(P-value), P-value for the significance of 
the interaction between credible SNPs and each 10kb bin, grey dotted line for 
FDR=0.01; GWAS loci, LD region for the index SNP; TAD, topological associating 
domain borders in CP, GZ, and ES. 
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Extended Data Figure 1. Basic characterization of Hi-C libary. a. Hi-C library 
sequencing information. Percentage for double-stranded (DS) reads indicates 
percentage of DS reads to all reads, and percentage for valid pairs and filtered reads 
indicates percentage of valid pairs and filtered reads to DS reads. b. Frequency 
distribution of Hi-C contacts in GZ (left) and CP (right) c. Size distribution of topological 
associating domains (TADs) in GZ (left) and CP (right). d. Size distribution of genomic 
regions in between TADs that are less than 400kb (TAD boundaries) in GZ (left) and CP 
(right). e. Size distribution of genomic regions in between TADs that are bigger than 
400kb (unorganized chromosome) in GZ (left) and CP (right). Cis ratio, ratio of cis (intra-
chromosomal) reads to the total number of reads; chr, chromosome. 
Extended Data Figure 2. Chromosome conformation is associated with various 
genomic features. a. Spearman correlation of principal components (PCs) of chromatin 
interaction profile of CP with GC content (GC), gene number, DNase I hypersensitivity 
(DHS), and gene expression level of fetal brains. b. GO enrichment of genes located in 
the top 1000 regions that gain inter-chromosomal interactions in CP compared to ES 
(upper left), ES compared to CP (upper right), CP compared to GZ (lower left), and GZ 
compared to CP (lower right). c. Top 5% (left) and 10% (middle) highest interacting 
regions both in GZ and CP (High) show positive correlation in gene expression, while 
low interacting regions (Low) and variant interacting regions (Variant) have no skew in 
distribution. (Right) Mean (top) and median (bottom) values for gene expression 
correlation for high, low, and variant interacting regions with different cutoffs, indicating 
that higher the interaction, higher the correlation of gene expression. d. Percentage of 
epigenetic marks for genomic regions that change compartment status between ES and 
GZ. Note that B to A shift in ES to GZ is associated with increased proportion of active 
transcribed regions (TssA and Tx) and enhancers (Enh, top), while A to B shift in ES to 
GZ is associated with increased proportions of repressive marks (Het and ReprPCWk, 
bottom). P-values from Fisher’s exact test. Annotation for epigenetic marks described in 
a core 15-state model from  
http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  
Extended Data Figure 3. Interacting regions share epigenetic states. a. Epigenetic 
state combination in inter-chromosomal interacting regions in CP. Enhancers (TxEnh5', 
TxEnh3', TxEnhW, EnhA1), transcriptional regulatory regions (TxReg), and transcribed 
regions (Tx) interact highly to each other as marked in red. b-c. Epigenetic state 
combination in intra-chromosomal interacting regions in GZ (b) and CP (c). Enhancers 
(TxEnh5', TxEnh3', TxEnhW, EnhA1) and transcriptional regulatory regions (TxReg) 
interact highly to promoters (PromD1, PromD2) and transcribed regions (Tx5', Tx) as 
marked in red. Inter- and intra-chromosomal contact frequency map is compared to 
epigenetic state combination matrix by Fisher’s exact test to calculate the enrichment of 
shared epigenetic combinations in interacting regions. Colored bars on the left represent 
epigenetic marks associated with promoters and transcribed regions (orange), 
enhancers (red), and repressive marks (blue). Annotation for epigenetic marks described 
in a 25-state model from 
http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  
Extended Data Figure 4. Characterization of chromatin interactome of human-
gained enhancers. a. Distribution fitting of normalized chromatin interaction frequency 
between human-gained enhancers with 1Mb upstream (top) and 100kb upstream 
(bottom) regions. Weibull distribution (red line) fits Hi-C interaction frequency the best for 
every distance range. b. Distribution of the number of significant interacting loci to 
human-gained enhancers in GZ (top), CP (middle), and ES (bottom). c. Fraction of 
histone states (left) and epigenetic mark enrichment (right) for regions interacting with 



human-gained enhancers in GZ and CP. CDF, cumulative distribution function; 
Annotation for epigenetic marks described in  
http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  
Extended Data Figure 5. Human-gained enhancers interact to evolutionary 
lineage-specific long non-coding RNAs (lncRNAs). a. Protein-coding genes 
interacting with human-gained enhancers in CP (CP) and GZ (GZ) have lower	   non-
synonymous substitutions (dN)/synonymous substitutions (dS) ratio compared to 
protein-coding genes non-interacting to human-gained enhancers (All) in mammals 
(mouse), primates (rhesus macaque), and great apes (chimpanzee), indicative of 
purifying selection. b. Number of lineage-specific lncRNAs interacting to human-gained 
enhancers (red vertical lines in the graph) in GZ (top) and CP (bottom). Null distribution 
generated from 3,000 permutations, where the number of lncRNAs interacting to the 
same number of enhancers pooled from all fetal brain enhancers was counted. 
Extended Data Figure 6. Association between eQTL and Hi-C interaction. a. 
Overlap between eQTL transcripts and genes physically interacting to eQTL SNPs in CP 
and GZ. Significance of the overlap between eQTL transcripts and Hi-C interacting 
genes described in the upper right (Fisher’s exact test). Background gene list for Fisher’s 
exact test is all transcripts assessed in eQTL study within 1Mb from eQTL SNPs. b-d. 
Histone state enrichment for eQTL SNPs in adult frontal cortex (FCTX, b), fetal brain 
(FB, c), and IMR90 (d). e. Hi-C interaction frequency between eQTL SNPs and 
transcripts is greater than expected by chance in the relevant cell type. Lowess smooth 
curve plotted with actual data points. CP, chromatin contact frequency in CP; GZ, 
chromatin contact frequency in GZ; ES, chromatin contact frequency in ES; Exp, 
expected interaction frequency given the distance between two regions; Opp, opposite 
interaction frequency: interaction frequency of SNPs and transcripts when the position of 
genes was mirrored relative to the eQTL SNP. ***P<0.001, P-values from repeated 
measure of ANOVA. 
Extended Data Figure 7. Defining schizophrenia risk genes based on functional 
annotation of credible SNPs. Credible SNPs were selected using CAVIAR and 
categorized into functional SNPs, SNPs that fall onto gene promoters, and un-annotated 
SNPs. Histone state enrichment of credible SNPs was assessed in fetal brain (FB) and 
adult frontal cortex (FCTX). Functional SNPs and promoter SNPs were directly assigned 
to the target genes, while un-annotated SNPs were assigned to the target genes via Hi-
C interactions in CP and GZ. GO enrichment for genes identified by each category is 
shown in the bottom. NMD, nonsense-mediated decay; TSS, transcription start site.  
Extended Data Figure 8. Representative interaction maps for credible SNPs to 1Mb 
flanking regions. Interaction maps provide gene of actions for credible SNPs based on 
physical interaction. Chromosome ideogram and genomic axis on the top; Gene Model, 
gene model based on GENCODE19, possible target genes in red; SNP, genomic 
coordinate for a 10kb bin in which credible SNPs locate; -log10(P-value), P-value for the 
significance of the interaction between credible SNPs and each 10kb bin, grey dashed 
line for FDR=0.01; GWAS loci, linkage disequilibrium (LD) region with the index SNP; 
TAD, TAD borders in CP, GZ, and ES.  
Extended Data Figure 9. GO enrichment for schizophrenia risk genes curated by 
various methods. a-b. GO enrichment for the closest genes to index SNPs (a) and 
genes in linkage disequilibrium (LD) with index SNPs (b) that are identified by a 
schizophrenia risk gene assessment pipeline in Extended Data Fig. 7 (right) vs. not 
(left). c. GO enrichment for schizophrenia risk genes identified by a pipeline in Extended 
Data Fig. 7 that are neither the closest genes nor in LD to index SNPs. Intersect and 



union between CP and GZ in left and right, respectively. Venn diagrams are marked in 
orange to depict the gene list assessed for GO enrichment.  
Extended Data Figure 10. Defining schizophrenia risk genes based on functional 
annotation of another set of credible SNPs. Credible SNPs defined in the original 
study were categorized into functional SNPs, SNPs that fall onto gene promoters, and 
un-annotated SNPs. Overlap between credible SNPs identified by CAVIAR and credible 
SNPs originally identified indicates that two credible SNP lists overlap with each other. 
Histone state enrichment of credible SNPs in fetal brain (FB) and adult frontal cortex 
(FCTX). Functional SNPs and promoter SNPs were directly assigned to the target 
genes, while un-annotated SNPs were assigned to the target genes via Hi-C interactions 
in CP and GZ. GO enrichment for genes identified by each category and combined gene 
list is shown in the bottom. NMD, nonsense-mediated decay; TSS, transcription start 
site.  
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Cell type Cis ratio All reads DS mapped reads Valid pairs Filtered reads
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CP: interchromosomal
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Functional SNPs (1,452)
-Frameshift variant
-Stop-gained variant
-Splice-donor variant
-NMD transcript variant
-Missense variant

SNPs on promoters (552)
-2kb upstream to 
1kb downstream 
of TSS

Remaining SNPs (5,609)
-Hi-C interactions
to 1Mb flanking regions
-Interacting genes
with FDR<0.01

CAVIAR SNPs (7,613)

55,000 SNPs that are LD (r2>0.6) with SCZ index 128 SNPs 

CAVIAR

GZ: 778 genes112 genes 211 genes

GZ: 922 genes
CP: 911 genes
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cell cycle phase 
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synaptic membrane 
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regulation of neuron differentiation 
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subunit organization 
RNA splicing 
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regulation of Ras protein  
signal transduction  
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M phase of mitotic cell cycle 
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negative regulation of 
cellular protein metabolic process 

M phase of mitotic cell cycle 
neuron projection development 
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cell polarity 

nuclear matrix 
positive regulation of 
cytokine production 

double-strand break repair 

Ras GTPase binding 

regulation of translation 
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neuron projection development 

nitrogen compound transport 

RNA binding 
posttranscriptional regulation of 

gene expression 
negative regulation of transport 

mitotic cell cycle 

negative regulation of cell proliferation 

cellular process involved in reproduction 

endosome membrane 

organic substance transport 

neurotransmitter binding 

postsynaptic density 

calcium ion transmembrane transport 

M phase of mitotic cell cycle 

adult behavior 

dioxygenase activity 
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Summary 1 
We apply transcriptome-wide RNA sequencing in postmortem autism spectrum disorder (ASD) 2 

brain and controls and identify convergent alterations in the noncoding transcriptome, including primate 3 
specific lncRNA, and transcript splicing in ASD cerebral cortex, but not cerebellum. We characterize an 4 
attenuation of patterning between frontal and temporal cortex in ASD and identify SOX5, a transcription 5 
factor involved in cortical neuron fate specification, as a likely driver of this pattern. We further show that a 6 
genetically defined subtype of ASD, Duplication 15q Syndrome, shares the core transcriptomic signature of 7 
idiopathic ASD, indicating that observed molecular convergence in autism brain is the likely consequence 8 
of manifold genetic alterations. Using co-expression network analysis, we show that diverse forms of 9 
genetic risk for ASD affect convergent, independently replicated, biological pathways and provide an 10 
unprecedented resource for understanding the molecular alterations associated with ASD in humans. 11 
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Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by deficits in 1 
social communication and mental flexibility1. Genetic risk factors contribute substantially to ASD risk, and 2 
recent studies support the potential contribution of more than a thousand genes to ASD risk2-4. However, 3 
given the shared cognitive and behavioral features across the autism spectrum, one hypothesis is that diverse 4 
risk factors may converge on common molecular, cellular, and circuit level pathways to result in the shared 5 
phenotype5,6. Analysis of the transcriptome has been used to identify common molecular pathways in the 6 
cerebral cortex (CTX) from postmortem human brain tissue in individuals with ASD7-11. However, all 7 
transcriptomic studies in ASD to date have been limited to evaluating highly expressed mRNAs 8 
corresponding to protein coding genes. Moreover, most lack rigorous replication and do not assess gene 9 
expression patterns across brain regions. 10 We used rRNA-depleted RNA-seq (Methods) to evaluate transcriptomes from a large set of ASD 11 
and control (CTL) brain samples including neocortex (frontal and temporal) and cerebellum across 79 12 
individuals (46 ASD, 33 CTL, 205 samples, Extended Data Fig. 1a-e, Supplementary Table 1). We first 13 
compared differential gene expression (DGE) between ASD and CTL individuals in CTX from a previously 14 
published7 microarray study against new, independent gene expression profiles from RNA-seq to evaluate 15 
global reproducibility of DGE in ASD. We found a high degree of replication of DGE fold changes between 16 
the sample sets, despite evaluation on different gene expression platforms (fold changes at P < 0.05 in 17 
previously evaluated data correlate with new data with R2 = 0.60, Extended Data Fig. 1f). We observed a 18 
much weaker overall signal and replication in cerebellum (R2 = 0.033, Extended Data Fig. 1g). These 19 
analyses confirm the existence of a reproducible DGE signature in ASD CTX across different platforms and 20 
in independent samples.  21 

We next combined samples from all individuals with idiopathic ASD into a covariate-matched 22 
“ASD Discovery Set” (Extended Data Fig. 1h) for CTX (106 samples, 26 ASD, 33 CTL individuals) and 23 
held out remaining samples for replication (“ASD Replication Set”, Methods). For DGE analysis, we used a 24 
linear mixed effects model that accounts for biological and technical covariates (Methods) to identify 1156 25 
genes differentially expressed in ASD CTX, 582 increased and 574 decreased (Benjamini-Hochberg FDR ≤ 26 
0.05, Supplementary Table 2). Importantly, DGE analysis with additional covariates or different 27 
assumptions about the distribution of the data and test statistics yielded similar results (Extended Data Fig. 28 
2a). Additionally this DGE signature clusters over two-thirds of ASD samples together and this clustering is 29 
not related to confounding factors such as cortical region, age, sex, and RNA quality (Figure 1a, Extended 30 
Data Fig. 2b). The most significantly down-regulated gene was PVALB (fold change = 0.53, FDR ≤ 0.05), a 31 
marker for GABAergic interneurons. SST, a marker for a different subpopulation of GABAergic 32 
interneurons, is also among the most downregulated (fold change = 0.61, FDR ≤ 0.05). Other down-33 
regulated genes at FDR ≤ 0.05 include NEUROD6, involved in neuronal differentiation (fold change = 34 
0.60), multiple ion channels, and KDM5D, a lysine demethylase (fold change = 0.66). In contrast, members 35 
of the complement cascade implicated in microglial-neuronal interactions (C4A, fold change = 1.94; C1QB, 36 
fold change = 1.65; both FDR ≤ 0.05) are upregulated in ASD CTX. Gene Ontology (GO) term enrichment 37 
analysis further supports the involvement of pathways implicated by these genes (Figure 1b), confirming 38 
previous findings7. Moreover, the upregulated set is enriched for astrocyte and microglia enriched genes, 39 
and the down-regulated set is enriched for synaptic genes (Extended Data Fig. 2c), consistent with previous 40 
observations7,11. 41 

We next sought to evaluate whether the transcriptional signature identified in the ASD Discovery Set 42 
generalizes to the ASD Replication set by assessing the 1st principal component of the DGE set, which 43 
summarizes the DGE expression pattern across all cortical samples. The ASD Discovery Set and ASD 44 



 4

Replication Set share this pattern, which is significantly different for both sets compared to CTL (Figure 1 
1c). Moreover, this pattern is highly associated with ASD diagnosis, but not other biological factors, 2 
technical factors, or scores on sub-domains of an ASD diagnostic tool (Figure 1d). These analyses 3 
demonstrate that convergent differences in ASD CTX are reproducible in independent samples and are not 4 
related to confounding factors.  5 
 We also detected 2715 lncRNAs expressed in cerebral cortex (after careful filtering for high-6 
confidence transcripts, Supplementary Information), of which 62 were significantly dysregulated between 7 
ASD and CTL (33 long intergenic RNAs, lincRNAs; 19 antisense transcripts; and 10 processed transcripts 8 
at FDR ≤ 0.05). Similar to the protein coding genes, these transcripts’ expression patterns cluster ASD and 9 
CTL samples (Figure 1e). Most of these lncRNAs are developmentally regulated12, have chromatin states 10 
indicative of transcription start sites (TSSs) near their 5´ end in brain13, and are identified in other 11 
datasets12,14 consistent with being valid, functional lncRNAs. Moreover, most (81%) exhibit primate-12 
specific expression patterns in brain15 (Supplementary Information). For example, Figure 1f depicts two 13 
lincRNAs, LINC00693 and LINC00689, which are typically downregulated during development, yet are 14 
upregulated in ASD CTX relative to controls (Figure 1g), which we validated by RT-PCR (Extended Data 15 
Fig. 2d). LINC00693 sequence is present, but poorly conserved in mouse, while LINC00689 is primate-16 
specific (present in macaque and other primates but not in any other species, Supplementary Information, 17 
Extended Data Fig. 3 for additional examples). These data indicate that dysregulation of lncRNAs, many of 18 
which are primate-specific and involved in brain development, is an important component of transcriptome 19 
dysregulation observed in ASD.  20 

Previous work suggested that alterations in transcript splicing may contribute to transcriptomic 21 
changes in ASD7,16,17 by evaluating splicing in a targeted manner and pooling samples across 22 
individuals7,16,17. Given the increased sequencing depth and reduced sequencing bias across transcript length 23 
in our dataset, we were able to perform an unbiased genome-wide analysis of differential alternative splicing 24 
(AS). We evaluated the percent spliced in (PSI, Extended Data Fig. 4a) for 34,025 AS events in CTX across 25 
the ASD Discovery Set, encompassing skipped exons (SE), alternative 5´ splice sites (A5SS), alternative 3´ 26 
splice sites (A3SS), and mutually exclusive exons (MXE) using the MATS pipeline18 (Supplementary 27 
Information). We first asked whether there was a global signal, finding significant enrichment over 28 
background (Extended Data Fig. 4b). We identified 1127 events in 833 genes at FDR ≤ 0.5 in CTX (similar 29 
to the number of events at uncorrected P < 0.005). Importantly, we obtained similar results with a different 30 
splice junction mapping and quantification approach (Extended Data Fig. 4c). 31 

We performed PCR validations with nine AS events from the differential splicing set (ASTN2, 32 
MEF2D, ERC2, MED31, SMARCC2, SYNE1, NRCAM, GRIN1, NCAM) and found that validated changes in 33 
splicing patterns were concordant with RNA-seq (Extended Data Fig. 4d-e), demonstrating that our 34 
approach identifies alterations in AS with high specificity. Similar to our observations with lncRNA and 35 
DGE, AS changes clustered the samples by diagnosis (Figure 2a). The most significantly different event 36 
was the inclusion of an exon in ASTN2 (ΔPSI = 5.8 indicating a mean of 5.8% difference in inclusion in 37 
ASD vs CTL; P = 7.8x10-6), a gene implicated by copy number variation (CNV) in ASD and other 38 
developmental disorders19. GO term analysis of the genes implicated by these pathways indicates 39 
involvement of biological processes related to neuronal projection, biological adhesion, and morphogenesis 40 
(Figure 2b), pathways where alternative isoforms are critical to specifying interactions between protein 41 
products. Moreover, the 1st principal component of the cortex differential splicing signature replicates in the 42 
ASD Replication Set and is not associated with other biological or technical factors (Figures 2c-d, Extended 43 
Data Fig. 5a). Importantly, many splicing alterations occur in genes that are not differentially expressed 44 
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between ASD and CTL; removing AS events on genes exhibiting even nominal DGE (P < 0.05), still 1 
identified a strong difference between ASD and CTL CTX  (Extended Data Fig. 5b). 2 

A parallel analysis in cerebellum evaluating 32,954 AS events found no differentially regulated 3 
events significant at any multiple comparison correction thresholds (Extended Data Fig. 5c, Supplementary 4 
Table 3). There was no detectable global overlap between cerebellum and CTX above chance for events 5 
significant at P < 0.05 in both comparisons (fold enrichment = 1.1, P = 0.21). This suggests that AS 6 
alterations in ASD are largely confined to CTX cell types, consistent with the stronger overall DGE patterns 7 
observed in CTX versus cerebellum. 8 

To further explore the underlying biology of AS dysregulation, we tested whether the shared splicing 9 
signature in ASD might be a product of perturbations in AS factors known to be important to neural 10 
development or preferentially expressed in neural tissue. We found that the expression levels of RBFOX1, 11 
RBFOX2, SRRM4, NOVA1, and PTBP1 all had high correlations (R2 > 0.35, FDR ≤ 0.05) to AS alterations 12 
in CTX (Figure 2e), but not in cerebellum (Figure 2f). Furthermore, enrichment analysis revealed that most 13 
changes in cortical AS occur in neuron-specific exons that are excluded in ASD (exons with ΔPSI > 50% in 14 
neurons overlap with exons excluded in ASD CTX, fold enrichment = 4.1, P = 1.8x10-7, Extended Data Fig. 15 
5d). 16 

To validate a regulatory relationship between splicing factors and these events, we evaluated 17 
experimental data from knockout, overexpression, and knockdown experiments for Rbfox120, SRRM421, 18 
and PTBP122, respectively . We found that exons regulated by each of these splicing factors were 19 
significantly enriched in the set of exons excluded in ASD (Figure 2g), while in contrast, there was no 20 
enrichment for targets of ESRP23, a splicing factor involved in epithelial cell differentiation but not 21 
expressed in CTX. This shows that alterations in three splicing factors dysregulated in ASD regulate AS of 22 
the neuron-specific exons whose inclusion is dysregulated in ASD in CTX and not cerebellum, indicating 23 
selective alteration of neuronal splicing in ASD CTX. Remarkably, the expression patterns of these three 24 
splicing factors (and others for which appropriate validation experiments were unavailable) results in 25 
distinct clusters (Extended Data Fig. 5e), suggesting that subsets of splicing factors act in different 26 
individuals to mediate a common downstream AS alteration. 27 

Taken together these results indicate global transcriptional alterations in ASD cerebral cortex, but 28 
not cerebellum at the level of protein coding transcripts, lncRNA and AS. Therefore, to determine how these 29 
different transcriptomic subcategories relate to each other in ASD, we compared the 1st PC for each type of 30 
transcriptomic alteration across individuals (Figure 2h).  Remarkably, the PCs are highly correlated (R2 > 31 
0.8) indicating that the transcriptomic alteration is a unitary phenomenon across protein coding, noncoding, 32 
and splicing levels, rather than distinct forms of molecular alteration. 33 

Previous analysis with gene expression microarrays in a small cohort suggested that the typical 34 
pattern of transcriptional differences between the frontal and temporal cortex may be attenuated in ASD7. 35 
To further test this possibility, we evaluated DGE between CTX regions (Supplementary Information) in 16 36 
matched frontal and temporal CTX sample pairs from ASD and CTL subjects and found 551 genes 37 
differentially expressed between regions in controls, but only 51 in ASD (FDR ≤ 0.05; Figure 3a). We refer 38 
to the set of 523 genes with this pattern in CTL, but not ASD as the “Attenuated Cortical Patterning” set. 39 
The attenuation of patterning is evident from the global distribution of test statistics between frontal and 40 
temporal CTX in ASD and CTL and genes in this set do not show a greater difference in variability in ASD 41 
versus controls compared to other genes (Kolmogorov-Smirnov test, two-tailed P = 0.11, Extended Data 42 
Fig. 6a).  43 



 6

We complemented this analysis with a machine learning approach using all 123 cortical samples, 1 
training a regularized regression model24 to classify frontal versus temporal CTX with independent gene 2 
expression data from BrainSpan25 (Extended Data Fig. 6b, Supplementary Information). Multiple 3 
approaches to training the classifier with BrainSpan can differentiate between frontal and temporal CTX in 4 
both CTL and ASD (Extended Data Fig. 6c-e), demonstrating that dissection and sample quality in our 5 
samples are of high quality. Loss of classification accuracy in ASD compared to CTL was observed when 6 
restricting the model to the genes with the most attenuated patterning in ASD (Extended Data Fig. 6f), 7 
demonstrating that attenuation of patterning generalizes across all samples. The Attenuated Cortical 8 
Patterning set includes multiple genes known to be involved in cell-cell communication and cortical 9 
patterning, such as PCDH10, PCDH17, CDH12, MET, and PDGFD, which was recently shown to mediate 10 
human specific aspects of cerebral cortical development26. GO term enrichment analysis of the Attenuated 11 
Cortical Patterning set identified enrichment for G protein coupled signaling, Wnt receptor signaling, and 12 
calcium binding, among several developmental processes (Figure 3b), and cell type enrichment analysis did 13 
not identify a strong preference for a particular cell type (Extended Data Fig. 6g).  14 

To identify potential drivers of the alteration in cortical patterning, we evaluated transcription factor 15 
binding site enrichment upstream of genes in the Attenuated Cortical Patterning set (Supplementary 16 
Information), and found an enrichment of SOX5 binding motifs (upstream of 364/523 genes, Figure 3c). 17 
Remarkably, SOX5 itself belongs to the Attenuated Cortical Patterning set: while SOX5 is differentially 18 
expressed between frontal and temporal CTX in CTL, it is not in ASD (Figure 3d). We thus predicted that if 19 
SOX5 regulates cortically patterned genes, its expression should correlate with target gene transcript levels. 20 
Consistent with this prediction, we found that genes in the Attenuated Cortical Patterning set are anti-21 
correlated with SOX5 in CTL CTX, but not in ASD CTX (Figure 3e, top left; Wilcoxon rank sum test of R 22 
values, P = 0.01), suggesting that the normal role of SOX5 as a transcriptional repressor may be disrupted in 23 
ASD. We reasoned that a true loss of SOX5-mediated cortical patterning would be specific to the predicted 24 
SOX5 targets. Consistent with this, we find a loss of correlations between SOX5 and predicted targets, but 25 
no difference in correlations between SOX5 and non-targets in the Attenuated Cortical Patterning set (Figure 26 
3e). Taken together, these findings show that a loss of regional patterning downstream of the transcriptional 27 
repressor SOX5, which plays a crucial role in glutamatergic neuron development27,28, contributes to the loss 28 
of regional identity in ASD.  29 

Gene expression changes in postmortem brain may be a consequence of genetic factors, 30 
environmental factors, or both. Brain tissue from individuals with ASD that harbor known, penetrant genetic 31 
causes are very rare. However, we were able to identify postmortem brain tissue from 8 subjects with one of 32 
the more common recurrent forms of ASD, Duplication 15q Syndrome (dup15q, which is present in about 33 
0.5-1% of ASD cases, see Extended Data Fig. 7a for characterization of duplications). We performed RNA-34 
seq across frontal and temporal cortex and compared DGE changes in dup15q with those observed in 35 
individuals with idiopathic ASD to better understand the extent to which the observed molecular pathology 36 
overlaps. As expected, most genes in the 15q11.1-13.2 duplicated region have higher expression in dup15q 37 
CTX compared to CTL (Figure 4a), although SNRPN and SNURF were notably downregulated. Conversely, 38 
no significant upregulation of genes in this region were identified in idiopathic ASD or controls. Strikingly, 39 
when we assessed genome-wide expression changes, we observed a strong signal of DGE in dup15q that 40 
widely overlaps with that of idiopathic ASD (fold changes at FDR ≤ 0.05 in dup15q correlate with 41 
idiopathic ASD with R2 = 0.79, Figure 4b). Moreover, the slope of the best-fit line through these changes is 42 
2.0, indicating that on average, the transcriptional changes in dup15q CTX are highly similar, but twice the 43 
magnitude of those observed in ASD CTX. 44 
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Next, we sought to evaluate AS changes in dup15q. There is only one significant splicing change in 1 
the dup15q region (Supplementary Table 3), consistent with the idea that duplication in this region 2 
duplicates all isoforms of the genes, resulting in minimal alteration of transcript structure. Similar to DGE, 3 
global AS analysis in dup15q CTX vs to CTL CTX revealed a stronger, but highly overlapping signature 4 
with idiopathic ASD CTX (fold changes at FDR ≤ 0.2 in dup15q agree correlate with idiopathic ASD with 5 
R2 = 0.66) indicating that splicing changes in dup15q syndrome recapitulate those of idiopathic ASD 6 
(Figure 4c). The slope of the best-fit line through the PSI for spliced exons in dup15q CTX compared to 7 
those in ASD CTX is 2.5 similar to DGE. Notably, both gene expression and AS changes in dup15q 8 
implicated similar pathways as those found in idiopathic ASD (Extended Data Fig. 7c-d). Clustering dup15q 9 
samples and CTL samples using both the DGE set and the differential AS set showed that all dup15q 10 
samples cluster together (Figure 4d), as opposed to the more variable clustering of idiopathic ASD, 11 
supporting the hypothesis that this shared genetic abnormality leads to a more homogeneous molecular 12 
phenotype. 13 

Next, to test whether this molecular ASD signature may be due to independent of postmortem or 14 
reactive effects (Supplementary Information), we compared our data with gene expression profiles from a 15 
iPSC-derived neurons (nIPSCs)29 from dup15q were available, we could use these data to definitively reveal 16 
which changes in dup15q CTX are independent of postmortem or reactive effects (Supplementary 17 
Information), since such effects are not present in vitro. We observe that DGE in the 15q region is 18 
concordant with that seen in the nIPSCs (Figure 4e), even though the sample size is small and the analysis is 19 
likely underpowered. Upregulated changes in dup15q are also seen in nIPSCs (Figure 4f), consistent with 20 
our other statistical analyses showing limited effects of potential confounders. The very immature, fetal state 21 
of the nIPSCs30 likely explains the absence of an enrichment signal for genes downregulated in postnatal 22 
ASD brain, which are enriched for genes involved in neurons with more mature synapses.  23 

We next applied gene network analysis to construct an organizing framework to understand shared 24 
biological functions across idiopathic ASD and dup15q (combining the ASD Discovery Set, ASD 25 
Replication Set, and dup15q set). We utilized Weighted Gene Co-expression Network Analysis (WGCNA), 26 
which identifies groups of genes with shared expression patterns across samples (modules) from which 27 
shared biological function is inferred.  Modules identified via WGCNA can than be related to a range of 28 
relevant phenotypes and potential confounders31,32. We applied signed co-expression analysis and used 29 
bootstrapping to ensure the network was robust, and not dependent on any subset of samples 30 
(Supplementary Information), while controlling for technical factors and RNA quality (“Adjusted FPKM” 31 
levels, Methods). WGCNA identified 16 co-expression modules (Extended Data Fig. 8a, Supplementary 32 
Table 2), which are further characterized by their association to ASD (Extended Data Fig. 8b), enrichment 33 
for cell-type specific genes (Extended Data Fig. 8c), and enrichment for GO terms (Extended Data Fig. 9). 34 
Of the downregulated modules, three are associated with ASD and dup15q (M1/10/17) and one with dup15q 35 
only (M11). Five of the upregulated modules are associated with ASD and dup15q (M4/5/6/9/12) and one is 36 
specific to dup15q (M13) (Figure 5a, top). Additionally, we identified a module strongly enriched for genes 37 
from the Attenuated Cortical Patterning set and Wnt signaling that contains SOX5 (M12; fold enrichment = 38 
3.0, P = 3x10-8), verifying the strong relationship observed between the Wnt pathway regulating TF SOX5 39 
and attenuation of cortical patterning33. 40 

Notably, the modules identified here significantly overlap with previous patterns identified in ASD 41 
(asdM12array and asdM16array

7; Figure 5a, middle). We found that the ASD-associated modules identified by 42 
our larger sample size and RNA-seq provide significant refinement of previous observations by identifying 43 
more discrete biological processes related to cortical development34, the post-synaptic density35, and 44 
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lncRNAs (Figure 5a, bottom). For example, M1 overlaps a subset of asdM12array (fold enrichment = 5.7) 1 
and developmental modules (devM16 fold enrichment = 3.7), and is enriched for proteins found in the PSD 2 
and genes involved in calcium signaling and gated ion channel signaling. Another subset of asdM12array, 3 
M10 (fold enrichment = 11) overlaps more with a mid-fetal upregulated cortical development module 4 
(devM13 fold enrichment = 4.0), and genes involved in secretory pathways and intracellular signaling. A 5 
third module, M17 shows the least overlap with asdM12array (fold enrichment = 2.2) and is related to energy 6 
metabolism. Notably, these three modules are enriched for neuron-specific genes (Extended Data Fig. 8c), 7 
but not all neuronal modules are down regulated in ASD (M3 is not altered in ASD CTX). Taken together, 8 
specific neurobiological processes are affected in individuals with ASD related to developmentally 9 
regulated neurodevelopmental processes. 10 

The most upregulated modules, M5 and M9, both strongly overlap (fold enrichments > 20) with 11 
previously identified upregulated co-expression module asdM16array. M5 is enriched for microglial cell 12 
markers and immune response pathways, whereas M9 is enriched for astrocyte markers and immune-13 
mediated signaling and immune cell activation (Extended Data Fig. 8c, Extended Data Fig. 9). This analysis 14 
clearly separates the contributions of the coordinated biological processes of microglial activation and 15 
reactive astrocytosis, which were previously not distinguishable as separate modules7. Thus, our analysis 16 
pinpoints more specific biological pathways in idiopathic ASD than those previously identified and reveals 17 
that similar changes occur downstream of the genetic perturbation in dup15q.  18 
 We evaluated the relationship between the five modules most strongly associated with ASD 19 
(M1/5/9/10/17, which are supported by module-trait association analysis and gene set enrichment analysis, 20 
Supplementary Information), and found that there was a remarkably high anti-correlation between the 21 
eigengene of M5 and downregulated modules, particularly M1 (R2 = 0.76) (Figure 5b). M1 (Figure 5c) is 22 
downregulated in ASD and enriched for genes at the PSD and genes involved in synaptic transmission, 23 
while M5 (Figure 5d) is enriched for microglial genes and cytokine activation. This strong anti-correlation 24 
between microglial signaling and synaptic signaling in ASD and dup15q provides evidence in humans for 25 
dysregulation of microglia-mediated synaptic pruning, as previously suggested36. 26 

Next, to determine the role of causal genetic variation, we evaluated enrichment of both rare genetic 27 
variants, focusing on genes affected by ASD associated gene disrupting (LGD) de novo mutations37, and 28 
common variants38,39. Genes within three modules, M1, M3, and M12, show enrichment for common 29 
variation signal for ASD (Figure 5e, Methods). Remarkably, M12 (Figure 5f), which is related to cortical 30 
patterning and Wnt signaling, also exhibit GWAS signal enrichment, providing the first evidence that risk 31 
conferred by common variation in ASD may affect regionalization of the cortex. Interestingly, M3 is 32 
significantly enriched for both schizophrenia (SCZ) and ASD common variants, is related to synaptic 33 
transmission, nervous system development, and regulation of ion channel activity (Extended Data Fig. 9), 34 
consistent with the notion that ASD and SCZ share common and rare genetic risk1,40-43. 35 

We only identified one module, M2 (Figure 5g), as significantly enriched in protein disrupting 36 
(nonsense, splice site, or frameshift) rare de novo variants previously associated with SCZ and ASD. M2 37 
overlaps with a cortical developmental module implicated in ASD34 (devM2 fold enrichment = 5.1). 38 
Notably, M2 is not differential between ASD and CTL in our dataset, consistent with the observation that 39 
these genes are primarily expressed during early neuronal development in fetal brain34. Remarkably, M2 40 
contains an unusually large fraction of lncRNAs (15% of the genes in M2 are classified as lncRNAs, while 41 
other modules are 1-5% lncRNA). We hypothesize that, in addition to protein coding genes involved in 42 
transcriptional and chromatin regulation, rare de novo variants may also affect lncRNAs in ASD, a 43 
prediction that will be testable once large sets of whole genome sequences are available. 44 
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 These combined transcriptomic and genetic analyses reveal that different forms of genetic variation 1 
affect biological processes involved in multiple stages of cortical development. Common genetic risk is 2 
enriched in M3, M1, and M12, which reflect early glutamatergic neurogenesis, later neuronal function, and 3 
cortical patterning, respectively. We also observe that rare de novo variation, which is enriched in M2, 4 
affects distinct biology related to transcriptional regulation and chromatin modification. These findings are 5 
consistent with transcriptomic analyses of early prenatal brain development and ASD risk mutations that 6 
implicate chromatin regulation and glutamatergic neuron development34,44.  7 

We provide the first comprehensive picture of largely unexplored aspects of transcription in ASD, 8 
lncRNA and alternative splicing, and identify a strong convergent signal in these, as well as protein coding 9 
genes7. These results will aid in interpreting genetic variation outside of the known exome, as whole 10 
genome sequencing supplants current methods. A role of lncRNAs has been previously explored in ASD45, 11 
but only two individuals were evaluated with targeted microarrays. We evaluate lncRNAs in an unbiased 12 
manner across many individuals, notably identifying an enrichment of lncRNAs in M2, most of which are 13 
uncharacterized in brain and arose on the primate lineage. The involvement of lncRNAs in this early 14 
developmental program that is enriched for de novo mutations implicated in ASD suggests their study will 15 
be particularly relevant to understanding the emergence of primate higher cognition on the mammalian 16 
lineage, and by extension human brain evolution15,46,47.  17 

We also provide the first confirmation of an attenuation of genes that typically show differential 18 
expression between frontal and temporal lobe in ASD CTX and further identified SOX5, known to regulate 19 
cortical laminar development50,51, as a putative regulator of this disruption. That M12, which is enriched for 20 
genes exhibiting cortical regionalization and is also enriched in ASD GWAS signal, supports the prediction 21 
that attenuation of patterning may be mediated by common genetic variation in or near the SOX5 target 22 
genes. Disruption of cortical lamination by direct effects on glutamatergic neurogenesis and function has 23 
been predicted by independent data, including network analyses of rare ASD associated variants identified 24 
in exome sequencing studies34,44. 25 

These data, in conjunction with previous studies, reveal a consistent picture of the ASD’s emerging 26 
postnatal and adult pathology. Specific neuronal signaling and synaptic molecules are downregulated and 27 
astrocyte and microglial genes are upregulated in over 2/3 of cases. Microglial infiltration has been observed 28 
in ASD cortex with independent methods52, and normal microglial pruning has been shown to be necessary 29 
for brain development36. Our findings further suggest that aberrant microglial-neuronal interactions may be 30 
pervasive in ASD and related to the gene expression signature seen in a majority of individuals. In our 31 
comprehensive AS analysis, we identify three splicing factors upstream of the altered splicing signature 32 
observed in ASD CTX. These factors are known to be involved in coordinating sequential processes in 33 
neuronal development17,21 and maintaining neuronal function48,49. It may therefore be sufficient to disrupt 34 
any one of these factors to induce a similar outcome during brain development, which would be consistent 35 
with the shared downstream perturbation observed here. 36 

Finally, evaluation of the transcriptome in dup15q supports the enormous value of the “genotype 37 
first” approach of studying syndromic forms of ASD, with known penetrant genetic lesions53. It is highly 38 
unlikely that the shared transcriptional dysregulation in dup15q is due to a shared environmental insult. 39 
Thus, the most parsimonious explanation for the convergent transcriptomic pathology seen in all dup15q 40 
and over 2/3 of the cases of idiopathic ASD is that it represents an adaptive or maladaptive response to a 41 
primary genetic insult, which in most cases of ASD will be genetic2,54. As future investigations pursue the 42 
full range of causal genetic variation contributing to ASD risk, these analyses and data will be valuable for 43 
interpreting genetic and epigenetic studies of ASD as well as those of other neuropsychiatric disorders.44 
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Figure Legends 1  2 
Figure 1 | Transcriptome-wide differential gene expression in ASD.  a, Average linkage hierarchical 3 
clustering of samples in the ASD Discovery Set using the top 100 upregulated and top 100 downregulated 4 
protein coding genes. b, Gene Ontology (GO) term enrichment analysis of upregulated and downregulated 5 
genes in ASD. *FDR ≤ 0.05 across all GO terms and gene sets. c, 1st principal component of the CTX DGE 6 
set (CTX DGE PC1) is able to distinguish ASD and CTL samples, including independent samples from the 7 
ASD Replication Set. d, CTX DGE PC1 is primarily associated with diagnosis, and not other factors. e, 8 
Average linkage hierarchical clustering of ASD Discovery Set using all lncRNAs in the DGE set. f, UCSC 9 
genome browser track displaying reads per million (RPM) in a representative ASD and CTL sample, 10 
superimposed over the gene models and sequence conservation for genomic regions including LINC00693 11 
and LINC00689. g, LINC00693 and LINC00689 are upregulated across ASD samples and downregulated 12 
during frontal cortex development. Abbreviations: FC, frontal cortex; TC, temporal cortex; RIN, RNA 13 
integrity number; ADI-R score, Autism Diagnostic Interview Revised score; FPKM, fragments per kilobase 14 
million mapped reads. 15  16 Figure 2 | Alteration of alternative splicing in ASD. a, Average linkage hierarchical clustering of ASD 17 
discovery set using top 100 differentially included and top 100 differentially excluded exons from the 18 
differential splicing (DS) set across the ASD Discovery Set. b, Gene Ontology term enrichment analysis of 19 
genes with DS in ASD. c, 1st principal component 1 of the CTX differential alternative splicing set (CTX 20 
DS PC1) is able to distinguish ASD and CTL samples using independent samples from the ASD Replication 21 
Set. d, CTX DS PC1 is primarily associated with diagnosis, and not other factors. e, Correlation between 22 
CTX DS PC1 and gene expression of neuronal splicing factors in CTX. f, Correlation between 1st principal 23 
component of cerebellum differential splicing (CB DS PC1) and gene expression of neuronal splicing 24 
factors in cerebellum. g, Overlap between DS set and splicing events regulated by splicing factors where 25 
experimental data was available. h, Scatterplots and correlations between the 1st principal component across 26 
the ASD versus CTL DGE sets for different transcriptome subcategories. Abbreviations: FC, frontal cortex; 27 
TC, temporal cortex; RIN, RNA integrity number; ADI-R score, Autism Diagnostic Interview Revised 28 
score; FPKM, fragments per kilobase million mapped reads. 29  30 Figure 3 | Attenuation of cortical patterning in ASD cortex. a, Heatmap of 551 genes exhibiting cortical 31 patterning between frontal cortex (FC) and temporal cortex (TC) in ASD, with samples sorted by 32 diagnostic status and brain region. b, Gene ontology term enrichment analysis of genes exhibiting 33 attenuated cortical patterning (ACP). c, Schematic of transcription factor motif enrichment upstream 34 of genes in the ACP set, with the SOX5 motif sequence logo. d, The SOX5 gene exhibits attenuated 35 cortical patterning in ASD CTX compared to CTLs. Lines connect FC-TC pairs that are from the same 36 individual. e, Correlation between SOX5 gene expression and predicted targets in CTL and ASD, with 37 all ACP genes (top left), SOX5 targets from the ACP set (top right),  SOX5 non-targets from the ACP set 38 (bottom left), and all genes not in the ACP set (bottom right). Plots show the difference in correlation 39 between SOX5 and other genes in ASD and CTL (ΔR). 40 
 41 
Figure 4 | Duplication 15q Syndrome recapitulates transcriptomic changes in idiopathic ASD. a, DGE 42 
changes across the 15q11-13.2 region for ASD and dup15q compared to CTL, error bars are +/- 95% 43 
confidence intervals for the fold changes. b, Comparison of effect sizes in dup15q vs CTL and ASD vs 44 
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CTL, with changes in dup15q at FDR ≤ 0.05 highlighted. c, Comparison of differential splicing (DS) 1 
changes in dup15q vs CTL and ASD vs CTL, highlighting 402 events at FDR ≤ 0.2 in dup15q. d, Average 2 
linkage hierarchical clustering of dup15q samples and controls using the DGE and DS gene sets. e, Plot of 3 
fold changes between induced pluripotent stem cells differentiated into neurons (nIPSCs) from dup15q vs 4 
CTL and postmortem CTX DGE from dup15q vs CTL in the 15q region. f,  Heatmap overlapping the top 5 
1000 genes up- and down- regulated in the nIPSC comparison to the up- and down- regulated genes in 6 
dup15q and idiopathic ASD CTX. 7 
 8 
Figure 5 | Co-expression network analysis across all ASD and CTL samples in CTX. a, Gene set enrichment 9 
analyses comparing the 16 co-expression modules with multiple gene sets from this RNA-seq study, from 10 
postmortem ASD CTX microarray, from human brain development, from the postsynaptic density and set of 11 
all brain-expressed lncRNAs. b, Comparison of five ASD-associated modules against each other by 12 
correlating module eigengenes. c, Module plot of M1 displaying the top 25 hub genes along with the 13 
module’s Gene Ontology term enrichment. d, similar to c, but for M5. e, Gene set enrichment analysis with 14 
genome-wide whole-exome sequencing data (Rare de novo hit genes) and genome-wide association study 15 
(GWAS) results in ASD, schizophrenia (SCZ), and intellectual disability (ID). Boxes are filled if the odds 16 
ratio is greater than 0, and the enrichment P < 0.05. Asterisks* indicate FDR ≤ 0.05 across all comparisons 17 
in a and e. f,g, similar to c, but for M12 and M2, respectively. Abbreviations: LGD, likely gene disrupting, 18 
genes affected by nonsense, nonsynonymous, or splice-site mutations or frame-shift indels; AGRE, 19 
AGP/CHOP, and PGC refer to consortia that collect genetic data (Supplementary Information for details). 20 
 21 
Methods 22  23 
Sample description: Brain tissue for ASD and control individuals was acquired from the Autism Tissue 24 
Program (ATP) brain bank at the Harvard Brain and Tissue Bank and the University of Maryland Brain and 25 
Tissue Bank (a Brain and Tissue Repository of the NIH NeuroBioBank). Sample acquisition protocols were 26 
followed for each brain bank, and samples were de-identified prior to acquisition. Brain sample and 27 
individual level metadata is available in Supplementary Table 1. 28 
 29 
RNA-seq methodology: Starting with 1ug of total RNA, samples were rRNA depleted (RiboZero Gold, 30 
Illumina) and libraries were prepared using the TruSeq v2 kit (Illumina) to construct unstranded libraries 31 
with a mean fragment size of 150bp (range 100-300bp) that underwent 50bp paired end sequencing on an 32 
Illumina HiSeq 2000 or 2500 machine. Paired-end reads were mapped to hg19 using Gencode v18 33 
annotations55 via Tophat256. Gene expression levels were quantified using union exon models with 34 
HTSeq57. For additional and information on sequencing and read alignment parameters, please see 35 
Supplementary Information. 36 
 37 
Sample sets for analysis: For differential gene expression and splicing analysis, we defined an age matched 38 
set, referred to as the ASD Discovery Set (106 samples in CTX, 51 in cerebellum) of idiopathic ASD and 39 
control samples for the discovery set, and held out younger or unmatched samples as the ASD Discovery 40 
Set (17 in CTX, 8 in cerebellum). Dup15q individuals were analysed separately, utilizing the full set of 41 
controls from the ASD Discovery Set. For co-expression network analysis, we combined the discovery set, 42 
replication set, and dup15q individuals for a total of 137 CTX samples and 59 cerebellum samples. 43 
 44 
Differential Gene Expression (DGE): DGE analysis was performed with expression levels adjusted for gene 45 
length, library size, and G+C content (referred to as “Normalized FPKM”) Supplementary Information. 46 
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CTX samples (frontal and temporal) were analyzed separately from cerebellum samples. A linear mixed 1 
effects model framework was used to assess differential expression in log2(Normalized FPKM) values for 2 
each gene for cortical regions (as multiple brain regions were available from the same individuals) and a 3 
linear model was used for cerebellum (where one brain region was available in each individual, with a 4 
handful of technical replicates removed). Individual brain ID was treated as a random effect, while age, sex, 5 
brain region (except in the case of cerebellum, where there is only one region), and diagnoses were treated 6 
as fixed effects. We also used technical covariates accounting for RNA quality, library preparation, and 7 
batch effects as fixed effects into this model (Supplementary Information). 8 
 9 
Reproducibility analyses: We assessed replication between datasets by evaluating the concordance between 10 
independent sample sets by comparing the squared correlation (R2) of fold changes of genes in each sample 11 
set at a non-stringent P value threshold. This general approach has been shown to be effective for 12 
identifying reproducible gene expression patterns58, and we modify it such that the P value threshold is set 13 
in one sample set (the x axis in the scatterplots), and the R2 with fold changes in these genes are evaluated in 14 
an independent sample set (the y axis in the scatterplots). 15 
 16 
Differential Splicing Analysis: Alternative splicing was quantified using the percent spliced in (PSI) metric 17 
using Multivariate Analysis of Transcript Splicing (MATS, v3.08)18. For each event, MATS reports counts 18 
supporting the inclusion (I) or exclusion (E) of a splicing event. To reduce spurious events due to low 19 
counts, we required at least 80% of samples to have I + S >= 10. For these events, the percent spliced in is 20 
calculated as PSI = I / (I + S) (Extended Data Fig. 4a).  Statistical analysis for differential splicing was 21 
performed utilizing the linear mixed effects model regression framework as described above for DGE. This 22 
approach is advantageous over existing methods as it allows modeling of covariates and takes into 23 
consideration the variability in PSI across samples when assessing event significance with ASD 24 
(Supplementary Information). 25 
 26 
Genotyping dup15q: For Dup15q samples, the type of duplication and copy number in the breakpoint 2-3 27 
region were available for these brains59.  To expand this to the regions between each of the recurrent 28 
breakpoint in these samples, 7/8 dup15q brains were genotyped (one was not genotyped due to limitations in 29 
tissue availability). The number of copies between each of the breakpoints is reported in Extended Data Fig. 30 
7a. 31 
 32 
Co-expression network analysis: The R package weighted gene co-expression network analysis (WGCNA) 33 
was used to construct co-expression networks using the technical variation normalized data31,60 (referred to 34 
as “Adjusted FPKM”). We used the biweight midcorrelation to assess correlations between 35 
log2(Normalized FPKM) and parameters for network analysis are described in Supplementary Information. 36 
Notably, we utilized a modified version of WGCNA that involves bootstrapping the underlying dataset 100 37 
times and constructing 100 networks. The consensus of these networks (50th percentile across all edges) was 38 
then used as the final network 32, ensuring that a handful of samples do not determine the network structure. 39 
For module-trait analyses, 1st principal component of each module (eigengene) was related to ASD 40 
diagnosis, age, sex, and brain region in a linear mixed effects framework as above, only replacing the 41 
expression values of each gene with the eigengene. 42 
 43 
Enrichment analysis of gene sets and GWAS: Enrichment analyses were performed either with Fisher’s 44 
exact test (cell type and splicing factor enrichments) or logistic regression (all enrichment analyses in Figure 45 
5). We used logistic regression in the latter case to control for gene length or other biases that may influence 46 
enrichment analysis (Supplementary Information). All GO term enrichment analysis was performed using 47 
GO Elite61 with 10,000 permutations. We focused on molecular function and biological process terms for 48 
display purposes. 49 
 50 
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Extended Data Figure Legends 1  2 
Extended Data Figure 1 | Methodology, quality control, and differential expression replication analysis. a, 3 
RNA-seq workflow, including RNA extraction, library preparation, sequencing, read alignment, and quality 4 
control. b, RNA-seq quality and alignment statistics from this study, including RNA integrity number 5 
(RIN), number of aligned reads, proportion of reads mapping to different genomic features (mRNA, 6 
intronic, intergenic), and bias in coverage from the 5’ to the 3’ end of the top 1000 expressed transcripts 7 
(statistics compiled using PicardTools). c, Similar statistics as in b for another RNA-seq study that utilized 8 
polyA tail selection mRNA-seq to evaluate the transcriptome in ASD cortex11 (primarily BA19, visual 9 
cortex, but also including some BA10/44 samples, frontal cortex). d, RNA-seq read coverage relative to 10 
normalized gene length across transcripts from the 5’ to the 3’ end in this study. e, Dependence between 11 
coverage and RIN across gene body (correlation between RIN and coverage in d across samples). f, 12 
Correlation of ASD vs CTL fold changes between previously evaluated and new ASD samples in CTX by 13 
microarray (left) and RNA-seq (right) using genes that were at P < 0.05 the samples from Voineagu et al., 14 
2011. g, Correlation between effect sizes as in f, but for cerebellum (CB) samples. h,i, Correlation between 15 
covariates and ASD vs CTL status in CTX (h) and CB (i) in the ASD Discovery Set. 16 
 17 
Extended Data Figure 2 | Transcriptome-wide differential gene expression (DGE) analysis in CTX. a, 18 
Comparison of P value rankings across different methods for DGE with Spearman’s correlation. From left 19 
to right: removal of three additional principal components of sequencing statistics (Supplementary 20 
Information) related to RNA-sequencing quality, application of a permutation analysis for DGE P value 21 
computation, application of variance-weighted linear regression for DGE62, and using surrogate variable 22 
analysis for DGE63. b, Average linkage hierarchical clustering heatmap using all genes DGE in the ASD 23 
Discovery Set, but including all idiopathic ASD frontal cortex (FC) and temporal cortex (TC) samples 24 
across 123 samples, combining the ASD Discovery set and the ASD Replication set. Bolded samples in the 25 
dendrogram are used for validation in d. c, Enrichment analysis of cell-type specific gene sets (5-fold 26 
enriched in the cell type compared to all other cells) with genes decreased and increased in ASD. d, RT-27 
PCR validation of the two lincRNAs shown in Figure 1f-g, P values are computed with the Wilcoxon rank-28 
sum test.  29 
 30 
Extended Data Figure 3 | Gene browser tracks for selected primate-specific lncRNAs. For each lncRNA, 31 
expression for representative samples for ASD vs CTL (top) in human, macaque (middle), and mouse 32 
(bottom) are shown. The genome location for macaque and mouse displayed is syntenic to the human 33 
region, with the expected location of the lncRNA highlighted. 34 
 35 
Extended Data Figure 4 | Splicing analyses and validation in ASD. a, Schematic describing how the percent 36 
spliced in (PSI) metric is computed. b, Distribution of P values for changes in the PSI between ASD and 37 
CTL in CTX for all events (left) and event subtypes (SE, spiced exon; A5SS, alternative 5’ splice site; 38 
A3SS, alternative 3’ splice site; MXE, mutually exclusive exons). c, Comparison of the CTX splicing 39 
analyses in when using PSI values obtained via read alignment by TopHat264 followed by the MATS18 40 
pipeline (used throughout this study) against read alignment by OLego followed by Quantas65. d, 41 
Comparison of ΔPSI values in nine splicing events between PCR and RNA-seq. e, PCR validation and 42 
sashimi plots for the nine splicing events delineated in d, from the samples highlighted in Extended Data 43 
Fig. 5a. 44 
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 1 
Extended Data Figure 5 | Additional splicing analyses in ASD. a, Average linkage hierarchical clustering 2 
heatmap using all differentially spiced (DS) events from the ASD Discovery Set, but including all idiopathic 3 
ASD neocortical samples (FC and TC) across 123 samples, combining the ASD Discovery set and the ASD 4 
Replication set. Bolded samples in the dendrogram were used for PCR validation in Extended Data Fig. 4. 5 
b, Top: difference between ASD and CTL in the DS set based on PC1 of the DS set at the PSI level, and 6 
PC1 of the gene expression levels of genes in the DS set. Bottom: Same comparison after differentially 7 
expressed genes (p < 0.05) are removed. c, Distribution of P values for changes in the PSI between ASD and 8 
CTL in cerebellum. d, Cell-type enrichment analysis of splicing events from CTX. e, Average-linkage 9 
hierarchical clustering using 1-(Pearson’s correlation) to compare the gene expression patterns of the 10 
splicing factors investigated in Figure 2. 11 
 12 
Extended Data Figure 6 | Attenuation of cortical patterning in ASD. a, Histograms of P values from paired 13 
Wilcoxon rank-sum test differential gene expression between 16 frontal cortex (FC) and 16 temporal cortex 14 
(TC) in CTL and ASD and a histogram of Bartlett’s test P values for differences in gene expression variance 15 
between ASD and CTL for all genes (white) and genes in the Attenuated Cortical Patterning (ACP) set 16 
(red). c, Approach to training the elastic net model on BrainSpan and application of the model on 123 17 
cortical samples in this study. c-e, Results of learned cortical region classifications with different starting 18 
gene sets, with the BrainSpan training set (left), CTL samples (middle), and ASD samples (right) in each 19 
panel and the Wilcoxon rank-sum test P value of FC vs TC difference for each comparison. f, Summary of 20 
results form c-e. g, Cell type enrichment analysis for genes in the ACP set. Abbreviations: A1C, primary 21 
auditory cortex; DFC, dorsolateral prefrontal cortex; MFC, medial prefrontal cortex; STC, superior temporal 22 
cortex; FC, frontal cortex; TC, temporal cortex; AUROC, area under the receiver-operator characteristic 23 
curve. 24 
 25 
Extended Data Figure 7 | Dup15q syndrome analyses. a, Copy number between breakpoints (BP) in the 15q 26 
region. Genome-wide CNV analysis allowed evaluation of copy number in additional regions from previous 27 
studies59,66. b, Differential expression across the 15q region of interest in dup15q vs CTL and ASD vs CTL 28 
cerebellum, note only 3 samples were available for dup15q cerebellum so additional analyses were not 29 
pursued. c, Gene Ontology term enrichment analysis for the dup15q CTX differential expression set. d, 30 
Gene Ontology term enrichment analysis for the dup15q CTX differential splicing (DS) set. e, Hierarchical 31 
clustering of iPSC-derived neurons from dup15q, Angelman syndrome, and a control29. 32 
 33 
Extended Data Figure 8 | Co-expression network analysis in ASD CTX. a, Modules identified from a 34 
dendrogram constructed from a consensus of 100 bootstrapped datasets using the 137 CTX samples. 35 
Correlations for each gene to each measured factor are delineated below the dendrogram (blue = negative, 36 
red = positive correlation). b, Module-trait associations as computed by a linear mixed effects model with all 37 
factors on the x-axis used as covariates. All P values are displayed where the coefficient passed p < 0.01. 38 
Note that this alternative approach to module-trait association agrees with the Fisher’s exact test used in 39 
Figure 5a when the fold enrichment for module overlap with DGE sets is > 2.8, and we use an intersection 40 
of both methods for the modules focused on in Figure 5b. c, Module enrichments for cell type specific gene 41 
expression patterns. 42 
 43 
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Extended Data Figure 9 | GO term enrichments for all modules. *FDR  < 0.05 across all GO enrichments 1 
across all modules. 2 
  3 
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Introduction 
The demonstration that chromatin exhibits a complex 3 dimensional organization, 
whereby short and long distance physical interactions correspond to complex gene 
regulatory processes has opened a new window on understanding the functional 
organization of the human genome1-4. Recently, chromatin remodeling has also been 
causally implicated in several neurodevelopmental disorders, including autism and 
schizophrenia5-7. However, it remains unclear whether knowledge of chromosome 
organization in a tissue specific manner might inform our understanding of gene 
regulation in brain development or disease. Here we determined the genome-wide 
landscape of chromosome conformation during early human cortical development by 
performing Hi-C analysis in the mitotically active and post mitotic laminae of human fetal 
brain. We integrate Hi-C data with transcriptomic and epigenomic data and utilize 
chromosome contact information to delineate physical gene-gene regulatory interactions 
for non-coding regulatory elements. We show how these data permit large-scale 
functional annotation of non-coding variants identified in schizophrenia GWAS and of 
human specific enhancers8,9. These data provide a rubric that illustrates the power of 
tissue-specific annotation of non-coding regulatory elements, as well as novel insights 
into the pathogenic mechanisms of neurodevelopmental disorders and the evolution of 
higher cognition.  
  



Recent advances in high-throughput sequencing have unveiled the epigenomic 
landscape of multiple human cell types, as well as 3 dimensional folding principles of 
chromatin10,11. In particular, chromosome conformation capture experiments 
demonstrate that chromatin is organized into hierarchical structures, which include 
compartments (a few megabase (Mb))1, topological associating domains (TADs, sub-
Mb)12, and loops (ranging from few kilobase (kb) to few hundred kb)2,4. These structures 
are thought to play a role in gene regulation and biological function by defining functional 
genomic units and mediating the effects of cis-regulatory elements via both short- and 
long-range physical interactions (e.g. promotor-enhancer interactions), relationships that 
cannot simply be predicted by linear adjacency in chromosomes. Coupled with 
epigenomic data, such higher order chromatin interactions should facilitate systemic 
annotation of cis-regulatory elements, as well as intergenic and intronic variants, which 
will further expand our understanding of tissue specific developmental programs, as well 
as disease pathogenesis. 
We constructed multiple Hi-C libraries in mid gestation fetal cerebral cortex from three 
individuals during the peak of neurogenesis and migration (gestation week, GW17-18). 
We reasoned that it would be useful to analyze mitotically active neuronal precursors 
involved in neurogenesis separately from post-mitotic migrating and maturing neurons, 
so we dissected the cortical anlage into two major structures: the cortical and subcortical 
plate (CP), consisting primarily of post mitotic neurons and the germinal zone (GZ), 
containing primarily mitotically active neural progenitors (representative heatmap in Fig. 
1a, Extended Data Fig. 1a-b). For comparison with non-neuronal cell types, we also 
used publicly available Hi-C data on human embryonic stem (ES) cells and IMR90 
cells11,12. To provide grounding for our data and compare global chromosome 
architecture between different cell types, we performed principal component analysis 
(PCA)13 on the genome-wide inter-chromosomal contact matrices of CP, GZ, ES, and 
IMR90. As previously demonstrated, global chromosome architecture does not change 
dramatically between different cell types13. However, the first principal components 
(PC1s) from neuronal tissues (CP and GZ) have significantly higher correlation than the 
PC1s between different cell types (Fig. 1b), consistent with the higher similarity between 
tissues from brain, versus the two other cell lines. 
3D chromatin structure reflects gene regulation during neural differentiation.  
Previous studies have shown that genome-wide chromosome conformation captures 
multiple levels of genomic features related to biological function, ranging from GC 
content and gene number to marks of open chromatin, such as DNase I hypersensitivity 
sites (DHS)13. Most human-relevant Hi-C has been conducted in cell lines1,2,4,11,12,14 and 
not in complex tissue, such as developing brain. As an initial first step to insure the 
quality and validity of our data, we analyzed the relationships between the major 
component of the inter-chromosomal interaction matrix with these major genomic 
features, finding high correlation with GC content, gene number, DHS10, and to a lesser 
extent, gene expression15 (Fig. 1c, Extended Data Fig. 2a), as has been previously 
observed in non-neural cell lines13.  
To further explore the biological significance of chromosome contact changes during 
neural differentiation, we explored whether the genes in regions of dynamic chromatin 
structure were related to neural differentiation by comparing the inter-chromosome 
contact matrices (binned to 100kb) in different cell types and selecting bins with the 
highest chromatin contact count changes between two cell types (Methods). Genes 
located in the regions of highest inter-chromosomal interaction changes between CP 
and GZ were enriched for neuronal genes, represented by the gene ontology (GO) 
categories of neuron recognition, axon guidance, central nervous system (CNS) 



development, and synapse (Fig. 1d, Extended Data Fig. 2b; Methods). Genes located 
in regions with highest inter-chromosomal interaction changes between CP and ES cells 
were enriched for developmental genes involved in forebrain development and 
chromatin organization (Fig. 1d, Extended Data Fig. 2b), indicating that these 
interactions reflect tissue relevant developmental gene regulation.  
To further explore how these physical chromatin interactions relate to biological function, 
we hypothesized that highly interacting chromatin regions would be more likely to be co-
regulated. To test this, we compared the distribution of correlation patterns for genes 
locating in (1) the regions of highest interaction values in both CP and GZ, (2) the lowest 
interacting regions in both CP and GZ, and (3) the regions of differential interaction 
values (the regions of highest interaction values in CP and lowest interaction values in 
GZ and vice versa). Highly interacting regions tend to be biased toward positive 
correlations, while there was no bias in correlation for low and differential interacting 
regions (Fig. 1e). Interestingly, the positive correlation for high interacting regions 
becomes even higher when more stringent cutoffs are used, supportive of the 
quantitative nature of interaction-driven co-expression, whereby the relationship between 
physical 3D chromatin interactions and expression is mostly driven by the top percentiles 
of interacting regions (Extended Data Fig. 2c). To further elucidate the epigenetic 
regulatory mechanisms behind the apparent interaction-mediated co-expression, we 
marked bins in which epigenetic marks from two loci appear together. By comparing the 
epigenetic mark combination matrix with the Hi-C contact matrix, we observed that 
interacting regions exhibit shared epigenetic patterns at the level of both inter- and intra-
chromosomal interactions (Fig. 1f, Extended Data Fig. 3; Methods). In particular, 
regions associated with positive transcriptional regulation and enhancers are more likely 
to physically interact with each other, consistent with their co-regulation.  
One of the core functional units of general genome organization recently uncovered by 
chromatin capture methods across a wide variety of cell types is the compartment, a 
relatively large, dynamic domain1, which is comprised of smaller, sub-Mb regions of 
topologically associating domains (TADs)12. Compartments are divided into two types, 
type A compartments that consist primarily of euchromatin and actively transcribed 
genes and type B compartments, which are heterochromatic and repressed. TADs have 
been previously shown to be relatively stable, whereas compartments have been shown 
to change during lineage specification in stem cells11. Consistent with this, we observed 
dynamic compartment switching between CP and GZ, enriched for GO categories 
related to neuronal genes and phosphatase activity (Fig. 2c), as well as compartment 
switching between CP and ES (Fig. 2a,d). Genes that change compartments from ES to 
CP are decreased for A to B transitions across differentiation and increased for changes 
from the B to A compartments (Fig. 2b), as expected. Compartment changes are also 
accompanied by epigenetic changes, so that the B to A compartment shift is associated 
with increased DHS and active epigenetic marks indicative of open chromatin, whereas 
the A to B shift is associated with decreased DHS and increased repressive marks (Fig. 
2b,e). The same pattern was observed for GZ vs. ES and CP vs. GZ (Fig. 2b,e, 
Extended Data Fig. 2d), demonstrating that gene expression changes across 
development are tightly linked to epigenetic changes coupled with compartment 
switching.  
TADs are thought to mediate co-transcriptional regulation primarily within their 
boundaries (100kb-1Mb) through physical “looping” interactions of promotors and 
enhancers in co-regulated genes4,16.  Since TAD boundaries are conserved across 
different cell types12, we hypothesized that changes in epigenetic marks in TADs, rather 
than the boundaries of TADs, would be most associated with gene expression changes 



across development. To test this, we divided genes based on their fold change in 
expression between ES and differentiated neurons17 (both increased and decreased), 
and assessed changes in epigenetic marks within the TADs where these genes reside 
(Extended Data Fig. 1c-e, Methods). Notably, active marks including enhancers and 
elements related to transcribed regions are increased in TADs that contain upregulated 
genes, whereas repressive marks are increased in TADs that contain downregulated 
genes (Fig. 2f). Collectively, these results indicate that our Hi-C data reflects the major 
elements of global chromosome architecture in fetal brains, providing a framework for 
exploring gene regulatory mechanism related to human neural development and 
function.  
Next, to demonstrate how knowledge of intra-chromosomal contacts could significantly 
advance understanding of important gene regulatory relationships in the nervous 
system, we performed two integrative experiments. In the first, we used these chromatin 
contact data to functionally annotate specific non-coding regulatory elements in the 
developing brain. We leveraged recent efforts that have identified >2000 developmental 
enhancers gained specifically in the human cerebral cortex, providing a remarkable 
resource for understanding the evolution of human cognition8. Usually, in the absence of 
such tissue specific data, regulatory elements are assigned to the closest gene18,19, a 
convention that we compared with our Hi-C derived interactions. We reasoned that our 
Hi-C data from fetal brain could be used to identify the target genes for many of these 
enhancers, which based on previously chromatin looping analyses in cell lines are often 
not the closest gene4,16,18,19. 
We derived an interaction map of human-gained enhancers, defined as significant 
interacting regions (at a 1% false discovery rate, FDR) compared to the null distribution 
generated by fitting the contact frequencies of all fetal brain enhancers identified in the 
same study8 (Extended Data Fig. 4a, Methods). We defined the search space as 
including the 1Mb flanking regions, since most enhancer-promoter interactions are within 
this range4. Although statistically significant interactions are increased upon proximity to 
the enhancer, the majority of interactions are at relatively long-ranges (>100kb, 
Extended Data Fig. 4b) and are not restricted to the adjacent genes. Indeed, ~65% of 
the closest genes to human-gained enhancers are not identified through fetal brain Hi-C 
interactions, revealing that the majority of enhancers are not interacting with the most 
adjacent gene (Fig. 3c). Compared to the original study8, which used human-gained 
enhancer hotspot TADs in ES cells and IMR90 cells due to the lack of Hi-C data from 
relevant tissue, our approach provides genes of action with higher resolution in the 
matching tissue (fetal cortices) from which evolutionary enhancers were identified. 
Human-gained enhancer-interacting regions were enriched with enhancers, promoters, 
and transcription start sites (TSSs) (Fig. 3a, Extended Data Fig. 4c), consistent with the 
previous findings that enhancers interact with promoters, as well as other enhancers16.  
The majority of interactions (>75%) were in the same TADs (Fig. 3b), also consistent 
with observations in cell lines that most enhancer-promoter interactions are in the same 
TAD16,19. Human-gained enhancer interacting genes (Hi-Cevol genes) are involved in 
GTPase regulation as well as G-protein coupled receptor (GPCR) and CREB signaling, 
and are enriched with GO terms representing synaptic and axon guidance genes (Fig. 
3e, representative interactions in Fig. 3d). One striking example is a human-gained 
enhancer that interacts with ARHGAP11B, a human-specific gene implicated in the 
expansion of human neocortex20 (Fig. 3d).  
Given the high conservation of protein-coding genes across the vertebrate lineage, 
comparative genomics have suggested that human-specific traits most likely result from 
changes in regulatory elements8,21. Indeed, protein-coding Hi-Cevol genes have a lower 



non-synonymous substitution (dN)/synonymous substitution (dS) ratio compared to Hi-C 
non-interacting protein-coding genes in multiple lineages (Extended Data Fig. 5). These 
results indicate that human-gained enhancers are interacting with protein-coding genes 
that undergo purifying selection, further supporting the hypothesis that non-coding 
elements undergo evolutionary selection to induce species-specific changes in gene 
expression8,21. We also investigated whether human-gained enhancers are interacting 
with lineage-specific long non-coding RNAs (lncRNAs)22. We observed that lineage-
specific interactions with human-gained enhancers were enriched for primate-specific 
lncRNAs, as well as evolutionary conserved lncRNAs (Fig. 3f, Extended Data Fig. 5). 
Thus, while human-gained enhancers interact and possibly regulate evolutionary 
conserved protein-coding genes, they are more likely to interact with primate-specific 
lncRNAs.  
Since the development of human higher cognition is dependent on the development of 
the human cerebral cortex via elaboration of novel gene regulatory relationships8,23, we 
reasoned, as have others8 that the genes regulated by these human specific enhancers 
would be associated with intellectual functioning in humans. Remarkably, we found that 
the Hi-Cevol genes in fetal brain, but not the genes defined by proximity to the enhancers 
are significantly enriched with intellectual disability (ID) risk genes6 (Fig. 3g). This result 
provides experimental support for the contention that human-gained enhancers are 
associated with the evolution of human cognitive function8. This enrichment was tissue-
specific, as Hi-Cevol genes defined by Hi-C interactions in ES cells did not show 
enrichment for ID risk genes (Fig. 3g). Indeed, ~56% of the Hi-Cevol genes in neuronal 
tissue were not identified through chromatin contacts in ES cells, emphasizing the 
importance of defining tissue-relevant chromatin contacts, as well as importance of using 
the relevant tissue for Hi-C analysis (Fig. 4c).  
Since most disease related common genetic variation is located in non-protein coding 
regions, we next assessed the ability of Hi-C data for functional annotation of common 
single nucleotide polymorphisms (SNPs). As a first line verification that Hi-C data could 
identify known functional relationships between SNPs and gene expression we used cis-
expression quantitative trait loci (eQTL) data from adult frontal cortex24, since such data 
is not yet available from fetal brain. For each significant eQTL locus, we obtained a set 
of significant eQTL SNPs with >95% likelihood of containing the causal SNP from 
association statistics and linkage disequilibrium (LD; 1000 Genomes) structure using 
CAVIAR25. We then identified genes interacting to likely causal eQTL SNPs via the 
chromatin contact matrix (Hi-CeQTL genes, Methods), and compared Hi-CeQTL genes with 
the known associated gene from the eQTL study, finding that Hi-CeQTL genes 
significantly overlapped with eQTL transcripts (Extended Data Fig. 6a). There were 
many Hi-CeQTL genes that were not identified as eQTL transcripts, likely due to a 
combination of factors, including low power of the eQTL sample, limited resolution of Hi-
C (SNP-transcript interactions within 20kb cannot be detected), and the difference in age 
of tissues used for each analysis. Indeed, eQTL SNPs identified by CAVIAR were highly 
enriched with adult frontal cortex, but not fetal brain, enhancers (Extended Data Fig. 
6b-d). Despite this, eQTL SNP-transcript pairs exhibit higher chromatin contact 
frequency than expected by chance across all distance ranges (Extended Data Fig. 6e), 
further supporting the utility of Hi-C to infer the biological function of regulatory variation.   
Next, we applied a similar logic to advance our understanding of 108 genome-wide 
significant schizophrenia-associated loci, most of which are in relatively uncharacterized 
non-coding regions of the genome9. We obtained credible SNPs using CAVIAR, and split 
SNPs into those without known function and likely functional SNPs (SNPs that cause 
missense, frameshift, and splice variants and SNPs that fall onto gene promoters; 



Methods). Credible SNPs were enriched with enhancers in fetal brain and adult frontal 
cortex, confirming the likely regulatory role of these SNPs in the brain (Extended Data 
Fig. 7). SNPs defined as likely functional SNPs and promoter SNPs were directly 
assigned to their target genes. For the remaining intergenic and intronic SNPs that were 
un-annotated, and therefore without clear function, we used the chromatin contact matrix 
to find genes with which the regions where the SNPs are located are physically 
interacting (diagram in Extended Data Fig. 7).  
Combining genes annotated as functional SNPs, promoter SNPs, and by Hi-C 
interactions, we obtained a total of ~900 genes (Hi-CSCZ genes) associated with 
schizophrenia risk variants. Hi-C contacts identified numerous genes that were neither 
adjacent to index SNPs nor in LD with them (Fig. 4a-c, Extended Data Fig. 9). While 
almost 70-80% of the LD genes and closest genes were identified as Hi-CSCZ genes, 
only half of them were identified by chromatin contacts, indicating that many of them 
were identified by functional SNPs residing in the genes. Moreover, 70-90% of the Hi-
CSCZ genes were not identified by using LD genes or the closest genes to the association 
signal, consistent with observations that the linear organization of genes and regulatory 
elements on the chromosome does not reflect regulatory interactions4,18,19.  
Hi-C analysis showed that schizophrenia-associated common variants converge into 
specific molecular pathways related to neuronal function, including the postsynaptic 
density, acetylcholine receptors, cell cycle, and chromatin remodelers (Fig. 4d-e, 
Extended Data Fig. 7-8). To insure that this was not an artifact of the method used for 
credible SNP selection, we used a different method to define the set of credible SNPs9 
(Extended Data Fig. 9) and found the same enrichments, demonstrating the robustness 
of the genes identified through the Hi-C analysis. One notable example is illustrated by 
credible SNPs (rs4245150, rs17602038, rs4938021, rs4936275, rs4936276) that reside 
upstream of the Dopamine D2 Receptor (DRD2), the target of antipsychotic drugs. 
Although these SNPs are close to the DRD2 TSS, they are not within the gene, which 
complicates interpretation of their biological function. Hi-C analysis demonstrates for the 
first time that indeed these SNPs are interacting with the TSS of DRD2 (Fig 4e), 
providing biological insights into the function of these SNPs.  
Another relevant example is an index SNP (rs79212538) interacting with GRIA1, an 
ionotropic glutamate receptor subunit, although GRIA1 is neither the closest gene nor in 
LD with the index SNP (Extended Data Fig. 8). Additionally, Hi-C shows that 
schizophrenia associated non-coding SNPs interact with multiple genes involved in 
excitatory synaptic transmission, including CACNA1C, GRIN2A, and NLGN4X, further 
supporting glutamatergic transmission defects in schizophrenia pathophysiology 
(Extended Data Fig. 8). Interestingly, Hi-CSCZ genes significantly overlap with ASD de 
novo likely gene-disrupting (LGD) targets (CP: OR=2.4, P=1.6x10-5, GZ: OR=1.8, 
P=0.006), consistent with a shared genetic etiology between ASD and schizophrenia26. 
The fact that genes with LGD mutations in ASD are associated with regulatory variants 
in schizophrenia suggests that complete abrogation of these genes may cause 
developmental defects as in ASD, while regulatory changes in these genes may cause 
later-onset of neuropsychiatric symptoms as in schizophrenia. Collectively, genes 
annotated by chromatin contact information provide novel insights into schizophrenia 
pathogenesis.  
In conclusion, we demonstrate how a comprehensive analysis of genome-wide 
chromatin configuration during human neural development informs our view of gene 
regulation. This chromatin contact landscape provides important biological insights on 
gene regulatory mechanisms, such that co-expressed genes share epigenetic co-
regulation of interacting regions, and that changes in functional epigenetic marks are 
tightly linked to TADs and compartment switching to induce changes in gene expression. 



We also annotated non-coding regulatory elements in the genome based on long-range 
chromatin contacts to identify enhancer-promoter interactions during human brain 
development, as well as genes of actions for eQTL. In turn, we show how these 
interactions can be used to inform our biological interpretation of risk variants for 
schizophrenia, which serves as a template for understanding the role of non-coding 
variation more broadly in neuropsychiatric disorders.  
  



Methods  
Fetal brain layer dissection  
Human fetal cortical tissues from three individuals were collected from frontoparietal 
cortex at gestation week (GW) 17-18 (one sample from GW17 and two samples from 
GW18). In cold DMEM/F-12 (ThermoFisher, 11320-033), frontoparietal cortex was first 
dissected to thin (~1mm) slices to visualize layers. Under the light field microscope, 
cortical slice was dissected to germinal zone (GZ) and cortical plates (CP). GZ contains 
ventricular zone and subventricular zone, and hence comprised of proliferating neurons. 
CP refers to intermediate zone, cortical plate, and marginal zone, which are mainly 
composed of differentiated and migrating neurons. By dissecting layers from same fetal 
cortices, we can compare progenitors to differentiated neurons with same genotype and 
minimize intersample heterogeneity.  
Hi-C  
Collected tissue was dissociated with trypsin and cell number was counted. Ten million 
cells were fixed in 1% formaldehyde for 10 min. Cross-linked DNA was digested by 
restriction enzyme HindIII (NEB, R0104). Digested chromatin ends were filled and 
marked with biotin-14-dCTP (ThermoFisher, 19518-018). Resulting blunt-end fragments 
were ligated under dilute concentration to minimize random intermolecular ligations. 
DNA purified after crosslinking was reversed by proteinase K (NEB, P8107) treatment. 
Biotins from unligated ends were removed by exonuclease activity of T4 DNA 
polymerase (ThermoFisher, 18005). DNA was sheared by sonication (Covaris, M220) 
and 300-600bp fragments were selected. Biotin-tagged DNA, which is intermolecular 
ligation products, was pulled down with streptavidin beads (Invitrogen, 65001), and 
ligated with Illumina paired end adapters. Resulting Hi-C library was amplified by PCR 
(KAPA Biosystems HiFi HotStart PCR kit, KK2502) with the minimum number of cycle 
(typically 12-13 cycles), and sequenced by Illumina 50bp paired-end sequencing. 
Hi-C reads mapping and pre-processing 
Note that mapping and filtering of the reads, as well as normalization of experimental 
and intrinsic biases of Hi-C contact matrices were conducted with the following method 
regardless of cell types to minimize potential variance in the data obtained from different 
platforms. We implemented hiclib (https://bitbucket.org/mirnylab/hiclib) to perform initial 
analysis on Hi-C data from mapping to filtering and bias correction. Briefly, quality 
analysis was performed using a phred score, and sequenced reads were mapped to 
hg19 human genome by Bowtie2 (with increased stringency, --score-min -L 0.6,0.2--
very-sensitive) through iterative mapping. Read pairs were then allocated to HindIII 
restriction enzyme fragments. Self-ligated and unligated fragments, fragments from 
repeated regions of the genome, PCR artifacts, and genome assembly errors were 
removed. Filtered reads were binned at 10kb, 40kb, and 100kb resolution to build a 
genome-wide contact matrix at a given bin size. This contact map depicts contact 
frequency between any two genomic loci. Biases can be introduced to contact matrices 
by experimental procedures and intrinsic properties of the genome. To decompose 
biases from the contact matrix and yield a true contact probability map, filtered bins were 
subjected to iterative correction13, the basic assumption of which is that each locus has 
uniform coverage. Bias correction and normalization results in a corrected heatmap of 
bin-level resolution. 100kb resolution bins were assessed for inter-chromosomal 
interactions, 40kb for TAD analysis, and 10kb for gene loop detection.  
Inter-chromosomal principal component analysis 
Principal component analysis (PCA) was conducted in a genome-wide inter-
chromosome contact map (100kb binned) as described previously13. Since intra-



chromosome conformation may drive the PCA results, cis contacts were iteratively 
replaced to random trans counts. After removing diagonal and poorly covered regions, 
we performed PCA using hiclib command doEig.  
Pearson’s correlations between the first principal components (PC1) from different cell 
types (CP, GZ, ES, and IMR9012) were calculated to compare similarities in inter-
chromosomal interactions between different cell types.  
Spearman’s correlations between PC1/PC2 and biological traits (GC content, gene 
density, DNase I hypersensitivity (DHS), gene expression) were calculated. GC content 
(%) for each 100kb bin was calculated by gcContentCalc command from R package 
Repitools. Gene density (number of genes in 100kb bin) was obtained based on longest 
isoforms from GENCODE19. DHS of fetal brains from Epigenomic roadmap10 and gene 
expression level of prenatal cortical layers from Miller et al.15 were used and average 
values per 100kb bin were calculated. 
Gene enrichment analysis  
Gene ontology (GO) enrichment was performed by GO-Elite Pathway Analysis 
(http://www.genmapp.org/go_elite/). All genes in the genome except the ones located in 
the chromosome Y and mitochondrial DNA were used as a background gene list. 
Because Hi-C interaction is measured in bins, sometimes we cannot dissect the 
individual genes when they are clustered in the genome (i.e. PCDH locus). To prevent 
several gene clusters overriding entire GO terms, we removed GO mainly defined by 
gene clusters (for 100kb or 40kb binned data) or we randomly included one gene per 
cluster (e.g. PCDHA1 for PCDHA1-13 cluster) prior to GO analysis (for 10kb binned 
data).  
Gene enrichment for the curated gene lists was performed using binomial generalized 
linear model to regress out exome length. Autism spectrum disorder (ASD) de novo 
gene list and intellectual disability (ID) curated gene list from Iossifov et al.27 and 
Pariskshak et al.6 were used for the enrichment test, respectively. Protein-coding genes 
based on biomaRt were used as a background gene list.  
Identification of the regions with largest inter-chromosomal conformation 
changes  
Chromosome contact matrix was normalized with the total interaction counts between 
two cell types for comparison. Intra-chromosomal interactions were masked from the 
genome-wide contact matrix, and top 1000 bins with the largest interaction changes 
between different cell types (GZ vs. CP or ES vs. CP) were selected. As one bin is 
comprised of two loci that are interacting with each other, this would give ~2000 sites in 
the genome. Genes located in those ~2000 sites were combined to perform GO 
analysis.  
Co-expression of inter-chromosomal interacting regions 
Using transcriptome from fetal cortical layers28, average expression values per 100kb bin 
were calculated. Pearson correlation matrix was calculated from 100kb binned 
expression data from all layers to generate gene co-expression matrix. At this step, gene 
co-expression matrix has the same dimension as inter-chromosomal contact matrix.  
We hypothesized that genes would be co-expressed across the layers when they are 
interacting in all stages (both in CP and GZ), so we selected top 2% highest interacting 
regions of fetal brains both at GZ and CP (high interacting regions). We also selected (1) 
low interacting regions: top lowest interacting regions (0 interaction from normalized Hi-C 
contact matrix) of fetal brains both at GZ and CP, as well as (2) variant interacting 
regions: top 2% highest interacting regions from one stage (e.g. GZ) that are top 2% 



lowest interacting regions from the other stage (e.g. CP) for comparison. Expression 
correlation values of the same regions were selected from the gene co-expression 
matrix, and expression correlations between different states (high interacting regions vs. 
low interacting regions and high interacting regions vs. variant interacting regions) were 
compared by two-sample Kolmogorov-Smirnov test.  
Epigenetic state enrichment for inter-chromosomal interacting regions  
The fetal brain epigenetic 25 state model from Epigenomic roadmap10 was used to 
generate the epigenetic state combination matrix, which was generated by marking loci 
where two interacting chromosomal bins (defined as bins with (1) interaction counts > 
75% quantile interaction count for inter-chromosome and (2) interaction counts > 0 for 
intra-chromosome) share epigenetic signature. For example, the epigenetic combination 
matrix between the active transcription start site (TssA) and active enhancers (EnhA1) 
was generated by marking where interacting loci have TssA on one locus and EnhA1 on 
the other locus. Intra- and inter-chromosomal contact frequency maps were then 
compared to epigenetic state matrix by Fisher’s exact test to calculate enrichment of 
shared epigenetic combinations in interacting regions.  
Compartment analysis 
Expected interaction frequency was calculated from the normalized intra-chromosomal 
40kb binned contact matrix based on the distance between two bins. We summed series 
of submatrices of 400kb window size with 40kb step size from the normalized Hi-C maps 
to generate observed and expected matrices. The Pearson’s correlation matrix was 
computed from the observed/expected matrix, and PCA was conducted on correlation 
matrix. PC1 from each chromosome was used to identify compartments. Eigenvalues 
positively correlated with the gene density were set as compartment A, while those that 
are negatively correlated were set as compartment B. 
Gene expression and epigenetic state change across different compartments 
Genomic regions were classified into three categories according to compartments: 
compartment A in cell type1 that changes to compartment B in cell type2 (A to B), 
compartment B in cell type1 that changes to compartment B in cell type2 (B to A), 
regions that do not change compartment between two cell types (stable).  
Genes residing in each compartment category were selected and GO enrichment was 
performed. Gene expression fold-change (FC) between different cell types was 
calculated from Miller et al.15 (comparison for CP vs. GZ) and CORTECON17 
(comparison for ES vs. CP and ES vs. GZ). Distribution of gene expression FC for genes 
in different compartment categories was compared by one-way ANOVA and Tukey’s 
posthoc test.  
15 state epigenetic marks from Epigenomic Roadmap10 in genomic regions classified 
based on compartments were averaged across 40kb bins. The DHS FC10 between 
different cell types (ES vs. CP and ES vs. GZ) was calculated and statistically evaluated 
as in the gene expression comparison. Each epigenetic state counts10 for one 
compartment category was normalized by total epigenetic mark number of that 
compartment category and compared between ES and fetal brains.  
TAD analysis 
We conducted TAD-level analysis as described previously12. Shortly, we quantified the 
directionality index by calculating the degree of upstream or downstream (2Mb) 
interaction bias of a given bin, which was processed by a hidden Markov model (HMM) 
to remove hidden directionality bias.  



Regions in between TADs are titled as TAD boundaries when the regions are smaller 
than 400kb and unorganized chromatin when the regions are larger than 400kb.  
TAD-based epigenetic changes upon differentially expressed genes 
Genes were subdivided into 20 groups based on expression FC between ES and most 
differentiated neuronal states in CORTECON17: genes that are upregulated and 
downregulated upon differentiation were grouped into 10 quantiles, respectively, based 
on the FC. TADs into which genes from one subdivision reside were selected, and 
epigenetic state changes (from Epigenomic roadmap’s 15 state epigenetic marks in ES 
and fetal brains10) in those TADs were normalized with TAD length and compared 
between ES and fetal brains. As different types of epigenetic marks have different 
absolute numbers (e.g. there are more quiescent states than enhancer states in the 
genome), each epigenetic state change was scaled across different quantiles to allow 
comparison between different states.  
Identification of Hi-C interacting regions  
We identified Hi-C interacting regions and target genes for (1) human-gained 
enhancers8, (2) expression quantitative trait loci (eQTL) SNPs24, and (3) schizophrenia 
SNPs9. As the highest resolution available for the current Hi-C data was 10kb, we 
assigned these enhancers/SNPs to 10kb bins, obtained Hi-C interaction profile for 1Mb 
flanking region (1Mb upstream to 1Mb downstream) of each bin. We also made a 
background Hi-C interaction profile by pooling (1) 255,698 H3K27ac sites from frontal 
and occipital cortex at 12 PCW for human-gained enhancers8 and (2) 9,444,230 imputed 
SNPs for eQTL and schizophrenia SNPs9. To avoid significant Hi-C interactions affecting 
the distribution fitting as well as parameter estimation, we used the lowest 95 percentiles 
of Hi-C contacts and removed zero contact values. Using these background Hi-C 
interaction profiles, we fit the distribution of Hi-C contacts at each distance for each 
chromosome using fitdistrplus package (Extended Data Fig. 4a). Significance for a 
given Hi-C contact was calculated as the probability of observing a stronger contact 
under the fitted Weibull distribution matched by chromosome and distance. P-values 
were adjusted by computing FDR, and Hi-C contacts with FDR<0.01 were selected as 
significant interactions. Significant Hi-C interacting regions were overlapped with 
GENCODE19 gene coordinates (including 2kb upstream to transcription start sites 
(TSS) to allow detection of enhancer-promoter interactions) to identify interacting genes. 
Same analysis was performed on Hi-C contact maps from CP, GZ, and ES11. To 
address the functional significance of target genes, GO enrichment was performed for 
the interacting genes.  
Protein-coding genes interacting with human-specific evolutionary enhancers  
Protein-coding genes based on biomaRt (GENCODE19) were selected and non-
synonymous substitution (dN)/synonymous substitution (dS) ratio was calculated for 
homologs in mouse, rhesus macaque, and chimpanzee for representation of mammals, 
primates, and great apes, respectively. Log2(dN/dS) distributions for protein-coding 
genes interacting vs. non-interacting to human-specific evolutionary enhancers in each 
lineage were then compared by two-sample Kolmogorov-Smirnov test. 
LncRNAs interacting with human-specific evolutionary enhancers  
Long non-coding RNAs (lncRNAs) classified according to evolutionary lineages22 were 
used to assess whether lineage-specific lncRNAs are interacting to human-specific 
evolutionary enhancers. We randomly selected the same number of enhancers (2,104) 
to the human-specific ones from the total enhancer pool (255,698), identified interacting 
regions based on the null distribution generated from a background enhancer interaction 
profile. Significant interacting regions (FDR<0.01) identified by Hi-C were intersected 



with lncRNA coordinates22 and interacting lncRNAs for each lineage were counted. This 
step was repeated for 3,000 times to obtain the lncRNA lineage distribution. LncRNAs 
interacting with human-specific evolutionary enhancers were also identified and 
enrichment was tested by calculating P-values as the probability of observing more 
interacting lncRNAs for a given lineage under the null lncRNA lineage distribution.  
Epigenetic state enrichment for Hi-C interacting regions 
The functional framework for (1) eQTL SNPs, (2) schizophrenia SNPs, and (3) human-
gained enhancers-interacting regions was assessed for epigenetic state enrichment. We 
implemented the same approach as in GREAT29 to analyze the epigenetic state 
enrichment for cis-regulatory regions. For example, to evaluate whether schizophrenia 
SNPs are enriched with DHS, fraction of genome annotated with DHS (p), the number of 
schizophrenia SNPs (n), and number of schizophrenia SNPs overlapping with DHS (s) 
were calculated. Significance of the overlaps was tested by binomial probability of P = 
Prbinom (k ≥ s | n = n, p = p)29. Histone marks and 15-chromatin states from fetal brains, 
adult frontal cortex, and IMR9010 were used for epigenetic state enrichment.  
eQTL analysis 
To address whether co-localization mediates gene regulation, we compared the 
association between chromosome conformation with eQTL. Although fetal brain eQTL 
data would be optimal, since this data is currently not available, we analyzed adult 
frontal cortex cis-acting eQTL data24. We selected SNPs associated with gene 
expression (FDR<0.01) and clustered them with association P<1×10-5 and r2>0.6 to 
obtain index SNPs. Using summary association statistics and linkage disequilibrium (LD) 
structure for each index SNP, we applied CAVIAR25 to quantify the probability of each 
variant to be causal. Among 121,273,364 SNP-transcript pairs from frontal cortex eQTL 
data, this process resulted in 42,190 SNP-transcript pairs (267 transcripts and 14,882 
SNPs) that are potentially credible. We refer to 14,882 credible SNPs as credible SNPs. 
Credible SNP interacting genes were identified as described in “identification of Hi-C 
interacting regions” section.  
Fisher’s exact test was performed to evaluate the significance of the overlap between Hi-
C interacting genes and eQTL transcripts. The background gene list for Fisher’s exact 
test includes genes located in 1Mb flanking regions to credible SNPs that are also tested 
in eQTL analysis. 
For 42,190 SNP-transcript pairs, we assigned credible SNPs and genes into 10kb bins, 
and obtained Hi-C contacts between credible SNPs and genes from the 10kb binned Hi-
C contact maps. As a gene can span across multiple 10kb bins, the highest interaction in 
the gene to a credible SNP was selected as Hi-C contacts as previously defined30. We 
also calculated expected interaction frequency from the normalized 10kb binned contact 
matrix based on the distance between two bins. Opposite interaction frequency was 
calculated by obtaining Hi-C contacts for the opposite site to the credible SNP with the 
same distance. Because interaction counts differ in different chromosomes as well as in 
different cell types, we normalized interaction by chromosomes and cell types. We 
performed one-way ANOVA and Tukey’s posthoc test for the comparison between 
different interaction paradigms.    
Identification of credible SNPs for schizophrenia GWAS loci  
128 LD-independent SNPs with genome-wide significance (P<5×10-8)9 were used as 
index SNPs to obtain schizophrenia credible SNPs. All SNPs that are associated with 
P<1×10-5 and in LD (r2>0.6) with an index SNP were selected, and correlations among 
this set of SNPs (LD structure) were calculated. CAVIAR was applied to summary 
association statistics and LD structure for each index SNP, and potentially causal SNPs 



for each index SNP were identified. Among 55,000 SNPs that are in LD with 128 index 
SNPs, 7,613 SNPs were selected as causal by CAVIAR. Here we refer to these 
CAVIAR-identified SNPs as credible SNPs. Genes interacting to credible SNPs were 
identified as described in “identification of Hi-C interacting regions” section for CP, GZ, 
and ES. A separate set of credible SNPs initially reported from the original study was 
also processed with the same method9. 
Identification of schizophrenia GWAS SNP-associated genes  
We classified credible SNPs based on potential functionality (flow chart in Extended 
Data Fig. 7). For credible SNPs classified as functional (stop gained variant, frameshift 
variant, splice donor variant, NMD transcript variant, and missense variant) from 
biomaRt, we selected genes in which those SNPs locate. For those that are not directly 
affecting the gene function, we selected SNPs that fall onto the promoter and TSS of 
genes (2kb upstream-1kb downstream to TSS). Remaining SNPs were tested for Hi-C 
interaction so that Hi-C interacting genes were identified. This pipeline gives total ~900 
genes potentially associated with GWAS SNPs.  
Identification of closest genes and LD genes 
Closest genes to human-gained enhancers and schizophrenia index SNPs were 
obtained by closestBed command from bedtools. Gene coordinates from GENCODE19 
including 2kb upstream to TSS were used to identify the closest genes.  
LD genes refer to all genes in the LD. Here, LD is defined as physically distinct 
schizophrenia-associated 108 genome-wide significant regions9. We overlapped gene 
coordinates from GENCODE19 with LD regions to find genes that reside in LD.  
Closest genes and LD genes were compared with Hi-C interacting genes. Venn 
diagrams were generated by Vennerable package in R. Only protein-coding genes were 
included in plotting Venn diagrams.  
Calculation of distance between SNPs and genes  
For LD genes and closest genes, the shortest distance between an index SNP and a 
target gene was selected. For credible SNPs, (1) the distance between functional 
credible SNPs and target genes was set as 0, because functional SNPs reside in the 
gene, (2) the distance between promoter credible SNPs and target genes was calculated 
as the distance between SNPs and TSS of a gene, (3) the distance between credible 
SNPs and Hi-C interacting genes was calculated based on the distance between SNPs 
and Hi-C interacting bins (note that this distance has a unit of 10kb). We then combined 
the distance distributions from the 3 categories.  
  



Figure Legends 
Figure 1. Chromosome conformation in fetal brains reflects genomic features. a. 
Representative heatmap of the chromosome contact matrix of CP. Normalized contact 
frequency (contact enrichment) is color-coded according to the legend on the right. b. 
Pearson correlation of the leading principle component (PC1) of inter-chromosomal 
contacts at 100kb resolution between in vivo cortical layers and non-neuronal cell types 
(ES and IMR90). c. Spearman correlation of PC1 of chromatin interaction profile of fetal 
brain (GZ) with GC content (GC), gene number, DNase I hypersensitivity (DHS) of fetal 
brain, and gene expression level in fetal laminae. d. GO enrichment of genes located in 
the top 1000 highly interacting inter-chromosomal regions specific to CP vs. GZ (left), 
and CP vs. ES (right), indicating that genes located on dynamic chromosomal regions 
are enriched for neuronal development. e. The top 2% highest interacting regions of fetal 
brains both at GZ and CP (High) show positive correlation in gene expression, while the 
top 2% lowest interacting regions (Low) and top 2% highly variant regions (Variant) have 
no skew in distribution. P-values from Kolmogorov–Smirnov test. f. The epigenetic state 
combination in inter-chromosomal interacting regions in GZ. Inter-chromosomal contact 
frequency map is compared to epigenetic state combination matrix by Fisher’s exact test 
to calculate the enrichment of shared epigenetic combinations in interacting regions. 
Enhancers (TxEnh5', TxEnh3', TxEnhW, EnhA1), transcriptional regulators (TxReg), and 
transcribed regions (Tx) interact highly to each other as marked in red. Colored bars on 
the left represent epigenetic marks associated with promoters and transcribed regions 
(orange), enhancers (red), and repressive marks (blue). Chr, chromosome. Annotation 
for epigenetic marks described in 

http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  

 

Figure 2. Compartment and TADs provide insights into gene regulatory 
mechanism. a. Leading principal component (PC1) of the intra-chromosomal contact 
matrix in CP, GZ, and ES, with the DNase I hypersensitivity (DHS) fold change (FC) 
between ES and fetal brain (FB). PC1 values indicate compartment status of a given 
region, where positive PC1 represents compartment A (red), and negative PC1 
represents compartment B (green). b.  Distribution of gene expression FC (left) and DHS 
FC (right) for genes/regions that change compartment status (“A to B” or “B to A”) or that 
remain the same (“stable”) in different cell types. P-values from one-way ANOVA. c. GO 
enrichment of genes that change compartment status from A to B (top) and B to A 
(bottom) in CP to GZ. d. Heatmap of PC1 values of the genome that change 
compartment status in different cell types. e. Percentage of epigenetic marks for 
genomic regions that change compartment status between ES and CP. Note that B to A 
shift in ES to CP is associated with increased proportion of active transcribed regions 
(TssA and Tx) and enhancers (Enh, top), while A to B shift in ES to CP is associated 
with increased proportions of repressive marks (Het and ReprPCWk, bottom). P-values 
from Fisher’s exact test. f. Epigenetic changes in topological associating domains 
(TADs) mediate gene expression changes during neuronal differentiation. Genes were 
divided by expression FC between ES and differentiated neurons, and epigenetic marks 
in the TADs containing genes in each group were counted and compared between ES 
and CP. Upregulated genes in neurons locate in TADs with more active epigenetic 
marks in CP than in ES, while downregulated genes in neurons locate in TADs with 
more repressive marks in CP than in ES. Epigenetic states associated with activation 
and transcription of the genes were marked as a red bar, while those associated with 
repression were marked as blue bars on the right. Annotation for epigenetic marks 



described in http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp. 

 

Figure 3. Genetic architecture of human-gained enhancers. a. Fraction of epigenetic 
states for regions interacting to human-gained enhancers in CP and GZ. b. Proportions 
of whether human-gained enhancers and interacting regions are within the same 
topological associating domain (TAD) vs. outside of the TAD. c. Overlap between 
human-gained enhancer interacting genes (Hi-Cevol genes) in CP and GZ with closest 
genes to human-gained enhancers (left) and Hi-Cevol genes in ES (right). d. 
Representative interaction map of a 10kb bin, in which human-gained enhancers reside, 
with the corresponding 1Mb flanking regions. This interactome map provides genes of 
action that interact with human-gained enhancers. Chromosome ideogram and genomic 
axis on the top; Gene Model, gene model based on GENCODE19, possible target genes 
in red; Evol, genomic coordinate for a 10kb bin in which human-gained enhancers 
reside; -log10(P-value), P-value for the significance of the interaction between human-
gained enhancers and each 10kb bin, grey dotted line for FDR=0.01; TAD, TAD borders 
in CP, GZ, and ES. e. GO enrichment for Hi-Cevol genes in CP (left) and GZ (right). f. 
Number of primate-specific long non-coding RNAs (lncRNAs) interacting with human-
gained enhancers in CP (red vertical lines in the graph) against a background control 
generated from 3,000 permutations, where the number of lncRNAs interacting with the 
same number of enhancers pooled from all fetal brain enhancers was counted. g. 
Overrepresentation of Hi-Cevol genes in different tissues and closest genes with a 
curated set of intellectual disability (ID) risk genes. *P<0.05, **P<0.01, *** P<0.001. TSS, 
transcription start site; OR, odds ratio; GPCR, G-protein coupled receptor; Hi-C genes: 
GZ, CP, ES, Hi-Cevol genes in each tissue; Hi-C genes: FB, union of Hi-Cevol genes in GZ 
and CP; Hi-C genes: ES-specific, Hi-Cevol genes in ES but not in fetal brain (FB); Hi-C 
genes: FB-specific, Hi-Cevol genes in FB (union) but not in ES; Closest genes, closest 
genes to human-gained enhancers.  

 

Figure 4. Annotation of significant chromatin interactions for schizophrenia-
associated loci. a. Overlap between closest genes to index SNPs (Closest), genes 
locating in linkage disequilibrium (LD), and genes identified through SNP categorization 
and chromatin contacts in CP and GZ (Hi-CSCZ genes, diagram in Extended Data Fig. 
7). b. Number of closest genes and LD genes that interact to credible SNPs (Hi-C 
supported) and those that do not interact to credible SNPs (Hi-C non-supported, top). 
Number of genes that interact to credible SNPs that are closest to or in LD with index 
SNPs (Hi-C genes), and not closest to or in LD with index SNPs (Hi-C genes not, 
bottom). Note that Hi-C genes here contain physically interacting genes, but not genes 
identified by functional SNPs or promoter SNPs. c. Distance between CAVIAR/index 
SNPs and their target genes for closest genes to index SNPs (Closest), genes locating 
in linkage disequilibrium (LD), and Hi-CSCZ genes in CP (CP) and GZ (GZ) d. GO 
enrichment for Hi-CSCZ genes in CP (left) and GZ (right). e. Representative interaction 
map of a 10kb bin, in which credible SNPs reside, to the corresponding 1Mb flanking 
regions. This interactome provides target genes interacting to credible SNPs-containing 
region. Chromosome ideogram and genomic axis on the top; Gene Model, gene model 
based on GENCODE19, possible target genes in red; SNP, genomic coordinate for a 
10kb bin in which credible SNPs locate; -log10(P-value), P-value for the significance of 
the interaction between credible SNPs and each 10kb bin, grey dotted line for 
FDR=0.01; GWAS loci, LD region for the index SNP; TAD, topological associating 
domain borders in CP, GZ, and ES. 
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Extended Data Figure 1. Basic characterization of Hi-C libary. a. Hi-C library 
sequencing information. Percentage for double-stranded (DS) reads indicates 
percentage of DS reads to all reads, and percentage for valid pairs and filtered reads 
indicates percentage of valid pairs and filtered reads to DS reads. b. Frequency 
distribution of Hi-C contacts in GZ (left) and CP (right) c. Size distribution of topological 
associating domains (TADs) in GZ (left) and CP (right). d. Size distribution of genomic 
regions in between TADs that are less than 400kb (TAD boundaries) in GZ (left) and CP 
(right). e. Size distribution of genomic regions in between TADs that are bigger than 
400kb (unorganized chromosome) in GZ (left) and CP (right). Cis ratio, ratio of cis (intra-
chromosomal) reads to the total number of reads; chr, chromosome. 
Extended Data Figure 2. Chromosome conformation is associated with various 
genomic features. a. Spearman correlation of principal components (PCs) of chromatin 
interaction profile of CP with GC content (GC), gene number, DNase I hypersensitivity 
(DHS), and gene expression level of fetal brains. b. GO enrichment of genes located in 
the top 1000 regions that gain inter-chromosomal interactions in CP compared to ES 
(upper left), ES compared to CP (upper right), CP compared to GZ (lower left), and GZ 
compared to CP (lower right). c. Top 5% (left) and 10% (middle) highest interacting 
regions both in GZ and CP (High) show positive correlation in gene expression, while 
low interacting regions (Low) and variant interacting regions (Variant) have no skew in 
distribution. (Right) Mean (top) and median (bottom) values for gene expression 
correlation for high, low, and variant interacting regions with different cutoffs, indicating 
that higher the interaction, higher the correlation of gene expression. d. Percentage of 
epigenetic marks for genomic regions that change compartment status between ES and 
GZ. Note that B to A shift in ES to GZ is associated with increased proportion of active 
transcribed regions (TssA and Tx) and enhancers (Enh, top), while A to B shift in ES to 
GZ is associated with increased proportions of repressive marks (Het and ReprPCWk, 
bottom). P-values from Fisher’s exact test. Annotation for epigenetic marks described in 
a core 15-state model from  
http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  
Extended Data Figure 3. Interacting regions share epigenetic states. a. Epigenetic 
state combination in inter-chromosomal interacting regions in CP. Enhancers (TxEnh5', 
TxEnh3', TxEnhW, EnhA1), transcriptional regulatory regions (TxReg), and transcribed 
regions (Tx) interact highly to each other as marked in red. b-c. Epigenetic state 
combination in intra-chromosomal interacting regions in GZ (b) and CP (c). Enhancers 
(TxEnh5', TxEnh3', TxEnhW, EnhA1) and transcriptional regulatory regions (TxReg) 
interact highly to promoters (PromD1, PromD2) and transcribed regions (Tx5', Tx) as 
marked in red. Inter- and intra-chromosomal contact frequency map is compared to 
epigenetic state combination matrix by Fisher’s exact test to calculate the enrichment of 
shared epigenetic combinations in interacting regions. Colored bars on the left represent 
epigenetic marks associated with promoters and transcribed regions (orange), 
enhancers (red), and repressive marks (blue). Annotation for epigenetic marks described 
in a 25-state model from 
http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  
Extended Data Figure 4. Characterization of chromatin interactome of human-
gained enhancers. a. Distribution fitting of normalized chromatin interaction frequency 
between human-gained enhancers with 1Mb upstream (top) and 100kb upstream 
(bottom) regions. Weibull distribution (red line) fits Hi-C interaction frequency the best for 
every distance range. b. Distribution of the number of significant interacting loci to 
human-gained enhancers in GZ (top), CP (middle), and ES (bottom). c. Fraction of 
histone states (left) and epigenetic mark enrichment (right) for regions interacting with 



human-gained enhancers in GZ and CP. CDF, cumulative distribution function; 
Annotation for epigenetic marks described in  
http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  
Extended Data Figure 5. Human-gained enhancers interact to evolutionary 
lineage-specific long non-coding RNAs (lncRNAs). a. Protein-coding genes 
interacting with human-gained enhancers in CP (CP) and GZ (GZ) have lower	   non-
synonymous substitutions (dN)/synonymous substitutions (dS) ratio compared to 
protein-coding genes non-interacting to human-gained enhancers (All) in mammals 
(mouse), primates (rhesus macaque), and great apes (chimpanzee), indicative of 
purifying selection. b. Number of lineage-specific lncRNAs interacting to human-gained 
enhancers (red vertical lines in the graph) in GZ (top) and CP (bottom). Null distribution 
generated from 3,000 permutations, where the number of lncRNAs interacting to the 
same number of enhancers pooled from all fetal brain enhancers was counted. 
Extended Data Figure 6. Association between eQTL and Hi-C interaction. a. 
Overlap between eQTL transcripts and genes physically interacting to eQTL SNPs in CP 
and GZ. Significance of the overlap between eQTL transcripts and Hi-C interacting 
genes described in the upper right (Fisher’s exact test). Background gene list for Fisher’s 
exact test is all transcripts assessed in eQTL study within 1Mb from eQTL SNPs. b-d. 
Histone state enrichment for eQTL SNPs in adult frontal cortex (FCTX, b), fetal brain 
(FB, c), and IMR90 (d). e. Hi-C interaction frequency between eQTL SNPs and 
transcripts is greater than expected by chance in the relevant cell type. Lowess smooth 
curve plotted with actual data points. CP, chromatin contact frequency in CP; GZ, 
chromatin contact frequency in GZ; ES, chromatin contact frequency in ES; Exp, 
expected interaction frequency given the distance between two regions; Opp, opposite 
interaction frequency: interaction frequency of SNPs and transcripts when the position of 
genes was mirrored relative to the eQTL SNP. ***P<0.001, P-values from repeated 
measure of ANOVA. 
Extended Data Figure 7. Defining schizophrenia risk genes based on functional 
annotation of credible SNPs. Credible SNPs were selected using CAVIAR and 
categorized into functional SNPs, SNPs that fall onto gene promoters, and un-annotated 
SNPs. Histone state enrichment of credible SNPs was assessed in fetal brain (FB) and 
adult frontal cortex (FCTX). Functional SNPs and promoter SNPs were directly assigned 
to the target genes, while un-annotated SNPs were assigned to the target genes via Hi-
C interactions in CP and GZ. GO enrichment for genes identified by each category is 
shown in the bottom. NMD, nonsense-mediated decay; TSS, transcription start site.  
Extended Data Figure 8. Representative interaction maps for credible SNPs to 1Mb 
flanking regions. Interaction maps provide gene of actions for credible SNPs based on 
physical interaction. Chromosome ideogram and genomic axis on the top; Gene Model, 
gene model based on GENCODE19, possible target genes in red; SNP, genomic 
coordinate for a 10kb bin in which credible SNPs locate; -log10(P-value), P-value for the 
significance of the interaction between credible SNPs and each 10kb bin, grey dashed 
line for FDR=0.01; GWAS loci, linkage disequilibrium (LD) region with the index SNP; 
TAD, TAD borders in CP, GZ, and ES.  
Extended Data Figure 9. GO enrichment for schizophrenia risk genes curated by 
various methods. a-b. GO enrichment for the closest genes to index SNPs (a) and 
genes in linkage disequilibrium (LD) with index SNPs (b) that are identified by a 
schizophrenia risk gene assessment pipeline in Extended Data Fig. 7 (right) vs. not 
(left). c. GO enrichment for schizophrenia risk genes identified by a pipeline in Extended 
Data Fig. 7 that are neither the closest genes nor in LD to index SNPs. Intersect and 



union between CP and GZ in left and right, respectively. Venn diagrams are marked in 
orange to depict the gene list assessed for GO enrichment.  
Extended Data Figure 10. Defining schizophrenia risk genes based on functional 
annotation of another set of credible SNPs. Credible SNPs defined in the original 
study were categorized into functional SNPs, SNPs that fall onto gene promoters, and 
un-annotated SNPs. Overlap between credible SNPs identified by CAVIAR and credible 
SNPs originally identified indicates that two credible SNP lists overlap with each other. 
Histone state enrichment of credible SNPs in fetal brain (FB) and adult frontal cortex 
(FCTX). Functional SNPs and promoter SNPs were directly assigned to the target 
genes, while un-annotated SNPs were assigned to the target genes via Hi-C interactions 
in CP and GZ. GO enrichment for genes identified by each category and combined gene 
list is shown in the bottom. NMD, nonsense-mediated decay; TSS, transcription start 
site.  
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Summary 
We apply transcriptome-wide RNA sequencing in post mortem ASD brain and controls, identifying 

convergent alterations in the noncoding transcriptome, including primate specific lncRNA and transcript 
splicing in cerebral cortex, but not in cerebellum, of subjects who had ASD. We characterize an attenuation of 
patterning between frontal and temporal cortex in ASD and identify SOX5, a transcription factor involved in 
cortical neuron fate specification, as a likely driver of this pattern. We further show that a genetically defined 
subtype of ASD, Duplication 15q Syndrome, shares the core transcriptomic signature of idiopathic ASD, 
indicating that observed molecular convergence in autism brain is the likely consequence of manifold genetic 
alterations. Using co-expression network analysis, we show that diverse forms of genetic risk for ASD affect 
convergent, independently replicated, biological pathways and provide an unprecedented resource for 
understanding the molecular alterations associated with ASD in humans.   
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Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by deficits in social 
communication and mental flexibility1. Genetic risk factors contribute substantially to ASD risk, and recent 
studies support the potential contribution of more than a thousand genes to ASD risk2-4. However, given the 
shared cognitive and behavioral features across the autism spectrum, one hypothesis is that diverse risk factors 
may converge on common molecular, cellular, and circuit level pathways to result in the shared phenotype5,6. 
Analysis of the transcriptome has been used to identify common molecular pathways in the neocortex (CTX) 
from postmortem human brain tissue in individuals with ASD7-11. However, all transcriptomic studies in ASD 
to date have been limited to evaluating highly expressed mRNAs corresponding to protein coding genes. 
Moreover, most lack rigorous replication and do not assess gene expression patterns across brain regions.	  

We used rRNA-depleted RNA-seq (Methods) to evaluate transcriptomes from a large set of ASD and 
control (CTL) brain samples including neocortex (frontal and temporal) and cerebellum across 79 individuals 
(46 ASD, 33 CTL, 205 samples, Extended Data Fig. 1a-e, Supplementary Table 1). We first compared 
differential gene expression (DGE) between ASD and CTL individuals in CTX from a previously published7 
microarray study against new, independent gene expression profiles from RNA-seq to evaluate global 
reproducibility of DGE in ASD. We found a high degree of replication of DGE fold changes between the 
sample sets, despite evaluation on different gene expression platforms (fold changes at P < 0.05 in previously 
evaluated data correlate with new data with R2 = 0.60, Extended Data Fig. 1f). We observed a much weaker 
overall signal and replication in cerebellum (R2 = 0.033, Extended Data Fig. 1g). These analyses confirm the 
existence of a reproducible DGE signature in ASD CTX across different platforms and in independent 
samples.  

We next combined samples from all individuals with idiopathic ASD into a covariate-matched “ASD 
Discovery Set” (Extended Data Fig. 1h) for CTX (106 samples, 26 ASD, 33 CTL individuals) and held out 
remaining samples for replication (“ASD Replication Set”, Methods). For DGE analysis, we used a linear 
mixed effects model that accounts for biological and technical covariates (Methods) to identify 1156 genes 
differentially expressed in ASD CTX, 582 increased and 574 decreased (Benjamini-Hochberg FDR ≤ 0.05). 
Importantly, DGE analysis with additional covariates or different assumptions about the distribution of the data 
and test statistics yielded similar results (Extended Data Fig. 2a). Additionally this DGE signature clusters over 
two-thirds of ASD samples together and this clustering is not related to confounding factors such as cortical 
region, age, sex, and RNA quality (Figure 1a, Extended Data Fig. 2b). The most significantly down-regulated 
gene was PVALB (fold change = 0.53, FDR ≤ 0.05), a marker for GABAergic interneurons. SST, a marker for a 
different subpopulation of GABAergic interneurons, is also among the most downregulated (fold change = 
0.61, FDR ≤ 0.05). Other down-regulated genes at FDR ≤ 0.05 include NEUROD6, involved in neuronal 
differentiation (fold change = 0.60), multiple ion channels, and KDM5D, a lysine demethylase (fold change = 
0.66). In contrast, members of the complement cascade implicated in microglial-neuronal interactions (C4A, 
fold change = 1.94; C1QB, fold change = 1.65; both FDR ≤ 0.05) are upregulated in ASD CTX. Gene 
Ontology (GO) term enrichment analysis further supports the involvement of pathways implicated by these 
genes (Figure 1b), confirming previous findings7. Moreover, the upregulated set is enriched for astrocyte and 
microglia enriched genes, and the down-regulated set is enriched for synaptic genes (Extended Data Fig. 2c), 
consistent with previous observations7,11. 

We next sought to evaluate whether the transcriptional signature identified in the ASD Discovery Set 
generalizes to the ASD Replication set by assessing the 1st principal component of the DGE set, which 
summarizes the DGE expression pattern across all cortical samples. The ASD Discovery Set and ASD 
Replication Set share this pattern, which is significantly different for both sets compared to CTL (Figure 1c). 
Moreover, this pattern is highly associated with ASD diagnosis, but not other biological factors, technical 
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factors, or scores on sub-domains of an ASD diagnostic tool (Figure 1d). These analyses demonstrate that 
convergent differences in ASD CTX are reproducible in independent samples and are not related to 
confounding factors.  
 We also detected 2715 lncRNAs expressed in cerebral cortex (after careful filtering for high-confidence 
transcripts, Supplementary Information), of which 62 were significantly dysregulated between ASD and CTL 
(33 long intergenic RNAs, lincRNAs; 19 antisense transcripts; and 10 processed transcripts at FDR ≤ 0.05). 
Similar to the protein coding genes, these transcripts’ expression patterns cluster ASD and CTL samples 
(Figure 1e). Most of these lncRNAs are developmentally regulated12, have chromatin states indicative of 
transcription start sites (TSSs) near their 5´ end in brain13, and are identified in other datasets12,14 consistent 
with being valid, functional lncRNAs. Moreover, most (81%) exhibit primate-specific expression patterns in 
brain15 (Supplementary Information). For example, Figure 1f depicts two lincRNAs, LINC00693 and 
LINC00689, which are typically downregulated during development, yet are upregulated in ASD CTX relative 
to controls (Figure 1g), which we validated by RT-PCR (Extended Data Fig. 2d). LINC00693 sequence is 
present, but poorly conserved in mouse, while LINC00689 is primate-specific (present in macaque and other 
primates but not in any other species, Supplementary Information, Extended Data Fig. 3 for additional 
examples). These data indicate that dysregulation of lncRNAs, many of which are primate-specific and 
involved in brain development, is an important component of transcriptome dysregulation observed in ASD.  

Previous work suggested that alterations in transcript splicing may contribute to transcriptomic changes 
in ASD7,16,17 by evaluating splicing in a targeted manner and pooling samples across individuals7,16,17. Given 
the increased sequencing depth and reduced sequencing bias across transcript length in our dataset, we were 
able to perform an unbiased genome-wide analysis of differential alternative splicing (AS). We evaluated the 
percent spliced in (PSI, Extended Data Fig. 4a) for 34,025 AS events in CTX across the ASD Discovery Set, 
encompassing skipped exons (SE), alternative 5´ splice sites (A5SS), alternative 3´ splice sites (A3SS), and 
mutually exclusive exons (MXE) using the MATS pipeline18 (Supplementary Information). We first asked 
whether there was a global signal, finding significant enrichment over background (Extended Data Fig. 4b). 
We identified 1127 events in 833 genes at FDR ≤ 0.5 in CTX (similar to the number of events at uncorrected P 
< 0.005). Importantly, we obtained similar results with a different splice junction mapping and quantification 
approach (Extended Data Fig. 4c). 

We performed PCR validations with nine AS events from the differential splicing set (ASTN2, MEF2D, 
ERC2, MED31, SMARCC2, SYNE1, NRCAM, GRIN1, NCAM) and found that validated changes in splicing 
patterns were concordant with RNA-seq (Extended Data Fig. 4d-e), demonstrating that our approach identifies 
alterations in AS with high specificity. Similar to our observations with lncRNA and DGE, AS changes 
clustered the samples by diagnosis (Figure 2a). The most significantly different event was the inclusion of an 
exon in ASTN2 (ΔPSI = 5.8 indicating a mean of 5.8% difference in inclusion in ASD vs CTL; P = 7.8x10-6), a 
gene implicated by copy number variation (CNV) in ASD and other developmental disorders19. GO term 
analysis of the genes implicated by these pathways indicates involvement of biological processes related to 
neuronal projection, biological adhesion, and morphogenesis (Figure 2b), pathways where alternative isoforms 
are critical to specifying interactions between protein products. Moreover, the 1st principal component of the 
cortex differential splicing signature replicates in the ASD Replication Set and is not associated with other 
biological or technical factors (Figures 2c-d, Extended Data Fig. 5a). Importantly, many splicing alterations 
occur in genes that are not differentially expressed between ASD and CTL; removing AS events on genes 
exhibiting even nominal DGE (P < 0.05), still identified a strong difference between ASD and CTL CTX  
(Extended Data Fig. 5b). 
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A parallel analysis in cerebellum evaluating 32,954 AS events found no differentially regulated events 
significant at any multiple comparison correction thresholds (Extended Data Fig. 5c, Supplementary Table 3). 
There was no detectable global overlap between cerebellum and CTX above chance for events significant at P 
< 0.05 in both comparisons (fold enrichment = 1.1, P = 0.21). This suggests that AS alterations in ASD are 
largely confined to CTX cell types, consistent with the stronger overall DGE patterns observed in CTX versus 
cerebellum. 

To further explore the underlying biology of AS dysregulation, we tested whether the shared splicing 
signature in ASD might be a product of perturbations in AS factors known to be important to neural 
development or preferentially expressed in neural tissue. We found that the expression levels of RBFOX1, 
RBFOX2, SRRM4, NOVA1, and PTBP1 all had high correlations (R2 > 0.35, FDR ≤ 0.05) to AS alterations in 
CTX (Figure 2e), but not in cerebellum (Figure 2f). Furthermore, enrichment analysis revealed that most 
changes in cortical AS occur in neuron-specific exons that are excluded in ASD (exons with ΔPSI > 50% in 
neurons overlap with exons excluded in ASD CTX, fold enrichment = 4.1, P = 1.8x10-7, Extended Data Fig. 
5d). 

To validate a regulatory relationship between splicing factors and these events, we evaluated 
experimental data from knockout, overexpression, and knockdown experiments for Rbfox120, SRRM421, and 
PTBP122, respectively . We found that exons regulated by each of these splicing factors were significantly 
enriched in the set of exons excluded in ASD (Figure 2g), while in contrast, there was no enrichment for 
targets of ESRP23, a splicing factor involved in epithelial cell differentiation but not expressed in CTX. This 
shows that alterations in three splicing factors dysregulated in ASD regulate AS of the neuron-specific exons 
whose inclusion is dysregulated in ASD in CTX and not cerebellum, indicating selective alteration of neuronal 
splicing in ASD CTX. Remarkably, the expression patterns of these three splicing factors (and others for which 
appropriate validation experiments were unavailable) results in distinct clusters (Extended Data Fig. 5e), 
suggesting that subsets of splicing factors act in different individuals to mediate a common downstream AS 
alteration. 

Taken together these results indicate global transcriptional alterations in ASD cerebral cortex, but not 
cerebellum at the level of protein coding transcripts, lncRNA and AS. Therefore, to determine how these 
different transcriptomic subcategories relate to each other in ASD, we compared the 1st PC for each type of 
transcriptomic alteration across individuals (Figure 2h).  Remarkably, the PCs are highly correlated (R2 > 0.8) 
indicating that the transcriptomic alteration is a unitary phenomenon across protein coding, noncoding, and 
splicing levels, rather than distinct forms of molecular alteration. 

Previous analysis with gene expression microarrays in a small cohort suggested that the typical pattern 
of transcriptional differences between the frontal and temporal cortex may be attenuated in ASD7. To further 
test this possibility, we evaluated DGE between CTX regions (Supplementary Information) in 16 matched 
frontal and temporal CTX sample pairs from ASD and CTL subjects and found 551 genes differentially 
expressed between regions in controls, but only 51 in ASD (FDR ≤ 0.05; Figure 3a). We refer to the set of 523 
genes with this pattern in CTL, but not ASD as the “Attenuated Cortical Patterning” set. The attenuation of 
patterning is evident from the global distribution of test statistics between frontal and temporal CTX in ASD 
and CTL and genes in this set do not show a greater difference in variability in ASD versus controls compared 
to other genes (Kolmogorov-Smirnov test, two-tailed P = 0.11, Extended Data Fig. 6a).  

We complemented this analysis with a machine learning approach using all 123 cortical samples, 
training a regularized regression model24 to classify frontal versus temporal CTX with independent gene 
expression data from BrainSpan25 (Extended Data Fig. 6b, Supplementary Information). Multiple approaches 
to training the classifier with BrainSpan can differentiate between frontal and temporal CTX in both CTL and 
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ASD (Extended Data Fig. 6c-e), demonstrating that dissection and sample quality in our samples are of high 
quality. Loss of classification accuracy in ASD compared to CTL was observed when restricting the model to 
the genes with the most attenuated patterning in ASD (Extended Data Fig. 6f), demonstrating that attenuation 
of patterning generalizes across all samples. The Attenuated Cortical Patterning set includes multiple genes 
known to be involved in cell-cell communication and cortical patterning, such as PCDH10, PCDH17, CDH12, 
MET, and PDGFD, which was recently shown to mediate human specific aspects of cerebral cortical 
development26. GO term enrichment analysis of the Attenuated Cortical Patterning set identified enrichment 
for G protein coupled signaling, Wnt receptor signaling, and calcium binding, among several developmental 
processes (Figure 3b), and cell type enrichment analysis did not identify a strong preference for a particular 
cell type (Extended Data Fig. 6g).  

To identify potential drivers of the alteration in cortical patterning, we evaluated transcription factor 
binding site enrichment upstream of genes in the Attenuated Cortical Patterning set (Supplementary 
Information), and found an enrichment of SOX5 binding motifs (upstream of 364/523 genes, Figure 3c). 
Remarkably, SOX5 itself belongs to the Attenuated Cortical Patterning set: while SOX5 is differentially 
expressed between frontal and temporal CTX in CTL, it is not in ASD (Figure 3d). We thus predicted that if 
SOX5 regulates cortically patterned genes, its expression should correlate with target gene transcript levels. 
Consistent with this prediction, we found that genes in the Attenuated Cortical Patterning set are anti-
correlated with SOX5 in CTL CTX, but not in ASD CTX (Figure 3e, top left; Wilcoxon rank sum test of R 
values, P = 0.01), suggesting that the normal role of SOX5 as a transcriptional repressor may be disrupted in 
ASD. We reasoned that a true loss of SOX5-mediated cortical patterning would be specific to the predicted 
SOX5 targets. Consistent with this, we find a loss of correlations between SOX5 and predicted targets, but no 
difference in correlations between SOX5 and non-targets in the Attenuated Cortical Patterning set (Figure 3e). 
Taken together, these findings show that a loss of regional patterning downstream of the transcriptional 
repressor SOX5, which plays a crucial role in glutamatergic neuron development27,28, contributes to the loss of 
regional identity in ASD.  

Gene expression changes in postmortem brain may be a consequence of genetic factors, environmental 
factors, or both. Brain tissue from individuals with ASD that harbor known, penetrant genetic causes are very 
rare. However, we were able to identify postmortem brain tissue from 8 subjects with one of the more common 
recurrent forms of ASD, Duplication 15q Syndrome (dup15q, which is present in about 0.5-1% of ASD cases, 
see Extended Data Fig. 7a for characterization of duplications). We performed RNA-seq across frontal and 
temporal cortex and compared DGE changes in dup15q with those observed in individuals with idiopathic 
ASD to better understand the extent to which the observed molecular pathology overlaps. As expected, most 
genes in the 15q11.1-13.2 duplicated region have higher expression in dup15q CTX compared to CTL (Figure 
4a), although SNRPN and SNURF were notably downregulated. Conversely, no significant upregulation of 
genes in this region were identified in idiopathic ASD or controls. Strikingly, when we assessed genome-wide 
expression changes, we observed a strong signal of DGE in dup15q that widely overlaps with that of idiopathic 
ASD (fold changes at FDR ≤ 0.05 in dup15q correlate with idiopathic ASD with R2 = 0.79, Figure 4b). 
Moreover, the slope of the best-fit line through these changes is 2.0, indicating that on average, the 
transcriptional changes in dup15q CTX are highly similar, but twice the magnitude of those observed in ASD 
CTX. 

Next, we sought to evaluate AS changes in dup15q. There is only one significant splicing change in the 
dup15q region (Supplementary Table 3), consistent with the idea that duplication in this region duplicates all 
isoforms of the genes, resulting in minimal alteration of transcript structure. Similar to DGE, global AS 
analysis in dup15q CTX vs to CTL CTX revealed a stronger, but highly overlapping signature with idiopathic 
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ASD CTX (fold changes at FDR ≤ 0.2 in dup15q agree correlate with idiopathic ASD with R2 = 0.66) 
indicating that splicing changes in dup15q syndrome recapitulate those of idiopathic ASD (Figure 4c). The 
slope of the best-fit line through the PSI for spliced exons in dup15q CTX compared to those in ASD CTX is 
2.5 similar to DGE. Notably, both gene expression and AS changes in dup15q implicated similar pathways as 
those found in idiopathic ASD (Extended Data Fig. 7c-d). Clustering dup15q samples and CTL samples using 
both the DGE set and the differential AS set showed that all dup15q samples cluster together (Figure 4d), as 
opposed to the more variable clustering of idiopathic ASD, supporting the hypothesis that this shared genetic 
abnormality leads to a more homogeneous molecular phenotype. 

Next, to test whether this molecular ASD signature may be due to independent of postmortem or 
reactive effects (Supplementary Information), we compared our data with gene expression profiles from a 
iPSC-derived neurons (nIPSCs)29 from dup15q were available, we could use these data to definitively reveal 
which changes in dup15q CTX are independent of postmortem or reactive effects (Supplementary 
Information), since such effects are not present in vitro. We observe that DGE in the 15q region is concordant 
with that seen in the nIPSCs (Figure 4e), even though the sample size is small and the analysis is likely 
underpowered. Upregulated changes in dup15q are also seen in nIPSCs (Figure 4f), consistent with our other 
statistical analyses showing limited effects of potential confounders. The very immature, fetal state of the 
nIPSCs30 likely explains the absence of an enrichment signal for genes downregulated in postnatal ASD brain, 
which are enriched for genes involved in neurons with more mature synapses.  

We next applied gene network analysis to construct an organizing framework to understand shared 
biological functions across idiopathic ASD and dup15q (combining the ASD Discovery Set, ASD Replication 
Set, and dup15q set). We utilized Weighted Gene Co-expression Network Analysis (WGCNA), which 
identifies groups of genes with shared expression patterns across samples (modules) from which shared 
biological function is inferred.  Modules identified via WGCNA can than be related to a range of relevant 
phenotypes and potential confounders31,32. We applied signed co-expression analysis and used bootstrapping to 
ensure the network was robust, and not dependent on any subset of samples (Supplementary Information), 
while controlling for technical factors and RNA quality (“Adjusted FPKM” levels, Methods). WGCNA 
identified 16 co-expression modules (Extended Data Fig. 8a), which are further characterized by their 
association to ASD (Extended Data Fig. 8b), enrichment for cell-type specific genes (Extended Data Fig. 8c), 
and enrichment for GO terms (Extended Data Fig. 9). Of the downregulated modules, three are associated with 
ASD and dup15q (M1/10/17) and one with dup15q only (M11). Five of the upregulated modules are associated 
with ASD and dup15q (M4/5/6/9/12) and one is specific to dup15q (M13) (Figure 5a, top). Additionally, we 
identified a module strongly enriched for genes from the Attenuated Cortical Patterning set and Wnt signaling 
that contains SOX5 (M12; fold enrichment = 3.0, P = 3x10-8), verifying the strong relationship observed 
between the Wnt pathway regulating TF SOX5 and attenuation of cortical patterning33. 

Notably, the modules identified here significantly overlap with previous patterns identified in ASD 
(asdM12array and asdM16array

7; Figure 5a, middle). We found that the ASD-associated modules identified by 
our larger sample size and RNA-seq provide significant refinement of previous observations by identifying 
more discrete biological processes related to cortical development34, the post-synaptic density35, and lncRNAs 
(Figure 5a, bottom). For example, M1 overlaps a subset of asdM12array (fold enrichment = 5.7) and 
developmental modules (devM16 fold enrichment = 3.7), and is enriched for proteins found in the PSD and 
genes involved in calcium signaling and gated ion channel signaling. Another subset of asdM12array, M10 (fold 
enrichment = 11) overlaps more with a mid-fetal upregulated cortical development module (devM13 fold 
enrichment = 4.0), and genes involved in secretory pathways and intracellular signaling. A third module, M17 
shows the least overlap with asdM12array (fold enrichment = 2.2) and is related to energy metabolism. Notably, 
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these three modules are enriched for neuron-specific genes (Extended Data Fig. 8c), but not all neuronal 
modules are down regulated in ASD (M3 is not altered in ASD CTX). Taken together, specific neurobiological 
processes are affected in individuals with ASD related to developmentally regulated neurodevelopmental 
processes. 

The most upregulated modules, M5 and M9, both strongly overlap (fold enrichments > 20) with 
previously identified upregulated co-expression module asdM16array. M5 is enriched for microglial cell 
markers and immune response pathways, whereas M9 is enriched for astrocyte markers and immune-mediated 
signaling and immune cell activation (Extended Data Fig. 8c, Extended Data Fig. 9). This analysis clearly 
separates the contributions of the coordinated biological processes of microglial activation and reactive 
astrocytosis, which were previously not distinguishable as separate modules7. Thus, our analysis pinpoints 
more specific biological pathways in idiopathic ASD than those previously identified and reveals that similar 
changes occur downstream of the genetic perturbation in dup15q.  
 We evaluated the relationship between the five modules most strongly associated with ASD 
(M1/5/9/10/17, which are supported by module-trait association analysis and gene set enrichment analysis, 
Supplementary Information), and found that there was a remarkably high anti-correlation between the 
eigengene of M5 and downregulated modules, particularly M1 (R2 = 0.76) (Figure 5b). M1 (Figure 5c) is 
downregulated in ASD and enriched for genes at the PSD and genes involved in synaptic transmission, while 
M5 (Figure 5d) is enriched for microglial genes and cytokine activation. This strong anti-correlation between 
microglial signaling and synaptic signaling in ASD and dup15q provides evidence in humans for dysregulation 
of microglia-mediated synaptic pruning, as previously suggested36. 

Next, to determine the role of causal genetic variation, we evaluated enrichment of both rare genetic 
variants, focusing on genes affected by ASD associated gene disrupting (LGD) de novo mutations37, and 
common variants38,39. Genes within three modules, M1, M3, and M12, show enrichment for common variation 
signal for ASD (Figure 5e, Methods). Remarkably, M12 (Figure 5f), which is related to cortical patterning and 
Wnt signaling, also exhibit GWAS signal enrichment, providing the first evidence that risk conferred by 
common variation in ASD may affect regionalization of the cortex. Interestingly, M3 is significantly enriched 
for both schizophrenia (SCZ) and ASD common variants, is related to synaptic transmission, nervous system 
development, and regulation of ion channel activity (Extended Data Fig. 9), consistent with the notion that 
ASD and SCZ share common and rare genetic risk1,40-43. 

We only identified one module, M2 (Figure 5g), as significantly enriched in protein disrupting 
(nonsense, splice site, or frameshift) rare de novo variants previously associated with SCZ and ASD. M2 
overlaps with a cortical developmental module implicated in ASD34 (devM2 fold enrichment = 5.1). Notably, 
M2 is not differential between ASD and CTL in our dataset, consistent with the observation that these genes 
are primarily expressed during early neuronal development in fetal brain34. Remarkably, M2 contains an 
unusually large fraction of lncRNAs (15% of the genes in M2 are classified as lncRNAs, while other modules 
are 1-5% lncRNA). We hypothesize that, in addition to protein coding genes involved in transcriptional and 
chromatin regulation, rare de novo variants may also affect lncRNAs in ASD, a prediction that will be testable 
once large sets of whole genome sequences are available. 
 These combined transcriptomic and genetic analyses reveal that different forms of genetic variation 
affect biological processes involved in multiple stages of cortical development. Common genetic risk is 
enriched in M3, M1, and M12, which reflect early glutamatergic neurogenesis, later neuronal function, and 
cortical patterning, respectively. We also observe that rare de novo variation, which is enriched in M2, affects 
distinct biology related to transcriptional regulation and chromatin modification. These findings are consistent 
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with transcriptomic analyses of early prenatal brain development and ASD risk mutations that implicate 
chromatin regulation and glutamatergic neuron development34,44.  

We provide the first comprehensive picture of largely unexplored aspects of transcription in ASD, 
lncRNA and alternative splicing, and identify a strong convergent signal in these, as well as protein coding 
genes7. These results will aid in interpreting genetic variation outside of the known exome, as whole genome 
sequencing supplants current methods. A role of lncRNAs has been previously explored in ASD45, but only 
two individuals were evaluated with targeted microarrays. We evaluate lncRNAs in an unbiased manner across 
many individuals, notably identifying an enrichment of lncRNAs in M2, most of which are uncharacterized in 
brain and arose on the primate lineage. The involvement of lncRNAs in this early developmental program that 
is enriched for de novo mutations implicated in ASD suggests their study will be particularly relevant to 
understanding the emergence of primate higher cognition on the mammalian lineage, and by extension human 
brain evolution15,46,47.  

We also provide the first confirmation of an attenuation of genes that typically show differential 
expression between frontal and temporal lobe in ASD CTX and further identified SOX5, known to regulate 
cortical laminar development50,51, as a putative regulator of this disruption. That M12, which is enriched for 
genes exhibiting cortical regionalization and is also enriched in ASD GWAS signal, supports the prediction 
that attenuation of patterning may be mediated by common genetic variation in or near the SOX5 target genes. 
Disruption of cortical lamination by direct effects on glutamatergic neurogenesis and function has been 
predicted by independent data, including network analyses of rare ASD associated variants identified in exome 
sequencing studies34,44. 

These data, in conjunction with previous studies, reveal a consistent picture of the ASD’s emerging 
postnatal and adult pathology. Specific neuronal signaling and synaptic molecules are downregulated and 
astrocyte and microglial genes are upregulated in over 2/3 of cases. Microglial infiltration has been observed in 
ASD cortex with independent methods52, and normal microglial pruning has been shown to be necessary for 
brain development36. Our findings further suggest that aberrant microglial-neuronal interactions may be 
pervasive in ASD and related to the gene expression signature seen in a majority of individuals. In our 
comprehensive AS analysis, we identify three splicing factors upstream of the altered splicing signature 
observed in ASD CTX. These factors are known to be involved in coordinating sequential processes in 
neuronal development17,21 and maintaining neuronal function48,49. It may therefore be sufficient to disrupt any 
one of these factors to induce a similar outcome during brain development, which would be consistent with the 
shared downstream perturbation observed here. 

Finally, evaluation of the transcriptome in dup15q supports the enormous value of the “genotype first” 
approach of studying syndromic forms of ASD, with known penetrant genetic lesions53. It is highly unlikely 
that the shared transcriptional dysregulation in dup15q is due to a shared environmental insult. Thus, the most 
parsimonious explanation for the convergent transcriptomic pathology seen in all dup15q and over 2/3 of the 
cases of idiopathic ASD is that it represents an adaptive or maladaptive response to a primary genetic insult, 
which in most cases of ASD will be genetic2,54. As future investigations pursue the full range of causal genetic 
variation contributing to ASD risk, these analyses and data will be valuable for interpreting genetic and 
epigenetic studies of ASD as well as those of other neuropsychiatric disorders. 
	    



	   10 

Figures & Figure Legends 
	  

	  
Figure 1 | Transcriptome-wide differential gene expression in ASD.  a, Average linkage hierarchical clustering 
of samples in the ASD Discovery Set using the top 100 upregulated and top 100 downregulated protein 
coding genes. b, Gene Ontology (GO) term enrichment analysis of upregulated and downregulated genes in 
ASD. *FDR ≤ 0.05 across all GO terms and gene sets. c, 1st principal component of the CTX DGE set (CTX 
DGE PC1) is able to distinguish ASD and CTL samples, including independent samples from the ASD 
Replication Set. d, CTX DGE PC1 is primarily associated with diagnosis, and not other factors. e, Average 
linkage hierarchical clustering of ASD Discovery Set using all lncRNAs in the DGE set. f, UCSC genome 
browser track displaying reads per million (RPM) in a representative ASD and CTL sample, superimposed 
over the gene models and sequence conservation for genomic regions including LINC00693 and LINC00689. 
g, LINC00693 and LINC00689 are upregulated across ASD samples and downregulated during frontal cortex 
development. Abbreviations: FC, frontal cortex; TC, temporal cortex; RIN, RNA integrity number; ADI-R 
score, Autism Diagnostic Interview Revised score; FPKM, fragments per kilobase million mapped reads. 
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Figure	  2	  |	  Alteration	  of	  alternative	  splicing	  in	  ASD.	  a, Average linkage hierarchical clustering of ASD 
discovery set using top 100 differentially included and top 100 differentially excluded exons from the 
differential splicing (DS) set across the ASD Discovery Set. b, Gene Ontology term enrichment analysis of 
genes with DS in ASD. c, 1st principal component 1 of the CTX differential alternative splicing set (CTX DS 
PC1) is able to distinguish ASD and CTL samples using independent samples from the ASD Replication Set. 
d, CTX DS PC1 is primarily associated with diagnosis, and not other factors. e, Correlation between CTX DS 
PC1 and gene expression of neuronal splicing factors in CTX. f, Correlation between 1st principal component 
of cerebellum differential splicing (CB DS PC1) and gene expression of neuronal splicing factors in 
cerebellum. g, Overlap between DS set and splicing events regulated by splicing factors where experimental 
data was available. h, Scatterplots and correlations between the 1st principal component across the ASD versus 
CTL DGE sets for different transcriptome subcategories. Abbreviations: FC, frontal cortex; TC, temporal 
cortex; RIN, RNA integrity number; ADI-R score, Autism Diagnostic Interview Revised score; FPKM, 
fragments per kilobase million mapped reads. 
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Figure	  3	  |	  Attenuation	  of	  cortical	  patterning	  in	  ASD	  cortex.	  a,	  Heatmap	  of	  551	  genes	  exhibiting	  cortical	  
patterning	  between	  frontal	  cortex	  (FC)	  and	  temporal	  cortex	  (TC)	  in	  ASD,	  with	  samples	  sorted	  by	  
diagnostic	  status	  and	  brain	  region.	  b,	  Gene	  ontology	  term	  enrichment	  analysis	  of	  genes	  exhibiting	  
attenuated	  cortical	  patterning	  (ACP).	  c,	  Schematic	  of	  transcription	  factor	  motif	  enrichment	  upstream	  of	  
genes	  in	  the	  ACP	  set,	  with	  the	  SOX5	  motif	  sequence	  logo.	  d,	  The	  SOX5	  gene	  exhibits	  attenuated	  cortical	  
patterning	  in	  ASD	  CTX	  compared	  to	  CTLs.	  Lines	  connect	  FC-‐TC	  pairs	  that	  are	  from	  the	  same	  individual.	  e,	  
Correlation	  between	  SOX5	  gene	  expression	  and	  predicted	  targets	  in	  CTL	  and	  ASD,	  with	  all	  ACP	  genes	  
(top	  left),	  SOX5	  targets	  from	  the	  ACP	  set	  (top	  right),	  	  SOX5	  non-‐targets	  from	  the	  ACP	  set	  (bottom	  left),	  
and	  all	  genes	  not	  in	  the	  ACP	  set	  (bottom	  right).	  Plots	  show	  the	  difference	  in	  correlation	  between	  SOX5	  
and	  other	  genes	  in	  ASD	  and	  CTL	  (ΔR).	  
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Figure 4 | Duplication 15q Syndrome recapitulates transcriptomic changes in idiopathic ASD. a, DGE changes 
across the 15q11-13.2 region for ASD and dup15q compared to CTL, error bars are +/- 95% confidence 
intervals for the fold changes. b, Comparison of effect sizes in dup15q vs CTL and ASD vs CTL, with 
changes in dup15q at FDR ≤ 0.05 highlighted. c, Comparison of differential splicing (DS) changes in dup15q 
vs CTL and ASD vs CTL, highlighting 402 events at FDR ≤ 0.2 in dup15q. d, Average linkage hierarchical 
clustering of dup15q samples and controls using the DGE and DS gene sets. e, Plot of fold changes between 
induced pluripotent stem cells differentiated into neurons (nIPSCs) from dup15q vs CTL and postmortem 
CTX DGE from dup15q vs CTL in the 15q region. f,  Heatmap overlapping the top 1000 genes up- and down- 
regulated in the nIPSC comparison to the up- and down- regulated genes in dup15q and idiopathic ASD CTX. 
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Figure 5 | Co-expression network analysis across all ASD and CTL samples in CTX. a, Gene set enrichment 
analyses comparing the 16 co-expression modules with multiple gene sets from this RNA-seq study, from 
postmortem ASD CTX microarray, from human brain development, from the postsynaptic density and set of 
all brain-expressed lncRNAs. b, Comparison of five ASD-associated modules against each other by 
correlating module eigengenes. c, Module plot of M1 displaying the top 25 hub genes along with the module’s 
Gene Ontology term enrichment. d, similar to c, but for M5. e, Gene set enrichment analysis with genome-
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wide whole-exome sequencing data (Rare de novo hit genes) and genome-wide association study (GWAS) 
results in ASD, schizophrenia (SCZ), and intellectual disability (ID). Boxes are filled if the odds ratio is 
greater than 0, and the enrichment P < 0.05. Asterisks* indicate FDR ≤ 0.05 across all comparisons in a and e. 
f,g, similar to c, but for M12 and M2, respectively. Abbreviations: LGD, likely gene disrupting, genes 
affected by nonsense, nonsynonymous, or splice-site mutations or frame-shift indels; AGRE, AGP/CHOP, 
and PGC refer to consortia that collect genetic data (Supplementary Information for details). 
 

Methods 
	  
Sample description: Brain tissue for ASD and control individuals was acquired from the Autism Tissue 
Program (ATP) brain bank at the Harvard Brain and Tissue Bank and the University of Maryland Brain and 
Tissue Bank (a Brain and Tissue Repository of the NIH NeuroBioBank). Sample acquisition protocols were 
followed for each brain bank, and samples were de-identified prior to acquisition. Brain sample and individual 
level metadata is available in Supplementary Table 1. 
 
RNA-seq methodology: Starting with 1ug of total RNA, samples were rRNA depleted (RiboZero Gold, 
Illumina) and libraries were prepared using the TruSeq v2 kit (Illumina) to construct unstranded libraries with 
a mean fragment size of 150bp (range 100-300bp) that underwent 50bp paired end sequencing on an Illumina 
HiSeq 2000 or 2500 machine. Paired-end reads were mapped to hg19 using Gencode v18 annotations55 via 
Tophat256. Gene expression levels were quantified using union exon models with HTSeq57. For additional and 
information on sequencing and read alignment parameters, please see Supplementary Information. 
 
Sample sets for analysis: For differential gene expression and splicing analysis, we defined an age matched 
set, referred to as the ASD Discovery Set (106 samples in CTX, 51 in cerebellum) of idiopathic ASD and 
control samples for the discovery set, and held out younger or unmatched samples as the ASD Discovery Set 
(17 in CTX, 8 in cerebellum). Dup15q individuals were analysed separately, utilizing the full set of controls 
from the ASD Discovery Set. For co-expression network analysis, we combined the discovery set, replication 
set, and dup15q individuals for a total of 137 CTX samples and 59 cerebellum samples. 
 
Differential Gene Expression (DGE): DGE analysis was performed with expression levels adjusted for gene 
length, library size, and G+C content (referred to as “Normalized FPKM”) Supplementary Information. CTX 
samples (frontal and temporal) were analyzed separately from cerebellum samples. A linear mixed effects 
model framework was used to assess differential expression in log2(Normalized FPKM) values for each gene 
for cortical regions (as multiple brain regions were available from the same individuals) and a linear model 
was used for cerebellum (where one brain region was available in each individual, with a handful of technical 
replicates removed). Individual brain ID was treated as a random effect, while age, sex, brain region (except 
in the case of cerebellum, where there is only one region), and diagnoses were treated as fixed effects. We 
also used technical covariates accounting for RNA quality, library preparation, and batch effects as fixed 
effects into this model (Supplementary Information). 
 
Reproducibility analyses: We assessed replication between datasets by evaluating the concordance between 
independent sample sets by comparing the squared correlation (R2) of fold changes of genes in each sample 
set at a non-stringent P value threshold. This general approach has been shown to be effective for identifying 
reproducible gene expression patterns58, and we modify it such that the P value threshold is set in one sample 
set (the x axis in the scatterplots), and the R2 with fold changes in these genes are evaluated in an independent 
sample set (the y axis in the scatterplots). 
 
Differential Splicing Analysis: Alternative splicing was quantified using the percent spliced in (PSI) metric 
using Multivariate Analysis of Transcript Splicing (MATS, v3.08)18. For each event, MATS reports counts 
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supporting the inclusion (I) or exclusion (E) of a splicing event. To reduce spurious events due to low counts, 
we required at least 80% of samples to have I + S >= 10. For these events, the percent spliced in is calculated 
as PSI = I / (I + S) (Extended Data Fig. 4a).  Statistical analysis for differential splicing was performed 
utilizing the linear mixed effects model regression framework as described above for DGE. This approach is 
advantageous over existing methods as it allows modeling of covariates and takes into consideration the 
variability in PSI across samples when assessing event significance with ASD (Supplementary Information). 
 
Genotyping dup15q: For Dup15q samples, the type of duplication and copy number in the breakpoint 2-3 
region were available for these brains59.  To expand this to the regions between each of the recurrent 
breakpoint in these samples, 7/8 dup15q brains were genotyped (one was not genotyped due to limitations in 
tissue availability). The number of copies between each of the breakpoints is reported in Extended Data Fig. 
7a. 
 
Co-expression network analysis: The R package weighted gene co-expression network analysis (WGCNA) 
was used to construct co-expression networks using the technical variation normalized data31,60 (referred to as 
“Adjusted FPKM”). We used the biweight midcorrelation to assess correlations between log2(Normalized 
FPKM) and parameters for network analysis are described in Supplementary Information. Notably, we 
utilized a modified version of WGCNA that involves bootstrapping the underlying dataset 100 times and 
constructing 100 networks. The consensus of these networks (50th percentile across all edges) was then used 
as the final network 32, ensuring that a handful of samples do not determine the network structure. For 
module-trait analyses, 1st principal component of each module (eigengene) was related to ASD diagnosis, age, 
sex, and brain region in a linear mixed effects framework as above, only replacing the expression values of 
each gene with the eigengene. 
 
Enrichment analysis of gene sets and GWAS: Enrichment analyses were performed either with Fisher’s exact 
test (cell type and splicing factor enrichments) or logistic regression (all enrichment analyses in Figure 5). We 
used logistic regression in the latter case to control for gene length or other biases that may influence 
enrichment analysis (Supplementary Information). All GO term enrichment analysis was performed using GO 
Elite61 with 10,000 permutations. We focused on molecular function and biological process terms for display 
purposes. 
 
Extended	  Data	  Figures	  &	  Legends	  
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Extended Data Figure 1 | Methodology, quality control, and differential expression replication analysis. a, 
RNA-seq workflow, including RNA extraction, library preparation, sequencing, read alignment, and quality 
control. b, RNA-seq quality and alignment statistics from this study, including RNA integrity number (RIN), 
number of aligned reads, proportion of reads mapping to different genomic features (mRNA, intronic, 
intergenic), and bias in coverage from the 5’ to the 3’ end of the top 1000 expressed transcripts (statistics 
compiled using PicardTools). c, Similar statistics as in b for another RNA-seq study that utilized polyA tail 
selection mRNA-seq to evaluate the transcriptome in ASD cortex11 (primarily BA19, visual cortex, but also 
including some BA10/44 samples, frontal cortex). d, RNA-seq read coverage relative to normalized gene 
length across transcripts from the 5’ to the 3’ end in this study. e, Dependence between coverage and RIN 
across gene body (correlation between RIN and coverage in d across samples). f, Correlation of ASD vs CTL 
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fold changes between previously evaluated and new ASD samples in CTX by microarray (left) and RNA-seq 
(right) using genes that were at P < 0.05 the samples from Voineagu et al., 2011. g, Correlation between effect 
sizes as in f, but for cerebellum (CB) samples. h,i, Correlation between covariates and ASD vs CTL status in 
CTX (h) and CB (i) in the ASD Discovery Set. 
 

 
Extended Data Figure 2 | Transcriptome-wide differential gene expression (DGE) analysis in CTX. a, 
Comparison of P value rankings across different methods for DGE with Spearman’s correlation. From left to 
right: removal of three additional principal components of sequencing statistics (Supplementary Information) 
related to RNA-sequencing quality, application of a permutation analysis for DGE P value computation, 
application of variance-weighted linear regression for DGE62, and using surrogate variable analysis for 
DGE63. b, Average linkage hierarchical clustering heatmap using all genes DGE in the ASD Discovery Set, 
but including all idiopathic ASD frontal cortex (FC) and temporal cortex (TC) samples across 123 samples, 
combining the ASD Discovery set and the ASD Replication set. Bolded samples in the dendrogram are used 
for validation in d. c, Enrichment analysis of cell-type specific gene sets (5-fold enriched in the cell type 
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compared to all other cells) with genes decreased and increased in ASD. d, RT-PCR validation of the two 
lincRNAs shown in Figure 1f-g, P values are computed with the Wilcoxon rank-sum test.  
 

 
Extended Data Figure 3 | Gene browser tracks for selected primate-specific lncRNAs. For each lncRNA, 
expression for representative samples for ASD vs CTL (top) in human, macaque (middle), and mouse 
(bottom) are shown. The genome location for macaque and mouse displayed is syntenic to the human region, 
with the expected location of the lncRNA highlighted. 
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Extended Data Figure 4 | Splicing analyses and validation in ASD. a, Schematic describing how the percent 
spliced in (PSI) metric is computed. b, Distribution of P values for changes in the PSI between ASD and CTL 
in CTX for all events (left) and event subtypes (SE, spiced exon; A5SS, alternative 5’ splice site; A3SS, 
alternative 3’ splice site; MXE, mutually exclusive exons). c, Comparison of the CTX splicing analyses in 
when using PSI values obtained via read alignment by TopHat264 followed by the MATS18 pipeline (used 
throughout this study) against read alignment by OLego followed by Quantas65. d, Comparison of ΔPSI 
values in nine splicing events between PCR and RNA-seq. e, PCR validation and sashimi plots for the nine 
splicing events delineated in d, from the samples highlighted in Extended Data Fig. 5a. 
 

 
Extended Data Figure 5 | Additional splicing analyses in ASD. a, Average linkage hierarchical clustering 
heatmap using all differentially spiced (DS) events from the ASD Discovery Set, but including all idiopathic 
ASD neocortical samples (FC and TC) across 123 samples, combining the ASD Discovery set and the ASD 
Replication set. Bolded samples in the dendrogram were used for PCR validation in Extended Data Fig. 4. b, 
Top: difference between ASD and CTL in the DS set based on PC1 of the DS set at the PSI level, and PC1 of 
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the gene expression levels of genes in the DS set. Bottom: Same comparison after differentially expressed 
genes (p < 0.05) are removed. c, Distribution of P values for changes in the PSI between ASD and CTL in 
cerebellum. d, Cell-type enrichment analysis of splicing events from CTX. e, Average-linkage hierarchical 
clustering using 1-(Pearson’s correlation) to compare the gene expression patterns of the splicing factors 
investigated in Figure 2. 
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Extended Data Figure 6 | Attenuation of cortical patterning in ASD. a, Histograms of P values from paired 
Wilcoxon rank-sum test differential gene expression between 16 frontal cortex (FC) and 16 temporal cortex 
(TC) in CTL and ASD and a histogram of Bartlett’s test P values for differences in gene expression variance 
between ASD and CTL for all genes (white) and genes in the Attenuated Cortical Patterning (ACP) set (red). 
c, Approach to training the elastic net model on BrainSpan and application of the model on 123 cortical 
samples in this study. c-e, Results of learned cortical region classifications with different starting gene sets, 
with the BrainSpan training set (left), CTL samples (middle), and ASD samples (right) in each panel and the 
Wilcoxon rank-sum test P value of FC vs TC difference for each comparison. f, Summary of results form c-e. 
g, Cell type enrichment analysis for genes in the ACP set. Abbreviations: A1C, primary auditory cortex; DFC, 
dorsolateral prefrontal cortex; MFC, medial prefrontal cortex; STC, superior temporal cortex; FC, frontal 
cortex; TC, temporal cortex; AUROC, area under the receiver-operator characteristic curve. 
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Extended Data Figure 7 | Dup15q syndrome analyses. a, Copy number between breakpoints (BP) in the 15q 
region. Genome-wide CNV analysis allowed evaluation of copy number in additional regions from previous 
studies59,66. b, Differential expression across the 15q region of interest in dup15q vs CTL and ASD vs CTL 
cerebellum, note only 3 samples were available for dup15q cerebellum so additional analyses were not 
pursued. c, Gene Ontology term enrichment analysis for the dup15q CTX differential expression set. d, Gene 
Ontology term enrichment analysis for the dup15q CTX differential splicing (DS) set. e, Hierarchical 
clustering of iPSC-derived neurons from dup15q, Angelman syndrome, and a control29. 
 

 
Extended Data Figure 8 | Co-expression network analysis in ASD CTX. a, Modules identified from a 
dendrogram constructed from a consensus of 100 bootstrapped datasets using the 137 CTX samples. 
Correlations for each gene to each measured factor are delineated below the dendrogram (blue = negative, red 
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= positive correlation). b, Module-trait associations as computed by a linear mixed effects model with all 
factors on the x-axis used as covariates. All P values are displayed where the coefficient passed p < 0.01. Note 
that this alternative approach to module-trait association agrees with the Fisher’s exact test used in Figure 5a 
when the fold enrichment for module overlap with DGE sets is > 2.8, and we use an intersection of both 
methods for the modules focused on in Figure 5b. c, Module enrichments for cell type specific gene 
expression patterns. 
 

 
Extended Data Figure 9 | GO term enrichments for all modules. *FDR  < 0.05 across all GO enrichments across 
all modules. 
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Introduction 
The demonstration that chromatin exhibits a complex 3 dimensional organization, 
whereby short and long distance physical interactions correspond to complex gene 
regulatory processes has opened a new window on understanding the functional 
organization of the human genome1-4. Recently, chromatin remodeling has also been 
causally implicated in several neurodevelopmental disorders, including autism and 
schizophrenia5-7. However, it remains unclear whether knowledge of chromosome 
organization in a tissue specific manner might inform our understanding of gene 
regulation in brain development or disease. Here we determined the genome-wide 
landscape of chromosome conformation during early human cortical development by 
performing Hi-C analysis in the mitotically active and post mitotic laminae of human fetal 
brain. We integrate Hi-C data with transcriptomic and epigenomic data and utilize 
chromosome contact information to delineate physical gene-gene regulatory interactions 
for non-coding regulatory elements. We show how these data permit large-scale 
functional annotation of non-coding variants identified in schizophrenia GWAS and of 
human specific enhancers8,9. These data provide a rubric that illustrates the power of 
tissue-specific annotation of non-coding regulatory elements, as well as novel insights 
into the pathogenic mechanisms of neurodevelopmental disorders and the evolution of 
higher cognition.  
  



Recent advances in high-throughput sequencing have unveiled the epigenomic 
landscape of multiple human cell types, as well as 3 dimensional folding principles of 
chromatin10,11. In particular, chromosome conformation capture experiments 
demonstrate that chromatin is organized into hierarchical structures, which include 
compartments (a few megabase (Mb))1, topological associating domains (TADs, sub-
Mb)12, and loops (ranging from few kilobase (kb) to few hundred kb)2,4. These structures 
are thought to play a role in gene regulation and biological function by defining functional 
genomic units and mediating the effects of cis-regulatory elements via both short- and 
long-range physical interactions (e.g. promotor-enhancer interactions), relationships that 
cannot simply be predicted by linear adjacency in chromosomes. Coupled with 
epigenomic data, such higher order chromatin interactions should facilitate systemic 
annotation of cis-regulatory elements, as well as intergenic and intronic variants, which 
will further expand our understanding of tissue specific developmental programs, as well 
as disease pathogenesis. 
We constructed multiple Hi-C libraries in mid gestation fetal cerebral cortex from three 
individuals during the peak of neurogenesis and migration (gestation week, GW17-18). 
We reasoned that it would be useful to analyze mitotically active neuronal precursors 
involved in neurogenesis separately from post-mitotic migrating and maturing neurons, 
so we dissected the cortical anlage into two major structures: the cortical and subcortical 
plate (CP), consisting primarily of post mitotic neurons and the germinal zone (GZ), 
containing primarily mitotically active neural progenitors (representative heatmap in Fig. 
1a, Extended Data Fig. 1a-b). For comparison with non-neuronal cell types, we also 
used publicly available Hi-C data on human embryonic stem (ES) cells and IMR90 
cells11,12. To provide grounding for our data and compare global chromosome 
architecture between different cell types, we performed principal component analysis 
(PCA)13 on the genome-wide inter-chromosomal contact matrices of CP, GZ, ES, and 
IMR90. As previously demonstrated, global chromosome architecture does not change 
dramatically between different cell types13. However, the first principal components 
(PC1s) from neuronal tissues (CP and GZ) have significantly higher correlation than the 
PC1s between different cell types (Fig. 1b), consistent with the higher similarity between 
tissues from brain, versus the two other cell lines. 
3D chromatin structure reflects gene regulation during neural differentiation.  
Previous studies have shown that genome-wide chromosome conformation captures 
multiple levels of genomic features related to biological function, ranging from GC 
content and gene number to marks of open chromatin, such as DNase I hypersensitivity 
sites (DHS)13. Most human-relevant Hi-C has been conducted in cell lines1,2,4,11,12,14 and 
not in complex tissue, such as developing brain. As an initial first step to insure the 
quality and validity of our data, we analyzed the relationships between the major 
component of the inter-chromosomal interaction matrix with these major genomic 
features, finding high correlation with GC content, gene number, DHS10, and to a lesser 
extent, gene expression15 (Fig. 1c, Extended Data Fig. 2a), as has been previously 
observed in non-neural cell lines13.  
To further explore the biological significance of chromosome contact changes during 
neural differentiation, we explored whether the genes in regions of dynamic chromatin 
structure were related to neural differentiation by comparing the inter-chromosome 
contact matrices (binned to 100kb) in different cell types and selecting bins with the 
highest chromatin contact count changes between two cell types (Methods). Genes 
located in the regions of highest inter-chromosomal interaction changes between CP 
and GZ were enriched for neuronal genes, represented by the gene ontology (GO) 
categories of neuron recognition, axon guidance, central nervous system (CNS) 



development, and synapse (Fig. 1d, Extended Data Fig. 2b; Methods). Genes located 
in regions with highest inter-chromosomal interaction changes between CP and ES cells 
were enriched for developmental genes involved in forebrain development and 
chromatin organization (Fig. 1d, Extended Data Fig. 2b), indicating that these 
interactions reflect tissue relevant developmental gene regulation.  
To further explore how these physical chromatin interactions relate to biological function, 
we hypothesized that highly interacting chromatin regions would be more likely to be co-
regulated. To test this, we compared the distribution of correlation patterns for genes 
locating in (1) the regions of highest interaction values in both CP and GZ, (2) the lowest 
interacting regions in both CP and GZ, and (3) the regions of differential interaction 
values (the regions of highest interaction values in CP and lowest interaction values in 
GZ and vice versa). Highly interacting regions tend to be biased toward positive 
correlations, while there was no bias in correlation for low and differential interacting 
regions (Fig. 1e). Interestingly, the positive correlation for high interacting regions 
becomes even higher when more stringent cutoffs are used, supportive of the 
quantitative nature of interaction-driven co-expression, whereby the relationship between 
physical 3D chromatin interactions and expression is mostly driven by the top percentiles 
of interacting regions (Extended Data Fig. 2c). To further elucidate the epigenetic 
regulatory mechanisms behind the apparent interaction-mediated co-expression, we 
marked bins in which epigenetic marks from two loci appear together. By comparing the 
epigenetic mark combination matrix with the Hi-C contact matrix, we observed that 
interacting regions exhibit shared epigenetic patterns at the level of both inter- and intra-
chromosomal interactions (Fig. 1f, Extended Data Fig. 3; Methods). In particular, 
regions associated with positive transcriptional regulation and enhancers are more likely 
to physically interact with each other, consistent with their co-regulation.  
One of the core functional units of general genome organization recently uncovered by 
chromatin capture methods across a wide variety of cell types is the compartment, a 
relatively large, dynamic domain1, which is comprised of smaller, sub-Mb regions of 
topologically associating domains (TADs)12. Compartments are divided into two types, 
type A compartments that consist primarily of euchromatin and actively transcribed 
genes and type B compartments, which are heterochromatic and repressed. TADs have 
been previously shown to be relatively stable, whereas compartments have been shown 
to change during lineage specification in stem cells11. Consistent with this, we observed 
dynamic compartment switching between CP and GZ, enriched for GO categories 
related to neuronal genes and phosphatase activity (Fig. 2c), as well as compartment 
switching between CP and ES (Fig. 2a,d). Genes that change compartments from ES to 
CP are decreased for A to B transitions across differentiation and increased for changes 
from the B to A compartments (Fig. 2b), as expected. Compartment changes are also 
accompanied by epigenetic changes, so that the B to A compartment shift is associated 
with increased DHS and active epigenetic marks indicative of open chromatin, whereas 
the A to B shift is associated with decreased DHS and increased repressive marks (Fig. 
2b,e). The same pattern was observed for GZ vs. ES and CP vs. GZ (Fig. 2b,e, 
Extended Data Fig. 2d), demonstrating that gene expression changes across 
development are tightly linked to epigenetic changes coupled with compartment 
switching.  
TADs are thought to mediate co-transcriptional regulation primarily within their 
boundaries (100kb-1Mb) through physical “looping” interactions of promotors and 
enhancers in co-regulated genes4,16.  Since TAD boundaries are conserved across 
different cell types12, we hypothesized that changes in epigenetic marks in TADs, rather 
than the boundaries of TADs, would be most associated with gene expression changes 



across development. To test this, we divided genes based on their fold change in 
expression between ES and differentiated neurons17 (both increased and decreased), 
and assessed changes in epigenetic marks within the TADs where these genes reside 
(Extended Data Fig. 1c-e, Methods). Notably, active marks including enhancers and 
elements related to transcribed regions are increased in TADs that contain upregulated 
genes, whereas repressive marks are increased in TADs that contain downregulated 
genes (Fig. 2f). Collectively, these results indicate that our Hi-C data reflects the major 
elements of global chromosome architecture in fetal brains, providing a framework for 
exploring gene regulatory mechanism related to human neural development and 
function.  
Next, to demonstrate how knowledge of intra-chromosomal contacts could significantly 
advance understanding of important gene regulatory relationships in the nervous 
system, we performed two integrative experiments. In the first, we used these chromatin 
contact data to functionally annotate specific non-coding regulatory elements in the 
developing brain. We leveraged recent efforts that have identified >2000 developmental 
enhancers gained specifically in the human cerebral cortex, providing a remarkable 
resource for understanding the evolution of human cognition8. Usually, in the absence of 
such tissue specific data, regulatory elements are assigned to the closest gene18,19, a 
convention that we compared with our Hi-C derived interactions. We reasoned that our 
Hi-C data from fetal brain could be used to identify the target genes for many of these 
enhancers, which based on previously chromatin looping analyses in cell lines are often 
not the closest gene4,16,18,19. 
We derived an interaction map of human-gained enhancers, defined as significant 
interacting regions (at a 1% false discovery rate, FDR) compared to the null distribution 
generated by fitting the contact frequencies of all fetal brain enhancers identified in the 
same study8 (Extended Data Fig. 4a, Methods). We defined the search space as 
including the 1Mb flanking regions, since most enhancer-promoter interactions are within 
this range4. Although statistically significant interactions are increased upon proximity to 
the enhancer, the majority of interactions are at relatively long-ranges (>100kb, 
Extended Data Fig. 4b) and are not restricted to the adjacent genes. Indeed, ~65% of 
the closest genes to human-gained enhancers are not identified through fetal brain Hi-C 
interactions, revealing that the majority of enhancers are not interacting with the most 
adjacent gene (Fig. 3c). Compared to the original study8, which used human-gained 
enhancer hotspot TADs in ES cells and IMR90 cells due to the lack of Hi-C data from 
relevant tissue, our approach provides genes of action with higher resolution in the 
matching tissue (fetal cortices) from which evolutionary enhancers were identified. 
Human-gained enhancer-interacting regions were enriched with enhancers, promoters, 
and transcription start sites (TSSs) (Fig. 3a, Extended Data Fig. 4c), consistent with the 
previous findings that enhancers interact with promoters, as well as other enhancers16.  
The majority of interactions (>75%) were in the same TADs (Fig. 3b), also consistent 
with observations in cell lines that most enhancer-promoter interactions are in the same 
TAD16,19. Human-gained enhancer interacting genes (Hi-Cevol genes) are involved in 
GTPase regulation as well as G-protein coupled receptor (GPCR) and CREB signaling, 
and are enriched with GO terms representing synaptic and axon guidance genes (Fig. 
3e, representative interactions in Fig. 3d). One striking example is a human-gained 
enhancer that interacts with ARHGAP11B, a human-specific gene implicated in the 
expansion of human neocortex20 (Fig. 3d).  
Given the high conservation of protein-coding genes across the vertebrate lineage, 
comparative genomics have suggested that human-specific traits most likely result from 
changes in regulatory elements8,21. Indeed, protein-coding Hi-Cevol genes have a lower 



non-synonymous substitution (dN)/synonymous substitution (dS) ratio compared to Hi-C 
non-interacting protein-coding genes in multiple lineages (Extended Data Fig. 5). These 
results indicate that human-gained enhancers are interacting with protein-coding genes 
that undergo purifying selection, further supporting the hypothesis that non-coding 
elements undergo evolutionary selection to induce species-specific changes in gene 
expression8,21. We also investigated whether human-gained enhancers are interacting 
with lineage-specific long non-coding RNAs (lncRNAs)22. We observed that lineage-
specific interactions with human-gained enhancers were enriched for primate-specific 
lncRNAs, as well as evolutionary conserved lncRNAs (Fig. 3f, Extended Data Fig. 5). 
Thus, while human-gained enhancers interact and possibly regulate evolutionary 
conserved protein-coding genes, they are more likely to interact with primate-specific 
lncRNAs.  
Since the development of human higher cognition is dependent on the development of 
the human cerebral cortex via elaboration of novel gene regulatory relationships8,23, we 
reasoned, as have others8 that the genes regulated by these human specific enhancers 
would be associated with intellectual functioning in humans. Remarkably, we found that 
the Hi-Cevol genes in fetal brain, but not the genes defined by proximity to the enhancers 
are significantly enriched with intellectual disability (ID) risk genes6 (Fig. 3g). This result 
provides experimental support for the contention that human-gained enhancers are 
associated with the evolution of human cognitive function8. This enrichment was tissue-
specific, as Hi-Cevol genes defined by Hi-C interactions in ES cells did not show 
enrichment for ID risk genes (Fig. 3g). Indeed, ~56% of the Hi-Cevol genes in neuronal 
tissue were not identified through chromatin contacts in ES cells, emphasizing the 
importance of defining tissue-relevant chromatin contacts, as well as importance of using 
the relevant tissue for Hi-C analysis (Fig. 4c).  
Since most disease related common genetic variation is located in non-protein coding 
regions, we next assessed the ability of Hi-C data for functional annotation of common 
single nucleotide polymorphisms (SNPs). As a first line verification that Hi-C data could 
identify known functional relationships between SNPs and gene expression we used cis-
expression quantitative trait loci (eQTL) data from adult frontal cortex24, since such data 
is not yet available from fetal brain. For each significant eQTL locus, we obtained a set 
of significant eQTL SNPs with >95% likelihood of containing the causal SNP from 
association statistics and linkage disequilibrium (LD; 1000 Genomes) structure using 
CAVIAR25. We then identified genes interacting to likely causal eQTL SNPs via the 
chromatin contact matrix (Hi-CeQTL genes, Methods), and compared Hi-CeQTL genes with 
the known associated gene from the eQTL study, finding that Hi-CeQTL genes 
significantly overlapped with eQTL transcripts (Extended Data Fig. 6a). There were 
many Hi-CeQTL genes that were not identified as eQTL transcripts, likely due to a 
combination of factors, including low power of the eQTL sample, limited resolution of Hi-
C (SNP-transcript interactions within 20kb cannot be detected), and the difference in age 
of tissues used for each analysis. Indeed, eQTL SNPs identified by CAVIAR were highly 
enriched with adult frontal cortex, but not fetal brain, enhancers (Extended Data Fig. 
6b-d). Despite this, eQTL SNP-transcript pairs exhibit higher chromatin contact 
frequency than expected by chance across all distance ranges (Extended Data Fig. 6e), 
further supporting the utility of Hi-C to infer the biological function of regulatory variation.   
Next, we applied a similar logic to advance our understanding of 108 genome-wide 
significant schizophrenia-associated loci, most of which are in relatively uncharacterized 
non-coding regions of the genome9. We obtained credible SNPs using CAVIAR, and split 
SNPs into those without known function and likely functional SNPs (SNPs that cause 
missense, frameshift, and splice variants and SNPs that fall onto gene promoters; 



Methods). Credible SNPs were enriched with enhancers in fetal brain and adult frontal 
cortex, confirming the likely regulatory role of these SNPs in the brain (Extended Data 
Fig. 7). SNPs defined as likely functional SNPs and promoter SNPs were directly 
assigned to their target genes. For the remaining intergenic and intronic SNPs that were 
un-annotated, and therefore without clear function, we used the chromatin contact matrix 
to find genes with which the regions where the SNPs are located are physically 
interacting (diagram in Extended Data Fig. 7).  
Combining genes annotated as functional SNPs, promoter SNPs, and by Hi-C 
interactions, we obtained a total of ~900 genes (Hi-CSCZ genes) associated with 
schizophrenia risk variants. Hi-C contacts identified numerous genes that were neither 
adjacent to index SNPs nor in LD with them (Fig. 4a-c, Extended Data Fig. 9). While 
almost 70-80% of the LD genes and closest genes were identified as Hi-CSCZ genes, 
only half of them were identified by chromatin contacts, indicating that many of them 
were identified by functional SNPs residing in the genes. Moreover, 70-90% of the Hi-
CSCZ genes were not identified by using LD genes or the closest genes to the association 
signal, consistent with observations that the linear organization of genes and regulatory 
elements on the chromosome does not reflect regulatory interactions4,18,19.  
Hi-C analysis showed that schizophrenia-associated common variants converge into 
specific molecular pathways related to neuronal function, including the postsynaptic 
density, acetylcholine receptors, cell cycle, and chromatin remodelers (Fig. 4d-e, 
Extended Data Fig. 7-8). To insure that this was not an artifact of the method used for 
credible SNP selection, we used a different method to define the set of credible SNPs9 
(Extended Data Fig. 9) and found the same enrichments, demonstrating the robustness 
of the genes identified through the Hi-C analysis. One notable example is illustrated by 
credible SNPs (rs4245150, rs17602038, rs4938021, rs4936275, rs4936276) that reside 
upstream of the Dopamine D2 Receptor (DRD2), the target of antipsychotic drugs. 
Although these SNPs are close to the DRD2 TSS, they are not within the gene, which 
complicates interpretation of their biological function. Hi-C analysis demonstrates for the 
first time that indeed these SNPs are interacting with the TSS of DRD2 (Fig 4e), 
providing biological insights into the function of these SNPs.  
Another relevant example is an index SNP (rs79212538) interacting with GRIA1, an 
ionotropic glutamate receptor subunit, although GRIA1 is neither the closest gene nor in 
LD with the index SNP (Extended Data Fig. 8). Additionally, Hi-C shows that 
schizophrenia associated non-coding SNPs interact with multiple genes involved in 
excitatory synaptic transmission, including CACNA1C, GRIN2A, and NLGN4X, further 
supporting glutamatergic transmission defects in schizophrenia pathophysiology 
(Extended Data Fig. 8). Interestingly, Hi-CSCZ genes significantly overlap with ASD de 
novo likely gene-disrupting (LGD) targets (CP: OR=2.4, P=1.6x10-5, GZ: OR=1.8, 
P=0.006), consistent with a shared genetic etiology between ASD and schizophrenia26. 
The fact that genes with LGD mutations in ASD are associated with regulatory variants 
in schizophrenia suggests that complete abrogation of these genes may cause 
developmental defects as in ASD, while regulatory changes in these genes may cause 
later-onset of neuropsychiatric symptoms as in schizophrenia. Collectively, genes 
annotated by chromatin contact information provide novel insights into schizophrenia 
pathogenesis.  
In conclusion, we demonstrate how a comprehensive analysis of genome-wide 
chromatin configuration during human neural development informs our view of gene 
regulation. This chromatin contact landscape provides important biological insights on 
gene regulatory mechanisms, such that co-expressed genes share epigenetic co-
regulation of interacting regions, and that changes in functional epigenetic marks are 
tightly linked to TADs and compartment switching to induce changes in gene expression. 



We also annotated non-coding regulatory elements in the genome based on long-range 
chromatin contacts to identify enhancer-promoter interactions during human brain 
development, as well as genes of actions for eQTL. In turn, we show how these 
interactions can be used to inform our biological interpretation of risk variants for 
schizophrenia, which serves as a template for understanding the role of non-coding 
variation more broadly in neuropsychiatric disorders.  
  



Methods  
Fetal brain layer dissection  
Human fetal cortical tissues from three individuals were collected from frontoparietal 
cortex at gestation week (GW) 17-18 (one sample from GW17 and two samples from 
GW18). In cold DMEM/F-12 (ThermoFisher, 11320-033), frontoparietal cortex was first 
dissected to thin (~1mm) slices to visualize layers. Under the light field microscope, 
cortical slice was dissected to germinal zone (GZ) and cortical plates (CP). GZ contains 
ventricular zone and subventricular zone, and hence comprised of proliferating neurons. 
CP refers to intermediate zone, cortical plate, and marginal zone, which are mainly 
composed of differentiated and migrating neurons. By dissecting layers from same fetal 
cortices, we can compare progenitors to differentiated neurons with same genotype and 
minimize intersample heterogeneity.  
Hi-C  
Collected tissue was dissociated with trypsin and cell number was counted. Ten million 
cells were fixed in 1% formaldehyde for 10 min. Cross-linked DNA was digested by 
restriction enzyme HindIII (NEB, R0104). Digested chromatin ends were filled and 
marked with biotin-14-dCTP (ThermoFisher, 19518-018). Resulting blunt-end fragments 
were ligated under dilute concentration to minimize random intermolecular ligations. 
DNA purified after crosslinking was reversed by proteinase K (NEB, P8107) treatment. 
Biotins from unligated ends were removed by exonuclease activity of T4 DNA 
polymerase (ThermoFisher, 18005). DNA was sheared by sonication (Covaris, M220) 
and 300-600bp fragments were selected. Biotin-tagged DNA, which is intermolecular 
ligation products, was pulled down with streptavidin beads (Invitrogen, 65001), and 
ligated with Illumina paired end adapters. Resulting Hi-C library was amplified by PCR 
(KAPA Biosystems HiFi HotStart PCR kit, KK2502) with the minimum number of cycle 
(typically 12-13 cycles), and sequenced by Illumina 50bp paired-end sequencing. 
Hi-C reads mapping and pre-processing 
Note that mapping and filtering of the reads, as well as normalization of experimental 
and intrinsic biases of Hi-C contact matrices were conducted with the following method 
regardless of cell types to minimize potential variance in the data obtained from different 
platforms. We implemented hiclib (https://bitbucket.org/mirnylab/hiclib) to perform initial 
analysis on Hi-C data from mapping to filtering and bias correction. Briefly, quality 
analysis was performed using a phred score, and sequenced reads were mapped to 
hg19 human genome by Bowtie2 (with increased stringency, --score-min -L 0.6,0.2--
very-sensitive) through iterative mapping. Read pairs were then allocated to HindIII 
restriction enzyme fragments. Self-ligated and unligated fragments, fragments from 
repeated regions of the genome, PCR artifacts, and genome assembly errors were 
removed. Filtered reads were binned at 10kb, 40kb, and 100kb resolution to build a 
genome-wide contact matrix at a given bin size. This contact map depicts contact 
frequency between any two genomic loci. Biases can be introduced to contact matrices 
by experimental procedures and intrinsic properties of the genome. To decompose 
biases from the contact matrix and yield a true contact probability map, filtered bins were 
subjected to iterative correction13, the basic assumption of which is that each locus has 
uniform coverage. Bias correction and normalization results in a corrected heatmap of 
bin-level resolution. 100kb resolution bins were assessed for inter-chromosomal 
interactions, 40kb for TAD analysis, and 10kb for gene loop detection.  
Inter-chromosomal principal component analysis 
Principal component analysis (PCA) was conducted in a genome-wide inter-
chromosome contact map (100kb binned) as described previously13. Since intra-



chromosome conformation may drive the PCA results, cis contacts were iteratively 
replaced to random trans counts. After removing diagonal and poorly covered regions, 
we performed PCA using hiclib command doEig.  
Pearson’s correlations between the first principal components (PC1) from different cell 
types (CP, GZ, ES, and IMR9012) were calculated to compare similarities in inter-
chromosomal interactions between different cell types.  
Spearman’s correlations between PC1/PC2 and biological traits (GC content, gene 
density, DNase I hypersensitivity (DHS), gene expression) were calculated. GC content 
(%) for each 100kb bin was calculated by gcContentCalc command from R package 
Repitools. Gene density (number of genes in 100kb bin) was obtained based on longest 
isoforms from GENCODE19. DHS of fetal brains from Epigenomic roadmap10 and gene 
expression level of prenatal cortical layers from Miller et al.15 were used and average 
values per 100kb bin were calculated. 
Gene enrichment analysis  
Gene ontology (GO) enrichment was performed by GO-Elite Pathway Analysis 
(http://www.genmapp.org/go_elite/). All genes in the genome except the ones located in 
the chromosome Y and mitochondrial DNA were used as a background gene list. 
Because Hi-C interaction is measured in bins, sometimes we cannot dissect the 
individual genes when they are clustered in the genome (i.e. PCDH locus). To prevent 
several gene clusters overriding entire GO terms, we removed GO mainly defined by 
gene clusters (for 100kb or 40kb binned data) or we randomly included one gene per 
cluster (e.g. PCDHA1 for PCDHA1-13 cluster) prior to GO analysis (for 10kb binned 
data).  
Gene enrichment for the curated gene lists was performed using binomial generalized 
linear model to regress out exome length. Autism spectrum disorder (ASD) de novo 
gene list and intellectual disability (ID) curated gene list from Iossifov et al.27 and 
Pariskshak et al.6 were used for the enrichment test, respectively. Protein-coding genes 
based on biomaRt were used as a background gene list.  
Identification of the regions with largest inter-chromosomal conformation 
changes  
Chromosome contact matrix was normalized with the total interaction counts between 
two cell types for comparison. Intra-chromosomal interactions were masked from the 
genome-wide contact matrix, and top 1000 bins with the largest interaction changes 
between different cell types (GZ vs. CP or ES vs. CP) were selected. As one bin is 
comprised of two loci that are interacting with each other, this would give ~2000 sites in 
the genome. Genes located in those ~2000 sites were combined to perform GO 
analysis.  
Co-expression of inter-chromosomal interacting regions 
Using transcriptome from fetal cortical layers28, average expression values per 100kb bin 
were calculated. Pearson correlation matrix was calculated from 100kb binned 
expression data from all layers to generate gene co-expression matrix. At this step, gene 
co-expression matrix has the same dimension as inter-chromosomal contact matrix.  
We hypothesized that genes would be co-expressed across the layers when they are 
interacting in all stages (both in CP and GZ), so we selected top 2% highest interacting 
regions of fetal brains both at GZ and CP (high interacting regions). We also selected (1) 
low interacting regions: top lowest interacting regions (0 interaction from normalized Hi-C 
contact matrix) of fetal brains both at GZ and CP, as well as (2) variant interacting 
regions: top 2% highest interacting regions from one stage (e.g. GZ) that are top 2% 



lowest interacting regions from the other stage (e.g. CP) for comparison. Expression 
correlation values of the same regions were selected from the gene co-expression 
matrix, and expression correlations between different states (high interacting regions vs. 
low interacting regions and high interacting regions vs. variant interacting regions) were 
compared by two-sample Kolmogorov-Smirnov test.  
Epigenetic state enrichment for inter-chromosomal interacting regions  
The fetal brain epigenetic 25 state model from Epigenomic roadmap10 was used to 
generate the epigenetic state combination matrix, which was generated by marking loci 
where two interacting chromosomal bins (defined as bins with (1) interaction counts > 
75% quantile interaction count for inter-chromosome and (2) interaction counts > 0 for 
intra-chromosome) share epigenetic signature. For example, the epigenetic combination 
matrix between the active transcription start site (TssA) and active enhancers (EnhA1) 
was generated by marking where interacting loci have TssA on one locus and EnhA1 on 
the other locus. Intra- and inter-chromosomal contact frequency maps were then 
compared to epigenetic state matrix by Fisher’s exact test to calculate enrichment of 
shared epigenetic combinations in interacting regions.  
Compartment analysis 
Expected interaction frequency was calculated from the normalized intra-chromosomal 
40kb binned contact matrix based on the distance between two bins. We summed series 
of submatrices of 400kb window size with 40kb step size from the normalized Hi-C maps 
to generate observed and expected matrices. The Pearson’s correlation matrix was 
computed from the observed/expected matrix, and PCA was conducted on correlation 
matrix. PC1 from each chromosome was used to identify compartments. Eigenvalues 
positively correlated with the gene density were set as compartment A, while those that 
are negatively correlated were set as compartment B. 
Gene expression and epigenetic state change across different compartments 
Genomic regions were classified into three categories according to compartments: 
compartment A in cell type1 that changes to compartment B in cell type2 (A to B), 
compartment B in cell type1 that changes to compartment B in cell type2 (B to A), 
regions that do not change compartment between two cell types (stable).  
Genes residing in each compartment category were selected and GO enrichment was 
performed. Gene expression fold-change (FC) between different cell types was 
calculated from Miller et al.15 (comparison for CP vs. GZ) and CORTECON17 
(comparison for ES vs. CP and ES vs. GZ). Distribution of gene expression FC for genes 
in different compartment categories was compared by one-way ANOVA and Tukey’s 
posthoc test.  
15 state epigenetic marks from Epigenomic Roadmap10 in genomic regions classified 
based on compartments were averaged across 40kb bins. The DHS FC10 between 
different cell types (ES vs. CP and ES vs. GZ) was calculated and statistically evaluated 
as in the gene expression comparison. Each epigenetic state counts10 for one 
compartment category was normalized by total epigenetic mark number of that 
compartment category and compared between ES and fetal brains.  
TAD analysis 
We conducted TAD-level analysis as described previously12. Shortly, we quantified the 
directionality index by calculating the degree of upstream or downstream (2Mb) 
interaction bias of a given bin, which was processed by a hidden Markov model (HMM) 
to remove hidden directionality bias.  



Regions in between TADs are titled as TAD boundaries when the regions are smaller 
than 400kb and unorganized chromatin when the regions are larger than 400kb.  
TAD-based epigenetic changes upon differentially expressed genes 
Genes were subdivided into 20 groups based on expression FC between ES and most 
differentiated neuronal states in CORTECON17: genes that are upregulated and 
downregulated upon differentiation were grouped into 10 quantiles, respectively, based 
on the FC. TADs into which genes from one subdivision reside were selected, and 
epigenetic state changes (from Epigenomic roadmap’s 15 state epigenetic marks in ES 
and fetal brains10) in those TADs were normalized with TAD length and compared 
between ES and fetal brains. As different types of epigenetic marks have different 
absolute numbers (e.g. there are more quiescent states than enhancer states in the 
genome), each epigenetic state change was scaled across different quantiles to allow 
comparison between different states.  
Identification of Hi-C interacting regions  
We identified Hi-C interacting regions and target genes for (1) human-gained 
enhancers8, (2) expression quantitative trait loci (eQTL) SNPs24, and (3) schizophrenia 
SNPs9. As the highest resolution available for the current Hi-C data was 10kb, we 
assigned these enhancers/SNPs to 10kb bins, obtained Hi-C interaction profile for 1Mb 
flanking region (1Mb upstream to 1Mb downstream) of each bin. We also made a 
background Hi-C interaction profile by pooling (1) 255,698 H3K27ac sites from frontal 
and occipital cortex at 12 PCW for human-gained enhancers8 and (2) 9,444,230 imputed 
SNPs for eQTL and schizophrenia SNPs9. To avoid significant Hi-C interactions affecting 
the distribution fitting as well as parameter estimation, we used the lowest 95 percentiles 
of Hi-C contacts and removed zero contact values. Using these background Hi-C 
interaction profiles, we fit the distribution of Hi-C contacts at each distance for each 
chromosome using fitdistrplus package (Extended Data Fig. 4a). Significance for a 
given Hi-C contact was calculated as the probability of observing a stronger contact 
under the fitted Weibull distribution matched by chromosome and distance. P-values 
were adjusted by computing FDR, and Hi-C contacts with FDR<0.01 were selected as 
significant interactions. Significant Hi-C interacting regions were overlapped with 
GENCODE19 gene coordinates (including 2kb upstream to transcription start sites 
(TSS) to allow detection of enhancer-promoter interactions) to identify interacting genes. 
Same analysis was performed on Hi-C contact maps from CP, GZ, and ES11. To 
address the functional significance of target genes, GO enrichment was performed for 
the interacting genes.  
Protein-coding genes interacting with human-specific evolutionary enhancers  
Protein-coding genes based on biomaRt (GENCODE19) were selected and non-
synonymous substitution (dN)/synonymous substitution (dS) ratio was calculated for 
homologs in mouse, rhesus macaque, and chimpanzee for representation of mammals, 
primates, and great apes, respectively. Log2(dN/dS) distributions for protein-coding 
genes interacting vs. non-interacting to human-specific evolutionary enhancers in each 
lineage were then compared by two-sample Kolmogorov-Smirnov test. 
LncRNAs interacting with human-specific evolutionary enhancers  
Long non-coding RNAs (lncRNAs) classified according to evolutionary lineages22 were 
used to assess whether lineage-specific lncRNAs are interacting to human-specific 
evolutionary enhancers. We randomly selected the same number of enhancers (2,104) 
to the human-specific ones from the total enhancer pool (255,698), identified interacting 
regions based on the null distribution generated from a background enhancer interaction 
profile. Significant interacting regions (FDR<0.01) identified by Hi-C were intersected 



with lncRNA coordinates22 and interacting lncRNAs for each lineage were counted. This 
step was repeated for 3,000 times to obtain the lncRNA lineage distribution. LncRNAs 
interacting with human-specific evolutionary enhancers were also identified and 
enrichment was tested by calculating P-values as the probability of observing more 
interacting lncRNAs for a given lineage under the null lncRNA lineage distribution.  
Epigenetic state enrichment for Hi-C interacting regions 
The functional framework for (1) eQTL SNPs, (2) schizophrenia SNPs, and (3) human-
gained enhancers-interacting regions was assessed for epigenetic state enrichment. We 
implemented the same approach as in GREAT29 to analyze the epigenetic state 
enrichment for cis-regulatory regions. For example, to evaluate whether schizophrenia 
SNPs are enriched with DHS, fraction of genome annotated with DHS (p), the number of 
schizophrenia SNPs (n), and number of schizophrenia SNPs overlapping with DHS (s) 
were calculated. Significance of the overlaps was tested by binomial probability of P = 
Prbinom (k ≥ s | n = n, p = p)29. Histone marks and 15-chromatin states from fetal brains, 
adult frontal cortex, and IMR9010 were used for epigenetic state enrichment.  
eQTL analysis 
To address whether co-localization mediates gene regulation, we compared the 
association between chromosome conformation with eQTL. Although fetal brain eQTL 
data would be optimal, since this data is currently not available, we analyzed adult 
frontal cortex cis-acting eQTL data24. We selected SNPs associated with gene 
expression (FDR<0.01) and clustered them with association P<1×10-5 and r2>0.6 to 
obtain index SNPs. Using summary association statistics and linkage disequilibrium (LD) 
structure for each index SNP, we applied CAVIAR25 to quantify the probability of each 
variant to be causal. Among 121,273,364 SNP-transcript pairs from frontal cortex eQTL 
data, this process resulted in 42,190 SNP-transcript pairs (267 transcripts and 14,882 
SNPs) that are potentially credible. We refer to 14,882 credible SNPs as credible SNPs. 
Credible SNP interacting genes were identified as described in “identification of Hi-C 
interacting regions” section.  
Fisher’s exact test was performed to evaluate the significance of the overlap between Hi-
C interacting genes and eQTL transcripts. The background gene list for Fisher’s exact 
test includes genes located in 1Mb flanking regions to credible SNPs that are also tested 
in eQTL analysis. 
For 42,190 SNP-transcript pairs, we assigned credible SNPs and genes into 10kb bins, 
and obtained Hi-C contacts between credible SNPs and genes from the 10kb binned Hi-
C contact maps. As a gene can span across multiple 10kb bins, the highest interaction in 
the gene to a credible SNP was selected as Hi-C contacts as previously defined30. We 
also calculated expected interaction frequency from the normalized 10kb binned contact 
matrix based on the distance between two bins. Opposite interaction frequency was 
calculated by obtaining Hi-C contacts for the opposite site to the credible SNP with the 
same distance. Because interaction counts differ in different chromosomes as well as in 
different cell types, we normalized interaction by chromosomes and cell types. We 
performed one-way ANOVA and Tukey’s posthoc test for the comparison between 
different interaction paradigms.    
Identification of credible SNPs for schizophrenia GWAS loci  
128 LD-independent SNPs with genome-wide significance (P<5×10-8)9 were used as 
index SNPs to obtain schizophrenia credible SNPs. All SNPs that are associated with 
P<1×10-5 and in LD (r2>0.6) with an index SNP were selected, and correlations among 
this set of SNPs (LD structure) were calculated. CAVIAR was applied to summary 
association statistics and LD structure for each index SNP, and potentially causal SNPs 



for each index SNP were identified. Among 55,000 SNPs that are in LD with 128 index 
SNPs, 7,613 SNPs were selected as causal by CAVIAR. Here we refer to these 
CAVIAR-identified SNPs as credible SNPs. Genes interacting to credible SNPs were 
identified as described in “identification of Hi-C interacting regions” section for CP, GZ, 
and ES. A separate set of credible SNPs initially reported from the original study was 
also processed with the same method9. 
Identification of schizophrenia GWAS SNP-associated genes  
We classified credible SNPs based on potential functionality (flow chart in Extended 
Data Fig. 7). For credible SNPs classified as functional (stop gained variant, frameshift 
variant, splice donor variant, NMD transcript variant, and missense variant) from 
biomaRt, we selected genes in which those SNPs locate. For those that are not directly 
affecting the gene function, we selected SNPs that fall onto the promoter and TSS of 
genes (2kb upstream-1kb downstream to TSS). Remaining SNPs were tested for Hi-C 
interaction so that Hi-C interacting genes were identified. This pipeline gives total ~900 
genes potentially associated with GWAS SNPs.  
Identification of closest genes and LD genes 
Closest genes to human-gained enhancers and schizophrenia index SNPs were 
obtained by closestBed command from bedtools. Gene coordinates from GENCODE19 
including 2kb upstream to TSS were used to identify the closest genes.  
LD genes refer to all genes in the LD. Here, LD is defined as physically distinct 
schizophrenia-associated 108 genome-wide significant regions9. We overlapped gene 
coordinates from GENCODE19 with LD regions to find genes that reside in LD.  
Closest genes and LD genes were compared with Hi-C interacting genes. Venn 
diagrams were generated by Vennerable package in R. Only protein-coding genes were 
included in plotting Venn diagrams.  
Calculation of distance between SNPs and genes  
For LD genes and closest genes, the shortest distance between an index SNP and a 
target gene was selected. For credible SNPs, (1) the distance between functional 
credible SNPs and target genes was set as 0, because functional SNPs reside in the 
gene, (2) the distance between promoter credible SNPs and target genes was calculated 
as the distance between SNPs and TSS of a gene, (3) the distance between credible 
SNPs and Hi-C interacting genes was calculated based on the distance between SNPs 
and Hi-C interacting bins (note that this distance has a unit of 10kb). We then combined 
the distance distributions from the 3 categories.  
  



Figure Legends 
Figure 1. Chromosome conformation in fetal brains reflects genomic features. a. 
Representative heatmap of the chromosome contact matrix of CP. Normalized contact 
frequency (contact enrichment) is color-coded according to the legend on the right. b. 
Pearson correlation of the leading principle component (PC1) of inter-chromosomal 
contacts at 100kb resolution between in vivo cortical layers and non-neuronal cell types 
(ES and IMR90). c. Spearman correlation of PC1 of chromatin interaction profile of fetal 
brain (GZ) with GC content (GC), gene number, DNase I hypersensitivity (DHS) of fetal 
brain, and gene expression level in fetal laminae. d. GO enrichment of genes located in 
the top 1000 highly interacting inter-chromosomal regions specific to CP vs. GZ (left), 
and CP vs. ES (right), indicating that genes located on dynamic chromosomal regions 
are enriched for neuronal development. e. The top 2% highest interacting regions of fetal 
brains both at GZ and CP (High) show positive correlation in gene expression, while the 
top 2% lowest interacting regions (Low) and top 2% highly variant regions (Variant) have 
no skew in distribution. P-values from Kolmogorov–Smirnov test. f. The epigenetic state 
combination in inter-chromosomal interacting regions in GZ. Inter-chromosomal contact 
frequency map is compared to epigenetic state combination matrix by Fisher’s exact test 
to calculate the enrichment of shared epigenetic combinations in interacting regions. 
Enhancers (TxEnh5', TxEnh3', TxEnhW, EnhA1), transcriptional regulators (TxReg), and 
transcribed regions (Tx) interact highly to each other as marked in red. Colored bars on 
the left represent epigenetic marks associated with promoters and transcribed regions 
(orange), enhancers (red), and repressive marks (blue). Chr, chromosome. Annotation 
for epigenetic marks described in 

http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  

 

Figure 2. Compartment and TADs provide insights into gene regulatory 
mechanism. a. Leading principal component (PC1) of the intra-chromosomal contact 
matrix in CP, GZ, and ES, with the DNase I hypersensitivity (DHS) fold change (FC) 
between ES and fetal brain (FB). PC1 values indicate compartment status of a given 
region, where positive PC1 represents compartment A (red), and negative PC1 
represents compartment B (green). b.  Distribution of gene expression FC (left) and DHS 
FC (right) for genes/regions that change compartment status (“A to B” or “B to A”) or that 
remain the same (“stable”) in different cell types. P-values from one-way ANOVA. c. GO 
enrichment of genes that change compartment status from A to B (top) and B to A 
(bottom) in CP to GZ. d. Heatmap of PC1 values of the genome that change 
compartment status in different cell types. e. Percentage of epigenetic marks for 
genomic regions that change compartment status between ES and CP. Note that B to A 
shift in ES to CP is associated with increased proportion of active transcribed regions 
(TssA and Tx) and enhancers (Enh, top), while A to B shift in ES to CP is associated 
with increased proportions of repressive marks (Het and ReprPCWk, bottom). P-values 
from Fisher’s exact test. f. Epigenetic changes in topological associating domains 
(TADs) mediate gene expression changes during neuronal differentiation. Genes were 
divided by expression FC between ES and differentiated neurons, and epigenetic marks 
in the TADs containing genes in each group were counted and compared between ES 
and CP. Upregulated genes in neurons locate in TADs with more active epigenetic 
marks in CP than in ES, while downregulated genes in neurons locate in TADs with 
more repressive marks in CP than in ES. Epigenetic states associated with activation 
and transcription of the genes were marked as a red bar, while those associated with 
repression were marked as blue bars on the right. Annotation for epigenetic marks 



described in http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp. 

 

Figure 3. Genetic architecture of human-gained enhancers. a. Fraction of epigenetic 
states for regions interacting to human-gained enhancers in CP and GZ. b. Proportions 
of whether human-gained enhancers and interacting regions are within the same 
topological associating domain (TAD) vs. outside of the TAD. c. Overlap between 
human-gained enhancer interacting genes (Hi-Cevol genes) in CP and GZ with closest 
genes to human-gained enhancers (left) and Hi-Cevol genes in ES (right). d. 
Representative interaction map of a 10kb bin, in which human-gained enhancers reside, 
with the corresponding 1Mb flanking regions. This interactome map provides genes of 
action that interact with human-gained enhancers. Chromosome ideogram and genomic 
axis on the top; Gene Model, gene model based on GENCODE19, possible target genes 
in red; Evol, genomic coordinate for a 10kb bin in which human-gained enhancers 
reside; -log10(P-value), P-value for the significance of the interaction between human-
gained enhancers and each 10kb bin, grey dotted line for FDR=0.01; TAD, TAD borders 
in CP, GZ, and ES. e. GO enrichment for Hi-Cevol genes in CP (left) and GZ (right). f. 
Number of primate-specific long non-coding RNAs (lncRNAs) interacting with human-
gained enhancers in CP (red vertical lines in the graph) against a background control 
generated from 3,000 permutations, where the number of lncRNAs interacting with the 
same number of enhancers pooled from all fetal brain enhancers was counted. g. 
Overrepresentation of Hi-Cevol genes in different tissues and closest genes with a 
curated set of intellectual disability (ID) risk genes. *P<0.05, **P<0.01, *** P<0.001. TSS, 
transcription start site; OR, odds ratio; GPCR, G-protein coupled receptor; Hi-C genes: 
GZ, CP, ES, Hi-Cevol genes in each tissue; Hi-C genes: FB, union of Hi-Cevol genes in GZ 
and CP; Hi-C genes: ES-specific, Hi-Cevol genes in ES but not in fetal brain (FB); Hi-C 
genes: FB-specific, Hi-Cevol genes in FB (union) but not in ES; Closest genes, closest 
genes to human-gained enhancers.  

 

Figure 4. Annotation of significant chromatin interactions for schizophrenia-
associated loci. a. Overlap between closest genes to index SNPs (Closest), genes 
locating in linkage disequilibrium (LD), and genes identified through SNP categorization 
and chromatin contacts in CP and GZ (Hi-CSCZ genes, diagram in Extended Data Fig. 
7). b. Number of closest genes and LD genes that interact to credible SNPs (Hi-C 
supported) and those that do not interact to credible SNPs (Hi-C non-supported, top). 
Number of genes that interact to credible SNPs that are closest to or in LD with index 
SNPs (Hi-C genes), and not closest to or in LD with index SNPs (Hi-C genes not, 
bottom). Note that Hi-C genes here contain physically interacting genes, but not genes 
identified by functional SNPs or promoter SNPs. c. Distance between CAVIAR/index 
SNPs and their target genes for closest genes to index SNPs (Closest), genes locating 
in linkage disequilibrium (LD), and Hi-CSCZ genes in CP (CP) and GZ (GZ) d. GO 
enrichment for Hi-CSCZ genes in CP (left) and GZ (right). e. Representative interaction 
map of a 10kb bin, in which credible SNPs reside, to the corresponding 1Mb flanking 
regions. This interactome provides target genes interacting to credible SNPs-containing 
region. Chromosome ideogram and genomic axis on the top; Gene Model, gene model 
based on GENCODE19, possible target genes in red; SNP, genomic coordinate for a 
10kb bin in which credible SNPs locate; -log10(P-value), P-value for the significance of 
the interaction between credible SNPs and each 10kb bin, grey dotted line for 
FDR=0.01; GWAS loci, LD region for the index SNP; TAD, topological associating 
domain borders in CP, GZ, and ES. 
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Extended Data Figure 1. Basic characterization of Hi-C libary. a. Hi-C library 
sequencing information. Percentage for double-stranded (DS) reads indicates 
percentage of DS reads to all reads, and percentage for valid pairs and filtered reads 
indicates percentage of valid pairs and filtered reads to DS reads. b. Frequency 
distribution of Hi-C contacts in GZ (left) and CP (right) c. Size distribution of topological 
associating domains (TADs) in GZ (left) and CP (right). d. Size distribution of genomic 
regions in between TADs that are less than 400kb (TAD boundaries) in GZ (left) and CP 
(right). e. Size distribution of genomic regions in between TADs that are bigger than 
400kb (unorganized chromosome) in GZ (left) and CP (right). Cis ratio, ratio of cis (intra-
chromosomal) reads to the total number of reads; chr, chromosome. 
Extended Data Figure 2. Chromosome conformation is associated with various 
genomic features. a. Spearman correlation of principal components (PCs) of chromatin 
interaction profile of CP with GC content (GC), gene number, DNase I hypersensitivity 
(DHS), and gene expression level of fetal brains. b. GO enrichment of genes located in 
the top 1000 regions that gain inter-chromosomal interactions in CP compared to ES 
(upper left), ES compared to CP (upper right), CP compared to GZ (lower left), and GZ 
compared to CP (lower right). c. Top 5% (left) and 10% (middle) highest interacting 
regions both in GZ and CP (High) show positive correlation in gene expression, while 
low interacting regions (Low) and variant interacting regions (Variant) have no skew in 
distribution. (Right) Mean (top) and median (bottom) values for gene expression 
correlation for high, low, and variant interacting regions with different cutoffs, indicating 
that higher the interaction, higher the correlation of gene expression. d. Percentage of 
epigenetic marks for genomic regions that change compartment status between ES and 
GZ. Note that B to A shift in ES to GZ is associated with increased proportion of active 
transcribed regions (TssA and Tx) and enhancers (Enh, top), while A to B shift in ES to 
GZ is associated with increased proportions of repressive marks (Het and ReprPCWk, 
bottom). P-values from Fisher’s exact test. Annotation for epigenetic marks described in 
a core 15-state model from  
http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  
Extended Data Figure 3. Interacting regions share epigenetic states. a. Epigenetic 
state combination in inter-chromosomal interacting regions in CP. Enhancers (TxEnh5', 
TxEnh3', TxEnhW, EnhA1), transcriptional regulatory regions (TxReg), and transcribed 
regions (Tx) interact highly to each other as marked in red. b-c. Epigenetic state 
combination in intra-chromosomal interacting regions in GZ (b) and CP (c). Enhancers 
(TxEnh5', TxEnh3', TxEnhW, EnhA1) and transcriptional regulatory regions (TxReg) 
interact highly to promoters (PromD1, PromD2) and transcribed regions (Tx5', Tx) as 
marked in red. Inter- and intra-chromosomal contact frequency map is compared to 
epigenetic state combination matrix by Fisher’s exact test to calculate the enrichment of 
shared epigenetic combinations in interacting regions. Colored bars on the left represent 
epigenetic marks associated with promoters and transcribed regions (orange), 
enhancers (red), and repressive marks (blue). Annotation for epigenetic marks described 
in a 25-state model from 
http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  
Extended Data Figure 4. Characterization of chromatin interactome of human-
gained enhancers. a. Distribution fitting of normalized chromatin interaction frequency 
between human-gained enhancers with 1Mb upstream (top) and 100kb upstream 
(bottom) regions. Weibull distribution (red line) fits Hi-C interaction frequency the best for 
every distance range. b. Distribution of the number of significant interacting loci to 
human-gained enhancers in GZ (top), CP (middle), and ES (bottom). c. Fraction of 
histone states (left) and epigenetic mark enrichment (right) for regions interacting with 



human-gained enhancers in GZ and CP. CDF, cumulative distribution function; 
Annotation for epigenetic marks described in  
http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.  
Extended Data Figure 5. Human-gained enhancers interact to evolutionary 
lineage-specific long non-coding RNAs (lncRNAs). a. Protein-coding genes 
interacting with human-gained enhancers in CP (CP) and GZ (GZ) have lower	   non-
synonymous substitutions (dN)/synonymous substitutions (dS) ratio compared to 
protein-coding genes non-interacting to human-gained enhancers (All) in mammals 
(mouse), primates (rhesus macaque), and great apes (chimpanzee), indicative of 
purifying selection. b. Number of lineage-specific lncRNAs interacting to human-gained 
enhancers (red vertical lines in the graph) in GZ (top) and CP (bottom). Null distribution 
generated from 3,000 permutations, where the number of lncRNAs interacting to the 
same number of enhancers pooled from all fetal brain enhancers was counted. 
Extended Data Figure 6. Association between eQTL and Hi-C interaction. a. 
Overlap between eQTL transcripts and genes physically interacting to eQTL SNPs in CP 
and GZ. Significance of the overlap between eQTL transcripts and Hi-C interacting 
genes described in the upper right (Fisher’s exact test). Background gene list for Fisher’s 
exact test is all transcripts assessed in eQTL study within 1Mb from eQTL SNPs. b-d. 
Histone state enrichment for eQTL SNPs in adult frontal cortex (FCTX, b), fetal brain 
(FB, c), and IMR90 (d). e. Hi-C interaction frequency between eQTL SNPs and 
transcripts is greater than expected by chance in the relevant cell type. Lowess smooth 
curve plotted with actual data points. CP, chromatin contact frequency in CP; GZ, 
chromatin contact frequency in GZ; ES, chromatin contact frequency in ES; Exp, 
expected interaction frequency given the distance between two regions; Opp, opposite 
interaction frequency: interaction frequency of SNPs and transcripts when the position of 
genes was mirrored relative to the eQTL SNP. ***P<0.001, P-values from repeated 
measure of ANOVA. 
Extended Data Figure 7. Defining schizophrenia risk genes based on functional 
annotation of credible SNPs. Credible SNPs were selected using CAVIAR and 
categorized into functional SNPs, SNPs that fall onto gene promoters, and un-annotated 
SNPs. Histone state enrichment of credible SNPs was assessed in fetal brain (FB) and 
adult frontal cortex (FCTX). Functional SNPs and promoter SNPs were directly assigned 
to the target genes, while un-annotated SNPs were assigned to the target genes via Hi-
C interactions in CP and GZ. GO enrichment for genes identified by each category is 
shown in the bottom. NMD, nonsense-mediated decay; TSS, transcription start site.  
Extended Data Figure 8. Representative interaction maps for credible SNPs to 1Mb 
flanking regions. Interaction maps provide gene of actions for credible SNPs based on 
physical interaction. Chromosome ideogram and genomic axis on the top; Gene Model, 
gene model based on GENCODE19, possible target genes in red; SNP, genomic 
coordinate for a 10kb bin in which credible SNPs locate; -log10(P-value), P-value for the 
significance of the interaction between credible SNPs and each 10kb bin, grey dashed 
line for FDR=0.01; GWAS loci, linkage disequilibrium (LD) region with the index SNP; 
TAD, TAD borders in CP, GZ, and ES.  
Extended Data Figure 9. GO enrichment for schizophrenia risk genes curated by 
various methods. a-b. GO enrichment for the closest genes to index SNPs (a) and 
genes in linkage disequilibrium (LD) with index SNPs (b) that are identified by a 
schizophrenia risk gene assessment pipeline in Extended Data Fig. 7 (right) vs. not 
(left). c. GO enrichment for schizophrenia risk genes identified by a pipeline in Extended 
Data Fig. 7 that are neither the closest genes nor in LD to index SNPs. Intersect and 



union between CP and GZ in left and right, respectively. Venn diagrams are marked in 
orange to depict the gene list assessed for GO enrichment.  
Extended Data Figure 10. Defining schizophrenia risk genes based on functional 
annotation of another set of credible SNPs. Credible SNPs defined in the original 
study were categorized into functional SNPs, SNPs that fall onto gene promoters, and 
un-annotated SNPs. Overlap between credible SNPs identified by CAVIAR and credible 
SNPs originally identified indicates that two credible SNP lists overlap with each other. 
Histone state enrichment of credible SNPs in fetal brain (FB) and adult frontal cortex 
(FCTX). Functional SNPs and promoter SNPs were directly assigned to the target 
genes, while un-annotated SNPs were assigned to the target genes via Hi-C interactions 
in CP and GZ. GO enrichment for genes identified by each category and combined gene 
list is shown in the bottom. NMD, nonsense-mediated decay; TSS, transcription start 
site.  
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Functional SNPs (1,452)
-Frameshift variant
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-Splice-donor variant
-NMD transcript variant
-Missense variant

SNPs on promoters (552)
-2kb upstream to 
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of TSS

Remaining SNPs (5,609)
-Hi-C interactions
to 1Mb flanking regions
-Interacting genes
with FDR<0.01

CAVIAR SNPs (7,613)

55,000 SNPs that are LD (r2>0.6) with SCZ index 128 SNPs 

CAVIAR
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and integrate these datasets to identify regional and developmental, and ASD related processes to gain insight into underlying 
mechanisms. Finally, we will perform integrated analysis of germ-line ASD variations to characterize causal enrichments in 
developmental periods, brain regions, and cell types to better characterize the mechanisms by which genetic variation in humans 
alters brain development and function in health and disease. 
 
We have received permission from Dr. Geetha Senthil to submit this application with a budget exceeding $500,000 per year. 
 
Thank you for your consideration. Please contact me should any questions arise. 
 
Yours sincerely, 

 

 
 
 
   

Daniel Geschwind                                                  Matthew W. State                                                 Nenad Sestan   

 

 

Nenad Sestan, MD, PhD 
Departments of Neuroscience, Genetics and Psychiatry 
Program in Cellular Neuroscience, Neurodegeneration and Repair 
Section of Comparative Medicine, Child Study Center 
Kavli Institute for Neuroscience 
Yale School of Medicine 
333 Cedar Street, New Haven, CT  06510 
     

Email: nenad.sestan@yale.edu 
Web: www.sestanlab.org 



  

DATA-RESOURCE SHARING PLAN 
 
1) Data Sharing Plan:  
 
Data 
RNA-seq, ChIP-seq and Hi-C data will be generated using next-generation sequencing (NGS) on human 
postmortem brain samples as part of Aim 1. NGS will be conducted on the Illumina HiSeq 2500 platform. 
FASTQ/BAM files, and gene- and isoform level expression files will be generated. Standard quality control 
measures, as well as fastqc analysis prior to sequence alignment, will be implemented. The RNA-seq, ChIP-
seq and Hi-C data will be deposited into an NIH approved repository such as the GEO database 
(www.ncbi.nlm.nih.gov/geo/).  
 
Overview and descriptions of each dataset will be provided alongside the relevant dataset. Links to all of these 
resources will be provided in all publications arising from this project. In addition, we will follow policies adopted 
by the psychENCODE consortium (see www.psychencode.org). 
 
Data dissemination 
We will comply with the NIH Grants Policy Statement, revised 10/01/2011, SECTION: 8.2.3 on Sharing 
Research Resources http://grants.nih.gov/grants/policy/nihgps_2011/nihgps_ch8.htm#_Toc271264950, 
relating to the distribution of unique research resources produced with DHHS funding. In particular, we will 
endeavor to publish all findings in peer-reviewed journals as soon as possible and provide all raw NGS data to 
the Gene Expression Omnibus (GEO) database.  In addition, we will follow policies adopted by the 
psychENCODE consortium (see www.psychencode.org). Because the community standard for early data 
release is evolving, this data sharing may be reassessed at the end of each funding period.  The data and 
renewable reagents generated will be submitted and released to the public in accordance with the following 
schedule. 
 
Data sharing within the collaborative project 
All data generated by the Geschwind lab and Sestan lab as part of this project, as well as the data analysis 
performed by the psychENCODE DAC members (M. Gerstein and Z. Weng), will be immediately shared 
among the groups. 
 
Computational analysis tools 
All computer programs implementing the algorithms generated in this project will be available to the scientific 
community. The Park lab has previously released several popular tools for the community with full 
documentation and source code, either on the lab website or in the centralized locations such as the 
Bioconductor or CRAN repositories for R packages.  
 
Sharing of all research data through scientific meetings and journals 
Research data will be presented at the yearly Society for Neuroscience and Genetics meetings and submitted 
to peer-reviewed journals. Over the course of the data collection period, we aim to publish multiple papers 
reporting selected results from the analyses described in this application. 
 
 
2) Sharing Model Organisms and Reagents: 
 
Renewable reagents 
No model organisms or renewable reagents are expected to be generated. Research resources generated with 
funds from this grant will be freely distributed, as available, to qualified academic investigators for non-
commercial research. Material transfers would be made with no more restrictive terms than in the Simple Letter 
Agreement or the UBMTA and without reach through requirements. 
 
 

 

http://grants.nih.gov/grants/policy/nihgps_2011/nihgps_ch8.htm#_Toc271264950


  

Timelines 

Resource 
Deadlines for Resource Submission [Please 
include hard release dates] 

Deadlines for Releasing 
Resources for Distribution 
[Please include hard release 
dates] 

Freshly drawn 
biospecimens (e.g., 
blood, skin punch, 
olfactory biospy)  

Not applicable.  Not applicable. 

Established source cell 
lines for iPSC 
reprogramming (e.g., 
fibroblast cell lines) 

Not applicable.  Not applicable.  

Reprogrammed cell 
lines (e.g., iPSCs, iNSC, 
iGPC, iOPC) 

Not applicable.  Not applicable.  

Phenotypic/clinical 
assessments 

Not applicable. Not applicable. 

GWAS data with 
accompanying study 
documents and 
phenotype data 

Not applicable. Not applicable. 

Sequence data (e.g., 
WGS, exome) 

Not applicable. No WGS/exome data will be 
generated under this grant and the data used is 
covered by data sharing plans associated with 
their proposal. 

Not applicable. 

Other genetic/genomic 
data (e.g., methylome, 
transcriptome, CNV) 

RNA-seq data 

Approximately 200 samples (5 developmental 
periods, 6 brains/ period, 3 regions, 2 cell 
types) from control brains,  240 from control  
and ASD (20 brains/condition, 3 regions, 2 cell 
types) will be profiled with RNA-seq using the 
Illumina HiSeq 2500 platform. 

Data will be submitted at 6 month intervals after 
data cleaning, to be completed by the project 
year 4 end date of 6/30/2020. 

ChIP-seq data 

Approximately 400 samples (5 developmental 
periods, 6 brains/ period, 3 regions, 2 cell types, 
2 histone marks) from control brains,  480 from 
control  and ASD (20 brains/condition, 3 
regions, 2 cell types,2 histone marks) will be 
profiled by ChIP-seq using the Illumina HiSeq 
2500 platform. 

Data will be submitted at 6 month intervals after 

Data will be released, upon 
publication but not later than 6 
months after last data set is 
received, and not later than 6 
months after project year 4 ends 
(6/30/2020). 



  

data cleaning, to be completed by the project 
year 4 end date of 6/30/2020. 

Hi-C data 

For the developmental series, we will analyze 5 
stages, 6 samples per stage, for 3 regions 
(frontal, temporal, and basal ganglia), a total of 
90 tissue samples, each sorted into neurons 
and non-neuronal nuclei for a total of 180 Hi-C 
libraries. For ASD analysis, we will perform Hi-
C on 2 cortical regions and basal ganglia from 
20 matched control and 20 ASD individuals as 
well as 5 dup15q subjects. In total, 330 Hi-C 
libraries will be made and analyzed, as we 
leverage multiple controls from the lifespan 
analysis to also serve as controls for the ASD 
comparisons. 

Data will be submitted at 6 month intervals after 
data cleaning, to be completed by the project 
year 4 end date of 6/30/2020. 

Analyzed data RNA-seq, ChIP-seq and Hi-C data 

Gene- and isoform level expression values, 
ChIP-seq peaks and chromosomal interactions 
as well as any other relevant files, such as a list 
of differentially expressed genes. 

Data will be submitted at 6 month intervals after 
data cleaning, to be completed by the project 
year 4 end date of 6/30/2020. 

Analyzed data is released with 
associated biospecimens, upon 
publication but not later than 6 
months after last data set is 
received, and not later than 6 
months after project year 4 ends 
(6/30/2020). 

 



MAJOR EQUIPMENT 
 
Equipment available within the Sestan laboratory 
 
Major equipment for genomics, molecular biology, histology, tissue culture, mouse transgenesis and imaging, 
are available including: a Bio-Rad QX100 digital droplet PCR system; four MJ Research PTC-200 PCR 
machines; a Thermo Scientific Nanodrop 1000 UV-Vis spectrophotometer and 3300 fluorospectrometer;  an 
Agilent TapeStation, a Zeiss Stemi SV6 dissecting microscope; an inverted Zeiss AxioVert 25 microscope; a 
Leica CM-3050S cryostat system, a Leica VT1000 S vibrating blade microtome; three -80ºC freezers, of which 
one is used exclusively for storing human and non-human primate brain specimens; four -20ºC freezers; three 
SterilGard laminar flow hoods; two tissue culture rooms with four Heraeus HeraCell CO2 tissue culture 
incubators; a room with a BTX ECM 830 electroporator for in utero electroporation and rodent surgery table; 
and electrophoresis equipment. In addition, the Sestan laboratory has a Turner Designs TD-20/20 
luminometer, a Corning pH meter, a Speed-Vac, four Eppendorf microcentrifuges, two water baths, four Fisher 
refrigerators, a Zeiss 135/Eppendorf Transman mouse oocyte and blastocyst microinjection set-up for making 
transgenic mice, an inverted microscope with micromanipulators for cell collection, a Sutter Instrument P-87 
micropipette puller, a Sorvall low speed centrifuge, an Eppendorf high speed centrifuge, a 37ºC shaker, a 
Beckman-Coulter ultracentrifuge, a scintillation counter, and access to a darkroom equipped with an X-ray film 
processor. The Sestan laboratory has access to and shares maintenance and service responsibilities for the 
multiphoton and electron microscopy facility within the department. 
 
Laboratory computer resource: The lab’s computing infrastructure is partitioned into a private and a public 
network. The entire infrastructure is fully gigabit capable and is connected to the Yale backbone and Yale 
High-Performance-Computer (HPC) via gigabit optic fibre; the network architecture was designed with 
computing efficiency and network security in mind. The private network consists of individual laptops, desktops 
and workstations, as well as communal computational servers, dumb terminals, a central fileserver, a 
consolidated NAS, and printers. The public network consists of numerous production webservers that are 
either real or virtual machines, including the www.humanbraintranscriptome.org database. The department has 
a full-time ITS administrator maintaining the network and computers. 
 
Common equipment within the Department 
Zeiss LSM multi-photon microscope, a JOEL electron microscope, a Sorvall low speed centrifuge, a 37 ºC 
shaker, a Beckman-Coulter ultracentrifuge, a scintillation counter, and a darkroom equipped with a X-ray film 
processor.  
 
Equipment available within the Geschwind laboratory 

 
The Geschwind laboratory is equipped with an Ion Torrent Personal Genome Machine for high throughput 
automated sequencing (with Ion One Touch System for template preparation), a Roche LightCycler 480 Real-
Time PCR Station, a Genetics MicroSystems/Affymetrix 418 microarray reader, an Agilent 2100 Bioanalyzer, a 
NanoDrop spectrophotometer, a Bio-Rad GS Gene Linker UV chamber, an Amaxa Nucelofector II transfection 
device, a UVP BioSpectrum AC imaging system, a Barnstead NANOpure DIamond ultrapure water system, a 
Qiagen QIAcube robotic workstation, a BioTek Synergy 2 multi-mode microplate reader, a Leica 1950 cryostat, 
and a Tecan 4800 automated microarray hybridization station. For dedicated tissue culture work, there are two 
biosafety cabinets and six CO2 incubators within two dedicated tissue culture rooms adjacent to the 
Geschwind lab. For high throughput assays, the laboratory shares a Victor/PE fluorescent plate reader and an 
Illumina Bead Array system. The Center for Neurobehavioral Genetics (Geschwind, co-director) in the Gonda 
building provides access to an Illumina BeadLab SNP genotyping system capable of performing over 800,000 
genotypes per day (as part of the Southern California Genotyping Consortium, see Resources and Facilities 
page) and to a Sequenom MassARRAY Compact System with Server and RT workstation, including the 
MassARRAY Analyzer Compact MALDI-TOF Mass Spectrometer, the MassARRAY RT Workstation for real-
time data analysis, Nanodispenser RS 1000, and Liquid Handler Station. Also available within the UNGC are 
three Illumina Hi Seq 2000 sequencers. Core equipment in the Human Genetics Department in the Gonda 
building that is used regularly by the Geschwind laboratory includes an Affymetrix Chip station for array 
processing and analysis. Also available for high throughput experimentation are a Beckman Biomek 1000 
robot, a Catalyst PCR robot, a Packard robot, and a 96 channel pipetting robot with motorized stage, four MJ 



Research Quadra thermal cyclers, a 96-well Pyrosequencer, and a Packard Multiprobe II robot, all connected 
to a data management system. The adjacent Mental Retardation Research Center and the Brain Research 
Institute both have sophisticated microscopy and imaging cores including a Zeiss 4-laser confocal microscope.  

 
Equipment available within the State, Sanders and Willsey laboratories 
 
Major equipment for genomics, molecular biology, and tissue culture are available including: An Eppendorf 
epMotion 5075LH automated pipetting system; An Eppendorf epMotion 5070 automated pipetting system with 
the ability to pick single wells in a preprogrammed pattern; An Eppendorf New Brunswick U725 Innova Ultra-
low Temperature Freezer for sample storage; An Eppendorf Model 5810R refrigerated centrifuge; An 
Eppendorf Model 5804 centrifuge; A Micronic bar code scanner including a BioMicrolab Tracker Table Model 
Scanner (3 racks), a Wireless Handheld Scanner, and 1D & 2D barcode reader w/ USB connection; An 
BioMicroLab XL20 Tube Handler for automated sample re-array, sample weighing, volume checking, barcode 
reading, and data collection for Micronic tubes in a 96 tube rack; 2 Tetrad 2 PCR instruments, each with a 
(swappable) 384-well and 96 well-reaction module; 9 BioRad icycler PCR instruments, each with a 
(swappable) 384-well and 96 well-reaction module; An ABI-7900HT fast real time PCR system with 96 and 384 
well capacity; A Covaris S2 DNA Sonicator; A BioTek Synergy HT Fluorometer for PicoGreen DNA 
concentration assessment; A Thermo Scientific (ND8000) 8-well Nanodrop 8000 Spectrophotometer; BioTek 
Elx800 Plate Reader; An Agilent 2100 Bioanalyzer; 2 Invitrogen E-Gel iBase electronic gel readers; A BioRad 
ChemiDoc MP System for gel imaging.  

 
Additional equipment and supplies can be found on the Resources and Facilities page. 
 



PROTECTION OF HUMAN SUBJECTS 
 

This study will use human postmortem specimens and data obtained in the following forms: 
1. Post-mortem brain tissue from clinically unremarkable individuals (controls) or individuals who had ASD. 
2. Publicly available genomic datasets on de-identified normal control samples from Gene Expression 

Omnibus (GEO), dbGaP, the National Database for Autism Research (AGRE) and the Simons Simplex 
Collection (SSC). 

3. De-identified DNA from SSC and AGRE samples available through the Rutgers University Cell and DNA 
Repository (RUCDR)). 

According to the U.S. Department of Health & Human Service Code of Federal Regulations Section 46.102(f):  
Human subject means a living individual about whom an investigator (whether professional or student) 
conducting research obtains 
    (1) Data through intervention or interaction with the individual, or 
    (2) Identifiable private information. 

Therefore, as the post-mortem tissue is not from living individuals, and the genomic data and DNA samples have 
no identifiable information, these specimens are not considered human subjects. 
 
Human post-mortem tissue 
The research outlined in this grant application will be conducted using control post-mortem human brain 
specimens available in Daniel Geschwind’s lab at UCLA and Nenad Sestan’s lab at Yale. Additional control and 
ASD postmortem brains may be obtained through arrangements with the NICHD Brain and Tissue Bank for 
Developmental Disorders at the University of Maryland, the Harvard Brain Tissue Resource Center and the 
Oxford Brain Bank (Autism Tissue Program). A table of available brain specimens is provided in the Resources 
and Facilities section. 

All specimens have or will be collected after parental or next of kin consent and with approval of the 
institutional review boards (IRBs). Appropriate written informed consent has or will be obtained and all available 
non-identifying information recorded. The tissue, linked information, and consent forms obtained by these 
institutions has been properly deposited and will continue to be deposited into brain banks according to IRB 
guidelines or similar protocols approved by each institution’s medical ethical committee for the studies proposed 
in our application. This information can only be accessed by the brain bank/tissue repository coordinator. 
Furthermore, de-identifiable data is doubly encoded and saved on separate computer systems before release to 
the Geschwind and Sestan laboratories. The handling of tissue has been performed in accordance with ethical 
guidelines and regulations for the research use of human brain tissue set forth by the NIH 
(http://bioethics.od.nih.gov/humantissue.html), the UK Health Department’s Human Tissue Authority code of 
practice (http://www.hta.gov.uk/legislationpoliciesandcodesofpractice/codesofpractice/code9research.cfm) and 
the WMA Declaration of Helsinki (www.wma.net/en/30publications/10policies/b3/index.html). To ensure the 
highest standard for data protection, no personal identifying information will be collected by the Geschwind and 
Sestan laboratories nor will it be accessible to any member of the laboratory. All of the work will be done in 
accordance with the new Health Insurance Portability and Accountability Act (HIPAA), which safeguards the 
health information of individuals obtaining healthcare in the United States. We are in full compliance with these 
regulations.  

The acquisition of human fetal brain tissue is in accordance with NIH guidelines in that (1) the tissue is 
human fetal tissue obtained in a spontaneous or induced abortion or pursuant to a stillbirth, (2) the tissue was 
donated anonymously for research purposes and that the identity of the individual who donated the tissues can 
never be determined, (3) no investigator part of the research has any decisions as to the timing, method, or 
procedures used to terminate the pregnancy, and (4) no investigator part of the research is the donor’s attending 
physician.  

  For quality control measure, we will use this non-identifying medical history of the subject from which 
the brain tissue will be obtained, or the mother’s medical history in the case of pre- and neonatal specimens. We 
will review available ante mortem information, including: gender, ethnicity, weight, cause of death, medications, 
Apgar score, and relevant medical conditions. This information will only be used to exclude some postmortem 
specimens from the study, such as those from individuals with a known history of drug or alcohol abuse. 
Information showing specific agonal conditions, including coma, hypoxia, pyrexia, seizures, severe dehydration, 
hypoglycemia, multiple organ failure, head injury, and ingestion of neurotoxic substances at time of death will 
also be grounds for exclusion of the postmortem tissue. 
 



                

                
 

 
Schahram Akbarian,  
M.D., Ph.D. 
 
Chief 
Psychiatric Epigenomics Division 
Department of Psychiatry 

 
Friedman Brain Institute 
Hess CSM, 9-105 
1470 Madison Avenue, 9- 
New York, NY  10029-6574  
 
Tel : 646 627 5529 
Email: Schahram.akbarian@mssm.edu 

 
October 28, 2015 
 
Daniel Geschwind, MD, PhD 
Nenad Sestan, MD, PhD 
Matthew State, MD, PhD 
 
 
Dear Dan, Matt and Nenad, 
 
This letter confirms my willingness to serve as a consultant on your application, “Integrative Genomic 
Analysis of Human Brain Development and Autism”.   
 
I have enjoyed working closely with you on the PsychENCODE project.  The current project aims you outline 
will deliver important data and are an important continuation of your prior work and will interdigitate nicely 
with my own psychENCODE studies.  
 
I am a Professor of Psychiatry and of Neuroscience at the Icahn School of Medicine at Mount Sinai. My lab 
studies histone modifications and variants, chromosomal loopings and other building blocks of the 
epigenome in postmortem human brain tissue collected across the lifespan, including potential alterations in 
psychiatric diseases such as schizophrenia and depression.  
 
My lab was one of the first groups to FACS neuronal and non-neuronal nuclei from the postmortem human 
brain tissue and perform ChIP-seq. As part of this work we have improved our methodology to efficiently 
collect these cell types from the human brain tissue.  I would be happy to provide any advice on the 
methodology. 
 
I commit to the following general obligations for the grant: 
 

• Serve as a consultant with reimbursement of $2000/year 
• Make myself available to provide advice and assistance 
• Attend teleconferences as needed and occasional face-to-face meetings 
• Participate in project video conferences that could benefit from my expertise 

 
As noted above, the specific expertise I will provide is in the interpreting your findings to our 
neurodevelopmental work as well as on FACS sorting of different cell types. 
 
Sincerely,  
 

 



PROJECT NARRATIVE 
 
Autism Spectrum Disorder (ASD) is a group of complex disorders of brain development, characterized by 
impairments in social communication and restricted or repetitive behavior or interests. For most patients the 
genetic causes and molecular underpinnings of ASD are not known. The work proposed in this application will 
help determine which parts of the developing brain and molecular processes are involved in ASD, thus 
improving our understanding of the disease and contributing to the development of diagnostic tests to detect 
such changes. 



PROJECT MANAGEMENT PLAN 
 
Rationale 
This proposal combines the expertise of three sites into a single, highly integrated effort aimed at integrating 
multidimensional datasets to better understand the etiology of neurodevelopmental disorders. The proposal 
includes three groups led by Nenad Sestan at the Yale School of Medicine (Application 1/3), Daniel Geschwind 
at the University of California, Los Angeles (UCLA), and Matthew State at the University of California, San 
Francisco (UCSF). 

Given the complexity of human neurodevelopment and the genetics of autism spectrum disorders (ASD) 
we believe that integrating the respective expertise of these groups offers the best opportunity to utilize the 
plethora of existing multidimensional genomic and neurobiological data to help elucidate the origin of 
neurodevelopmental disorders. This organizational structure elaborated below combines the expertise and 
capabilities of the PIs, Daniel Geschwind, Nenad Sestan, and Matthew State and the key investigators, Jason 
Ernst (UCLA), Mark Gerstein (Yale), Stephan Sanders (UCSF) and Zhiping Weng (University of 
Massachusetts), and Jeremy Willsey (UCSF), to create a project well beyond the capacity of each individual 
group.  An assurance of effectiveness in these interactions is that Drs. Gerstein, Geschwind, State, Sanders, 
Sestan, Weng and Willsey have a substantial history of working collaboratively in various combinations and 
have several joint publications. Additionally, each collaborator has significant experience in large multi-
institutional grants of this nature (see Project Management Plan for further details). These efforts have never 
required a formal decision-making or grievance structure and we anticipate that the current work will continue 
in this manner.  However, in case of unresolved conflict between the PIs, a decision-making and conflict 
resolution plan is detailed below. We recognize, given the novel nature of the work proposed in this grant, that 
we will need to continually re-evaluate our data and approaches. Given our history, we do not anticipate that 
this will present substantial difficulties. We have included this multiple PI management plan to clarify the 
relationships and role for each group. 
 
Integration of scientific research procedures across different elements of the project 
Expertise:  
These groups bring together a range of expertise including human and mouse genetics, functional genomics, 
bioinformatics, biostatistics, human neuroanatomy, developmental neurobiology, and gene discovery in ASD. 
These combined skills, which are needed to computationally identify and functionally analyze the role of ASD-
associated mutations, would be impossible to find in a single site, making a multi-site collaborate approach a 
necessity. 
 

The Yale group (PI, Nenad Sestan) has been at the forefront of creating and analyzing spatial and 
temporal maps of coding and non-coding elements in developing and adult human brain using high-throughput 
genomics; and in leveraging these to identify and study specific molecular mechanisms critical to the 
development of the human brain and pathogenesis of ASD and intellectual disabilities. The Sestan lab has a 
collection of almost 200 fresh-frozen post-mortem human brain specimens. In addition, they have generated 
RNA-seq, ChIP-seq and DNA methylation datasets using this tissue as a part of the BrainSpan project 
(www.brainspan.org) and psychENCODE project (www.psychencode.org). Furthermore, the Sestan lab has 
been characterizing the evolution and function of coding and non-coding elements, and regulatory networks 
influencing neurodevelopmental processes, bringing together data generation and bioinformatics, and model 
systems approaches. 

 
The UCLA group (PI, Daniel Geschwind) has been at the forefront at functional genomics and 

transcriptional profiling in human brain, including ASD, where they identified a core pattern of transcriptional 
dysregulation. He will continue his close collaborations with co-Investigators, Jason Ernst, UCLA and Shayam 
Prabhakar, GIS Singapore, as part of the UCLA site contributions.  In PsychEncode I, Geschwind and 
Prabhakar have been working collaboratively to define chromatin states using Chip-seq to uncover the 
regulatory factors underlying transcriptome changes in ASD and in normal controls. Dr. Prabhakar has 
significant experience in genomic data analysis, specifically in epigenetic mechanisms of gene regulation, and 
has developed powerful new methods for histone QTL analysis (hQTL). Jason Ernst, who has played an 
important analytical role in ENCODE, defining chromatin states based on histone marks, is collaborating on the 
integrative analysis of the Hi-C data with histone marks and methylation data. Geschwind has also worked 
extensively with Sestan and State labs to integrate transcriptional profiling in control (Brainspan) and ASD 

http://www.brainspan.org/


brains with genetic and epigenetic data, including several published studies, and contributes a collection of >50 
cases and 45 controls with good quality RNA, and tissue level RNAseq data. His laboratory will continue this 
productive collaboration by conducting Hi-C on the sorted neuronal and non-neuronal nuclei from the core set 
of tissues compiled by Sestan and his labs as outlined in the Research Plan. Geschwind has also 
characterized gene regulatory networks, and in conjunction with Ernst and Prabhakar (and the Yale group led 
by Gerstein) will integrate transcriptional networks, with Hi-C and epigenetic data.   
 

 The UCSF group (PI, Matthew State) has extensive expertise in the identification of ASD risk variants 
through the genomic analysis of large ASD cohorts including the Simons Simplex Collection, and the use of 
these variants to identity points of spatiotemporal convergence in the human brain. Dr. State has pioneered the 
detection of rare genetic variation through genomic analysis as a means to identify the genes involved in 
neurodevelopmental disorders. He has led a number of multi-site collaborations applying this approach to large 
cohorts of ASD and Tourette Syndrome cases. His lab’s research into the association between ASD and de 
novo copy number variants (CNVs) in SNP genotyping data and de novo loss of function (LoF) mutations in 
exome sequencing data has provided considerable insight into the genomic architecture of ASD. This insight 
has enabled specific genomic loci (e.g. 7q11.23 duplications), and specific genes (e.g. SCN2A) to be 
associated with ASD. Extending this to larger cohorts, and applying the statistical methods developed in 
collaboration with the Roeder lab, has led to the identification of over 50 ASD associated genes that form the 
basis of aim 1 of this proposal. In collaboration with the other PIs, Dr. State’s lab developed the methods of 
spatiotemporal co-expression analysis that led to the identification of mid-fetal, prefrontal cortex as a key point 
of convergence in ASD etiology. Recently Matt has been a lead PI on a project performing whole-genome 
sequencing (WGS) on over 500 ASD families from the SSC. In addition his lab is leading a project to identify 
further mutations in 250 genes with moderate ASD association in 17,000 samples using molecular inversion 
probes (MIPs). Dr. State will co-ordinate this proposal between the collaborating sites. 

Dr. Sanders trained as a graduate student and postdoc in Dr. State’s lab. He led the analysis of both the 
CNV and exome work described above, including development of genomic analysis methods to identify de 
novo mutations (e.g. https://sourceforge.net/projects/cnvision/). His own lab has continued to work on genomic 
analysis methods including detecting de novo insertion/deletions in exome data and the integration of CNV and 
exome data to maximize gene discovery in ASD. In addition, analysis of gene expression data, in particular it’s 
relationship to sex bias in ASD, is a major interest of his lab and he is leading the analysis of sexual 
dimorphism in human brain development as part of the BrainSpan Consortium in collaboration with Dr. Sestan. 
Finally, Dr. Sanders is the Director of the UCSF Psychiatry Department Bioinformatics Core that has 
developed cloud-based analysis pipelines for genomic data, including the detection of de novo mutations in 
whole genome sequencing data. His lab will contribute towards the detection and analysis of non-coding 
mutations in Aim 3. 

Dr. Willsey also trained as a graduate student and postdoc in Dr. State’s lab. He led the analysis of the 
spatiotemporal co-expression networks that form a foundation for Aim 3 of this proposal and has continued to 
develop these approaches. Dr. Willsey will lead the spatiotemporal analysis components of Aim 3. 
   
Division of labor: 
The groups will undertake the following roles: 

 Specific Aim 1: Drs. Geschwind and Sestan will lead the molecular profiling using RNA-seq, ChIP-seq 
and Hi-C of developmental control and ASD brains. 

 Specific Aim 2: Drs. Ernst, Gerstein, Geschwind, Prabhakar, Sestan and Weng will lead the integration 
and analysis of multidimensional data. 

 Specific Aim 3: Drs. Sanders, State and Willsey will lead integrated analysis of germ-line ASD 
variations leveraging Aims 1 and 2 data 

In addition, Drs. Geschwind, Sestan and State will co-ordinate across the three aims to ensure consistency in 
experimental approach and objectives.  
 
Integration of data: 
While each group will be responsible for their own set of specific aims, the success of the project depends on 
careful integration of the work being done by each group, as well as open communication and sharing of data.  
For example, the information needed to complete specific aim 3 will come from the data derived in earlier aims. 
And while data generated by the three groups in this project will be very valuable individually, they have the 
potential to be paradigm shifting when integrated together. Therefore sequence data as well as material and 



techniques being generated by one group will be made available to the other group, and the analysis and 
interpretation of the data freely discussed at the monthly meetings described below. 
  
Administrative Structure 
Leadership:  
All PIs will have equal scientific leadership responsibilities. They will all be responsible for implementing the 
scientific and leadership plans at their respective institutions, and ensuring compliance with applicable 
federal and state laws, regulations and policies, biosafety, and data security.  Nenad Sestan will serve as 
the contact PI for the project and have overall responsibility for coordinating the effort between participating 
laboratories and institutions. He will also be responsible for fiscal and administrative management, including all 
communication with the NIH, and submission of required progress reports to the NIH. Nenad Sestan has 
extensive experience in leading and participating multi-institutional projects. Dr. Sestan already has ongoing 
collaborations with all the labs involved in this proposal and has experience leading collaborative studies, 
including BrainSpan and psychENCODE. Daniel Geschwind and Matthew State also have considerable 
experience leading collaborative studies of this nature. 
 
Scientific Coordination:  
Implementation of this project will also take advantage of ongoing collaborations and meetings between the 
UCLA, UCSF, and Yale groups. Monthly joint conference calls will occur between participating labs on the 
first Monday of the month at 10am. Each group will present their progress on research project related to the 
genetics and neurobiology of autism, and human brain development. Yearly face-to-face meetings will be 
held at the beginning of each budget period. PIs and senior investigators will share their research results 
with other PIs and investigators, and publication authorship will be based on the relative scientific 
contributions of individual PIs and investigators. The efforts of each laboratory will need to be tightly 
integrated in order to communicate progress and results, design and implement analytical tools, and to 
transfer data. These proceedings of these meetings will be documented and disseminated.  
 



Decision-making and conflict resolution:  
In the execution of the scientific plan, each overall project PI will have separate responsibilities as 
delineated in the Approach and Research Timeline. The three laboratories have a substantial history of 
working collaboratively in various combinations (see biosketches). These efforts have never required a formal 
decision-making or grievance structure. We have co-authored collaborative papers and have not had any 
controversies regarding scientific content or order of authorship. We anticipate that the current work will 
continue in this manner. We recognize, given the novel nature of the work proposed in this grant, that we will 
need to continually re-evaluate our data and approaches. Given our history and the established monthly 
conference calls, we do not anticipate that this will present substantial difficulties. Nonetheless, if conflicts 
arise during the course of the project, the PIs will make every effort to resolve the dispute and reach a 
position of compromise.  If a conflict cannot be resolved, the matter shall be referred to an Arbitration 
Committee for final resolution. The Arbitration Committee will consist of an equal number of impartial senior 
executives from each institution who are not directly involved in the conflict but who have appropriate 
technical credentials, experience and knowledge, and ongoing familiarity with the project, to assist in reaching 
final resolution. 
 
Loss of key member of group: 
If a key member of one of the research teams leaves the project, then it will be up to the PI of that group to 
ensure that an appropriate person is found the replace him or her.  If a PI leaves the group, then the remaining 
PIs will work with the NIMH Project Scientist and Program Officer to find a suitable replacement.  However, this 
will not be an easy task, as the PIs for the project have been specially chosen based on their expertise, 
productivity, and ability to work collaboratively with each other. 
 
Data management 
Comprehensive transparency of data reporting/sharing: 
As describe above, data will be shared freely among the three groups.  And while every effort will be made to 
publish results and release data in a timely manner, we will ensure that the PI’s on the project have a chance 
to fully review and edit all data generated as part of the collaborative project prior to release. 
 
Reliability and quality control: 
Each of the experiments proposed in this study had built in quality control steps to ensure that accurate data is 
generated, and a validation step to ensure the data is reliable. The quality of the data is further checked during 
bioinformatics analysis (which is usually conducted by a different researcher than the one that generated the 
data), where it is checked for unexpected results or outliers.  If the data analysis reveals unpredicted results, 
then the data will be regenerated, or checked with a second, independent method, to ensure the results are 
reliable. For consistency in generating the data, for most experiments all of the data will be generated at one 
site, however, for quality control and reproducibly, the other site might try reproducing the results on a subset 
of samples. 
 
Experimental rigor and control of bias: 
The sample sizes for the experiments in this study have been chosen to be large enough to provide sufficient 
power to provide significant results when compared to normal controls, as described in the proposal. To avoid 
bias, most of the experiments take a genome-wide prospective, which will allow an unbiased detection of 
somatic mutations across the genome.  Where bias exists because it is not feasible to avoid them (i.e., the 
high coverage targeted sequencing of blood derived DNA), the nature of the bias, and its possible influence on 
the results is discussed in the proposal.  
 



FACILITIES AND RESOURCES 
 
Statement on how the project will benefit from our collaboration and the integration of resources and 
expertise unique to each site. This proposal combines the expertise and resources of three sites into a single, 
highly integrated effort aimed at integrating multidimensional datasets to better understand the etiology of 
neurodevelopmental disorders. The proposal includes three groups led by Nenad Sestan at Yale University 
(Application 1/3), Daniel Geschwind at the University of California, Los Angeles (UCLA; Application 2/3) and 
Matthew State at the University of California, San Francisco (UCSF; Application 3/3). Given the complexity of 
human neurodevelopment and the genetics of autism spectrum disorders (ASD) we believe that integrating the 
respective expertise and resources of these groups offers the best opportunity to generate new datasets and 
utilize the plethora of existing multidimensional genomic data to help elucidate the origin of neurodevelopmental 
disorders. This organizational structure elaborated below combines the expertise and capabilities of the PIs, 
Daniel Geschwind, Nenad Sestan, and Matthew State and the key investigators, Jason Ernst (UCLA), Mark 
Gerstein (Yale), Stephan Sanders (UCSF) and Zhiping Weng (University of Massachusetts), and Jeremy Willsey 
(UCSF), to create a project well beyond the capacity of each individual group.  An assurance of effectiveness in 
these interactions is that Drs. Gerstein, Geschwind, State, Sanders, Sestan, Weng and Willsey have a 
substantial history of working collaboratively in various combinations and have several joint publications. 
Additionally, each collaborator has significant experience in large multi-institutional grants of this nature (see 
Project Management Plan for further details). 
 
 
Application 1/3 (Yale and University of Massachusetts) 
 
Sestan Laboratory (Yale School of Medicine; www.sestanlab.org) 
 
Laboratory: A significant part of the research proposed here will take place in the PI’s main laboratory of 2,500 
sq. ft. located in the Department of Neurobiology on the third floor of the Sterling Hall of Medicine (SHM C316 
and 338). This consists of 25 carrel desks, cell culture room, a cold room, two equipment rooms, and two offices 
with computer workstations. The PI has two tissue culture rooms (one reserved for iPS cell work), a room 
equipped with a transgenic microinjection set-up, a room with two RNA/DNA workstations and an ABI Genetic 
Analyzer, in utero electroporation equipment, and a room for rodent survival surgeries. The Sestan laboratory 
has access to and shares maintenance and service responsibilities for the multi-photon and electron microscopy 
facility within the department. 
 
Laboratory biological materials resources: 
 
The Sestan laboratory collection of human and non-human primate brain tissues: 
Human tissue: The collection has around 200 high-quality de-identified fresh frozen human brain specimens 
from clinically unremarkable (neurotypical) control donors and donors affected with neurodevelopmental 
disorders that have passed our internal neuropathological assessment. These specimens range in age from 5 
weeks post-conception (PCW) to over 80 years old. Among the archived brains are two pairs of mid-fetal 
monozygotic twins with a very low post-mortem interval and for which parental DNA was collected, thereby 
providing a unique opportunity to study transcription and genomic imprinting in human monozygotic twins. In 
addition, the Sestan lab has an extensive collection of fixed and cryoprotected human brain specimens for 
immunohistochemistry and in situ hybridization. 

Human tissue was collected after parental or next of kin consent and with approval by the institutional review 
boards at the Yale University School of Medicine and of each institution from which tissue specimens were 
obtained. Appropriate written informed consent was obtained and all available non-identifying information was 
recorded for each specimen. Because none of these human sources provided any linkable identifiers to the 
Sestan lab, and the proposed use of the post-mortem tissue has been reviewed and exempt by the Human 
Investigation Committee at the Yale School of Medicine. This is because the research does not involve any living 
human subjects or information about any identifiable living human subjects.  Importantly, all brain banks require 
donors to sign appropriate consent forms. The tissue, linked information, and consent forms obtained by these 
institutions has been properly deposited into brain banks under IRB or similar protocol approved by each 
institution’s medical ethical committee for the studies proposed in our application. This information can only be 



accessed by the brain bank/tissue repository coordinator.  Furthermore, identifiable data at brain banks/tissue 
repositories is doubly encoded and saved on separate computer systems.  The handling of tissue was performed 
in accordance with ethical guidelines and regulations for the research use of human brain tissue set forth by the 
NIH (http://bioethics.od.nih.gov/humantissue.html) and the WMA Declaration of Helsinki 
(www.wma.net/en/30publications/10policies/b3/index.html).  

 
List of healthy (neurotypical) and ASD human postmortem available for this project is presented at 

the end of this section. 
 
Information on human post-mortem tissue quality: The tissue collection described above was used to generate 
RNA-seq and ChIP-seq data for the BrainSpan project (www.brainspan.org). The high overall quality of the 
human post-mortem specimens in this collection can be illustrated by the following information on the tissue 
samples used for the BrainSpan project:  post-mortem interval (PMI), 12.11±8.63 (mean±s.d.) hours; pH, 
6.45±0.34 (mean±s.d.); and RNA integrity number, 8.83±0.93 (mean±s.d.).  
 
Tissue storage system: All human and non-human primate tissue specimens are stored in four -80 C freezers 
within the Sestan lab. These frezeers are connected to a SCADA -80C freezer alarm system and a liquid carbon 
dioxide (CO2) backup system with 24-hour battery back-up time. 
 
Human brain transcriptome and epigenome datasets: The Sestan lab has been involved in the generation 
of human brain transcriptome and epigenome datasets for the BrainSpan project (www.brainspan.org). This 
project aims to provide a comprehensive assessment of epigenomic, transcriptional and post-transcriptional 
events in the developing and adult human brain.  The central part of the project consists of transcriptome profiling 
of 16 cortical and subcortical brain regions of 57 clinically unremarkable post-mortem individuals of multiple 
ethnicities, with their ages ranging from 5.7 weeks post-conception (PCW) to 82 years of age. We have 
generated and analyzed a total of 1,340 samples with Exon Microarray transcriptome data (Kang et al., 2011; 
see also www.BrainSpan.org and www.humanbraintranscriptome.org) and a total of 578 samples (16 brain 
regions from one hemisphere of the above brain collection with less frequent developmental coverage) have 
been subjected to both mRNA-seq and small RNA-Seq analyses. To further illuminate underlying regulatory 
mechanisms we profiled the same human brain samples for their DNA methylation status, for which data has 
also been uploaded to www.brainspan.org. The availability of this dataset puts us in the very unique position to 
be able to integrate this knowledge with data acquired in this project, facilitating both the annotation of brain-
specific transcripts and functional elements as well as providing a point of reference for analyses in iPSCs and 
iPSC-derived neural cells. Table 1 lists relevant neurogenomic resources currently available in the lab. 
 
Computational and bioinformatics resources: The laboratory’s computing infrastructure is partitioned into a 
private and a public network. The entire infrastructure is fully gigabit capable and is connected to the Yale 
backbone and Yale High-Performance-Computer (HPC) via gigabit optic fiber; the network architecture was 
designed with computing efficiency and network security in mind. The private network consists of individual 
laptops, desktops and workstations, as well as communal computational servers, dumb terminals, a central 
fileserver, a consolidated NAS, and printers. The public network consists of numerous production webservers 
that are either real or virtual machines, including the www.humanbraintranscriptome.org database. The 
department has a full-time ITS administrator maintaining the network and computers. 
 
Cell culture room and equipment for iPS cell work: The main cell culture room (~500 sq. ft.) located in the 
Sestan laboratory is dedicated exclusively to iPSC work and is equipped with new and up-to-date equipment 
necessary for advanced cell culturing techniques, iPSC generation and differentiation. There are two cell culture 
hoods, a -20 ºC freezer and a refrigerator, one Thermo Scientific Water-Jacketed CO2 incubator and one Thermo 
Scientific Water-Jacketed CO2 incubator with O2 level control, two liquid nitrogen storage units (Locator 6 plus) 
each with 6,000 vials storage capacity, Sorvall legend X1R centrifuge, Zeiss Primo Vert inverted microscope, 
Zeiss SteREO Discovery V8 stereomicroscope with fluorescence module and AxioCam camera connected to a 
computer, barcode reader for labeled vials, Eppendorf microcentrifuge and a water bath.  

The second cell culture room (~80 sq.ft) is shared with the rest of the Sestan lab for general cell culture work. 
It’s equipped with Heraeus HeraCell CO2 tissue culture incubator, one cell culture hood, refrigerator/freezer, 
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water bath and a microcentrifuge. The cold room (~80 sq. ft.) provides additional space for manipulation of 
temperature sensitive samples.    
 
Additional equipment in the Sestan lab: In addition to the above equipment and facilities, the Sestan laboratory 
has other available equipment relevant to characterization of generated cells: two RNA/DNA workstations, 
Agilent TapeStation 2200 for automated RNA, DNA and protein sample. 
 
Transgenic micro-injection set-up: The transgenic micro-injection room (~80 sq.ft.) located adjacent to the 
main laboratory is equipped with Zeiss Stemi 2000 and Zeiss Stemi SV6 microscopes, Eppendorf TransferMan 
NK2 micromanipulator, Eppendorf CellTram Air vario holding pipette control, Eppendorf FemtoJet microinjector, 
Micro- Forge Filament  Technical products International micropipette processor, Sutter instrument P-87 
micropipette puller, Zeiss Axiovert 135 Inverted Microscope, Heraeus HeraCell CO2 tissue culture incubator, 
refrigerator/freezer and a chemical hood. In June of 2015, all this equipment and room have become a part of 
the newly formed Yale Genome Editing Center (YGEC) with Nenad Sestan as the Executive Director. As evident 
for the attached letter of support from managing Co-Directors, Timothy Nottoli and Xiaojun Xing, the YGEC 
provide traditional transgenic and gene targeting services and CRISPR/Cas genome editing.  
 
 
Gerstein Laboratory (Yale University; www.gersteinlab.org) 
 
Laboratory (Bass Central/Main campus): The Gerstein laboratory is found in two connected buildings.  The 
laboratory consists of 6 rooms and comprises a total of ~1,900 sq. ft. In addition, three conference rooms that 
have projectors provide venues for interaction. There are 40 gigabit-ready desks, equipped with one or two 23” 
and 30” LCD screens. The space is properly air conditioned for supporting a large number of computers.   
 
Office: Mark Gerstein's office space is 178 sq. ft. 
 
Gerstein Lab Computer Infrastructure: Laboratory Network and Storage. The lab’s computing infrastructure 
is partitioned into a private and a public network. The entire infrastructure is fully gigabit capable and is connected 
to the Yale backbone via gigabit optic fibre; the network architecture was designed with computing efficiency and 
network security in mind. The private network consists of individual laptops, desktops and workstations, as well 
as communal computational servers, dumb terminals, a central fileserver, a consolidated NAS, and printers. 
There are also servers that provide essential network services such as NIS, NFS, SMB, DHCP, monitoring and 
backups. The public network consists of numerous production webservers that are either real or virtual machines. 
The laboratory maintains its own public subnets of 128 public IP addresses and manages many of its own 
domains (e.g. gersteinlab.org, molmovdb.org, pseudogenes.org, and partslist.org). The lab has a full-time 
administrator maintaining the network.  
        The private and public networks obtain gigabit connectivity through four HP Procurve 5300xl switches that 
are mutually connected via fibre. The private network is behind a Cisco PIX 525, which is concurrently used as 
an IPSec VPN gateway into the private network. Within the private network are two NetApp storage appliances 
with 43Tb of raw space, which is configured with 27.5Tb of working space, thirty custom made 4Tb network disks 
with a total 120Tb capacity, a Dell NAS with a total of 30TB capacity; the NetApp appliances and Dell NAS are 
used for live user file space, backups of user files and backups of public production webservers. A seven-day 
incremental backup and a twelve-month incremental backup are currently being implemented in the lab. 
        Wireless access is available all throughout the lab. Wireless access connects computers directly to the 
public network.  
Available Computers. There are about forty-seven working laptops in the lab, in which eighteen are recent 
Macbook Pro models.  
        In total, the lab has 315u of rack space spread over eight racks. Residing in these racks are a dual CPU 
twelve core Opteron server with 256GB of memory, a dual CPU six core Opteron server with 128GB of memory, 
a dual CPU four core Opteron server with 64GB of memory, three Intel blade enclosures with 10 dual CPU Intel 
blades each, fourteen dual cpu 64 bit Xeons servers and six dual cpu 64 bit Opteron servers; these rack servers 
are in addition to the NetApp storage appliances and the Dell NAS mentioned above. The rack servers have 
various uses. The dual CPU Opteron servers are for hosting virtual machines, which function as web hosts. In 
the private network, five rack servers are for essential network services, four are storage head nodes for the Dell 
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SAN and a few are network support or experimental machines. The rest of the rack servers are in the public 
network acting as webservers. The private network has seven business class color laserjet printers. 
 
Software: A number of open source software, programs created in-house, and proprietary software is used by 
the lab researchers for their needs. The lab maintains a set of wiki servers for the documentation of internal 
information and the public dissemination of information. The lab also manages mailman servers for its mailing 
lists. The compute nodes are mainly used to develop and run Java and Perl code and to perform Matlab and 
Gromacs calculations. The public webservers are used to deploy Java, Perl, PHP and Python applications.  
        Individual tasks are coordinated by a web group calendar. Web applications and servers are continually 
being monitored by a Nagios monitoring system.  
 
Yale Life Sciences Supercomputer: The Gerstein laboratory has priority access to two of the Yale 
supercomputers, namely Louise and BulldogI, and regular access to six other Yale supercomputers. There are 
two full-time administrators maintaining the supercomputer.  
 Louise is a cluster with 112 Dell PowerEdge R610 with (2) quad core E5620 nodes, each with 2.4 Ghz cpu 
cores and 48 GB RAM. They are interconnected with a Force10 network switch. There is therefore a total of 
112*8 cores = 896 cores. Louise has 300 TB (raw) of BlueArc parallel file storage. 
 BulldogI is a cluster consisting of a head node and 170 Dell PowerEdge 1955 nodes, each containing 2 dual 
core 3.0 Ghz Xeon 64 bit EM64T Intel cpus, for a total of 680 cores. Each node has 16 GB RAM. The network 
is Gigabit ethernet. Bulldogi runs a high performance Lustre filesystem. It is managed via PBS. Three 20Tb Dell 
Power Vault with storage arrays are attached to BulldogI and are dedicated for Gerstein laboratory use. The 
laboratory also has priority access to a SGI F1240 system. This system has 12 Xeon E5345 Quad-Core 2.33GHz 
CPUs (for a total of 48 processor cores), with 2 x 4M L2 cache per CPU, a 1333MHz front side bus, 96GB of 
memory, and 6 Raptor 150GB, 10K rpm SATA drives. It runs SUSE Linux Enterprise Server 10 as a system 
single image. That is, all 48 cores are managed by a single process scheduler, and the 96 GB memory is, in 
principle, addressable by a single process. In practice, system caches and buffers reduce the maximum amount 
of memory available to any given process to about 70 GB. In many ways then, the system can be thought of as 
an SMP, but in terms of hardware architecture it is closer to an infiniband-connected cluster. 
 
Core Lab: The Gerstein Lab is adjacent to the Yale Center for Structural Biology (CSB) Core laboratory. The 
Core laboratory resources are available to members of the Gerstein lab. The Core laboratory supports the work 
of all the people associated with the CSB, in total about 200 users and >200 computers. These computers include 
a number of high-performance graphics workstations for visualizing macromolecular structures and complex 
data sets. The CSB Core staff of 2 FTE provides support to the associated CSB laboratories as well as the Core 
computers.  
 
Oracle Server: Yale University has an institutional site license for the Oracle database management system.  As 
a result, many major administrative computing systems at Yale are being developed using Oracle, and Yale’s 
ITS staff has extensive Oracle experience.  Yale ITS maintains and operates several Oracle database systems 
at the School of Medicine, and provides access to these machines to many different projects.  There are several 
advantages to using institutional servers.  The ITS staff backs up each database on a regular schedule, typically 
with full backups weekly and partial backups several times a day.   The ITS staff maintains the hardware of the 
database machine, the system software, and the Oracle software.  They perform periodic upgrades when new 
versions of the software become available. They also handle any systems problems that occur, and are available 
to help troubleshoot any application problems that arise. 
 
 
Relevant facilities and other resources at the Yale University 
 
Core facilities, available on a fee-for-service basis, are available at Yale School of Medicine for flow cytometry 
and cell sorting, oligonucleotide synthesis, DNA and protein sequencing, and mouse transgenic and gene-
targeting services.  
 
Animal facilities: Yale School of Medicine’s Division of Animal Care has full facilities for housing and caring for 
all animals, including contagion-free rooms and veterinary services. In addition, surgical suites are available on 



a fee per use basis. The macaque breeding colony is housed at the main campus one floor above the Sestan 
lab, providing quick access. 
 
Yale Center for Genome Analysis (www.ycga.yale.edu; Director, Shrikant Mane, Ph.D.):  
High-throughput DNA sequencing is carried out by the Yale Center for Genome Analysis (YCGA). The YCGA is 
housed in a dedicated building with over 7,000 square feet of laboratory and office space. It is providing 
microarray and high-throughput DNA sequence analysis services using various technologies including 
Affymetrix, Illumina, Pacific Biosciences, Sequenom, Ion torrent and Nimblegen.  The recent addition of 
automated equipment including the Caliper LabChip GX and the Caliper Sciclone liquid handling system ensure 
the timely completion of the proposed DNA sequencing. The Center has 20 full time staff including three Ph.D. 
and three MS level staff appointments. Shrikant Mane, Ph.D., who has extensive experience in high-throughput 
DNA sequencing technology, is the founding director of the YCGA. The senior staff of the YCGA has over three 
years of experience in high-throughput sequencing and other staff is well trained in sample processing as well 
as operation and maintenance of the equipment. Additional infrastructure includes sample tracking using 
WikiLIMS, DNA quality control and high-performance computation and bioinformatics support (see 'High-
performance computing (HPC)', below). 

We use this resource for all our sequencing prosed in this application at the YCGA. Even though Matthew 
State has accepted a position as Chairman of the Department of Psychiatry at UCSF during preparation of this 
application, his group will also perform all their targeted re-sequencing experiments proposed in Aim 3 at the 
YCGA due to our long standing interactions with the YCGA. 
 
High Performance Computing (HPC) and Bioinformatics: The genomic data generated at the YCGA is 
transferred to a dedicated high performance cluster (HPC) for further analysis. Data is retained on the cluster for 
at least 18 months, after which it is transferred to tape backup system managed by Yale’s Information Technology 
Services (ITS). The HPC consists of 140 nodes with approximately 1200 cores/CPUs and approximately 2.5 
Petabytes of high performance parallel storage (Panasas Inc.); it runs a Linux operating system. All machines 
are connected via gigabit Ethernet. Hardware and software support for the HPC is provided by ITS and is housed 
in a secure climate controlled room. Two Ph.D. computer scientists and one M.S. level staff support the IT and 
High Performance Computational needs of the Center.  
 
Biostatistics and Bioinformatics: Technical assistance in analysis of data generated at YCGA is provided by 
four Ph.D.-level scientists and the Keck laboratory’s bioinformatics and biostatistics section.  The bioinformatics 
staff has extensive experience developing new programs for the analysis of data generated by microarray as 
well as by next gene sequencing platforms and are currently actively involved not only in conducting high level 
analyses but are also in developing new algorithms and data analysis tools.  

 
Keck Foundation Biotechnology Resource Laboratory at Yale University: While most of the Keck 
Resources are at 300 George St., the Microarray Resource is located within the Yale Center for Genome 
Analysis (YCGA, http://ycga.yale.edu/index.aspx) at West Campus. Keck Genomic resources at Yale provide a 
wide range of genomic analyses including Sanger sequencing, oilgonucleotide synthesis, microarray analysis 
and next-generation sequencing. The Keck Sanger DNA sequencing Resource provides competitive and timely 
DNA sequencing in an efficient and cost effective manner for > 300,000 templates each year. In addition, they 
also provide high throughput DNA sequencing using Ion Torrent next generation sequencing platform. The Keck 
Oligonucleotide facility provides > 30,000 high quality, timely DNA and RNA syntheses. In addition to standard 
synthesis, they routinely perform a wide variety of complex specialty syntheses, emphasizing quality and 
efficiency.  Keck Microarray Resource is very closely associated with the Yale Center for Genome Analysis 
(YCGA).  
The Yale Stem Cell Center: The Yale Stem Cell Center (http://stemcell.yale.edu/) provides core facilities for 
stem cell research at Yale and throughout Connecticut. Major pieces of equipment purchased or supported with 
funds from the Connecticut Stem Cell Research Fund are available to stem cell researchers, including  human 
ES Cell and iPS cell culture core laboratories, a Confocal Microscopy core, a Genomics and Bioinformatics core, 
and a Flow Cytometric Analysis and Cell Sorting (FACS) core. 
 
A Cell Sorter Facility (http://info.med.yale.edu/immuno/cytometry/): Mario Skarica, a research associate 
scientist in the Sestan lab has been trained and authorized to use one of the sorters in the core facility. In this 
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facility there are 3 high-speed sorters: a BD FACSVantage SE, a BD Aria, and a DakoCytomation MoFlo. Cells 
can be sorted at the rate of 20K/s at 99+% purity, using a variety of commonly used fluorochromes, eg. FITC, 
PE, PE-Cy5, APC, APC-CY7, PE-CY7, CY5, Alexafluor 350, Hoechst 33342, I ndo-1, and PI. The MoFlo and 
Vantage SE have 6-color and the Aria has 8-color capability. Cells can be sorted into 5 or 15ml tubes or into 
various plates as single or multiple cells/well or onto microscope slides for analysis. In addition, the SE and Aria 
are capable of simultaneous 4-way sorting. The SE and MoFlo have dedicated operators (Tom Taylor and 
Gouzel Tokmoulina) who will help with experimental design and running samples. For FACS analysis, there are 
6 user-operated analyzers (Four BD FACSCaliburs, one FACScan and LSR II). The Caliburs can analyze up to 
4 colors with 488 nm and 633 nm excitation lasers while the FACScan can analyze 3 colors from a single 488 
nm laser. LSR II has a capability of 9 colors. Also some of our machines are equipped with the FACSFlow fluidics 
stabilization system and the FACSLoader for automatic processing of samples. Machines are checked daily for 
optimal performance and Geoff Lyon is available during working hours to troubleshoot and can arrange training 
by appointment. 
 
 
Weng Lab (University of Massachusetts Medical School Subcontract; http://www.umassmed.edu/zlab/) 
 
The Zhiping Weng lab at UMass Medical School (UMMS) has all the equipment needed to efficiently carry out 
the UMass portion of this project. Her office and her lab (8 offices, housing 15 people in total) are on the 5th floor 
of the Albert Sherman Building, a state-of-the-art research building opened in Jan 2013. In her lab, everyone 
has his or her own Mac or PC to connect to Linux clusters and University supercomputers. The lab also uses 
Amazon Elastic Compute Cloud services. The Weng lab has twelve file servers, with a total of 640 cores, 4.4 TB 
of RAM, and 1206 TB of disk space. Two servers house a local installation of the UCSC genome browser, as 
well as a local installation of the Galaxy Web Server.  
 
UMMS is part of the Mass Green High Performance Computing Center (GHPCC) at Holyoke. The computer 
cluster has 10264 cores available, and 400TBs of high performance EMC Isilon X series storage. The GHPCC 
consists of the following hardware: an FDR based Infiniband (IB) network and a 10GE network for the storage 
environment, qty three (6) GPU nodes (Intel with 256GB RAM) with two NVIDIA Tesla C2075 - GPU computing 
processor - Tesla C2075 - 6 GB GDDR5 - PCI Express 2.0 x16 units or K80 GPUs, qty six (6) AMD Opteron(tm) 
Processor 6380 based Dell chassis with 64 cores / 512GB RAM per blade (48 blades), qty seven (7) AMD (2x 
AMD Opteron 6278, 2.4GHz, 16C, Turbo CORE, 16M L2/16M L3, 1600Mhz ) based Dell chassis with 64 cores 
/ 512GB RAM per blade (42 blades), qty (3) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz, QPI, Turbo, 20c, qty 
two (2) Intel (Xeon E5-2650 2.00GHz, 20M Cache, 8.0GT/s QPI, Turbo, 8C, 95W, Max Mem 1600MHz) based 
chassis with 16 cores / 196GB RAM per blade (16 blades), qty two (2) SGI UV200 with 512 Intel (Intel® Xeon® 
processor E5-4600) cores and 4TBs of fully addressable memory, qty one (1) AMD based Dell chassis with 128 
cores Quad-Core AMD Opteron(tm) Processor 2376 and 256GB RAM, qty three (3) Intel (six-core Intel(R) 
Xeon(R) CPU X5650 @ 2.67GHz ) based Dell chassis with 12 cores / 48GB RAM per blade (16 blades). The 
HPC environment runs the IBM LSF scheduling software for job management. 
 
 
Application 2/3 (UCLA) 
 
Geschwind Laboratory (UCLA David Geffen School of Medicine; 
http://geschwindlab.neurology.ucla.edu/) 
 
Laboratory:  
Located in the Gonda (Goldschmied) Neuroscience and Genetics Research Center, Dr. Daniel Geschwind’s 
laboratory comprises approximately 2600 square feet of laboratory space on two floors plus a cold room, a 
radioactive use room, two dark rooms, and over 200 square feet of dedicated bioinformatics space with computer 
workstations. The laboratory contains all equipment needed for modern molecular biology and genetics research. 
There are three MJ Research PTC-100 thermal cyclers, five MJ Mini thermal cyclers, five Applied Biosystems 
GeneAmp 9700 thermal cyclers, an Applied Biosystems Veriti thermal cycler, one Sorvall floor model high-speed 
centrifuge, one Sorvall table-top model high-speed centrifuge, fifteen table top centrifuges, one full size 
refrigerator, two under-bench refrigerators, two refrigerator/freezer combos, five full sized -20° C freezers, 



eighteen under-bench -20° C freezers, four ultra-low temperature freezers, three liquid nitrogen storage dewars, 
a Leica CM1850 cryostat, two Eppendorf thermo-mixers, a Benchmark shaking incubator, a New Brunswick 
shaking incubator, four incubators, five water baths, a hybridization oven, a microwave, a Bio-rad Gene Linker 
UV chamber, a speed-vac concentrator, a gel dryer, eight high voltage power supplies, a UVP digital gel image 
capture and analysis systems, a Bio-rad Transblot Turbo transfer system, and vertical and horizontal gel 
electrophoresis equipment. In addition, there are five fume hoods (one with a dedicated radioactive use zone), 
two laminar flow hoods for tissue culture, and four CO2 incubators. Other equipment includes two Nikon 
microscopes, one with dark-field and bright-field optics and another inverted microscope with fluorescent 
objectives, both equipped with a digital imaging system using a cooled CCD camera. There is also a Zeiss 
confocal microscope with fluorescent and Nomarski DIC optics. Common use equipment adjacent to the 
laboratory includes a dark room with film developer, a scintillation counter, two autoclaves, two washing 
machines, and several high-speed centrifuges and ultracentrifuges. The Geschwind laboratory has an Ion 
Torrent genome sequencer from Life Technologies, which is capable of 200Mbp in two hours for confirmatory 
runs and checking library quality prior to Illumina sequencing.  
 
The NIH-funded Informatics Center for Neurogenetics and Neurogenomics (ICNN) (co-directed by Dr. Giovanni 
Coppola and Dr. Eleazar Eskin, PI: Dr. Freimer, Dr. Geschwind is a co-investigator) was initiated in mid-2009 to 
augment the informatics needs of neurogenetics program members including Dr. Geschwind, and currently 
occupies approximately 300 square feet of dedicated office space in the Gonda research facility on the UCLA 
campus, adjacent to the UNGC genomics core and in close proximity to the laboratory of Drs. Coppola and 
Geschwind. Some ICNN staff members also have private/shared offices elsewhere in the Gonda building. The 
ICNN is funded by a Center Core grant from NINDS (5P30NS062691) which supports the provision of 
bioinformatics services (statistical genetics, sequence analysis, and gene expression analysis) to campus 
neuroscientists. ICNN staff has routine access to 400 nodes in the large genomics computing cluster of UCLA 
(Hoffman2 UCLA Cluster, http://www.ats.ucla.edu/clusters/hoffman2/, overseen by Dr. Eleazar Eskin), housed 
in dedicated space managed by the Institute of Digital Research and Education within the California 
Nanosystems Institute building, located in close proximity to the Gonda building. The ICNN office hosts up to 
eight computer workstations. One computing server (8 core, 64-bit, 3.1 GHz, 32GB RAM) and one data server 
(50 TB RAID) is in a separate server room also within the Gonda building. The workstations and servers are 
connected through a private subnet within the larger Gonda network. The ICNN has already established the 
analysis pipelines for gene-expression and statistical genetic study, as well as analysis pipelines for targeted 
and exome resequencing, ChIP-seq and RNA-seq data. The next-gen sequencing pipelines can analyze 1 billion 
(1000M) reads in few hours, using the full capacity of the above-mentioned sub-cluster. Databases include an 
online gene expression database (REPAIR), and a sequence variant database (AWEXOME), both of which were 
developed in the Geschwind lab and run on ICNN servers (see below, computer and database resources as 
well).  
 
Clinical:  
The UCLA Department of Neurology Neurogenetics Program, directed by Dr. Geschwind, is nationally and 
internationally recognized for excellence in the clinical diagnosis and management of neurodevelopmental and 
neurogenetic disease. UCLA is a tertiary referral center for the State of California’s Genetic Handicapped 
Persons Program (GHPP) and receives referrals from across the United States. In addition, UCLA’s Center for 
Autism Research and Treatment (CART), co-directed by Dr. Geschwind, is one of eight centers in the Studies 
to Advance Autism Research and Treatment (STAART) Network. With funding from the NIH, including two 
Autism Center of Excellence Grants, the center performs innovative studies in autism genetics, phenotyping, 
neuroimaging, and treatment.  
 
Animal:  
The UCLA Department of Laboratory Animal Medicine is an animal care and housing facility at UCLA fully 
accredited by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) 
International. DLAM consists of 141,218 sq. ft. total vivarium space supporting a population of approximately 
115,000 animals (92% mice). DLAM is staffed by eight full-time veterinarians, ten veterinary technicians, 110 
animal technicians (including their supervisors), and 16 support staff (clinical and diagnostic labs; administrative 
personnel). All veterinary and technical staff is located on site and available at all times. Animal technicians and 
veterinary technicians monitor animals daily including weekends and holidays. Animals are housed in UCLA 



IACUC-approved animal facilities under temperature and ventilation controlled conditions. Facility staff ensure 
animals receive fresh food, water and clean bedding on a regular basis (weekly, bi-weekly or more often). Animal 
care staff carry out routine husbandry procedures including changing cages, feeding and watering. Animals are 
checked daily by animal care staff to assess their health condition. Veterinarians examine animals that are 
reported sick or injured and conduct routine facility rounds at least weekly. If animals exhibit any indications of 
illness, injury, or distress, veterinary staff confers with research personnel to recommend and agree on 
appropriate treatment or euthanasia. In emergency situations, decisions are made immediately. In non-
emergency cases, the customary timeline for attention is 24-48 hr after a report is made. In all cases, the 
attending veterinarian has ultimate and final decision-making authority over the treatment or euthanasia of the 
animal.  
 
Computer:  
The Geschwind laboratory contains over 30 networked Intel Pentium based computers and three Pentium or 
Unix-based servers with associated peripherals, such as multiple printers including a Dell color laser printer, Dell 
multi-function printer, and a document scanner. All computers are fully loaded with software and are connected 
via Ethernet to the campus network and the Gonda Genetics Bioinformatics Core. For more intensive 
computational analysis, such as RNAseq alignments and exome sequencing, there is high-level daily access to 
the Hoffman2 computer cluster in the Nanosystems Institute for genomic and genetic analysis, which comprises 
over 1600 nodes and > 13000 cores for parallel computing, including specifically allocated memory to permit 
efficient genomic alignments and RNAseq data storage. This cluster is part of the infrastructure used by the 
ICNN (see above), but is also accessed directly by lab members as needed. Network resources include 
unrestricted access to full text electronic journals. 
  
An internal data analysis cluster is available for computationally intensive analytical work, which is a shared 
resource with Coppola lab. The UNIX-based cluster named ‘Orion’ is made up of 1 login node, 1 management 
node, 12 compute nodes and 4 network attached storage (NAS). Each compute node consists of two 12-core 
high-performance Intel Xeon processors with 128GB of DDR3 ECC RAM. Geschwind lab currently has 172TB 
of space in Orion. The cluster includes a job scheduler, compilers for C, C++, Fortran 77,90 and 95 and softwares 
like R, Perl, Bioconductor, and MySQL. A storage cluster, IDRE cloud archival storage (CASS) is used for storing 
and archiving data, geschiwnd lab currently has over 50TB of high-performance off-site cloud archival storage 
space. The current gene expression database and sequence is hosted on an AMD Opteron machine with two 
eight- core processors, 64GB of RAM and 24TB of disk space. The database currently holds phenotype 
information on 8,315 individuals, and whole exome sequence data for 512 individuals. The patient phenotypic 
information is stored in a PostgreSQL relational database management system (http://www.postgresql.org/). The 
sequence data of the individuals is managed by HDF5 technology suite (http://www.hdfgroup.org/HDF5/). HDF5 
makes possible to manage extremely large and complex data collections. In the frontend there is a web interface 
to assist retrieving information from both the phenotype database as well as the sequence data. The server code 
is written in Python (http://www.pytables.org/moin) and the client code in Javascript, a combination of ExtJS 
javascript framework (http://www.sencha.com/products/extjs/) and Google Web Toolkit 
(http://code.google.com/webtoolkit/). An embedded implementation of JBrowse is used to aid in visualization of 
individual and population variant data. 
 
Office:  
Dr. Geschwind has a total of 491 square feet of office space in the Gonda Building, including space for project 
administration.  
 
Other: 
The UNGC currently occupies approximately 1500s sq/ft of dedicated laboratory space in the Gonda research 
facility on the UCLA campus. Installed capital equipment includes two Illumina HiSeq_2500 sequencers, one 
cBot cluster station, one Illumina LIMS capable iScan confocal laser scanner with Autoloader II automatic loading 
support capable of scanning all Illumina beadchip formats. One Tecan Genesis 150 robotic liquid handling 
platform with Illumina GTS and Infinium robot control software installed, One Tecan Evo 150 robotic liquid 
handling platform with Illumina GTS  and Infinium robot control software installed one Tecan Evo 100 robotic 
liquid handling platform and two 48 place   temperature controlled beadchip processing racks, one SciGene Little 
Dipper  microchip processing robot, one Tomtec autosealer, one Sequenom Massarray compact mass spec with 
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associated nanodispener chip spotter and one MJ Research tetrad 2 thermocycling system. Additional 
equipment includes one Covaris M220 nucleic acid shearing system, one Covaris E210 high throughput nucleic 
acid shearing platform one VisonMate SR 2D barcode plate scanner, one Agilent 2200 Tapestation, one Caplier 
XT nucleic acid size selection system, six programmable incubation ovens, six microplate heat blocks, two 
tabletop Jouan centrifuges, two Molecular Dynamics fluorescent microplate readers, one speedvac and four high 
capacity microplate shakers and  -20 and -80 freezer storage. Computer resources include ten networked 
workstations and one 8 core 64 bit mini tower running Mac OSX and Windows XP-64. The UNGC has 60TB of 
network storage space with RAID backup. All computer resources are connected through a private subnet within 
the larger Gonda network.  
The UNGC is equipped to provide sequencing services, including library preparation and QC, using all current 
Illumina and compatible third party chemistries and kits on our HiSeq-2500 instrumentation. The UNGC supports 
all versions of Illumina’s  whole genome  and custom iSelect Infinium genotyping assays, including methylation 
analysis and all versions of Illumina’s Gene expression chips. All of the Geschwind lab microarray processing 
for SNPs and gene expression is performed via this core.  
 
The facility is currently capable of processing over 480 million genotypes per week at full capacity and is 
equipped to provide sequencing services, including library preparation and QC, using all current Illumina and 
compatible third party chemistries and kits on Illumina HiSeq-2500 instrumentation (n= 2). Services: A)RNA 
purification: The Tecan Freedom Evo workstation has been configured to process RNA purification protocols 
using the Qiagen RNeasy plus columns in 96 well plate format. Purified RNA will be quantified using the Tecan 
Evo to set up RiboGreen fluorescent quantitation assays, which will then be read on the Molecular Dynamics 
fluorescent microplate readers. Aliquots of RNA preps will be analyzed for degradation and scored for overall 
quality using the Agilent Bioanalyzer service available in the MicroArray Core. B) Library construction: DNA/RNA 
fractionation, first and second strand cDNA synthesis (RNA), adapter ligation, library pre-aplification and size 
selection. C) Cluster generation and sequencing: Completed libraries will be accessioned into the UNGC 
sequencing production pipeline. Cluster preparation for the HiSeq_2500 pipeline takes place on dedicated cBot 
platform. The cBot is a stand-alone, software-controlled system for the automated generation of clonal clusters 
from single molecule fragments on Illumina HiSeq flow cells. The automated cBot can generate greater than 190 
million clusters per channel of an eight-channel flow cell. The Geschwind lab performs NextGen sequencing via 
this core, which is adjacent to their labs in the Gonda building, or on their own dedicated sequencers, depending 
on sample flow and efficiency. 
 
Application 3/3 (UCSF) 
 
The State, Sanders, and Willsey Laboratories (UCSF) 
 
The bioinformatics requirements of this proposal make specific use of the facilities offered by the State, Sanders, 
and Willsey labs and UCSF. UCSF has extensive high-performance computing resources to allow thorough 
analysis of high-throughput data. The combination of a dedicated genomics cluster (IHG-1) and a cluster with 
very large computational resources (QB3) which are necessary for simulations will be ideal in integrating the 
extensive genomics data and systems analysis. 
 
University of California, San Francisco (UCSF) Environment 
The University of California, San Francisco (UCSF), one of the ten campuses of the University of California, is 
devoted solely to graduate education and research in the health sciences. UCSF is composed of the Schools of 
Medicine, Dentistry, Pharmacy, and Nursing, and the Graduate Division. In both size and number of students, 
UC San Francisco is the smallest of the UC campuses. Nevertheless, its relative size belies its distinction as one 
of the leading biomedical research and health science education centers in the world. In addition, UCSF is a 
major health care delivery center in northern California with a high volume of regional, national, and international 
patient referrals. 
Over the last century, the original nucleus of academic schools and divisions has grown to include a School of 
Nursing (1939); the Langley Porter Psychiatric Institute (1942), which contains the city's first psychiatric hospital; 
and a Graduate Division (1961). The Graduate Division functions as the administrative and quality control unit 
for more than 854 PhD students, 593 academic master's students, and 1,100 academic postdoctoral fellows, 



representing 94 countries. UCSF also is home to 11 research institutes, 1,500 laboratories, more than 5,000 
ongoing research projects, and a library with a state-of-the-art computing and communications infrastructure. In 
2006, UCSF applied for and was successfully awarded an NIH Center for Translational Sciences (CTSI), which 
is dedicated to research and education in clinical and translational science at UCSF, at affiliated institutions, and 
in participating communities (described below). UCSF’s four professional schools (Dentistry, Medicine, Nursing, 
and Pharmacy) are ranked in the top tier nationally and internationally (measured by academic quality, 
publication citations of faculty, and amount of extramural support for research and education) as centers for 
education and research in the various disciplines. UCSF’s graduate academic PhD programs are also ranked in 
the top tiers of programs in the biomedical bio-psychosocial disciplines. There are over 35 academic 
departments, 17 multidisciplinary research centers, and many NIH-funded multidisciplinary research grants 
including 20 Research Program Projects (P01), 9 Center Core Grants (P30), 12 Specialized Center Grants (P50), 
and 3 Comprehensive Center Grants (P60). The Graduate Division offers 19 degree programs to students 
pursuing masters and doctoral degrees in disciplines ranging from bioengineering to chemical biology, from 
biopharmaceutical sciences and pharmacogenomics to nursing, and from global health to sociology. Graduate 
programs are organized around several interdisciplinary research areas that often contain members from several 
departments. UCSF also offers a K-30 supported Advanced Training in Clinical Research certificate program 
and a Master’s Degree in Clinical Research. The number of postdoctoral scholars appointed at the UCSF 
campus is larger than the number appointed at any of the other University of California campuses. UCSF has 
taken national leadership in the establishment of quality standards for the selection, appointment, compensation, 
and education of postdoctoral scholars. Of UCSF staff, 52.5% are minorities and 68% are women. Of faculty, 
27.5% are minorities and 43% are women. Of the student body, 54% are minorities and 64% are women. 
UCSF continues as one of the leading biomedical research and graduate education centers in the world, and it 
ranks in the top group of institutions of higher learning in total federal funding for research and training. In the 
past three decades, UCSF has evolved into a world-renowned biomedical research center with an annual budget 
of over $3.3 billion to support its various research, teaching, and patient care activities. A large portion of the 
extramural funds received is allocated for biomedical research. Research funding primarily is obtained on a 
competitive basis from the federal government. Additional research funding is received annually from the State 
of California, the University of California Office of the President, private research foundations, state and local 
government agencies, private philanthropy, and industry. UCSF was awarded $532.8M in NIH funding in 2011, 
which was first among public institutions and second among all institutions nationwide. Fourteen UCSF scientific 
departments ranked among the top 10 in 2011, with five leading their fields in funding: anesthesiology ($8.8 
million), internal medicine ($162 million), neurology ($36.4 million), neurosurgery ($16.2 million), and obstetrics 
and gynecology ($23.3 million). In 2010, the UCSF School of Dentistry received $19.5M, the School of Nursing 
received $9.9M, and the School of Pharmacy received $22.6M. The School of Medicine ranked first nationally in 
2012, with $445.7M in NIH funding. Among faculty members are five Nobel laureates, 36 National Academy of 
Sciences members, 54 American Academy of Arts and Sciences members, 79 Institute of Medicine members, 
and 16 Howard Hughes Medical Institute investigators. 
Over the past decade, UCSF’s capacity for basic science and clinical research in the context of world class 
graduate education has been redoubled by the construction of academic facilities at the new UCSF Mission Bay 
Campus. Currently, UCSF has over 1.5 million assignable square feet (ASF) of research space: ~62,000 ASF in 
the School of Dentistry, ~1.3 million ASF in the School of Medicine, ~32,000 ASF in the School of Nursing, and 
~126,000 ASF in the School of Pharmacy. With the opening of the Neurosciences Building at Mission Bay, 
another 152,000 ASF of research space became available in the Spring of 2012. This space supports 
approximately 2,300 principal investigators with active sponsored awards. A UCSF shuttle bus service (running 
every 20 minutes) allows for efficient staff, reagent, and mail travel between all main campus facilities. 
 
UCSF Library 
The UCSF Library provides access for UCSF researchers to an exceptionally large range of research journals. 
The extensive list is in part due to the coordination and consolidation of library services across the entire 10-
campus University of California system.  
GALEN is the Digital Library at UCSF. PubMed@UCSF is publicly available, but access to full text articles is 
limited to computers on the UCSF network or to approved offsite computers. It provides access to the MEDLINE 
database as well as other NLM databases, and is strong in clinical and basic sciences, nursing, dentistry, and 



health care planning and administration from 1966 to the present. References published between 1958 and 1965 
can be viewed through OLDMEDLINE. The MELVYL Catalog is used to locate books at all UC libraries, and 
California Periodicals to find journals/titles at other University of California, California State University, and 
California libraries. Many other important databases are available, including Current Contents, BIOSIS, and 
PsycINFO. 
 
UCSF School of Medicine 
The UCSF School of Medicine, established in 1864, is the oldest continuously operating medical school in the 
western states. Ranked as one of the top 10 medical schools in the country, it operates facilities at seven 
campuses in San Francisco and Fresno. It was ranked number one in NIH funding, receiving over $427M in total 
awards and over $14.7M in training awards in FY2012. With 26 departments, nine organized research units and 
six interdisciplinary centers, medical school faculty and staff reach beyond the neighborhood to bring cutting-
edge scientific research and complex clinical care to the nation and the world. 
 
UCSF Department of Psychiatry 
The UCSF Department of Psychiatry is among the nation's foremost resources in the field of child, adolescent 
and adult mental health. Psychiatry faculty members are recognized for their leadership roles in state-of-the-art, 
comprehensive and compassionate patient care, pioneering research, excellence in training the next generation 
of leaders, advancing public policy to advance mental health, and commitment to diversity. Department programs 
are active at all major UCSF campuses. 
 
UCSF High Performance Computing 
UCSF has multiple high-performance computing (HPC) clusters. The two that are most relevant to this proposal 
are:  
• IHG-1: This cluster is dedicated to high-throughput sequence analysis and maintained by the Institute for 

Human Genetics (IHG). The equipment is stored at the newest UCSF datacenter at 654 Minnesota Street, 
which was awarded a LEED Silver rating for sustainability and energy efficiency and is manned by a 24/7 
365 operations center group.  Access to the facility is restricted to technology staff only and the facility offers 
redundant power and onsite emergency generators. At present the cluster consists of: 48 Dell R620 nodes, 
each with 16 cores and 128GB of RAM; and 2 R820 nodes, each with 32 cores and 1TB of RAM. In total 
800 cores are available for computations. Each node has a 1GB, 10GB and FDR inifiniband connection. 
The 1GB is used for node-to-node communication, the 10GB is for NFS data stores while the FDR is used 
for MPIO and connection to our GPFS data store. The GPFS store is a DDN SFA-12k with 60TB of high-
performance storage. Our NFS store acts as tier 3 storage for data at rest and home folders, this is powered 
by a internally built cluster and currently has 300TB of capacity. All controls are redundant and the ingress 
and egress point from the cluster is over a dedicated 10GB link. 

• QB3: This Linux-based shared cluster is located in a dedicated server room on the 1st floor of Byers Hall at 
Mission Bay. It consists of over 4,500 processor cores, a high quality network attached storage device with 
36 TB of storage capacity, and a networking infrastructure, housed in a total of 19 racks. 

 
UCSF Genomics Core Services 
UCSF has multiple genomics-focused cores, however, our labs primarily utilize the Institute for Human Genetics 
(IHG) Genomics Core at UCSF. 
 
DNA Banking and Extraction Services 
The IHG DNA Banking and Extraction Services Lab (DNA Bank) is located at HSW901A on the Parnassus 
campus. Staffed by experts in the field, the core facility prepares high quality DNA samples from blood, saliva, 
and other tissues at appropriate yields. The high quality DNA samples obtained can be directed to other core 
facilities in microfuge tubes or other standard formats (including SBS 96-well PCR plates) for DNA analysis. If 
desired, the DNA samples can be stored in their secure -80°C freezers on site at nominal cost. 
High-Throughput Sequencing 
Equipment located in the IHG Next Generation Sequencing (NGS) core includes 3 Illumina HiSeq 2500 systems, 
a Covaris S2 sonicator, 1 Advanced Analytical Fragment Analyzer, 1 NanoDrop ND-1000 spectrophotometer, 2 
Beckman Coulter Biomek FXP robotic liquid handling workstations, 2 Affymetrix GeneTitan Systems, 2 Binder 



hybridization ovens, 1 Beckman Coulter SNP Stream system, 1 PE Evolution P3 robotic liquid handling 
workstation, 1 Nanodrop Express low volume precision liquid handling workstation, 1 PE EnVision plate reader, 
multilabel plate reader, over 20 PCR machines, 1 Illumina BeadStation system with an iScan, an ABI Taqman 
genotyping platform, an Illumina BeadXpress system, and ABI 3730xl DNA sequencer. Additional sequencers, 
including the Illumina HiSeq 2500 system, the Illumina MySeq system, and the Life Technologies Ion Proton 
sequencer are found elsewhere on campus and are available to UCSF Researchers. 
UCSF Psychiatry Department Bioinformatics Core (PsychCore) Services 
PsychCore was created to provide bioinformatics support for the psychiatry department, especially in the fields 
of genomics and imaging analysis. Stephan Sanders MD PhD is the director and the core currently employs 
three full time professional software engineers. The core is located in Rock Hall at the Mission Bay campus, in 
close proximity to Sanders Lab.  
 
With in increasing scale of genomic datasets it has become necessary to transfer existing pipelines from local 
high-performance clusters to cloud based clusters such as Amazon Web Services (AWS) and Google Genomics 
(GG). At present PsychCore offers the following services: 

• SNP genotyping analysis for copy number variants 
• Targeted sequencing analysis (GATK best practices) 
• Exome sequencing analysis (GATK best practices) 
• Whole genome sequencing analysis (GATK best practices) 
• Family-based detection of de novo mutations in CNV and sequencing data 
• Genomic variant annotation against coding and non-coding datasets 
• RNA-Seq analysis 
• Data storage in secure redundant cloud-based providers 

 
Analysis pipelines are optimized for rapid and efficient analysis using multi-threading and parallelization and 
have quality control metrics built in. In the future we aim to include ChIP-Seq and imaging pipelines that are 
currently under development. 
 
 
State Laboratory (UCSF; http://statelab.ucsf.edu) 
The State lab includes wet (bench work) and dry (computational work) space in Rock Hall at UCSF Mission Bay 
Campus. The State lab is fully equipped for computational, molecular biological, and molecular genetics 
research.  
 
Office: Matthew State has an office of adjacent to the wet and dry laboratories.  
 
High-performance computing: The State Lab has access to two high performance clusters, both at UCSF and 
described in detail above. Specifically:  

• IHG-1 at UCSF (832 CPUs, 560Tb Storage) 
• QB3 at UCSF (>4500 CPUs, 36Tb Storage) 

 
Bioinformatic analysis:  

• 4 Mac Pro desktop computers with Intel Xeon 64-bit systems with 8-16 CPUS, 8-32GB of SDRAM, and 
2-6TB of RAID HDD. These have dual-boot ability for Windows and Mac operating systems allowing the 
use of tools written in either environment. 

• 13 iMac desktop computers with dual- or quad-core Intel processors, 8-32 GB of SDRAM, and 0.5-3TB 
of storage. 

• 5 MacBook Pro laptop computers with dual-core Intel processors, 8-16 GB of SDRAM, and 0.5-1TB of 
storage 

• 1 Dell Precision T7400 with 8 CPUs, 20Gb SDRAM, 6TB of RAID HDD. 
• Two QNAP Turbo NAS servers, one TS-809 and one TS-859 Pro+.  

 
Cloud computing: See UCSF Psychiatry Department Bioinformatics Core (PsychCore) Services. 



 
 
 
UCSF State Lab Equipment: 
In addition to the standard equipment required for molecular genetics research, the State lab owns the following 
specialized equipment: 

• An Eppendorf epMotion 5075LH automated pipetting system 
• An Eppendorf epMotion 5070 automated pipetting system with the ability to pick single wells in a 

preprogrammed pattern 
• An Eppendorf New Brunswick U725 Innova Ultra-low Temperature Freezer for sample storage 
• An Eppendorf Model 5810R refrigerated centrifuge 
• An Eppendorf Model 5804 centrifuge 
• A Micronic bar code scanner including a BioMicrolab Tracker Table Model Scanner (3 racks), a Wireless 

Handheld Scanner, and 1D & 2D barcode reader w/ USB connection 
• An BioMicroLab XL20 Tube Handler for automated sample re-array, sample weighing, volume checking, 

barcode reading, and data collection for Micronic tubes in a 96 tube rack 
• 2 Tetrad 2 PCR instruments, each with a (swappable) 384-well and 96 well-reaction module 
• 9 BioRad icycler PCR instruments, each with a (swappable) 384-well and 96 well-reaction module 
• An ABI-7900HT fast real time PCR system with 96 and 384 well capacity 
• A Covaris S2 DNA Sonicator 
• A BioTek Synergy HT Fluorometer for PicoGreen DNA concentration assessment 
• A Thermo Scientific (ND8000) 8-well Nanodrop 8000 Spectrophotometer 
• BioTek Elx800 Plate Reader  
• An Agilent 2100 Bioanalyzer 
• 2 Invitrogen E-Gel iBase electronic gel readers 
• A BioRad ChemiDoc MP System for gel imaging 

 
Sanders Laboratory (UCSF; http://sanderslab.ucsf.edu) 
The Sanders Lab includes both dry (computational work) and wet (bench work) lab space in Rock Hall on the 
same floor as the State Lab. The wet lab space is within an open lab shared with neighboring PIs and has access 
to all the equipment necessary for molecular genetic analysis. The dry lab space is housed in two dedicated 
bioinformatics rooms in close proximity to the wet lab. It is fully equipped for a wide range of computational 
analyses, including high-throughput sequencing analysis, genomic annotation, and statistical analysis. 
 
Office: Stephan Sanders has an office adjacent to the wet and dry laboratories.  

Computational resources: 
High-performance computing: The Sanders Lab has access to the two high performance clusters. Specifically:  

• IHG-1 at UCSF (832 CPUs, 560Tb Storage) 
• QB3 at UCSF (>4500 CPUs, 36Tb Storage) 

 
Bioinformatic analysis: Every member of the Sanders Lab has a dedicated Mac computer, however the majority 
of analysis is performed on the high-performance or cloud-based computing clusters. 
 
Cloud computing: See UCSF Psychiatry Department Bioinformatics Core (PsychCore) Services. 
 
 
Willsey Laboratory 
The Willsey Lab has dry lab space at Rock Hall on the same floor as the State Lab. 

Computational resources: 
High-performance computing: The Sanders Lab has access to the two high performance clusters. Specifically:  



• IHG-1 at UCSF (832 CPUs, 560Tb Storage) 
• QB3 at UCSF (>4500 CPUs, 36Tb Storage) 

 
Bioinformatic analysis: Every member of the Willsey Lab has a dedicated Mac computer, however the majority 
of analysis is performed on the high-performance computing clusters. 
 
Cloud computing: See UCSF Psychiatry Department Bioinformatics Core (PsychCore) Services. 
 
Office: Jeremy Willsey has an office adjacent to the dry laboratories.  
 
State, Sanders, and Willsey Lab Software  
Processing the large volumes of data generated by high-throughput sequencing and genotyping microarrays 
requires custom-designed, automated bioinformatic tools. Alongside pre-installed open source and proprietary 
software we have written and implemented the following tools: 
 

• Genomic pipeline: This is a pipeline for processing and analyzing high-throughput sequencing data in 
a Unix-based high-performance cluster environment. It makes use of parallelization to rapidly and 
efficiently process unaligned sequence to annotated single nucleotide variant (SNV) and insertion/deltion 
(indel) predictions using BWA for alignment and GATK for variant prediction. In addition it can predict de 
novo SNVs in family-based data (Sanders et al. Nature 2012).  

• Targeted sequencing: The UCSF genomic pipeline has been modified to manage pooled data to allow 
analysis of Molecular inversion probes (MIPs), or capture arrays. Once the target is defined the pipeline 
can run automatically on all forms of targeted sequencing. 

• Indel detection: To accurately predict de novo insertion/deltion (indels) we have designed a specific 
indel analysis pipeline (Dong et al. Cell Reports 2014). The aligned and sorted BAM files produced as an 
intermediary in UCSF genomic pipeline (above) are passed into Dindel. Putative indels are identified then 
local realignment is used to refine the call. By performing local realignment for indels in all family members 
and accurate assessment of de novo status is made.  

• Annotation: Cross-referencing predicted variants with other sources of data (e.g. genes, conservation 
scores, brain-expression, frequency data) is key to downstream analysis. To allow accurate and fast 
annotation of region-based and single nucleotide data we have designed customizable annotators that 
use multi-level indexing and binary search algorithms for rapid processing. 

• CNVision (http://sanderslab.ucsf.edu/article/software): This is a pipeline for processing and 
analyzing genotyping data to predict copy number variation (CNV). The pipeline is designed to work in a 
UNIX environment and to make use of parallelization for rapid and efficient throughput. It uses three CNV 
prediction tools to maximize accuracy: PennCNV, QuantiSNP and GNOSIS (in-built) and assigns a p-
value to every CNV based on per SNP variability in the underlying data (Sanders et al. Neuron 2011). 

• Primer prediction: To allow simple and consistent confirmation of predicted variants we have written an 
automated pipeline to retrieve reference sequence around a variant, generate primers using Primer3, 
testing with in-silico PCR, and cross referencing against dbSNPv135; in addition a Sequencher input file 
is generated for simple analysis of Sanger sequencing results. 

• Identity (http://sanderslab.ucsf.edu/article/software): Ensuring the correct samples have been 
sequenced and compared is essential for accurate analysis. An in-house script generates a barcode from 
exome BAM files, genome BAM files, or SNP genotyping data which can be compared across samples 
to confirm identity. 

 
 



Lists of developmental control and ASD brains available in Geschwind and Sestan labs for this project 
 
Table 1. List of developmental control brains  

 
 
M - Male, F - Female, AA - African American, C - Caucasian, H - Hispanic  
CTL – control 
TBD - to be determined from genome data 
N/A - not available 

NUMBER ID# Age Sex Ethnicity
PMI                  

(hours)
Tissue level               

RNA-seq

psychENCODE 
dedicated 

brains

1 HSB 242 17 pcw F TBD <1 N/A Yes
2 HSB 267 17 pcw M TBD <1 N/A Yes
3 HSB 239 17 pcw F TBD <1 N/A Yes
4 HSB 268 17 pcw M TBD <1 N/A Yes
5 HSB 265 21 pcw F TBD 15 N/A Yes
6 HSB 274 21 pcw M TBD 8 N/A Yes

7 HSB 220 0.001 y F H 9 N/A Yes
8 HSB 121 0.3 y M C 10 Available No
9 HSB 132 0.3 y M C 22 Available No

10 HSB 139 0.3 y M AA 20 Available No
11 HSB 131 0.5 y F C 26 Available No
12 HSB 122 1 y F C 18 Available No

13 HSB 143 2 y F C 12 Available No
14 HSB 173 3 y F C 8 Available No
15 HSB 172 3 y M H 16 Available No
16 HSB 118 4 y M AA 20 Available No
17 HSB 141 8 y M AA 30 Available No
18 HSB 174 8 y M AA 16 Available No

19 HSB 175 11 y F AA 22 Available No
20 HSB 124 13 y F AA 20 Available No
21 HSB 119 15 y M AA 14 Available No
22 HSB 105 18 y M C 8 Available No
23 HSB 127 19 y F C 10 Available No
24

25 HSB 187 37 y F AA 22 N/A Yes
26 HSB 285 37 y F C 6 N/A Yes
27 HSB 317 47 y M C 5 N/A Yes
28 HSB 269 49 y F C 10 N/A Yes
29 HSB 277 53 y M C 12 N/A Yes
30 HSB 244 59 y M C 22 N/A Yes

Adulthood

Adolescence

Late mid-fetal period

Infancy 

Childhood

To be prospectively collected by the Sestan lab



Table 2: List of ASD and matching control brains  
 

 
 
 

# SOURCE Disorder ID# Age Sex
Tissue Level 

RNASeq
SOURCE Disorder ID# Age Sex

Tissue Level 
RNAseq

Period 10 (Early Childhood)
1 Geschwind Lab ASD / AUTISM AN03345 2 M Available 1 Sestan lab CTL HSB 173 3 F Available

2 Geschwind Lab ASD / AUTISM UMB5308 4 M Available 2 NICHD CTL 4670 4 M

3 Sestan Lab ASD / AUTISM 4671 4 F 3 Sestan lab CTL HSB 118 4 M Available

4 Geschwind Lab ASD / AUTISM AN08873 5 M Available 4 NICHD CTL 4327 5 F

5 Geschwind Lab ASD / AUTISM AN13872 5 F Available 5 NICHD CTL 3 5 M

6 Sestan Lab ASD / AUTISM 1349 5 M Available

Period 11 (Middle and late childhood)
7 Sestan Lab ASD / AUTISM 5144 7 M Available 6 NICHD CTL 4898 7 M

8 Sestan Lab ASD / AUTISM 4849 7 M Available 7 NICHD CTL 629 7 M

9 Sestan Lab ASD / AUTISM 1174 7 F 8 Geschwind Lab CTL UMB4337 8 M Available

10 Geschwind Lab ASD / AUTISM AN19511 8 M Available 9 Sestan lab CTL HSB 141 8 M Available

11 Geschwind Lab ASD / AUTISM UMB4334 8 M Available 10 Sestan lab CTL HSB 174 8 M Available

12 Sestan Lab ASD / AUTISM 4231 8 M Available 11 NICHD CTL M3835M 9 F

13 Sestan Lab ASD / AUTISM 4721 8 M Available 12 NICHD CTL 5173 10 F

14 Geschwind Lab ASD / AUTISM AN16641 9 M Available 13 NICHD CTL 39 10 M

15 Geschwind Lab ASD / dup15q AN14762 9 M Available 14 NICHD CTL 616 11 M

16 Sestan Lab ASD / AUTISM 797 9 M 15 Sestan lab CTL HSB 175 11 N/A Available

17 Sestan Lab ASD / AUTISM 1182 9 F 16 NICHD CTL 5334 12 M

18 Geschwind Lab ASD / dup15q AN06365 10 M Available

19 Sestan Lab ASD / AUTISM M2004M 10 M

20 Geschwind Lab ASD / AUTISM AN16115 11 F Available

21 Geschwind Lab ASD / AUTISM AN17678 11 M Available

22 Geschwind Lab ASD / dup15q AN09402 11 M Available

23 Sestan Lab ASD / AUTISM 4334 11 M Available

24 Sestan Lab ASD / AUTISM 5454 11 M

25 Sestan Lab ASD / AUTISM 4305 12 M

26 Sestan Lab ASD / AUTISM 5565 12 M

Period 12 (Adolescence)
27 Sestan Lab ASD / AUTISM 5710 13 M 17 Sestan lab CTL HSB 124 13 F Available

28 Geschwind Lab ASD / AUTISM NP27/11 14 M Available 18 NICHD CTL 5163 14 M

29 Sestan Lab ASD / AUTISM 4315 14 M 19 NICHD CTL 917 14 M

30 Sestan Lab ASD / AUTISM 4899 14 M Available 20 Geschwind Lab CTL UMB5163 15 M Available

31 Geschwind Lab ASD / AUTISM AN02987 15 M Available 21 Geschwind Lab CTL UMB5242 15 M Available

32 Geschwind Lab ASD / AUTISM AN04682 15 M Available 22 NICHD CTL 1843 15 F

33 Geschwind Lab ASD / AUTISM NP72/11 15 M Available 23 NICHD CTL 1065 15 M

34 Sestan Lab ASD / AUTISM 5531 15 M 24 Geschwind Lab CTL UMB5168 16 F Available

35 Geschwind Lab ASD / AUTISM UMB5278 16 F Available 25 Geschwind Lab CTL AN17425 16 M Available

36 Geschwind Lab ASD / AUTISM UMB5302 16 M Available 26 Geschwind Lab CTL AN00544 17 M Available

37 Geschwind Lab ASD / dup15q AN17138 16 M Available 27 Geschwind Lab CTL AN07444 17 M Available

38 Sestan Lab ASD / AUTISM 5403 16 M 28 Sestan lab CTL HSB 105 18 M Available

39 Geschwind Lab ASD / AUTISM AN01570 18 F Available 29 NICHD CTL 1571 18 F

40 Sestan Lab ASD / AUTISM 5419 19 F 30 Geschwind Lab CTL AN03217 19 M Available

41 Sestan Lab ASD / ASPERGER'S 5294 19 M 31 Sestan lab CTL HSB 127 19 F Available



 

# SOURCE Disorder ID# Age Sex
Tissue Level 

RNASeq
SOURCE Disorder ID# Age Sex

Tissue Level 
RNAseq

Period 13 (Young adulthood)
42 Geschwind Lab ASD / AUTISM AN00764 20 M Available 32 Geschwind Lab CTL UMB4590 20 M Available

43 Geschwind Lab ASD / dup15q AN03935 20 M Available 33 NICHD CTL 1475 20 M

44 Sestan Lab ASD / AUTISM 1638 20 F 34 Geschwind Lab CTL AN07176 21 M Available

45 Geschwind Lab ASD / AUTISM UMB4999 21 M Available 35 Sestan lab CTL HSB 130 21 F Available

46 Geschwind Lab ASD / AUTISM AN09730 22 M Available 36 Geschwind Lab CTL A206/89 22 M Available

47 Geschwind Lab ASD / AUTISM UMB5176 22 M Available 37 Geschwind Lab CTL AN10833 22 M Available

48 Geschwind Lab ASD / AUTISM NP26/11 22 M Available 38 Geschwind Lab CTL UMB5342 23 M Available

49 Sestan Lab ASD / AUTISM 5176 22 M Available 39 Sestan lab CTL HSB 136 23 M Available

50 Sestan Lab ASD / AUTISM 5610 22 M 40 Geschwind Lab CTL AN14757 24 M Available

51 Sestan Lab ASD / AUTISM 5574 23 M 41 Geschwind Lab CTL AN19760 28 M Available

52 Geschwind Lab ASD / dup15q AN05983 24 M Available 42 Sestan lab CTL HSB 125 28 M

53 Geschwind Lab ASD / dup15q AN14829 26 F Available 43 Geschwind Lab CTL AN12137 31 M Available

54 Geschwind Lab ASD / AUTISM AN00493 27 M Available 44 Geschwind Lab CTL AN15566 32 F Available

55 Sestan Lab ASD / AUTISM M3663M 27 M 45 Geschwind Lab CTL UMB5079 33 M Available

56 Geschwind Lab ASD / AUTISM AN08166 29 M Available 46 Sestan lab CTL HSB 138 33 M

57 Geschwind Lab ASD / AUTISM AN12457 29 F Available 47 Geschwind Lab CTL AN08161 36 F Available

58 Geschwind Lab ASD / AUTISM AN08792 30 M Available 48 Geschwind Lab CTL AN10028 36 M Available

59 Geschwind Lab ASD / AUTISM AN11989 30 M Available 49 Geschwind Lab CTL A268/93 37 M Available

60 Geschwind Lab ASD / AUTISM NP121/11 33 M Available 50 Geschwind Lab CTL UMB1376 37 M Available

61 Geschwind Lab ASD / AUTISM UMB5297 33 M Available 51 Sestan lab CTL HSB 123 37 M Available

62 Sestan Lab ASD / AUTISM 5578 35 M 52 Geschwind Lab CTL AN08677 38 M Available

63 Geschwind Lab ASD / AUTISM UMB5027 38 M Available

64 Geschwind Lab ASD / AUTISM AN01971 39 M Available

65 Geschwind Lab ASD / AUTISM AN06420 39 M Available

66 Geschwind Lab ASD / dup15q AN11931 39 F Available

Period 14 (Middle adulthood)
67 Sestan Lab ASD / AUTISM 1575 40 F 53 Geschwind Lab CTL A247/92 40 M Available

68 Sestan Lab ASD / AUTISM 5712 43 M 54 Sestan lab CTL HSB 135 40 F Available

69 Geschwind Lab ASD / AUTISM NP167/08 44 F Available 55 Geschwind Lab CTL A246/93 41 M Available

70 Geschwind Lab ASD / AUTISM NP56/10 44 M Available 56 Geschwind Lab CTL AN01410 41 M Available

71 Geschwind Lab ASD / AUTISM UMB5115 46 M Available 57 Geschwind Lab CTL AN10679 41 F Available

72 Geschwind Lab ASD / AUTISM AN03632 49 F Available 58 Geschwind Lab CTL AN00142 44 M Available

73 Geschwind Lab ASD / dup15q AN17777 49 F Available 59 Geschwind Lab CTL AN04479 44 M Available

74 Geschwind Lab ASD / AUTISM NP90/09 50 M Available 60 Sestan lab CTL HSB 181 44 M

75 Geschwind Lab ASD / AUTISM AN17254 51 M Available 61 NICHD CTL 1936 46 M

76 Geschwind Lab ASD / AUTISM AN08043 52 F Available 62 Geschwind Lab CTL UMB4842 47 M Available

77 Geschwind Lab ASD / AUTISM UMB5340 53 M Available 63 Geschwind Lab CTL AN19442 50 M Available

78 Geschwind Lab ASD / AUTISM AN17515 54 M Available 64 Geschwind Lab CTL A012/12 51 F Available

79 Geschwind Lab ASD / AUTISM AN01093 56 M Available 65 Geschwind Lab CTL AN12240 51 M Available

66 Geschwind Lab CTL AN15088 52 F Available

67 Geschwind Lab CTL UMB1578 53 M Available

68 Geschwind Lab CTL A358/08 55 F Available

69 Geschwind Lab CTL AN01125 56 M Available

70 Geschwind Lab CTL AN13295 56 M Available

71 Geschwind Lab CTL AN11864 57 M Available

Period 15 (late adulthood)
80 Geschwind Lab ASD / AUTISM AN09714 60 M Available 72 Geschwind Lab CTL AN10723 60 M Available

81 Geschwind Lab ASD / AUTISM UMB5303 67 M Available 73 NICHD CTL 5452 67 M

82 Geschwind Lab ASD / AUTISM AN06875 68 M Available 74 Sestan lab CTL HSB 229 70 M

83 Geschwind Lab ASD / AUTISM AN06133 81 M Available



VERTEBRATE ANIMALS 
 
Not applicable 
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