RAMPAGE Peak Calling Pipeline

Nathan Boley**, Peter Bickel*, Anshul Kundaje**
*UC Berkeley, **Stanford

An RNA-Seq Control Allows the Removal of Experimental Artifacts

Analysis

K562 Peak Call Comparison

% hg19 Recovered vs True Pos Frac

Epigenomic Roadmap Predicted States

K562.rep1.CSHL.peaks and chromatin state.txt

K562.GRIT.rep1.peaks and chromatin state.txt

K562.GRIT.rep2.peaks and chromatin state.txt

K562.CAGE.Riken.merged.peaks_and_chromatin_state.txt

CAGE.GRIT.rep1.peaks_and_chromatin_state.txt

CAGE.GRIT.rep2.peaks and chromatin state.txt

Integrated Annotation

Pipeline

- Merge reproducible peaks
- Filter merged peaks
- Associate with GENCODE gene
- Find TSS peak density for each replicate
- Trim the merged peaks at +/-5% of library depth normalized signal
- Add GENCODE TSS's corroborated by Histone Marks

Filtering:

- Remove peaks from data w/o a proper control (all CAGE, a couple RAMPAGE)
- Remove peaks that overlap a repeat and are not within 500 bp of a GENCODE TSS

Epilogos Chromatin State

RAMPAGE/GENCODE Intersection

Epilogos Chromatin State

RAMPAGE + GENCODE

RAMPAGE Novel

GENCODE Novel

- Re-added all novel GENCODE TSS's with a TSS state label in >= 22% of epilogos cells
 - Corresponds to a 10% FDR
- Statistics
 - 73,781 Total TSS's
 - 36119 Distinct GENCODE genes
 - 11626 Novel Genes
 - 1746 Anti-sense TSS's
 - 1594 Anti-sense genes

Acknowledgments

- Alex Dobin
- Phillip Batut
- Carrie Davies
- Tom Gingeras

- Sue Celniker
- Ben Brown

- Roderic Guigo
- Sarah Djebali

Tim Dreszer

Likelihood for the Mixture Model

- Y_i the observed count of TSS reads that start at base i
- N_i the observed count of RNAseq reads that start at base i
- s_i the probability of sampling a signal read that begins at base i
- n_i the probability of sampling a noise read that begins at base i
- λ the fraction of total reads that are noise

If we do not constrain the distribution of \vec{s} and \vec{n} then the log likelihood is

$$l(n, s; Y, N) = \sum_{i} \{Y_{i} \log (\lambda n_{i} + (1 - \lambda)s_{i}) - \log(Y_{i}!)\} + \sum_{i} \{N_{i} \log (n_{i}) - \log(N_{i}!)\}$$

$$s.t. \qquad 1 = \sum_{i} n_{i}, \ 1 = \sum_{i} s_{i}, \ s_{i} \ge 0, \ n_{i} \ge 0$$

Likelihood for the Mixture Model

- Given a region covering bases [i, i+n)
- Wish to test whether $n_i = 0$ for every position within the region
- Formally, for $\theta = \sum_{j=i}^{i+n} n_j$, test the null $\theta_0 = 0$ vs alternative $\theta_1 > 0$
- estimate n_j by maximizing $lhd(\theta_1; \vec{Y})$ subject to $\theta_1 = \sum_{j=i}^{i+n} n_j$ and $n_j \geq 0$
- Given λ , \vec{s} the log likelihood is:

$$\log \left[lhd(\theta_1; \vec{Y}) / lhd(\theta_0; \vec{Y}) \right] = \sum_{j=i}^{i+n} \left\{ Y_j \log \left(\lambda n_j + (1-\lambda) s_j \right) \right\} - \sum_{j=i}^{i+n} \left\{ Y_j \log \left((1-\lambda) s_j \right) \right\}$$

$$= \sum_{j=i}^{i+n} Y_j \left[\log \left(\lambda n_j + (1-\lambda) s_j \right) \right] - C$$

• The likelihood ratio statistic is non-dcreasing in θ , so we choose C s.t. $P\left[lhd(\theta_0; \vec{Y}) > C\right] = \alpha$

Estimating the Critical Value

Estimating the critical value with the parametric bootstrap:

- Sample $N_{bootstrap}$ times from the multinomial with bin probabilities \vec{n} and counts $\lambda \left(\sum Y_i\right)$
- Estimate the critical value by the α 'th empirical quantile among $\sum_{j=i}^{i+n} \left\{ N_j^{(k)} \log (n_j) \log \left(N_j^{(k)}! \right) \right\}$

Approximating the tail distribution:

- Under H_0 the distribution of counts at base i can be approximated by the binomial $Bin(\lambda(\sum Y_i), n_i)$
- n_i are typically very small
- We can efficiently calcualte the moments with a truncated series

$$Ef(X^m) = \eta_m = \sum_{k=0}^{\lambda \sum Y} {\lambda \sum Y \choose k} n_k^k (1 - n_k)^{\lambda \sum Y - k} (k \log(n_i) - \log(k!))^m$$

$$Ef(N_i)^m = \eta_m = \sum_{k=0}^{\lambda \sum_i Y_i} \frac{n_i^k}{k!} e^{-n_i} (k \log (n_i) - \log (k!))^m$$

Algorithm 1 Greedy identification of singal regions

Given a gene region of length L, an estimate of \vec{s} , a minimum region size, and a desired significance level α :

- 1. Initialize $\lambda_0 = 1$
- 2. Initialize the set of noise regions, N, to the empty set
- 3. Initialize the set of signal regions, \mathbb{S} , to the empty set
- 4. Initialize the set of regions to test, \mathbb{T} , to contain the entire gene region
- 5. Until $\lambda_i = \lambda_{i-1}$
 - (a) While \mathbb{T} is non-empty, choose a region from \mathbb{T} , and test the region for significance at level $\alpha/2L$ (see 3.2.2).
 - If the region is not significant, add it to \mathbb{N}
 - If the region is significant and it is smaller than the minimum region size, add it to S
 - Otherwise, split the region into 2 subregions by choosing the base with the lowest number of reads and add them to \mathbb{T} .
 - (b) Update the estimate of lambda, setting it to

$$\lambda_i = \sum_{i=1}^{L} Y_i \mathbb{I}[i \in \mathbb{N}] / \left(\sum_{i=1}^{L} Y \sum_{i=1}^{L} s_i \mathbb{I}[i \in \mathbb{N}] \right)$$

Model Overview

Assumptions

- Observed CAGE/RAMPAGE are a mixture of capped and uncapped reads
- The fraction of noise reads is dependent on the region
- The distribution of uncapped read starts is the same as from a matching RNA-seq experiment

Approach

- Estimate the uncapped fraction in each gene region
- Given this estimate, hierarchically identify regions enriched for capped reads
- Trim and filter peaks based upon signal coverage and realtive peak height