RESPONSE TO REVIEWERS FOR "ALLELE-SPECIFIC BINDING AND EXPRESSION: A UNIFORM SURVEY OVER THE 1000-GENOMES-PROJECT INDIVIDUALS"

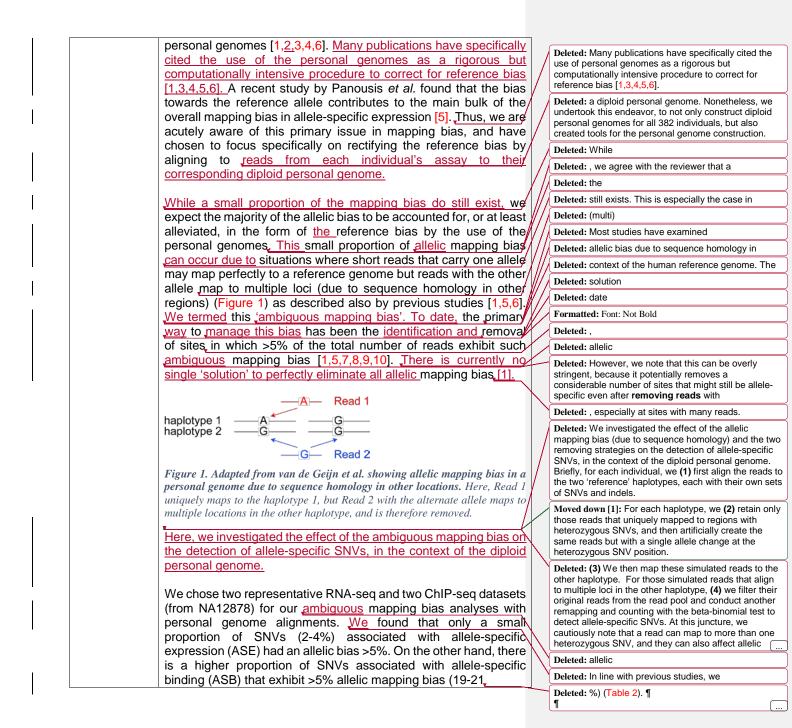
Response Letter

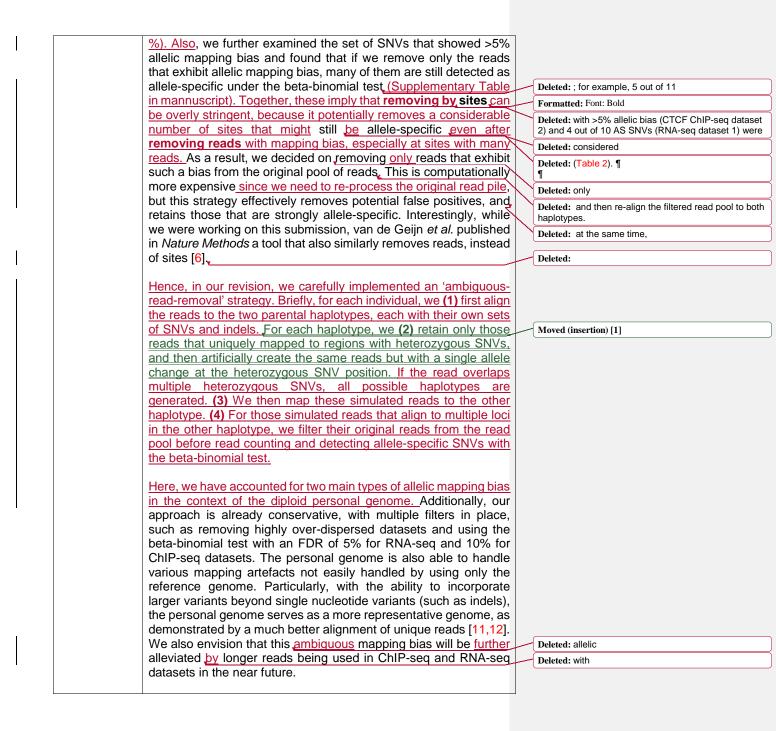
Reviewer #1

-- Ref1 - Endorsement for publication --

Reviewer	This reviewer did not have formal comments to the authors	
Comment	as s/he found the revised paper to be satisfactory and	
	endorses publication.	
Author	We thank the reviewer for his/her thorough examination of our	
Response	manuscript and endorsing our paper for publication.	

Reviewer #2


-- Ref2.1 - General comment --


Reviewer	The authors did not adequately address my two major
Comment	concerns.
Author	We thank the reviewer for the thorough examination of our
Response	manuscript. We have provided additional analyses and responses.

-- Ref2.2 - mapping to the personal diploid genome --

Reviewer Comment	My first comment was that mapping bias should be addressed. The authors replied by explaining that they excluded reads that map to more than one location. This is indeed a standard step in more alignment. Yet, the challenge when looking for ASE is not standard. Different alleles may have different mapping probabilities and this must be taken into account. Failing to do so results in a		
	high number of falsely identified ASE. I must admit that it is a bit concerning to me that the		~
	authors interpreted my comment as a question regarding	1	Deleted: agree with the reviewer
A 4h a a	their standard alignment approach. In my mind, it points to a deep lack of familiarity with the ASE literature.		Deleted: is still an issue, mostly because allelic bias cannot be totally eradicated with current methods [1].
Author	We would like to point out that the reference bias is not a separate		The two main types
Response	issue from the allelic mapping bias, which is the generic term to		Deleted: that are most widely discussed in the field are
	describe differential mapping probabilities of the alleles; the allelic mapping bias <i>includes</i> the reference bias. In fact, reference bias		Formatted: Font: Italic
	has been widely regarded as the main source of <u>allelic</u> mapping bias, since the more standard alignment procedure is <u>actually the</u> alignment of reads to the human reference genome, not to the		Deleted: and mapping bias arising from sequence homology with other genomic locations [2]. ¶ ¶ Reference
			Deleted:, in fact,

Deleted: General positive comment

	 [1] Castel <i>et al.</i> (2015). Genome Biol., 16(1):195 [2] Degner <i>et al.</i> (2009) Bioinformatics. 25(24) [3] Satya <i>et al.</i> (2012) Nucleic Acids Res. 40(16):e127 [4] Stevenson <i>et al.</i> (2013) BMC Genomics. 14:536
	[5] Panousis et al. (2014). Genome Biol., 15(9):467
	[6] van de Geijn et al. (2015). Nat Methods, doi:
	10.1038/nmeth.3582 [epub ahead of print]
	[7] Kilpinen et al. (2013). Science, 342(6159):744-7
	[8] Lappalainen et al. (2013). Nature, 501(7468):506-11
	[9] The GTEx Consortium (2015). Science, 348(6235):648-60
	[10] Dixon et al. (2015). Science, 518(7539):331-6
	[11] Rozowsky et al. (2011). Mol Syst Biol., 7:522
	[12] Sudmant et al. (2015). Nature, 526(7571):75:81
	We have included new sections in the 'Results', 'Discussion' and
	'Methods' section about our new module on allelic mapping bias.
Excerpt From	
Revised Manuscript	

Deleted: addition

-- Ref2.3 - Over-dispersion -

Derrierren	My general major general use recording the hippmial test to
Reviewer Comment	My second major concern was regarding the binomial test to identify ASE. The authors begin their response by citing other papers that used such a test. I am not sure what it the argument presented here, especially since the authors proceed by acknowledging over-dispersion in their data. So, yes, other paper got it wrong in the past, but this is hardly a reason to perpetuate this mistake.
	As for their revised approach, estimating a global over- dispersion parameter is not effective. Removing some loci because of 'too much' over-dispersion is ad hoc and was not justified. But more importantly, there are at least 3 published methods now to identify ASE using models that estimate site-specific over-dispersion, account for mapping bias, and report p values based on permutation. Why not use one of those published methods?
Author	While we thank the reviewer for his/her comment, we want to clarify
Response	that the purpose of the references is not to make any claims on the
•	'correctness' of the methods, but to point to the broader reality that
	there is currently a diversity of methods in the field, where there is
	no firm consensus on the 'right' approach. The fact that these publications are recent and peer-reviewed at influential journals indicates the plurality of the methods accepted by the community, each with their own advantages and limitations. For example, van de Geijn <i>et al.</i> [1] is a very recent publication in <i>Nature Methods</i> that presented a software, which performs alignment to the human reference genome, accounts for mapping bias and uses the betabinomial test to account for an individual-specific (not site-specific) global over-dispersion. However, it is not able to take into account

	indels and larger structural variants, which can be accommodated]	
	by the construction of personal genomes. In particular, we have		
	utilized our approach in the 1000 Genomes Structural Variant		
	group, whose manuscript has recently been peer-reviewed and		
	published by Nature. Moreover, the estimation of a global over-		
	dispersion has also been employed extensively in many recent and		
	peer-reviewed software that detect allele-specific expression [1-5].		
	Our revised approach estimates over-dispersion at two levels. An		
	over-dispersion is estimated for each dataset to remove entire		Deleted: those
	datasets (not loci) that are deemed too over-dispersed and that	[,
	might result in higher number of false positives. After which, for		
	each sample (for RNA-seq and each sample and transcription		
	factor, TF, for ChIP-seq experiments), we pool the datasets and		
	estimate the individual-specific global over-dispersion (for each		
	sample for RNA-seq and also each sample and transcription factor		
	for ChIP-seq) and apply this estimation to the beta-binomial test		
	for each site in that individual (or TF). Hence, in this manner, the		
	estimation of the over-dispersion can accommodate user-defined		
	site-specific estimation of over-dispersion if necessary. Our R code		
	is provided on our website for modifications and more customized		
	analyses by the user.		
	We further point out that our two-step serial procedure is novel and		
	is introduced to homogenize the pooling of datasets, by removing		
	datasets that are too over-dispersed at the outset. This fits very		
	well into our pipeline as it facilitates the harmonization and uniform		
	processing of large amounts of data and alleviates an		
	ascertainment bias in which more positives might stem from these		Deleted: originate
	highly over-dispersed datasets if they are not removed.		
	Hence, we have retained our estimation and use of a global over-		
	dispersion for detecting allele-specific variants.		
	[1] van de Geijn <i>et al.</i> (2015). <i>Nat Method</i> s, doi:		
	10.1038/nmeth.3582 [epub ahead of print]		
	[2] Sun (2012). Biometrics. 68(1):1-11		Deleted: 20132
	[3] Mayba et al. (2014). Genome Biology. 15(8):405		
	[4] Crowley et al. (2015). Nature Genetics. 47(4):353-60		
	[5] Harvey et al. (2015). Bioinformatics. 31(8):1235-42		
cerpt From		1	Formatted: Font: Not Italic
vised Manuscript			

I

Reviewer #3

-- Ref3.1 – <u>Endorsement for publication</u> --

Reviewer	The manuscript is much improved and the authors have
Comment	sufficiently addressed the majority of my concerns. I have
	the following minor comments:
Author	We thank the reviewer for the thorough examination of the
Response	manuscript and we are pleased that the reviewer finds our
•	improved manuscript satisfactory.

-- Ref3.2 - Include additional references --

Reviewer Comment	 1) Imprinting discussion should reference recent imprinting paper from GTEx. Lappalainen in Genome Research. 2) Heritability analyses of ASE should reference Li, AJHG, 2014. 	
Author Response	We have included the references in the respective sections of the manuscript.	
Excerpt From Revised Manuscript	t Please refer to the 'Discussion' section and also the 'Results' section under "ASB and ASE Inheritance analyses using CEU trio".	
	"It could also be a result of other epigenetic effects such as genomic imprinting where no variants are causal. ³⁵ ", where reference 35 is by the GTEx consortium and Baran <i>et al.</i> published in <i>Genome Research.</i>	
	"The CEU trio is a well-studied family and with multiple ChIP-seq studies performed on different TFs. Previous studies have also presented allele-specific inheritance. ^{10,15,21} ", where reference 21 is by Li <i>et al.</i> published in <i>American Journal of Human Genetics</i> .	

Deleted: General positive comment