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Structure has traditionally been interrelated with sequence,

usually in the framework of comparing sequences across

species sharing a common structural fold. However, the nature

of information within the sequence and structure databases is

evolving, changing the type of comparisons possible. In

particular, we now have a vast amount of personal genome

sequences from human populations and a larger fraction of

new structures contain interacting proteins within large

complexes. Consequently, we have to recast our conception of

sequence conservation and its relation to structure — for

example, focusing more on selection within the human

population. Moreover, within structural biology there is less

emphasis on the discovery of novel folds and more on relating

structures to networks of protein interactions. We cover this

changing mindset here.
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Introduction
The amount of personal genomic information is growing

at a rapid pace leading to a vast change in the nature of

information stored within biological databases (Figure 1)

[1�]. In particular, before the completion of the human

genome project in 2003, we had a large amount of geno-

mic sequence information from different species and

structural data in the databases. Due to the technological

advances in next-generation sequencing, the amount of

human sequence information has grown at an unprece-

dented pace. Meanwhile, even though the number of

protein structures in the PDB database [2] has also

increased, the pace of identifying new folds has slowed

down indicating that few new folds remain undiscovered.

However, a large number of novel domain–domain inter-

actions are detected in the newly deposited structures

indicating that the complexity of the structures in the

PDB database continues to grow (Figure 1). This trend

illustrates an increasing emphasis among structural biol-

ogists to treat biomolecules not as individual folds but

rather as complex molecular machines that interact and

regulate each another as they function within the cellular

environment. Together, these trends suggest that the stage

is set to integrate sequence and structural information to

rationalize the effect of variants on protein function.

The identification and characterization of pathological

disease-associated variants is an essential goal of genomic

sequencing efforts [3,4]. A large number of medically-

relevant mutations occur within proteins, some of which

are available through databases such as the Online Data-

base of Mendelian Inheritance in Man (OMIM) [5], the

Human Gene Mutation Database (HGMD) [6], Humsa-

var [7], and ClinVar [8]. It is essential to utilize structural

information for rationalizing the evolutionary pressure

acting on these proteins as well as for developing drugs

to combat the effects of disease-causing variants. How-

ever, it remains challenging to annotate the physical

effects of these mutations on proteins and protein com-

plexes, as the nature of functional constraints is highly

multifaceted. A protein-coding variant may cause local or

global changes in structure, or it may have a substantial

impact on the protein–protein interaction (PPI) network,

and each type of change adds a different layer of func-

tional constraints on the protein. Such analyses are further

complicated by the fact that we currently have incom-

plete knowledge of these constraints, and also by the fact

that specific combinations of individually benign variants

may cause disease.

While structural data provides an invaluable guide for

rationalizing disease-associated variants, we also expect

the growing genomic information to be a valuable

resource for structural biologists. In particular, as the

amount of genomic data continues to grow, we envision
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a future in which biologists will utilize genetic variation

within human population(s) to help interpret their struc-

tural data [9,10]. Population genetic analysis within hu-

man proteins has already been used to identify novel

species-specific functional constraints within a protein

family [11]. In addition, a number of fundamental insights

about biological pathways can be garnered by analyzing

newly discovered loci associated with a disease [12].

In this review article, we initially explain how genomic

information is used to identify pathological disease asso-

ciated variants as well as variants that are harmful to

protein function even within healthy individuals. We

later describe how structural information is utilized to

understand the harmful effects of different variants.

Finally, we discuss the need to integrate sequence and

structural data with a holistic system or network perspec-

tive before predicting phenotypic effects of the variants.

Classical sequence comparison
Typically, structural biologists identify functionally con-

strained regions within a protein family by comparing

homologous sequences from different species (Figure 2a)

[13,14]. They focus on changes that take place over longer

evolutionary timescales by comparing the reference (or

dominant) sequence within each species rather than

focusing on intra-species changes. Nucleotides that do

not change across different species are conserved over

millions of years and are hence considered to be func-

tionally important. Due to redundancy within the genetic

code, some of the changes in the coding regions are silent

as they occur without a corresponding change in the

protein sequence (synonymous changes). With rare

exceptions, all synonymous changes and a majority of

the nonsynonymous changes are expected to be neutral or

harmful to the protein function. A small fraction of the

nonsynonymous changes can, however, be beneficial to

the fitness of the species.

The ratio of nonsynonymous to synonymous variants

(dN/dS) is commonly utilized to characterize the selec-

tion pressure on the coding regions of the genome

(Figure 2) [15]. If the dN/dS ratio for a coding region

is substantially less than 1, it indicates that a few of these

mutations are harmful or deleterious and that the protein

is under negative selection. On the other hand, a dN/dS

ratio substantially exceeding unity indicates that evolu-

tion is promoting a change in the protein sequence and

that this protein (or protein region) is under positive

selection [11]. Proteins undergoing positive selection

may improve the fitness of an organism to different

environments.

Introduction to population sequencing
The vast amounts of genomic and exome sequences

available are providing unique opportunities to charac-

terize genetic variation within the human population

(Table 1). The exome comprises the coding sequences

of all protein-coding genes and constitutes approximately

1% of the total genomic sequence [16]. Due to the
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The pace of novel fold discovery has begun to saturate, while the volume of X-ray crystal structures and structurally-resolved protein–protein

interactions has continued to grow. However, the pace with which personal genomic sequencing databases are growing is considerably greater

than the pace at which structure databases are growing.
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Evolutionary conservation in different contexts. Evolutionary conservation can be inferred via sequence comparison in different contexts. (a) The

examination of sequence conservation in orthologous sequences across multiple species looks at a longer evolutionary timescale. (b) The

examination of the enrichment of rare variants (or depletion of common variants) in the same genomic element across multiple individuals within a

single species or population looks at a shorter evolutionary timescale. Here, the red diamonds denote variants that are rare in a single human

population (found in only one or a small number of individuals) and the blue diamonds denote variants that are commonly found in multiple

individuals in the population. (c) The examination of sequence conservation in similar protein domain sequences within a single genome can reveal

species-specific and domain-specific conservation that might be important to the structure or function of the domain family. (d) To illustrate (c),

we use ankyrin protein domains as an example. We translate the DNA sequence of each ankyrin domain into its amino acid sequence. In order to

relate the positions of the linear sequence of an ankyrin repeat domain to their structural locations, we then specifically paint each of the six

ankyrin domains found in the structure of the human Notch 1 ankyrin domain (PDB ID: 1YYH) similar to the sequence profile in (e). (e) The top plot

in this panel is the sequence profile of an ankyrin repeat domain with 30 amino acids, colored by position left to right, from green to yellow,

corresponding to the coloring of the motifs of the human Notch 1 PDB structure in (d). In the sequence profile, the height of the amino acid letters

connotes the degree of conservation of a particular residue at a specific location along the ankyrin repeat; the degree of conservation is computed

using relative entropy in bits of information. To examine evolutionary conservation in more detail, the sequence profile can be further analysed with

genomic variant profiles. For example, for each of the position along the ankyrin motif, the second plot shows the absolute numbers of variants

binned into four categories: cyan bars show the number of variants that are common (c) and synonymous (s); blue bars for variants that are

common and non-synonymous (ns); pink bars, rare (r) and synonymous; red bars, rare and non-synonymous. Subsequently, we can derive log

ratios from these numbers to demonstrate an enrichment (or depletion) of categories of variants, in order to gain further biological insights. Here,

the third subplot displays a general enrichment of rare variants relative to common variants across the entire motif, suggesting a uniform

evolutionary importance of the ankyrin domain in the human population. However, the fourth subplot exhibits a depletion of nonsynonymous

variants relative to the synonymous variants at more conserved motif positions (in the sequence profile), hinting at only a subset of positions being

of particular functional importance to the ankyrin domain family.

www.sciencedirect.com Current Opinion in Structural Biology 2015, 35:1–10

http://dx.doi.org/10.1016/j.sbi.2015.11.003
http://dx.doi.org/10.1016/j.sbi.2015.11.003


reduced cost of exome sequencing and better-character-

ized clinical relevance of variation within the coding

regions of the genome, it is more widely used for genetic

diagnosis. Variants within an individual’s genome are

either acquired at birth (germline mutations) or during

the person’s lifetime (somatic mutations) as a consequence

of errors during cell division. While germline mutations are

typically present in every cell of the person, somatic

mutations only affect certain cells and are typically not

passed on to the next generation. There are approximately

74 de novo (new) variants that occur during each generation

[17]. As only germline mutations are passed on to the next

generation, somatic mutations are not under conventional

evolutionary selection.

The human genome exhibits extensive variation [18–
21,22��]. On average, any individual genome contains

20 000–25 000 coding variants (Table 2), of which

9000–11 000 are nonsynonymous. The frequency with

which a particular variant or allele occurs within a popu-

lation is used to characterize the evolutionary pressure

acting on it as common variants (minor allele frequency

greater > 5%) are expected to be benign. However, rare

variants (minor allele frequency < 0.5%) are rare either

because they are harmful (deleterious) to a protein’s

function or because the variant has been introduced

recently into the population. The ratio of common to

rare variants is often used as a proxy to characterize the

evolutionary pressure acting on a locus. Although most of

the variants within any particular individual are common,

most coding variants manifest as distinct single nucleo-

tide variants (SNVs), each of which occurs very rarely

within the human population. About 25–50% of the rare

nonsynonymous variants within healthy individuals are

estimated to be deleterious, suggesting that the human

proteome is highly robust to a large number of non-

specific perturbations and because most rare deleterious

variants are heterozygous implying that the cell also

contains a functional copy of the gene [20,21].

Despite the fact that new genomic data is still being

produced, about 200 000–500 000 previously unobserved

SNVs are still discovered after each personal genome is

sequenced, suggesting that we have not yet reached a

saturation in the extent of available human polymorphism

data [20,21]. Indeed, the number of rare variants continues

to grow even after the 1000 Genomes Consortium and

Exome Aggregation Consortium data (60 706 individuals)

[23�] has become available. As deleterious mutations tend

to occur at very low frequencies, we need to continue

sequencing a large number of individuals to characterize

and catalog these variants and their frequencies within the

human population.

As such, we can turn to intra-human comparisons to

uncover more human-specific or domain-specific features

(Figure 2). There is, however, an important distinction

between interpreting inter-species and intra-species con-

servation due to the huge disparities in the associated

evolutionary timescales (Figure 2a–c). While performing
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Table 1

Some existing and ongoing human genome sequencing projects.

Dataset Number of individuals Healthy/diseases (H/D) Exome/genome (E, G, E + G) Ref

Complete Genomics Data 69 H G 1

Singapore Sequencing Malay Project 100 H G 2

Genome of the Netherlands 767 D G 3

1000 Genome Project Phase 3 2504 H E + G 4

Personal Genome Project 4419a H G 5

Exome Sequencing Project (ESP) 6515 D E 6

UK10K project 10 000 D E + G 7

The Cancer Genome Atlas (TCGA) 11 080 H + D E + G 8

Exome Aggregation Consortium (ExAC) 60 706 H + D E 9

Total 82 772b

The numbers in the table are correct as of July 28th 2015.
a The Personal Genome Project sets a target of sequencing 100 000 personal genomes.
b This total excludes 1851 individuals from 1000 Genomes Project Phase 3, 3936 from the ESP and 7601 from TCGA since they are also included in

the ExAC dataset.

1. Complete Genomics: http://www.completegenomics.com/public-data/69-Genomes/.

2. Wong L-P, Ong RT-H., Poh W-T, Liu X, Chen P, Li R. Lam KK-Y, Pillai NE, Sim K-S, Xu H, et al.: Deep whole-genome sequencing of

100 southeast Asian Malays. Am J Hum Genet 92, 52–66 (2013).

3. Genome of the Netherlands: http://www.genoomvannederland.nl/?page_id=9.

4. The 1000 Genomes Project Consortium.Q4 A global reference for human genetic variation. Nature (2015) (in press).

5. Personal Genome Project: https://my.personalgenomes.org/users.

6. Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, McGee S, Do R, Liu X, Jun, G., et al.: Evolution and functional impact of

rare coding variation from deep sequencing of human exomes. Science (New York, N.Y.) 337, 64–9 (2012).

7. UK10K: http://www.uk10k.org/.

8. The Cancer Genome Atlas Portal: https://dcc.icgc.org/.

9. Exome Aggregation Consortium: http://exac.broadinstitute.org/faq.
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such an analysis, one can also align homologous coding

regions not only between individuals (Figure 2b), but also

within a single human genome (i.e., paralogs), such as

proteins originating from the same structural domain

family (Figure 2c). In particular, this can be used to

elucidate domain-specific features.

Similar to the dN/dS ratio in cross-species comparisons,

selective pressure on coding regions can be quantified

using fraction of synonymous to nonsynonymous poly-

morphisms (pN/pS) at any site (Figure 2e). In addition,

evolutionary pressure can also be quantified during intra-

species comparison using the ratio of rare to common

variants at each site as rare variants are under stronger

negative selection (Figure 2e). A statistically significant

depletion of common variants as compared to rare variants

implies that the site is under stronger selective pressure.

Furthermore, genomic variants that are increasing in

frequency within a human population (positive selection)

may help identify a novel gain-of-function event (such

as a new protein–protein interaction). Some of these

domain-specific events may be beneficial to the species.

Comparative genetics/genomics studies have already

uncovered a growing list of genes that might have expe-

rienced positive selection during the evolution of human

and/or primates [11]. These genes offer valuable inroads

into understanding the biological processes specific to

humans, as well as the evolutionary forces that gave rise to

them. It is also important to note that some variants occur

in a correlated fashion within the population and these

variants are said to be under linkage disequilibrium (LD).

Note also that LD is statistically easier to observe for

common variants than for rare ones.

Deleterious effects of variations on protein
function
The patterns of conservation displayed by proteins are

the product of a vast array of constraints active throughout

its evolutionary history. In this regard, to understand

the physical effects that cause a variant to be harmful,

we need to consider the multitude of underlying con-

straints acting on the protein family. Such constraints are

often intrinsic to the structure itself: they may include the

need to maintain the integrity of functional hinge regions

or interior packing geometry or the ability to regulate a

protein through post-translational modifications at specif-

ic sites. They may also entail that residues at an interac-

tion interface remain topologically compatible with those

in the corresponding interface of an interaction partner.

We can utilize the structural information in the PDB

database to assess the effect of mutations on a protein’s

stability as nonsynonymous changes that occur within the

core of the protein or variants that disrupt the secondary

structure of the protein could reduce its stability. Several

computational tools based on sequence conservation (in-

ter-species or intra-species) and/or several structural fea-

tures (the physicochemical characteristics of the amino

acid change, solvent accessibility, secondary structure,

active site annotations, and protein–protein interfaces)

were developed to predict the deleterious effect of se-

quence variations on a protein’s function [24–27]. Disease-

associated mutations are highly enriched for residues in

the interior of proteins (22% of all mutations in HGMD and

OMIM), and active sites of proteins [18–21].

In terms of applying such a catalog of rules as a means of

understanding human disease-associated variants, the

fibroblast growth factor receptor provides a case-in-point,

several variants in which have been linked to craniofacial

defects (Figure 3). The evolutionary constraints listed

here provide sensible rationales for how many of these

disease-associated variants may impart deleterious

effects. Importantly, these constraints may act in syner-

gistic ways rather than through isolated mechanisms

[28,29]. However, the mechanisms for several other dis-

ease-associated variants fail to map to this catalog, there-

by underscoring the need to more comprehensively

document sources of constraint. This more comprehen-

sive documentation needs to transcend the native struc-

ture itself by including the folding pathways, allosteric

regulation, and the functional roles of disordered regions

or conformational transitions. Such mutations that affect

the thermodynamic stability of different allosteric states

of a protein [30] are typically ignored while predicting

the deleteriousness of a putative variant. In addition, as

discussed earlier, several deleterious mutations occur
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Table 2

Per-individual whole exome SNV load in the 1000 Genomes Project Phase 1 data

Synonymous Non-synonymous

DAF < 0.5% DAF 0.5–5% DAF > 5% Total DAF < 0.5% DAF 0.5–5% DAF > 5% Total

Average 295 1014 12 892 14 201 434 1055 10 816 12 305

YRI 547 2468 12 190 15 205 691 2377 10 056 13 130

CEU 175 593 13 237 14 006 298 709 11 173 12 180

CHB 218 497 13 077 13 792 355 563 11 026 11 944

JPT 240 500 13 067 13 807 387 571 11 012 11 970

The number of synonymous and non-synonymous SNVs is categorized into three ranges of derived allele frequency (DAF; defined as the allele

alternative to the ancestral allele). DAF < 0.5% are considered ‘rare’. Ancestry legend, YRI: Yoruba in Ibadan, Nigeria; CEU: Utah residents (CEPH)

with Northwestern European ancestry; CHB: Han Chinese in Beijing; JPT: Japanese in Tokyo, Japan.
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even in healthy individuals within the population, as

discussed below, the network properties of a protein need

to be integrated with this structural information before

the phenotypic effect of any individual variant can be

predicted.

Networks as a framework for understanding
deleterious variants
While structural and sequence information are invaluable

in providing a rationale for the deleterious effects of

certain disease-causing and rare variations, it is often

difficult to interpret the phenotypic effects of an indi-

vidual variant without considering the broader cellular

context. As proteins are extensively involved in protein–
DNA interactions (gene regulatory network), protein–
RNA interactions (post-transcriptional regulation), and

protein–protein interactions (PPI) within the cellular

milieu, variants that disrupt these interactions could

potentially affect the viability of the cell. We refer the

reader to comprehensive essays on the phenotypic effect

of noncoding variation [31,32], and focus instead on

deleterious effects of variants on the protein–protein

interaction (PPI) network here.

Various experimental and computational approaches have

been applied to characterize the PPI network in several

model organisms and human beings [33,34] and these

networks have been invaluable in interpreting the role of

evolutionary constraints on a protein family. In the PPI

network, a node represents a protein, while an edge

represents an interaction between the two proteins con-

nected by the edge. Proteins that are highly intercon-

nected in PPI networks (hubs) are under strong negative

selection while proteins under positive selection in

humans tend to occur at the periphery of the network

[35]. Proteins that are more central in an integrated

‘multinet’ formed by integrating biological networks from

different context (PPI, metabolic, post-translational mod-

ification, gene regulatory network, among others) are

under negative selection within human populations

[36��]. In agreement with this, perturbations to hub

proteins are more likely to be associated with diseases

than non-hub proteins [37].

The PPI networks are organized in a modular fashion as

proteins associated with the same function are more likely

to interact with one another [38] and proteins associated

with similar diseases tend to occur within the same

module [37]. The system properties of the network have

also been useful in interpreting how the human proteome

is robust even in the presence of a large number of

deleterious variants within healthy individuals. Most

deleterious variants observed in healthy individuals occur

in peripheral regions of the interactome. Such limited

effects may result as a consequence of compensatory

mutations or functional redundancy [39]. On the other

hand, cancer-associated somatic deleterious variations

occur in the internal regions of the interactome and tend

to have larger structural consequences on the PPI network.

The interactome provides a convenient platform to mea-

sure the impact of a deleterious variant on the cell. As

shown in Figure 4, a deleterious variant can either remove

a protein (such a node effect would naturally also result

in the removal of all the associated edges) from the PPI

network by making a protein nonfunctional or it could

6 Protein

COSTBI 1407 1–10

Please cite this article in press as: Sethi A, et al.: Reads meet rotamers: structural biology in the age of next generation sequencing, Curr Opin Struct Biol (2015), http://dx.doi.org/10.1016/

j.sbi.2015.11.003

300

301

302

303

304

305

306

307
308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323
324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343
344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359
360

361

362

363

364

Figure 3

Hinge  residues
Buried  residues
Protein-p rotein i nteraction si te

HGMD site (w/o annot ation  overla p)
HGMD site (w/annot ation  overla p)

residue 150 residue 350

(a)

(b)

Post-translational modifications

Current Opinion in Structural Biology

(a) The fibroblast growth factor receptor is shown in complex with FGF2 (PDB 1IIL), along with the loci of HGMD variants (orange spheres). (b)

Various structural annotations (i.e., a ‘catalog of constraints’) are shown in sequence space. Hinge residues are taken from HingeMaster [61],

buried residues are identified using NACCESS [62], protein–protein interaction residues are defined to be those within 4.5 Å of the co-crystallized

growth factor, and post-translational modification sites are taken from UniProt. HGMD loci shown as holo circles coincide with the catalog of

constraints, and may thus likely be rationalized in light of such constraints. However, a large number of HGMD loci (shown in filled orange circles)

fail to overlap with these annotations, highlighting the need to consider alternative sources of constraint.

Current Opinion in Structural Biology 2015, 35:1–10 www.sciencedirect.com

http://dx.doi.org/10.1016/j.sbi.2015.11.003
http://dx.doi.org/10.1016/j.sbi.2015.11.003


lead to the loss of just one or more of its interactions

(edgetic effects). Mutations at a PPI interface can have

drastic effects on the biomolecular binding constant and

several sequence and structure-based methods have been

proposed to identify these interaction hotspots [40,41].

Even though we have incomplete information on the

structures of protein complexes (Figure 1), it has been

predicted that about 12% of all the HGMD and OMIM

mutations occur at a PPI interface [42�] while approxi-

mately 28% of experimentally-tested HGMD missense

mutations affect one or more interactions, thus under-

scoring the importance of these interactions for annotat-

ing rare variants and disease-associated mutations [43��].

In an effort to bridge the information gained from indi-

vidual structures with network properties of the inter-

actome, Kim et al. [44] combined the experimentally

determined interactome with structural information from

the iPfam database to form the structural interaction

network (SIN) and were able to obtain a higher-resolution

understanding of the selection constraints on the hubs.

Using structural information, the hubs were classified into

different groups based on the number of distinct inter-

faces utilized for biomolecular complex formation and

they showed that the number of distinct interfaces is a

better proxy for evolutionary pressure acting on the hub

rather than the number of edges in the PPI network.

Consistent with this interpretation, hub proteins in the

PPI network contain a higher fraction of disease-causing

mutations on their solvent exposed surface, as compared

to non-hub proteins suggesting that a larger fraction of

a hub’s disease-associated mutations could affect its

interactions [44].

Hub proteins interact with a large number of partners and

tend to be more flexible and conformationally heteroge-

nous than non-hub proteins [45]. Furthermore, the num-

ber of distinct interfaces in hub proteins is correlated with

degrees of conformational heterogeneity [45]. To the

extent that variants may enable or disable certain confor-

mational states from being visited, such mutations could

potentially affect protein complex formation and signal-

ing pathways, and this has not yet been examined very

closely. As deleterious mutations that affect hubs in

networks tend to have a larger effect on the structures,

they would also cause large changes in the PPI network.

Proteins can utilize different interfaces for different (sets

of) interactions, so multiple mutations on the same pro-

tein can be associated with drastically different diseases

depending on the afflicted interface. Such mutations

would have different edgetic effects on the protein’s

interaction network — by breaking or weakening one

of its interactions while the rest of its interactions remain

intact — and a large proportion of HGMD and OMIM
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Various mechanisms of SNP-induced disruption in protein–protein interaction networks. A SNP that destabilizes a hub protein can ablate all

associated interactions (a). SNPs disrupting different interfaces of the hub may interfere with interactions active in different tissues (b, c). Blue

(hub protein), Yellow (nodes expressed in tissue1), Green (nodes expressed in tissue2), Turquoise (node expressed in tissue3). Mutation in

cystathionine b-synthase (CBS) leads to metabolic disease called Homocystinuria. Among many HGMD SNPs impacting this protein, experimental

evidence [63] suggest that I278T mutation leads to destabilization of CBS, which further disrupts of all three important interactions involving this

protein and this is equivalent to removing a node from the PPI network. Mutation in EFHC1 gene, which has been implicated in epilepsy, presents

a good example of edgetic effect [43��]. This mutation perturbs interaction of EFHC1 with ZBED1 and TCF4. While the perturbed interaction

between EFHC1 and ZBED1 interfere with cell proliferation [64], on the other hand disturbance in EFHC1 and TCF4 interaction influence the

neuronal differentiation process [65].

www.sciencedirect.com Current Opinion in Structural Biology 2015, 35:1–10

http://dx.doi.org/10.1016/j.sbi.2015.11.003
http://dx.doi.org/10.1016/j.sbi.2015.11.003


mutations are predicted to have edgetic effects on the PPI

network [43��,46].

It should also be noted that the hubs in PPI networks also

tend to contain higher degrees of disordered regions (that

display even higher amounts of conformational flexibili-

ty), and these regions typically become well-ordered

upon ligand or protein binding [47,48]. Disease-associat-

ed mutations are enriched within disordered regions of

the protein as they could affect post-translational mod-

ifications and/or protein–protein interaction sites [49,50].

The assessment of a mutation’s effect on the activity of an

intrinsically disordered protein is even more challenging

because it would be dependent upon the effects of these

mutations upon the unfolded ensemble or the structure

gained in the presence of its interaction partner. Due to

their inherent flexibility, the unfolded ensembles of

disordered proteins are especially difficult to characterize

using either experimental or computational techniques

[51,52], making variant annotation in the context of

disordered proteins an uphill task. However, the pheno-

typic effect of mutations on the functional viability of a

disordered protein is important because mutations to

disordered regions tend to have large phenotypic effects

as they could affect PPI interactions of hub proteins.

Ultimately, the goal is to develop an integrative frame-

work to understand the effects of deleterious variants on

the phenotype of the cell. However, a mutation typically

displays tissue-specific phenotypic effects, hence an un-

derstanding of functional constraints on a protein should

also incorporate tissue-specific information. While the

gene regulatory network is being mapped out in a devel-

opmental time point and cell type-dependent fashion by

several international consortia [53,54] the PPI network is

largely treated in a static fashion. Recent works have tried

to integrate proteome and gene expression profiles with

PPI networks to create tissue-specific networks [55–57].

However, these studies typically neglect the protein

isoform even though the protein’s interactions are de-

pendent on its isoform [58,59]. A structural study on the

effect of sequence variations on isoform-dependent PPI

complexes has not been performed and would improve

the prediction of phenotypic effects due to missense

mutations. However, it is likely that the high costs in

resources associated with studying isoform-specific assays

in various cell types have impeded these types of studies.

It should be noted that a number of proteins also change

their interaction partners in a tissue-specific manner

based upon the dominant isoform of the protein in that

tissue [59]. Recent evidence suggests that many muta-

tions occurring on these alternatively-spliced disordered

motifs may drive cancer [60]. We anticipate that isoform-

specific protein–protein interaction network annotation

will become easier and more accessible in the near future,

which will present new opportunities to better annotate

such networks.

Conclusions
The exponential growth in genomic data has demonstrat-

ed that a large amount of genomic variation is present

within the human population, and this data has also

helped identify a vast number of rare variants and dis-

ease-associated variants. Though the motivation of de-

veloping methods to annotate the effects of variants that

cause human disease is clear, it remains challenging to do

so as it requires bridging disparate sources of information

together to understand the functional constraints on a

protein family. It is essential to utilize structural informa-

tion to rationalize the effect of variants. The network

properties of the protein in addition to sequence and

structural information regarding the nonsynonymous ami-

no acid changes need to be considered within a single

framework before predicting the phenotypic impact of an

amino acid change.
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