A network perspective to Hi-C data

Koon-Kiu Yan

Gerstein Lab

Network provides a systemwide perspective to Hi-C data

- Identifying multi-scale topological domains based on network modularity detection
- A network framework to examine how the spatial organization of genes shapes their expression patterns
- Data used: hES data from Dixon et al.,12 cell lines by Dekker lab

multiple resolutions -> hierarchical organization of genome

Dekker et al. Nat. Rev. Genetics 2013

Network modularity

Finding TADs based on modularity

N: the total number of reads relative coverage of loci i (c_i)= $\frac{aR_i}{2N}$

expected number of reads between i and j

$$= aR_j * C_i = \frac{aR_j aR_i}{2N}$$

$$Q = \frac{1}{2N} \sum_{ij} (W_{ij} - \gamma \frac{aR_i aR_j}{2N}) \delta_{\sigma_i \sigma_j}$$

Finding TADs in multiple resolutions

$$Q = \frac{1}{2N} \sum_{ij} (W_{ij} - \gamma \frac{aR_i aR_j}{2N}) \delta_{\sigma_i \sigma_j}$$

resolution parameter

- An increase in gamma results in smaller modules
- An increase in gamma could be interpreted as focusing on the more statistically significant interactions (as compared to the null)
- Input: contact matrix (raw/iced) of the entire genome, or chromosome by chromosome (makes more sense in terms of finding TADs)

Examples (hESC) msTADs, gamma=10

chr 6

msTADs, gamma=50 4.8e7 5.4e7 chr 6

1.37e8

chr 2

4.8e7

5.4e7

TADs size versus resolution

Superposing TADs

Hi-C contact (ICED)

msTADs

5123000

chr22

1612000

Questions to address

- Is there a characteristic resolution that is the most biologically relevant?
- are there different signatures for different resolutions?

Boundaries between TADs

Chromatin signatures for different resolutions

13

Chromatin signatures for different resolutions

H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me3 H3K9me3

chr. 10, bin size: 40kb

Chromatin signatures for different resolutions

H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me3 H3K9me3

whole chromosome

TADs across samples

Network provides a systemwide perspective to Hi-C data

- Identifying multi-scale topological domains based on network modularity detection
- A network framework to examine how spatial organization of genes shape their expression pattern

A mapping between 2 spaces

real physical space abstract expression space

A simple construction: Gene-Gene Proximity Network

Gene-Gene Proximity Network across samples

Distance defined as the Euclidean distance between leading eigenvectors of corresponding diffusion matrices (Laplacians)

ENCODE3-SJCRH30A-HindIII-R1_hg19_hdf ENCODE3-SJCRH30B-HindIII-R2 hg19 hdf ENCODE3-SKNMCD-Hindll-R2 hg19 hdf ENCODE3-LNCaP-HindII-R2 hg19 hdf ENCODE3-SKNDZB-HindIII-R2_hg19_hdf ENCODE3-LNCaPC-HindIII-R1_hg19_hdf ENCODE3-SKNMCC-HindIII-R1 hg19 hdf ENCODE3-SKNDZA-HindIII-R1 hg19 hdf ENCODE3-T470B-HindIII-R2_hg19_hdf ENCODE3-T470A-HindIII-R1 hg19 hdf ENCODE3-PANCIC-HindIII-R2_hg19_hdf ENCODE3-PANC1B-HindIII-R1 hq19 hdf ENCODE3-NCIH460B-HindIII-R2_hg19_hdf ENCODE3-NCIH460A-HindIII-R1_hg19_hdf ENCODE3-A549D-HindIII-R2_hg19_hdf ENCODE3-A549C-HindIII-R1_hg19_hdf ENCODE3-SKMEL5B-HindIII-R2_hg19_hdf ENCODE3-SKMEL5A-HindIII-R1_hg19_hdf ENCODE3-Caki2A-HindIII-R1_hg19_hdf ENCODE3-CAK12B-HindIII-R2_hg19_hdf ENCODE3-RPMI7951D-HindIII-R2 hg19 hdf ENCODE3-RPMI7951C-HindIII-R1_hg19_hdf ENCODE3-G401B-HindIII-R2_hg19_hdf ENCODE3-G401A-HindIII-R1__hg19__hdf

Gene-Gene proximity versus Gene-Gene expression

Graph partition (bisection) problem

Consider a graph G = (V, E), where V denotes the set of n vertices and E the set of edges. The objective is to partition G into k (k=2) components while minimizing the weights of the edges between separate components.

$$H = -\sum_{ij} d_{ij} e_i e_j$$

d is the weighted adjacency matrix and e=+1 or -1

a low energy state means co-expressed genes are co localized

proximity network of A549

Gene-Gene proximity versus Gene-Gene expression

Gene-Gene proximity versus Gene-Gene expression

N nodes: m is expressed, n is not

The spatial location of expressed genes are highly non-random. May be it's too naive to compare with random - perform shuffling while preserving other genomics features

Effects of TADs

Is the expression profile optimal?

Given a spatial configuration, the observed expression profile has a much lower energy than random, but is it optimal?

Matching expression patterns with Gene-Gene proximity in different samples

Summary and In Progress

- Multi-scale TADs
 - developed an algorithm to detect TADs; TADs may exist in different length scales (hierarchical organization of genome: loop, sub-domains, TADs, compartments etc)
 - chromatin signatures of TADs in different resolutions
 - compare with existing algorithms
 - better null models, like a polymer model
- Gene-Gene proximity network
 - formulated the relationship between expression and spatial configuration as a graph partition problem
 - incorporate the targets of various transcription factors
 - more on comparison across cell lines, differential expression versus differential spatial configuration

Acknowledgement

- Gerstein lab
 - Anurag Sethi
 - Joel Rozowsky
 - Arif Harmanci
- Dekker lab for generating samples and preprocessing the data in 12 cell lines