
SIGNIFICANCE 
 
Renal cell carcinoma (RCC) makes up over 90% of kidney cancers and currently is the most lethal 
genitourinary malignancy [1]. The incidence of RCC has 
nearly tripled in recent years in all races; however, the most 
dramatic increase is seen in African-Americans relative to 
other populations in the United States [1, 2]. According to the 
NCI Surveillance and Epidemiology End Results (SEER) 
Cancer Program [3], the age-adjusted incidence of kidney 
cancers compared to Caucasians is 30% greater (18.5 and 
15.5 cases per 100,000 persons, respectively)(Figure 1). To 
date, research has not fully explained increased 
susceptibility to RCC among African-Americans [4]. Various 
hypotheses have been proposed implicating both genetic 
risk variants and a greater prevalence of RCC risk factors in 
African-Americans including obesity, chronic kidney disease, 
and hypertension [5, 6, 7, 8].  
Besides the higher incidence of RCC among African-

Americans, several other racial disparities have been 
described. Some studies have demonstrated that 
African-Americans have a younger median age of RCC 
presentation, between 3-8 years earlier than 
Caucasians (Table 1). In RCC, age of onset is a major 
criterion for consideration for genetic testing as many 
hereditary cancers develop at a younger age than 
observed in the generation population [9]. While over a 

dozen known RCC syndromes exist, inherited risk 
and early disease onset may be more frequently 
related to a complex inheritance pattern. Specific risk 
alleles may contribute to the racial disparity in kidney 
cancer perhaps, predisposing to an earlier age of 

onset.  
An additional disparity in RCC is the large racial difference in the distribution of histologic subtypes. 

RCC is a group of cancers arising from the nephron with the two most common subtypes, clear cell RCC 
(ccRCC) and papillary RCC (pRCC) accounting for 85% of all cases. Although pRCC is considered to 
comprise 10-15% of renal tumors in general (Figure 2), several published and ongoing studies demonstrate 
this subtype is three-fold more common in African-Americans, 
accounting for 35-40% of cases (Table 2) [10, 11, 12]. The 
reason for the increased pRCC frequency in African-
Americans is currently unknown. Unfortunately, when 
metastatic pRCC has an abysmal prognosis with limited 
therapeutic options. 

Another major aspect of racial disparity in kidney 
cancer is that survival is also significantly worse among 
African-Americans. One explanation is that various studies 
have found that African-Americans less frequently receive 
standard treatments in the United States. However even 
controlling for treatment and tumor characteristics including, 
stage, grade, and subtype, survival is still significantly worse [4, 
13, 14]. Similar to prostate cancer where African-Americans 
patients have a more aggressive disease biology,[15] it has 

Figure 2: Histologic distribution of kidney 
cancer ([60]) 

Table 1: Age distribution of kidney cancer by race 
from a prior series [61] and ongoing work from the 
Yale Kidney Cancer group 

Figure 1: Standardized incidence ratios of cancer of 
the kidney and renal pelvis for Caucasians (Green) 
and African Americans (Red). Data from the 
Surveillance Epidemiology and End Result program 
from 1975-2011, [3]) 



been proposed that differences in molecular biology are involved racial disparities in kidney cancer [4, 6, 16, 
17].  

While significant racial differences exist in the incidence, mortality, age of onset, and subtype 
distribution of kidney cancer, no study has addressed genetic mechanisms associated with RCC racial 
disparity. While the Cancer Genome Atlas (TCGA) and other sequencing efforts have analyzed hundreds of 
kidney cancer specimens, the majority of tumors are from Caucasian patients. Without tumors from a diverse 
cohort of subjects it is difficult to explore to the reasons for these racial disparities including whether clinical 
differences are based on varying genomic backgrounds or specific driver alterations. With significant racial 
disparities present, we set out to identify possible coding and non-coding alterations explaining the genomic 
basis of kidney cancer racial disparity. 
 
B. INNOVATION 
 
In this work, we are interested in identifying key genomic alterations, which primarily contribute to the greater 
incidence, earlier age of onset, and different histologic distribution of kidney cancer in African-Americans 
compared to Caucasians. This study will be the first to comprehensively assess genomic alterations in kidney 
cancer by race. We expand upon prior work from the TCGA by including an additional cohort of African-
American’s with ccRCC. By including these samples and performing secondary data analysis of the existing 
ccRCC and pRCC datasets, we can compare differences in risk variants, driver mutations, and driver copy 
number alterations by race. Using our novel bioinformatic tools to analyze whole genome data, we will define 
and then validate non-coding driver alterations important in kidney cancer risk and progression. This study 
will be the initial step in addressing the biological/genetic causes of cancer health disparities in kidney cancer 
and the findings have implications far beyond the scope of this current proposal. 
 
C. APPROACH 
 
Aim 1: To perform whole genome sequencing (WGS) of African-Americans with ccRCC to complete a 
missing aspect of the cancer genome atlas (TCGA). 
 
C-1-a Rationale: In recent years various 
TCGA efforts have characterized the 
genomic basis of the various forms of 
kidney cancer. These studies have led to 
the understanding that some of the diversity 
within kidney cancer results from different 
cells of origin giving rise to distinct types of 
cancer within the same organ. Additionally, 
differences in somatic alterations (driver 
mutations and copy number variations) are 
important in determining a cancer’s 
molecular profile. In the TCGA, cases were 
submitted from various high volume tertiary 
centers to the Bio-specimen Core Resource 
(BCR) for accessioning and specimen 
processing. Specimens however were not 
submitted in a coordinated fashion to 
ensure the study population has a similar profile of that encountered nationally. Not surprising, there was 
clearly a limited number of African-Americans with clear-cell kidney cancer included in the TCGA analysis. 
Despite African-Americans accounting for approximately 1 in 7 cases of ccRCC, only a cursory analysis was 
performed in this population including 14/427 (3.3%) samples that underwent whole exome sequencing 
(Table 2) and 1/40 (2.5%) (Table 2) that underwent whole genome sequencing. Failing to include a larger 
population of African-Americans with clear cell RCC limits our ability to explore the genomic basis for racial 
disparities. With a higher incidence of pRCC in African-Americans, the papillary kidney cancer TCGA cohort 
was able to include a larger number of African-Americans. However, despite the available data, there has not 
been a thorough analysis of somatic driver alterations or germline risk variants more prevalent in African-
American kidney cancer. We propose to complete the TCGA analysis of the top two subtypes of kidney 

Table 2: Racial and histologic distribution of available whole exome 
and whole genome data available from TCGA datasets 



cancer, papillary and clear cell, by analyzing an additional cohort of African-Americans with ccRCC. By 
performing whole genome sequencing on this additional cohort of samples, we will have an adequate number 
of cases to allow balenced comparisons between African-American and Caucasian clear cell and papillary 
kidney cancers. 
 
C-1-b Sample acquisition and DNA extraction: All patients undergoing scheduled kidney cancer surgery at 
Yale New Haven Hospital are offered enrollment into an IRB-approved Genitourinary Biospecimen repository 
(P.I. Shuch, HIC# 0805003787). Within 30 minutes of removal, fresh tumor tissue is snap frozen in liquid 
nitrogen by the pathology team. Additionally whole blood is procured to serve as a genomic control. In the 
past 2 years, over 300 subjects with kidney cancer have been prospectively enrolled.  All fresh bio-specimens 
are stored at -80˚C and are available for immediate analysis. For the purpose of completion of the TCGA 
dataset, we will utilize a consecutive series of 15 African-American subjects with ccRCC from 2013-2015. 
DNA will be extracted from fresh tumor tissue and whole blood using an automated Maxwell 16® System 
(Promega, Madison, WI).  
 
C-1-c WGS and variant calling: Sequencing of the normal and tumor sample will performed using Illumina’s 
Hiseq 2000 technology. In brief, DNA fragments from each sample will be hybridized using HiSeq Paired-End 
cluster Kits and will be further amplified using the Illumina cBOT. Paired–end libraries will be generated by 
utilizing HiSeq (2x101) cycle and imaging will be performed by TruSeq kits.  

We have extensive experience in large-scale variant calling and interpretation through being active 
members of the 1000 Genomes Consortium, especially in the analysis working group and the structural 
variant (SV) and functional interpretation (FIG) subgroups of the consortium where the majority of the variant 
calling tools were developed, deployed and interpreted [18, 19, 20]. We have already developed a prototype 
pipeline for calling germline and somatic variants. We will use the Genome Analysis Toolkit (GATK)[21] to call 
germline SNPs and INDELS. We use parmaters consistent with those used in TCGA[22].We will map raw 
FASTQ files of each sample to the hg19 reference genome using bwa-mem algorithm with default 
parameters to generate BAM files. These bam files will be further processed to sort and mark duplicates 
reads before calling variants. 

We will follow GATK best practices [21] to generate initial raw variant call sets using GATK haplotype 
caller. We will filter these initial call sets by running 
GATK variant recalibration tool. The filtering 
strategy based on variant recalibration method 
uses a continuous adaptive error model. The 
adaptive error model takes into account the 
relationship between annotation of each variant 
(Quality score, mapping quality, strandedness and 
allele information) and the probability of it being a 
true positive instead of a sequencing artifact. 
Furthermore, we will exclude any filtered variant, 
which falls in a low mappability region of the 
genome.  In addition, we will utilize MuTect [23] 
and Strelka [24] to call somatic SNVs and 
INDELs, respectively. 

Structural variations (SVs) are important contributors to human polymorphism, have great functional 
impact and are often implicated in various diseases including cancer. We have developed a number of SV 
calling algorithms, including BreakSeq [25], which compares raw reads with a breakpoint library (junction 
mapping) , CNVnator, which measures read depth[26], AGE, which refines local alignment [27], and PEMer, 
which uses paired ends [28]. We have also developed array-based approaches [29] and a sequencing-based 
Bayesian model [30]. Furthermore, we have intensively studied the distinct features of SVs originated from 
different mechanisms. This indicates specific creation processes and potentially divergent functional impacts 
[31, 32]. We will perform extensive molecular characterization of germline and somatic SVs in these cancer 
samples. We will run CNVnator to identify germline and somatic copy number variations in each cancer 
samples. We will apply CREST [33] to generate germline and somatic large structural variations including 
large deletions, insertion, inversion, intra & inter-chromosomal translocations. Furthermore, we will run our 
BreakSeq tool to decipher the underlying mechanism of somatic and germline SV formation. 

 

Figure 3: Read depth based identification of copy number 
variation by CNVnator. 



C-1-d Deliverables: In this aim, we will generate an extensive catalogue of germline and somatic variants 
including SNPs, INDELs and large SVs for African-American ccRCC cases. This will be done consistently 
with the methodology already used in the TCGA, so this catalogue can be used conjunction with TCGA 
kidney cancer genomic variant datasets to serve as an excellent comparison for the identification of genomic 
aberrations, associated with racial disparity observed in the emergence of kidney cancer. We plan to make 
our sequencing data available via dbGAP (see data dissemination plan).  
 
Aim 2: To assemble a set of coding and non-coding regions associated with kidney cancer, both in 
terms of somatic and germline alterations. 
 
C-2-a Rationale: In this study, we aim to discover underlying genetic regions that explain racial disparity in 
RCC. However, due to the limited size of sequenced samples, it is not feasible to test every single region in 
the genome. In fact, as we discuss later, we have to limit our search space to achieve sufficient statistical 
power. Therefore, we will first assemble a catalog of mutations that are relevant to renal cell carcinoma and 
prioritize regions with greatest impact. In this way, we will incorporate our best prior knowledge of RCC and 
cancer genomics into this study. This allows us to decrease the number of tests, avoiding losing statistical 
power.  
 
C-2-b Relevant Preliminary Results 
 
C-2-b-1 We have developed ways of prioritizing high-
functional impact variants: We have extensively analyzed 
patterns of variation in non-coding regions, along with their 
coding targets [34, 35, 36]. We used metrics, such as 
diversity and fraction of rare variants, to characterize 
selection on various classes and subclasses of functional 
annotations [34]. In addition, we have also defined variants 
that are disruptive to a TF-binding motif in a regulatory 
region[37]. Further studies showed relationships between 
selection and protein network topology (for instance, 
quantifying selection in hubs relative to proteins on the 
network periphery) [38, 39]. In recent studies [31, 40], we 
have integrated and extended these methods to develop a 
prioritization pipeline called FunSeq. It identifies sensitive 
and ultra-sensitive regions (i.e., those annotations under 
strong selective pressure, as determined using genomes 
from many individuals from diverse populations). It identifies 
deleterious variants in many non-coding functional elements, 
including TF binding sites, enhancer elements, and regions 
of open chromatin corresponding to DNase I hypersensitive 
sites. It also detects their specific disruptiveness to TF 
binding sites, annotating both loss-of and gain-of function 
events. Integrating large-scale data from various resources 
(including ENCODE and The 1000 Genomes Project) with 
cancer genomics data, our method is able to prioritize the known 
TERT promoter driver mutations, and it scores somatic recurrent mutations higher than those that are non-
recurrent. Using FunSeq, we identified ~100 non-coding candidate drivers in ~90 WGS medulloblastoma, 
breast, and prostate cancer samples [31]. We have also applied our method to investigate non-coding 
mutation patterns in subtypes of gastric cancer [41]. Drawing on this experience, we are currently co-leading 
the International Cancer Genomics Consortium (ICGC) pan-cancer analysis-working group (PCAWG)-2 
(analysis of mutations in regulatory regions) group.  

We have also used allelic variability to prioritize regions of the genome. That is we prioritize regions 
that differ in functional genomic response, for example, allele-specific expression and binding, between the 
maternal and paternal alleles. Our variant analysis work includes AlleleSeq [42], a computational pipeline to 
identify allele-specific events, and AlleleDB, our database connecting single nucleotide variants with allele-
specific binding and expression [43].  

Figure 4: Workflow for Funseq based variant 
prioritization  



 
C-2-b-2 We have developed tools for somatic and germline burden tests: We have worked on statistical 

methods for analysis of non-coding 
regulatory regions. LARVA (Large-scale 
Analysis of Recurrent Variants in 
noncoding Annotations) identifies 
significant mutation enrichments in 
noncoding elements by comparing 
observed mutation counts with expected 
counts under a whole genome 
background mutation model. LARVA 
includes corrections for biases in mutation 
rate owing to DNA replication timing. 
LARVA can also be used in a mode 
exclusively on coding regions to prioritize 
genes. We used this tool in a pan-cancer 
analysis of 760 cancer whole genomes’ 

variants spanning a number of cancer data portals and some published datasets. Our analyses demonstrated 
that LARVA can recapitulate previously established coding and noncoding cancer drivers, including the TERT 
and TP53 promoters [44]. 
 
C-2-b-3 We have already identified some regions associated with kidney cancer through our involvement in 
the papillary TCGA team: Due to Yale’s expertise in the clinical management and genetics of kidney cancer, 
we were invited to participate in the various TCGA kidney cancer projects. Our role in the TCGA KICH 
(chromophobe RCC) included being the manuscript coordinator for the Cancer Cell manuscript. Next for the 
TCGA KIRP (pRCC) our team performed the analysis of the whole genome sequencing, now published in 
New England Journal of Medicine [22], providing us with further experience with the available RCC genomic 
datasets. Finally our team has participated in two ongoing pan-RCC manuscripts serving a central role 
assessing evaluating the cluster of clusters’ (Cluster of cluster assignments -- COCA) immunologic profile 
from gene and miRNA expression datasets. Together with other published results on RCC [45, 46, 47, 48, 
49], we already have the ability assembled an extensive list of impactful regions on the genome that have 
shown statistical significance in previous studies. However, most of these studies focused on coding regions 
only. 
 
C-2-c Research plan  
 
C-2-c-1 Collected database of what is known for kidney cancer: First, we will mine the literature and 
condense results from previous studies, alluded to above. We will gather genetic changes that include but not 
limited to: single nucleotide variation (SNP), structural variation/copy number variation (SV/CNV), and 
mutation process signature. Our study will take a comprehensive approach of the entire genome, sweeping a 
larger pool to unearth genomic regions for racial disparity in RCC. Last, we will also notate known regions 
that have discovered in studies on Caucasian and African-American disparity in other types of cancer, for 
example, prostate cancer [50, 51]. That is, we will add to our collection of kidney-cancer prioritized regions, 
regions known to be associated with racial disparities in other types of cancer. Studies have pointed out that 
RCC is uniquely characterized by copy number variations (RCC) as early and major driver event [45]. 
Repeats are triggering factors for many structural variation events. Therefore in the germline analysis below, 
we will also pay attention to repeats polymorphisms around pre-eminent cancer associated genes and 
recurrent CNV regions in RCC. Particularly, we assume excessive repeats put certain RCC related genes 
predisposed to CNV events.  
 
C-2-c-2 We will extend FunSeq to find connected modules of elements: FunSeq has already had a limited 
way of connecting non-coding elements to target genes. It exploits locality of promoters and correlates 
epigenetic markers on distal regulatory elements with gene expression. Here will extend this capability to 
develop modules of elements. Genetic modules extend high impact regions by linking them with other 
genomic elements according to physical interaction, epigenetic marker and expression correlation, molecule 
pathway/network and other evidence. Elements in the same genetic module are expected to play similar roles 

Figure 5: Comparison of β-binomial distribution fit (turquoise) 
and binomial distribution fit (pink) to observed cancer somatic 
mutation counts. The β-binomial distribution betters models the 
empirical distirbution’s (black) overdispersion. 



in ccRCC and pRCC initialization and development. In the end, we will integrate this new feature into FunSeq 
and use to assemble genetic modules. Genetic modules group potentially impactful elements that share 
similar or collaborative biological functions, increasing statistical power in our study. Last, genetic modules 
offer annotation to less known noncoding regions. Our results will be more biologically interpretable because 
these regions will be linked with genes.  
 In order to systematically integrate evidence from various sources (which can mostly be represented 
in graph form), we will use a random walk on multiple graph layers. At each step, we chose to update the 
state on one graph. The walk stops at certain distance from its starting point (boundary condition). Starting 
from the gene that we are interested with and simulating this random walk multiple times, we will finally tally 
the number of visits to each node and pick out “hot” nodes (that are often covered in walks). Those nodes 
represent the linked nodes with our starting gene. Since random walk will give an empirical distribution of 
number of visits to the nodes, we will be able to set up our cut-off value for linked nodes in a robust manner. 
 
C-2-c-3 We will extend LARVA to include additional covariates: It is known that various genomic features 
affect background mutation rate in most cancer types, which results in numerous false positives in somatic 
mutation recurrence analysis [50]. Hence, we have been working on an update to LARVA, which incorporates 
corrections for additional covariates that influence the somatic mutation rate in different genomic regions, 
including sequence content, replication timing, expression level, histone modification marks, and chromatin 
status. Our intention is to iteratively refine the underlying whole genome background mutation model to reflect 
all factors that influence the accumulation rate of background mutations.  
 
C-2-c-4 We will run our updated and extended FunSeq & LARVA on WGS sequences from TCGA and aim 1: 
We expect many changes in noncoding regions play a critical role in renal cell cancer. In order to find high 
impact mutations in noncoding regions, we will run our updated and extended FunSeq and LARVA on 
variation calls from TCGA whole genome sequenced samples as well as our newly sequenced samples, both 
cancer and normal. In a first pass run, we have already run FunSeq on 32 whole genome sequenced 
samples from the TCGA KIRP group. We have found several disruptive mutation hot spots in the genome. 
We also have found excessive somatic mutations in MET intronic and promoter regions, along with several 
other recurrent mutated regions that merit further investigation. 
 
C-2-c-5 We will identify critical regions burdened by germline mutations: First, we will try to find regions that 
are significantly burdened by germline mutations in the kidney cancer cases versus healthy people. As a non-
cancer control, we will use both the 1000 Genome Project (2504 people) for the whole genome as controls as 
well as the Exome Aggregation Consortium (ExAC, non cancer) for the exome[51]. We will look for regions 
and genes that are burdened significantly in RCC, compared to the control. Given the size of the datasets, we 
will be well powered in our tests (comparing numbers discussed later in aims 3 and 4). We will also prioritize 
regions that are less significantly associated with RCC that are known to have racial disparities in healthy 
people.  
 
C-2-d Deliverables: We aim to generate a list of regions in genome that, to our best knowledge, potentially 
have the highest impacts on the development of RCC. We will also construct a list of genetic modules that 
are assembled from high impact regions. We will make these regions available from our project website and 
as tables in published papers (see data dissemination plan). In Aim 3, we will directly test those elements on 
our samples. 
 
Aim 3: To identify genomic alterations differing most between African-Americans and Caucasians 
with kidney cancer 
 
C-3-a Rationale:	In this aim, we are going to take the genomic regions and modules that we have developed 
in Aim 2 and test for any evidence of racial disparity. Our overall intention is to investigate differences in the 
occurrence of common SNPs or differential burdening in terms of rare germline or somatic mutations 
between African-American and Caucasians.  Our specific goal for this aim is to score and prioritize these 
genomic regions in order to select 550 regions with the highest score to be validated in Aim 4 using a larger 
cohort.  
 



C-3-b Compare the germline mutations in coding regions between Caucasian and African-Americans 
in the prioritized regions using WES Data 
 
C-3-b-1 Variant level analysis: For the coding region analysis, we will utilize the full category of 556 samples 
with whole exome data analysis from TCGA. For the common variants analysis at a single locus, Fisher’s 
exact test can be used to evaluate the racial disparity between Caucasian and African-American subjects 
with RCC. Here, we prioritize common variants according to their associations with RCC disparity in race. For 
a common SNP identified in African Americans and Caucasians with RCC, we record the minor allele 
frequencies and major allele frequencies in African Americans and Caucasians with RCC, respectively. For 
these counts of the focal SNP, Fisher-exact test is used to determine whether the SNP tends to be 
associated with the African Americans with RCC. The p-values of the tests for all the common variants are 
used to prioritize them for further study and validation. Moreover, the power of the Fisher exact test can 
readily be estimated in this context. For instance, for an ordinary SNP with allele frequency 7% in the total 
samples, when its frequency in the African American subjects is 12%, the power of the test can reach 0.4 
with a p-value < 5e-5. This indicates that these SNPs can be detected with statistical significance from 1000 
candidates, even when a Bonferroni correction is used. 
 
C-3-b-2 Region based analysis: Beyond investigating the association between the single common variant and 
race, we will focus on the evaluating the cumulative effects of a set of rare variants in certain genomic 
regions, such as genes, using both burden and non burden test. Burden test are often applied on regions 
where most of the variants in the same region are causal and their effect on the phenotype are on the same 
direction.  We assume that in total there are n patients with whole exome sequencing data available. Also for 
a target region, for example, a gene, there are m variants. Let  denote the population information of the  
patient.  for African-Americans and 0 otherwise. Let  represent the genotype of patient 

. Then a logistic regression model can be set up to evaluate the association as in (1). Suppose that  
describes the mean of the population status, then 

                                                               (1).  

For the burden test, we could treat the coefficient  for each patient as a weighted coefficient like 

. Then equation (1) can be rewritten to 

                                
               (2). 

Then under the null hypothesis that there is no association of variants in this region with race, the coefficient 
 should be zero. So the test statistic for H0:  should be  

                                               
  (3). 

The allele frequency can be used to assign the weight for each variant. For example, , 

where 
 
is the minor allele frequency. However, in some cases, where the target region has many non-

causal variants or the effect of such variants is quite heterogenous, burden tests, such as equation (3), may 
lose statistical power. Here, sequence kernel association test (SKAT) can be used. Instead of assuming a 
weighted coefficient effect in the burden test, s are treated as independent random variables with 0 mean 

and variance . Then the null hypothesis can be changed to H0: . Then the test statistic under 
equation (1) can be written into:  
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                                                    (4). 

In (4),  is the kernal matrix, and  is the genotype information vector.  is 
the weight matrix which can choose based on allele frequency or external information, such as conservation 
score. The test statistic in (4) can be rewritten into  

                                  (5). 

In the coding variant analysis, because for most genes, we do not know which of the two cases each gene 
falls into, a unified test can be used as the following 

                                          (6) 

Since the best route in (6) is unknown, the best test statistic can be used as the following:  

                                                              (7) 

 
C-3-b-3 Power analysis using SKAT for per region based analysis: In the above, we are planning to use 
aggregated burden tests (i.e. SKAT) to look for differential burdening between populations and use this to 

rank the regions. While we are not striving for 
absolute statistical significance in the differential 
burdening, we do think that the sample size is 
enough to get an appreciable signal for ranking. 
Here, we discuss the power aspects of the burden 
tests in detail and substantiate. SKAT analysis has 
been developed for rare genomic mutations and 
remains robust even for common variants. We will 
utilize SKAT to identify genomic regions with 
significant variant disparity in kidney cancer 
between Caucasian and African-American 
populations. To estimate the sample size that we 
need to use in order to obtain statistical power, we 
used the SKAT package from R project, running 
several population models with different parameters 
(Figure 6). In the proposed study, we will focus on 
genomic modules linked with kidney cancer; 
therefore we expect a greater number of effective 
mutations.  
 
C-3-c Compare the germline mutations in 
noncoding regions between Caucasian and 
African-Americans in the prioritized regions 
using WGS Data 
 
C-3-c-1 Pooled variant test for limited target 
regions: For the noncoding region analysis, since 

we only have limited power with 32 WGS samples in both populations, target regions instead of the whole 
genome wide analysis will be carried out on only a small set of regions. From our experience with TCGA 
KIRP, we already prioritized MET intronic and promoter regions, along with several other recurrent mutated 
regions that merit further investigation. We will only focus on these selected regions to use the unified test 
mentioned above (in section C-3-b). 
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Figure 6: Using the default haplotype information in the 
SKAT.haplotypes dataset, we randomly selected 
subregions of size=5k and ran 100 simulations. In A, we 
show the statistical power obtained across the different 
models of maximum Odds Ratio. In B) we show the 
required sample size for each of these models in order 
to obtain significant statistical power (α=0.01, β=0.2) 
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C-3-c-2 Non-parametric test for FunSeq score distribution difference: We suspect that the casual regions may 
not only be under differential mutational burden between races, but may also be overly affected by high-
impact mutations. Thus, for the prioritized regions given above, we plan to calculate all the FunSeq scores on 
both African-American and Caucasian populations. Subsequently, by ranking and pairing the scores between 
the two population groups we intend to use the Wilcoxon signed-rank test to evaluate the significance of the 
mutational impact on each region. This test is a non-parametric version of the paired t-test and is used when 
we cannot assume that the populations follow a normal distribution. As the population size increases, a Z-
score can then be calculated.  
 
C-3-d Compare the somatic mutations between Caucasian and African-Americans in the prioritized 
regions: Previously, we developed an integrative framework LARVA to discover the highly recurrent regions 
in cancer genomes as candidates for drivers [43]. We will further develop our method by correcting many 
other genomic features for more accurate background mutation rate calculation. Specifically, in a region with 
length , suppose the mutation rate is known as , then the number of mutations y within  given µ should 
follow a Poisson distribution as the following: 

                                                         (8) 

However, we discovered in our previous analysis that there is great cancer type, sample, and regional 
heterogeneity in the mutation count data [43]. Such mutational heterogeneity violates the constant mutation 
rate assumption and results in over-dispersion. Hence, instead of supposing µ is constant, we set up the 
following model  

                                                (9) 

Then the marginal distribution of Y could be expressed as the type I negative binomial distribution 

                          (10), 

Where , . Let , are the genomic covariates to be corrected, such as 
replication timing, GC content, and chromatin status, we could use the following negative binomial regression 
to estimate the local mutation rate under the covariant set. 

                            (11) 

Consequently, instead of estimating a genome wide mutation rate m we are now estimating a coefficient 
vector for the mean and a constant over-dispersion value. For each region to be estimated, a local mutation 
rate can be reconstructed by equation (11) for accurate background rate and false positive/negative controls.  

We will apply our new method on the 16 African-American and then the 16 Caucasian WGS samples 
separately. Highly recurrent regions in each will be reported and compared. Those regions that are unique to 
either population will be prioritized for detailed validation. 

 
C-3-e Deliverables: This aim will create a ranking on the list of genes, non-coding regions and variants from 
Aim 2 to pass to the validation in Aim 4. We will combine the rankings from the sections above by comparing 
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their corresponding p-values. However, we will keep a minimum number of validations of each category. 
Also, we plan to make our racial disparity rankings of genes and non-coding regions publicly available from 
the project web server (see data dissemination plan). 
 
Aim 4: To validate specific regions with either germline or somatic mutations suspected of 
contributing to kidney cancer racial disparity.  
 
C-4-a Rationale: Typically, traditional GWAS studies require thousands of sequenced genomes to associate 
genetic variants and disease with confidence. Therefore, aim 2 and 3 may not render the necessary statistical 
support to associate kidney cancer variants with racial disparities. However, in aim II and III, our main 
intention is to obtain, prioritize and rank ~550 genomic regions using our Funseq algorithm [40]. These 
regions will be further processed and validated in aim 4, by using sequences from Yale’s Genitourinary 
Biospecimen Repository.  We intend to validate 55 regions (100bp each) for 384 individuals.  

In particular, we will assemble a independent validation cohort from Yale’s Repository. This will 
contain both African-Americans and Caucasian with clear cell and papillary RCC to allow comparisons across 
both histologic type and race. Besides confirming an association with kidney cancer, a large cohort will help 
us better understanding of how frequently these alterations occur. 

 
C-4-b Power analysis for the validation cohort: Here we focus on 550 common SNPs prioritized by the 
Fisher exact test proposed in Aim 3. The same test is adopted to detect the SNPs associated with racial 
disparity of RCC, using the equal number (192) of African American and Caucasian patients with RCC. To 
analyze the test power, we survey the parameter space of a candidate SNP, i.e. the frequencies of the SNP 
in total patients (f) and in the African American (fa) and Caucasian (fc) patients. Due to correcting multiple 
tests with Bonferroni method, only SNPs with p-value < 1.0e-4 are considered to be associated with race 
disparity of RCC. Using STATMOD package [52], we find that to be detected with power at 0.8, a candidate 
SNP requires its f and fa /fc larger than 0.08 and 3.5 respectively. However, note, Bonferroni correction is 
overly stringent, rendering this power analysis conservative. 

In the other extreme, when all the prioritized regions are genes after pooled rare SNP tests, we 
suppose eventually 10 genes with 5kb length. Using the SKAT R package, we performed a power analysis of 
100 simulations and we could still detect regions with an Odds Ratio (OR) equal to 4 with this number of 
samples (power > 0.8). 
 
C-4-c Sample acquisition and DNA extraction: As mentioned above, fresh kidney cancer tissue is 
procured on our IRB-approved Genitourinary Bio-specimen protocol within 30 minutes of removal. 
Additionally our protocol allows access to archival tumor tissue from 1988-2013. Yale pathology archives 
have available formalin-fixed, paraffin-embedded (FFPE) tissue blocks to retrieve tumor and the adjacent 
normal kidney tissue for a genomic control. All tumors have recently been centrally reviewed by our 
genitourinary pathologists and classified according to recent International Society of Urologic Pathology 
(ISUP) criteria [53]. For our validation cohort, an equal number (n=96) of Caucasian and African-American 
clear cell and papillary tumors (total n=384) will be selected as a Yale Validation Cohort. For both fresh and 
FFPE tissue, DNA will be extracted using an automated Maxwell 16® System (Promega, Madison, WI).  
 
C-4-d Genotyping kidney cancer non-coding genomic variants: Frequently, next generation sequencing 
results find variants that require validation to confirm significance. We will employ similar methods to various 
other studies involving novel variants found on either exome or whole genome sequencing [54, 55, 56, 57] 
These studies utilize the MassArray system (Agena Biosciences, San Diego, CA), a mass spectrometry 
platform that measures PCR-derived amplicons. The system can be multiplexed to analyze a large number of 
alterations with high sensitivity but a low cost. DNA from FFPE and fresh tissue can be analyzed on the same 
chip without difficulty. The MassArray system has been utilized to study genomes in the study of cancers, 
benign conditions, and even ecologic research. This approach has been used in the screening of large case-



control series and independent validation cohorts of affected individuals. For the analysis, 20 ng of DNA from 
genomic control will be used in Yale’s Validation cohort. The 384-subject cohort will have their germline DNA 
assessed for non-coding variants identified. The MassArray Assay Design Suite will be used for designing 
custom PCR primers to detect potential germline variants using the genomic coordinates of interest. For 
genotyping, up to 40 genomic variants can be multiplexed per well per silicon chip. Mutation calls for each 
tumor and germline sample will be assessed using the MassArray Typer 3.4 Analyzer. Unlike next generation 
sequencing, the results can be quickly automated and generated into both a graphical or table interactive 
format. 
 
C-4-e Tumor profiling for somatic non-coding mutations: The MassArray system is frequently used for 
the rapid detection of known or suspected somatic alterations important in cancer [58, 59]. Panels exist to 
detect common alterations in specific cancers and are employed for testing at various clinical laboratories. 
We will perform somatic mutational profiling using the MassArray System that allows multiplexing for up to 15 
somatic variants per 384-well chip. The technology can detect variants with as low as 1% mutant allele 
frequency using a small DNA quantity. A total of 20 ng of total DNA will be obtained from tumor DNA from the 
Yale Validation Cohort to determine if racial differences exist in somatic non-coding mutations between 
African-Americans and Caucasians with kidney cancer. Small insertions/deletions or single nucleotide 
alterations found from the WGS and secondary TCGA data analysis will be assessed in the validation cohort. 
For somatic variants, the MassArray Assay Design Suite will be used for designing custom PCR primers. 
Similar to above, mutation calls will be assessed using the MassArray Typer 3.4 Analyzer. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
D. Potential Pitfalls and Alternative Strategies 
 
One potential issue we see with our proposal is that, despite our design, we may not find any regions in the 
validation cohort that are significantly different between races. We have designed the study so that we 
believe we will have adequate power to detect racial differences but, of course, we will not know until we get 
to the validation. If after doing the first third of the validations (~185) we are not finding any regions that are 
significantly different, we have a number of courses of action: (1) We can remove somatic variants from the 
validation. Validating somatic variants is more expensive than germline ones. Removing them will allow us to 
validate a potentially larger number of regions. (2) We can focus only on disparities in coding genes as 
opposed to non-coding regions. There are many more kidney cancer exome sequences done than WGS (by 
more than an order of magnitude) and coupling this with the much smaller genomic space being queried 
should substantially increase the power of our analysis. (3) The validation cohort can be expanded to 
increase power. Currently the Yale Biospecimen Repository is adding 150 new kidney cancer subjects each 
year. Additionally our close collaborator in the US Kidney Cancer Study has access to a large cohort of 
genomic DNA in individuals with kidney cancer (843 Caucasians and 358 African-Americans). Finally if 
needed, the Yale Kidney Cancer Program recently was granted approval from the Connecticut State Tumor 
Registry to access records and/or tissue from individuals with a diagnosed with kidney cancer from 1998 to 
present. 

Figure 7: Workflow for validation of whole genome sequencing findings using Yale cohort of tissue. DNA 
from formalin-fixed, paraffin embedded tumor tissue and also genomic controls will be amplified, have 
primer extension, mass spectroscopy detection, and analysis. Germline and somatic, coding and non-
coding variants will be validated with a large Yale patient cohort. 



 
E. Expected Outcomes and Future Directions 
 
At the conclusion of this research, our analyses will determine candidate coding and non-coding regions 
associated with papillary and clear cell kidney cancer. We will identify and then validate specific germline and 
somatic alterations that are disparate in their distribution in African-Americans and Caucasians with kidney 
cancer. These findings will be an initial step towards understanding the genomic cause of kidney cancer 
racial disparity and have implications beyond the scope of this project. Understanding inherited predisposition 
to kidney cancer may have important screening implications in high-risk individuals such as African-
Americans. Additionally, racial disparity in candidate driver alterations has the potential to impact how we 
view treatment in the age of precision-based cancer therapeutics. The findings from this project have far 
reaching implications, justifying further research beyond the scope of this proposal. 
 
 


