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Network provides a system-
wide perspective to Hi-C data
• Identifying multi-scale topological domains based 

on network modularity detection 

• A network framework to examine how the spatial 
organization of genes shapes their expression 
patterns 

• Data used: hES data from Dixon et al.,12 cell lines 
by Dekker lab
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Topologically Associating 
Domains (TADs)

Dekker et al. Nat. Rev. Genetics 2013
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multiple resolutions -> hierarchical organization of genome



Network modularity

Newman Phy. Rev. E 2013
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Finding TADs based on 
modularity

Hi-C contact matrix
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Finding TADs in multiple 
resolutions
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resolution parameter
• An increase in gamma results in smaller modules 

• An increase in gamma could be interpreted as focusing on the 
more statistically significant interactions (as compared to the null) 

• Input: contact matrix (raw/iced) of the entire genome, or 
chromosome by chromosome (makes more sense in terms of 
finding TADs)
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Examples (hESC)
Hi-C contact (ICED) msTADs, gamma=10 msTADs, gamma=50
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TADs size versus resolution

chr1, hESC
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Superposing TADs
Hi-C contact (ICED) msTADs
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Questions to address

• Is there a characteristic resolution that is the most 
biologically relevant? 

• are there different signatures for different 
resolutions?
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Comparison with  
HMM method

TADs based on 
Dixon et al. 2012 

chr 1 of hESC

11



Boundaries between TADs
CTCF all TAD boundaries in chr1

gamma num. of 
boundaries

10 102

30 301

50 578

distance from boundary
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Chromatin signatures for 
different resolutions

res=10

res=40

res=70
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Chromatin signatures for 
different resolutions

chr. 10, bin size: 40kb

H3K27ac 
H3K27me3 
H3K36me3 
H3K4me1 
H3K4me3 
H3K9me3
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chr. 10, bin size: 40kb

Chromatin signatures for 
different resolutions

H3K27ac 
H3K27me3 
H3K36me3 
H3K4me1 
H3K4me3 
H3K9me3

whole  
chromosome
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TADs across samples
chr 10, res=40
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Network provides a system-
wide perspective to Hi-C data

• Identifying multi-scale topological domains based 
on network modularity detection 

• A network framework to examine how spatial 
organization of genes shape their expression 
pattern
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A mapping between  
2 spaces

real physical space abstract expression space

cell types: 1, 2, 3 …cell type 1

cell type 2

cell type 3

Gene

?
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A simple construction: Gene-Gene  
Proximity Network

all genes

Gene-Gene proximity 
matrix/network 

2 genes  
(interchromosomal/intrachromosomal)

N

Hi-C contact matrix

Genomics coordinates 
100kb resolution, ICED

N

large N means closer

dij

Example: A549  
19100 genes 
14% of gene pairs 
are connected  
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Gene-Gene  
Proximity Network across samples

ENCODE3-G401A-HindIII-R1__hg19__hdf
ENCODE3-G401B-HindIII-R2__hg19__hdf
ENCODE3-RPMI7951C-HindIII-R1__hg19__hdf
ENCODE3-RPMI7951D-HindIII-R2__hg19__hdf
ENCODE3-CAK12B-HindIII-R2__hg19__hdf
ENCODE3-Caki2A-HindIII-R1__hg19__hdf
ENCODE3-SKMEL5A-HindIII-R1__hg19__hdf
ENCODE3-SKMEL5B-HindIII-R2__hg19__hdf
ENCODE3-A549C-HindIII-R1__hg19__hdf
ENCODE3-A549D-HindIII-R2__hg19__hdf
ENCODE3-NCIH460A-HindIII-R1__hg19__hdf
ENCODE3-NCIH460B-HindIII-R2__hg19__hdf
ENCODE3-PANC1B-HindIII-R1__hg19__hdf
ENCODE3-PANCIC-HindIII-R2__hg19__hdf
ENCODE3-T470A-HindIII-R1__hg19__hdf
ENCODE3-T470B-HindIII-R2__hg19__hdf
ENCODE3-SKNDZA-HindIII-R1__hg19__hdf
ENCODE3-SKNMCC-HindIII-R1__hg19__hdf
ENCODE3-LNCaPC-HindIII-R1__hg19__hdf
ENCODE3-SKNDZB-HindIII-R2__hg19__hdf
ENCODE3-LNCaP-HindII-R2__hg19__hdf
ENCODE3-SKNMCD-HindII-R2__hg19__hdf
ENCODE3-SJCRH30B-HindIII-R2__hg19__hdf
ENCODE3-SJCRH30A-HindIII-R1__hg19__hdf

Distance defined as the  
Euclidean distance between  
leading eigenvectors of  
corresponding  
diffusion matrices (Laplacians) 
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Gene-Gene proximity versus 
Gene-Gene expression 

e=+1 e=-1 

expression pattern of A549 spatial structure of A549 proximity network of A549
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Graph partition (bisection) 
problem

H = �
X

ij

dijeiej

a low energy state means co-expressed genes are co localized

proximity network of A549
Consider a graph G = (V, E), where V denotes the set of n 
vertices and E the set of edges. The objective is to 
partition G into k (k=2) components while minimizing the 
weights of the edges between separate components.

d is the weighted adjacency matrix and e=+1 or -1
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Gene-Gene proximity versus 
Gene-Gene expression 

N nodes: 
m is expressed, n is not
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Gene-Gene proximity versus 
Gene-Gene expression 

H

• The spatial location of expressed genes  
are highly non-random. 

• May be it’s too naive to compare with 
random - perform shuffling while 
preserving other genomics features 

N nodes: 
m is expressed, n is not

empirical A549 profile
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Effects of TADs

empirical A549 profile

randomized profile but with 
preserved TADs structure
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Is the expression profile 
optimal?

Given a spatial configuration, the observed expression profile has a much lower 
energy than random, but is it optimal?

H
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Is the expression profile 
optimal?

Energy defined by GPN 
of A549

randomized profilerandomized profile but with 
preserved TAD structure

empirical expression profile

plenty of room for 
optimization
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Matching expression patterns with Gene-
Gene proximity in different samples

H = �
X

ij

dijeiej

expression profile  
of sample x

network 
of sample y
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Summary and In Progress
• Multi-scale TADs 

• developed an algorithm to detect TADs; TADs may exist in different length scales 
(hierarchical organization of genome: loop, sub-domains, TADs, compartments etc) 

• chromatin signatures of TADs in different resolutions 

• compare with existing algorithms 

• better null models, like a polymer model 

• Gene-Gene proximity network 

• formulated the relationship between expression and spatial configuration as a graph 
partition problem 

• incorporate the targets of various transcription factors 

• more on comparison across cell lines, differential expression versus differential spatial 
configuration
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