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ABSTRACT  
Privacy is receiving much attention with the increase in personalized biomedical datasets. Studies on 

genomic privacy have traditionally focused on protection of variants. However, molecular phenotype 

datasets (e.g. RNA-seq) can also contain substantial amount of sensitive information. Although there is 

no explicit genotypic information in them, an adversary can utilize subtle genotype-phenotype 

correlations to statistically link phenotypes to genotypes. This can be very accurate when high-

dimensional data are utilized, and the resulting links can then be used to characterize sensitive 

phenotypes. Here, we develop formalism for the quantification of the leakage of individual 

characterizing information and the tradeoff between the total amount of this leaked information and 

average genotype predictability. Finally, we present a general three-step procedure for practically 

instantiating linking attacks. We showcase a particular realization of an attack for outlier gene-

expression levels that is simple yet accurate. We then present applicability of this attack under different 

scenarios. 

1 INTRODUCTION 
Genomics has recently emerged as one of the major foci of studies on privacy. This can be attributed to 

high throughput biomedical data acquisition that brings about a surge of datasets1–3. Among these, 

molecular phenotype datasets, like functional genomics measurements, substantially grow the list of the 

quasi-identifiers4 which may lead to re-identification and characterization4–6. In general, statistical 

analysis methods are used to discover genotype-phenotype correlations7,8, which can be utilized by an 

adversary for linking the entries in genotype and phenotype datasets, and revealing sensitive 

information. The availability of a large number of correlations increases the possibility of linking9,10. 

Along with the initial genotype-phenotype association studies, the protection of privacy of participating 

individuals emerged as an important issue. Several studies addressed the problem of detecting whether 

an individual, with known genotype, has participated in a study11. As study participants choose to 

remain anonymous, the detection of an individual causes privacy concern12–15 by revealing their 

existence in the study cohort. We refer to these systematic breaches as “detection of a genome in a 

mixture” attacks (Supplementary Fig. 1). However, as the number and size of phenotype and genotype 

datasets increase, the detection of individuals in them will be irrelevant since any individual will already 
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have their genotype or phenotype information stored in a dataset, i.e., participation will already be 

known. This opens up a new route to breaching privacy: An adversary can now aim at cross-referencing 

multiple, seemingly independent, genotype and phenotype datasets and pinpointing an individual so as 

to characterize their sensitive phenotypes. It is most certain that as personalized genomics gain more 

prominence, e.g. large genotype and phenotype data are used in medicine, the attackers will focus on 

gaining access to these data, then aim at linking different datasets in order to reveal sensitive 

information. We will refer to these attacks as “linking attacks”4,5. One well-known example of these is 

the attack that matched the entries in Netflix Prize Database and the Internet Movie Database16. For 

research purposes, Netflix released an anonymized dataset of movie ratings of thousands of viewers. 

This dataset was assumed to be secure as the viewer’s names were removed. However, Narayanan et al 

used the Internet Movie Database, where the identities of many users are public but only some of their 

movie choices are public, and linked it to the Netflix dataset. This revealed the identities and personal 

movie preference information of many users in the Netflix dataset. This attack is underpinned by the 

fact that both Netflix and the Internet Movie Database host millions of individuals and any individual 

who is in one dataset is very likely to be in the other dataset. As the size and number of the genotype 

and phenotype datasets increase, number of potentially linkable datasets will increase, which can 

render similar scenarios a reality in genomic privacy (Supplementary Note).  

2 RESULTS 

2.1 Linking Attack Scenario  
In the linking attacks, the attacker aims at characterizing sensitive information about a set of individuals 

in a stolen genotype dataset (Fig. 1). For each individual in the genotype dataset, she aims at querying 

the publicly available anonymized phenotype datasets in order to characterize their sensitive 

phenotypes. For this, she first utilizes a public quantitative trait loci (QTL) dataset that contains 

phenotype-genotype correlations. She statistically predicts genotypes using the phenotypes and QTLs. 

Then she compares the predicted genotypes to the genotype dataset and links the entries that have 

good genotype concordance. Consequently, the sensitive information for the linked individuals in 

genotype dataset is revealed to the attacker.  

Among the QTL datasets, the abundance of eQTL datasets makes them most suitable for linking attacks. 

In an eQTL dataset, each entry contains a gene, a variant, and correlation coefficient, denoted by 𝜌, 

between the expression levels and genotypes. We assume that the attacker aims to build a genotype 

prediction model that utilizes the relation between expression levels and genotypes (Fig. 2a, 

Supplementary Fig. 2). As a representative dataset for reporting results and for performing mock linking 

attacks, we use the eQTLs and gene expression levels from the GEUVADIS project17, and the genotypes 

from the 1000 Genomes Project18. 

2.2 Genotype Predictability and Information Leakage 
We assume that the attacker will behave in a way that maximizes her chances of correctly characterizing 

the most number of individuals. Thus, she will try and predict the genotypes, using the phenotype 

measurements, for the largest set of variants that she believes she can predict correctly. The most 
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obvious way that the attacker does this is by first sorting the genotype-phenotype pairs with respect to 

decreasing strength of correlation then predicting the genotypes for each variant (Supplementary Fig. 

3). The attacker will encounter a tradeoff: As she goes down the list, more individuals can be 

characterized (more genotypes can characterize more individuals) but it also becomes more likely that 

she makes an error in the prediction since the correlation decreases going down the list. This tradeoff 

can also be viewed as the tradeoff between precision (fraction of the linkings that are correct) and recall 

(fraction of individuals that are correctly linked). We will propose two measures, cumulative individual 

characterizing information (ICI) and genotype predictability (𝜋), to study this tradeoff.  

ICI can be interpreted as the total amount of information in a set of variant genotypes that can be used 

to pinpoint an individual in a linking attack. This quantity depends on the joint frequency of the variant 

genotypes. For example, if the set contains many common genotypes, they will not be very useful for 

pinpointing individuals. On the other hand, rare variant genotypes would give much information for 

linking. Thus, the information content of a set of genotypes is inversely proportional to the joint 

frequency of the variant genotypes. We utilize this property to quantify ICI in terms of genotype 

frequencies (Online Methods, Fig 3). In order to estimate the joint frequency of variant genotypes, we 

assume independence of variant genotypes (Online Methods, Supplementary Note). 

For a set of variants, 𝜋 measures how predictable genotypes are given the gene expression levels. Since 

genotypes and expression levels are correlated, knowledge of the expression enables one to predict the 

genotype more accurately than predicting genotype with no knowledge. In order to quantify the 

predictability, we use an information theoretic measure for randomness left in genotypes, given gene 

expression levels (Online Methods, Fig. 3). This has several advantages over using reported correlation 

coefficients for each eQTL for quantifying predictability. Although the correlation coefficient is a 

measure of predictability, it is computed differently in different studies and there is no easy way to 

combine and interpret the correlation coefficients when we would like to estimate the joint 

predictability of multiple eQTL genotypes. On the other hand, joint predictability of multiple eQTL 

genotypes given gene expression levels can be easily performed using 𝜋 as it fits naturally to the 

information theoretic formulations (Online Methods). Furthermore, the predictability estimated via 𝜋 

can accommodate the non-linear relations between genotype and phenotype unlike correlation 

coefficient, which generally measure linear relations. 

We first considered each eQTL and evaluated the genotype predictability versus the characterizing 

information leakage. We use the GEUVADIS dataset as a representative dataset for this computation. 

We computed, for each eQTL, average predictability and average ICI over all the individuals (Fig. 4a). 

Most of the data points are spread along the anti-diagonal: The eQTL variants with high major allele 

frequencies have high predictability and low ICI and vice versa for eQTL variants with lower major allele 

frequencies (Fig. 4b). This is expected because the genotypes of the high frequency variants can be 

predicted, on average, easily (most individuals will harbor one dominant genotype) and consequently 

does not deliver much characterizing information and vice versa for the eQTLs with smaller major 

frequency alleles. In order to evaluate how much gene expression levels contribute to predictability of 

genotypes, we use a shuffled eQTL dataset. The predictability versus ICI leakage for the eQTLs in the 

shuffled eQTL dataset (Online Methods) is dominantly on the anti-diagonal (Fig. 4c). This is also Deleted: .
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expected as the predictabilities for shuffled eQTL genotypes depend mainly on how frequent they are in 

the population (major frequency genotypes are much easier to predict but have low ICI and vice versa), 

as explained above. On the other hand, the real eQTLs (Fig. 4b) deviate from the anti-diagonal, 

compared to shuffled eQTLs, which reflects the fact that expression supplies much information for 

predicting eQTL genotypes (Fig. 4c). The eQTLs with high correlation have substantially high ICI and high 

predictability. It is thus worth noting that 𝜋 measures the total effect of genotype frequencies and 

expression levels on the predictability of genotypes. 

When multiple genotypes are utilized, the information leakage is greatly increased. To study this, we 

computed ICI (in bits) and predictability for increasing number of eQTLs (Supplementary Note, Fig. 4d). 

As expected, the predictability decreases with increasing ICI leakage. Inspection of mean predictability 

versus mean cumulative ICI enables us to estimate the number of vulnerable individuals at different 

predictability levels. For example, at 20% predictability, there is approximately 8 bits of cumulative ICI 

leakage. At this level of leakage, the adversary can pinpoint an individual, with 20% accuracy, within a 

sample of 28 = 256 individuals. Thus, within any sample of 256 individuals, we expect the attacker to be 

correctly link 256x20%=51 individuals. At 5% predictability, the leakage is 11 bits and the attacker can 

pinpoint an individual in a sample of 211 = 2048 individuals. This corresponds to approximately 100 

individuals getting correctly linked (5% of 2048). Auxiliary information can be easily added into ICI. For 

example, gender information, which can be predicted with high accuracy from many molecular 

phenotype datasets brings 1 bit of additional auxiliary information to ICI (Supplementary Note).  

2.3 Framework for Instantiation of Linking Attacks 
We present a three step framework for practical instantiation of linking attacks (Fig. 2b). This framework 

can be used to perform mock linking attacks on datasets for evaluating whether they will be effective for 

risk assessment purposes. We use this framework to simulate mock attacks in the following sections for 

assessing their accuracies. The input is the phenotype measurements for an individual, who is being 

queried for a match to individuals in the genotype dataset (Fig. 1). In the first step, the attacker selects 

the QTLs, which will be used in linking. The selection of QTLs can be based on different criteria. As 

discussed earlier, the genotype predictability (𝜋) is the most suitable QTL selection criterion. Although 

the attacker cannot practically compute predictability using only the QTL list, any function of 

predictability would still be useful to the attacker for selecting QTLs. For example, the most accessible 

criterion is selection based on the absolute strength of association, |𝜌|, between the phenotypes and 

genotypes. The second step is genotype prediction for the selected QTLs using a prediction model. The 

third and final step of a linking attack is comparison of the predicted genotypes to the genotypes of the 

individuals in genotype dataset to identify the individual that matches best to the predicted genotypes. 

In this step, the attacker links the predicted genotypes to the individual in the genotype dataset (Online 

Methods).  

2.4 Individual Characterization by Linking Attacks 
Using the three step approach, we first evaluated the accuracy of linking using a genotype prediction 

model where the attacker knows exact joint distribution of genotypes and expression (Supplementary 

Note). Although not very realistic, this scenario is useful as a baseline reference for comparison of 
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linking accuracy. The attacker builds the posterior distribution of genotypes given expression levels from 

the joint distribution. Finally, she predicts each genotype by selecting the genotype with maximum a 

posteriori probability given gene expression level (Supplementary Note, Supplementary Fig. 4) and links 

the predicted genotypes to the individual whose genotypes match best. For several eQTL selections with 

changing correlation threshold, the linking accuracy is above 95% and gets close to 100% when auxiliary 

information is available (Fig. 5a). 

In general, knowledge or correct reconstruction of the exact joint genotype expression distribution may 

not be possible because the genotype-phenotype correlation coefficient alone is not sufficient to 

perfectly reconstruct the genotype distribution given the expression levels. The attacker can, however, 

utilize a priori knowledge about the relation between gene expression levels and genotypes and build 

the joint genotype-expression distributions using models with varying complexities and parameters 

(Online Methods, Supplementary Note, Supplementary Fig. 5). We focus on a highly simplified model 

where the attacker exploits the knowledge that the eQTL genotypes and expression levels are correlated 

such that the extremes of the gene expression levels (highest and smallest expression levels) are 

observed with extremes of the genotypes (homozygous genotypes). We use a measure, termed 

extremity, to quantify the outlierness of expression levels (Online Methods, Supplementary Note, 

Supplementary Fig. 6, 7). Based on the extremity of expression level and the gradient of association, the 

attacker first builds an estimate of the joint genotype-expression distribution, then constructs the 

posterior distribution of genotypes and finally chooses the genotypes with maximum a posterior 

probability (Online Methods, Supplementary Note, Fig. 2a, b).  

The extremity based prediction methodology assigns zero probability to heterozygous genotype, and 

assigns only homozygous genotypes to variants, for which the associated gene’s expression level has 

absolute extremity higher than a threshold. We performed linking attack using this prediction method 

(in 2nd step of linking). In the 1st step of the attack, we used absolute correlation and extremity 

thresholds for eQTL selection. The linking accuracy is higher than 95% for much of the eQTL selections 

(Fig 2a, Supplementary Fig. 6d). We also observed that changing extremity threshold does not affect the 

linking accuracy substantially compared to changing absolute correlation threshold. We thus focus on 

attack scenarios where the absolute extremity threshold is set to zero. This also simplifies the attack 

scenario by removing one parameter from genotype prediction. With this approach, the genotype 

prediction accuracy increases with increasing absolute correlation threshold (Supplementary Fig. 6c). 

We performed linking attack with this model where we used the correlation based eQTL selection in 

step 1, then extremity based genotype prediction in step 2. In the step 3, we evaluated two distance 

measures for linking the predicted genotypes to the individuals in genotype dataset (Online Methods, 

Supplementary Fig. 8). More than 95% of the individuals (Fig. 5c, d) are vulnerable for most of the 

parameter selections, which is more accurate compared to the baseline linking attack (Fig 5a). When the 

auxiliary information is present, the fraction of vulnerable individuals increases to 100% for most of the 

eQTL selections. We also observed that the extremity attack may link close relatives to each other, 

which can create potential privacy concerns for the family (Supplementary Fig. 9d). These results show 

that linking attack with extremity based genotype prediction, although technically simple, can be 

extremely effective in characterizing individuals.  
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We evaluated whether the attacker can estimate the reliability of the linkings so as to focus on highly 

reliable linkings. We observed that the measure we termed, first distance gap, denoted by 𝑑1,2 (Online 

Methods), serves as a good reliability estimate for each linking. We computed the positive predictive 

value (PPV) versus sensitivity of the linkings in the testing set with changing 𝑑1,2 threshold (Online 

Methods). Compared to random sortings, the attacker can link a large fraction (79%) of the individuals at 

a PPV higher than 95% (Fig. 5d, Supplementary Fig. 9).   

We also studied several biases that can affect linking accuracy. First when the eQTLs are discovered on a 

sample set that and the linking attack is performed on another sample set, the accuracies are still very 

high (Supplementary Note, Supplementary Fig. 9a). Moreover, attacks are accurate when there is 

mismatch between the tissue or population of eQTL discovery sample set and tissue or population of 

linking attack sample set (Supplementary Note, Supplementary Table 1a, b). In addition, we observed 

that the extremity attack is still effective when genotype sample size is very large (Supplementary Note, 

Supplementary Fig. 9b, c), which points out the applicability on large sample sizes.  

3 DISCUSSION 
In genomic privacy, it is necessary to consider the basic premise of sharing any type of information: 

There is always an amount of sensitive information leakage in every released dataset19.  It is therefore 

essential for the genomic data sharing and publishing mechanisms to incorporate statistical 

quantification methods to objectively quantify risk estimates before the datasets are released. The 

quantification methodology and the analysis frameworks presented here and in future studies can be 

used for analysis of the information leakage where the correlative relations between datasets can be 

exploited for performing linking attacks (Supplementary Note, Supplementary Fig. 10).  

In the context of linking attacks, an individual’s existence in two seemingly independent databases (e.g., 

phenotype and the genotype) can cause a privacy concern when an attacker statistically links the 

databases using the a priori information about correlation of different entries in the phenotype and 

genotype databases. The methods that we proposed can be integrated directly into the existing risk 

assessment and risk management strategies. One such approach is k-anonymization and its 

extensions20–22. This technique performs anonymization of the datasets by ensuring that no combination 

of the features (e.g., predicted genotypes) can be used to pinpoint an individual to less than k 

individuals. This is done by censoring entries in the dataset or noise addition into the dataset. The 

estimates of genotype predictability and ICI leakages can be used to select which entries in the 

phenotype dataset should be anonymized so as to achieve anonymity. This maximizes the utility of the 

anonymized dataset by focusing only on the data points that leak the most characterizing information. 

In addition, as the anonymization process can focus only on the sources of highest leakage, this cuts 

down compute requirements23 and increase efficiency of anonymization. Another approach is to serve 

phenotypic data from a statistical database. In this context, differential privacy has been proposed as an 

optimal way for privacy aware data serving24. In a differentially private database, release mechanisms 

are used to query the database and share statistics of the underlying data. The individual records in the 

database are not shared. To ensure the privacy of the database, the release mechanisms keep track of 
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the leakage in the past queries and limit access to the database. For phenotype databases, the ICI 

leakage can be incorporated into the release mechanisms so that the total leakage can be tracked. It is 

also worth noting that anonymized data publishing and serving mechanisms may substantially decrease 

the biological utility of the data25. Thus, it is necessary to integrate the measures of biological utility of 

the anonymized datasets as another quantity in addition to predictability and ICI leakage in risk 

assessment. 
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7 FIGURE LEGENDS 
Figure 1: Illustration of the linking attack. The publicly available anonymized phenotype dataset contains 

q phenotype measurements and the HIV Status for a list of n individuals. Genotype dataset contains the 

variant genotypes for m individuals. Genotype-phenotype correlation dataset contains q phenotypes, 

variants, and their correlations. The attacker performs genotype prediction for all the variants. The 

attacker then links the phenotype dataset to the genotype dataset by matching the genotypes. The 

linking potentially reveals the HIV status for the subjects in the genotype dataset. The IDs and HIV Status 

are colored to illustrate how the linking combines the entries in the two datasets. The grey-shaded 

columns are not used for linking.  

Figure 2: Illustration of genotype-expression associations and linking attacks (a) Schematic 

representation of genotype and expression association and simplifications for an eQTL. The trimodal 
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gene expression distribution and the joint genotype-expression distribution are shown. The conditional 

distribution of expression given each genotype is illustrated with box plots in different colors 

corresponding to each genotype. The genotypes and expression levels are correlated (𝜌) as indicated by 

the line fit. The extremity based genotype prediction models the joint genotype-expression as a 

simplified distribution. When the genotype value is 0, uniform probability is assigned for expression 

values where extremity is smaller than 𝛿 (Green rectangle). For genotype value 1, no probability is 

assigned. When genotype value is 2, the probability is uniformly distributed over expression values for 

which extremity is greater than 𝛿 (Purple rectangle). Simplified extremity based prediction utilizes the 

same distribution by setting 𝛿 to 0. In this case, when genotype is 0, joint probability is distributed 

uniformly over expression levels with negative extremity. When genotype is 2, uniform probability is 

assigned to expression levels with positive extremity. (b) Illustration of the three step linking process. 

First step is selection of phenotypes and genotypes to be used in linking. Second step is prediction of 

genotypes. Last step is linking of predicted genotypes to the genotype dataset. 

Figure 3: Illustration of individual characterizing information (ICI) and correct predictability of 

genotypes. ICI for a set of 𝑛 variant genotypes is computed in terms of population genotype frequencies. 

Each genotype contributes to ICI additively with the logarithm of reciprocal of the genotype frequency 

(illustrated by the genotype distributions). Given an eQTL where genotype of variant 𝑉1 is correlated to 

expression of gene 1 (𝐸1), the predictability of genotype given expression level is e is computed in terms 

of exponential of the entropy of conditional genotype distribution, given expression level e. While 

computing the entropy of genotypes, the conditional distribution is built by slicing the joint distribution 

at expression level e. The entropy of the conditional distribution is then used for predictability. The 

genotype frequencies for ICI computation can also be computed from the joint genotype-expression 

distribution by marginalizing over expression levels. 

Figure 4: Estimates of ICI leakage versus predictability. Plots show, for each eQTL, the information 

leakage (x-axis) versus correct genotype predictability (y-axis). For each eQTL, the estimated ICI leakage 

and genotype predictability are plotted. The dots are colored with respect to the major allele frequency 

(a) and with respect to absolute correlation of the eQTL (b), and real versus shuffled eQTL dataset (c). 

The average cumulative ICI leakage versus joint genotype predictability is shown (d) when multiple 

eQTLs are utilized with shuffled eQTL dataset. The arrows on the plot indicates the increasing number of 

eQTLs used in estimated joint predictability and cumulative ICI leakage. 

Figure 5:  Accuracy of linking attacks. (a) Accuracy of linking with exact joint distribution based genotype 

predictions. Absolute correlation threshold (x-axis) versus fraction of vulnerable individuals (y-axis) is 

plotted. The yellow arrow indicates the maximized position of linking accuracy. Red, green, and cyan 

plots show linking accuracy with gender, population, and gender and population as auxiliary 

information, respectively. (b) Linking accuracy with extremity based linking with all genotypes. (c) 

Linking accuracy with extremity based linking with homozygous genotypes. (d) Sensitivity versus positive 

predictive value of linkings chosen with changing d_1,2 threshold in comparison to the random 

selections of linkings. 
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Supplementary Figure 1: Schematic comparison of linking attacks (a) and detection of a genome in a 

mixture attacks (b). Each box in the figure represents a dataset in the form of a matrix. Multiple boxes 

next to each other correspond to concatenation of matrices. Linking attacks aim at linking genotype and 

phenotype datasets. The phenotype datasets contain both “predicting” phenotypes and other 

phenotypes, some of which can be sensitive. The attacker first predict genotypes for each of the 

predicting phenotype. The predicted genotypes are then compared with the genotypes in the genotype 

dataset. After the linking, all the datasets are concatenated where the identifiers can be matched to the 

sensitive phenotypes. Different colors indicate how the linking merges different information. The 

detection of a genome in a mixture attacks start with a genotype dataset. The attacker gets access to 

the statistics of a GWAS or genotyping dataset (for example, regression coefficients or allele 

frequencies). Then the attacker generates a statistic and tests it against that of a reference population. 

The testing result can be converted into the study membership indicator (attended/not attended) which 

shows whether the tested individual was in the study cohort or not. 

Supplementary Figure 2: Illustration of the expression and genotype datasets. Variant genotype dataset 

contains the genotypes for q eQTL variants for 𝑛𝑣 individuals. 𝑗th entry for 𝑘th eQTL is denoted by 𝑣𝑘,𝑗. 

Similarly, the expression dataset contains the expression levels for q genes. The 𝑘th expression level for 

𝑗th individual is denoted by 𝑒𝑘,𝑗. The variant genotypes for 𝑘th variant is distributed over samples with 

distribution specified by the random variable 𝑉𝑘. Likewise, the expression levels for 𝑘th gene is 

distributed per random variable 𝐸𝑘. These random variables are correlated with each other with 

correlation coefficient, denoted by ρ(𝐸𝑘, 𝑉𝑘) (right). 

Supplementary Figure 3: Figure shows the attacker’s presumed strategy for linking attack. (a),(b) The 

phenotype and variant pairs are sorted with respect to decreasing absolute correlations values. For the 

top n pairs, joint predictability and ICI are computed. (c) The average joint predictability of genotypes 

versus the average cumulative ICI leakage for multiple eQTLs. The error bars (one standard deviation) 

for ICI and predictability are shown on the real eQTLs.  

Supplementary Figure 4: (a) Illustration of prior, joint, and posterior distributions of genotypes and 

expression levels. Leftmost figure shows the distribution of genotypes over the sample set, which is 

labelled as the prior distribution. Middle figure shows the joint distribution of genotypes and expression 

levels. Notice that there is a significant negative correlation between genotype values and the 

expression levels. Rightmost figure shows the posterior distribution of genotypes given that the gene 

expression level is 10. The posterior distribution has a maximum (MAP prediction) at genotype 2, which 

is indicated by a star. (b) The number of selected and average correctly predicted eQTL genotypes with 

changing absolute correlation threshold. The error bars (one standard deviation) are shown for correctly 

predicted eQTL genotypes. 

Supplementary Figure 5: Models of joint genotype-expression distribution with varying numbers of 

parameters for a positively correlated eQTL. (a) The true genotype-expression distribution. Grey boxes 

represent the expression distributions given different genotypes. Red line show the gradient of 

correlation between genotype and expression. (b) First simplification of the joint distribution. The 

expression distribution can be modeled with Gaussians with different means and variances with total of 
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6 parameters. (c) Simplification of joint distribution with equal variances. The variances can be assumed 

same for different genotypes, where 4 parameters are required. (d) A representation of the uniform 

expression distribution given genotypes, where 4 parameters are required. The conditional distribution 

of expression is uniform (cross shaded rectangles) over the ranges (𝑒1, 𝑒2), (𝑒2, 𝑒3), and (𝑒3, 𝑒4) given 

genotypes 0, 1, and 2, respectively. The transparent grey rectangles show the original distributions. (e) A 

simplification of (d) where no conditional probability of expression is assigned given genotype is 1. In 

this model, only one parameter (𝑒𝑚𝑖𝑑) is necessary. The conditional probability of expression given 

genotypes 0 and 2 are uniform for expression levels below 𝑒𝑚𝑖𝑑 and above 𝑒𝑚𝑖𝑑, respectively (shown 

with shaded rectangles). The original distribution is shown with grey rectangles for comparison. 

Extremity based prediction is an instantiation of the model in (e). 

Supplementary Figure 6: The median absolute gene expression extremity statistics over 462 individuals 

in GEUVADIS dataset. (a) For each individual, the extremity is computed over all the genes (23,662 

genes) reported in the expression dataset. The median of the absolute value of the extremity is plotted. 

X-axis shows the sample index and y-axis shows the extremity. The absolute median extremity fluctuates 

around 0.25, which is exactly the midpoint between minimum and maximum values of absolute 

extremity. (b) For each individual, we counted the number of genes above the extremity threshold. The 

plot shows the extremity threshold versus the median number of genes (over 462 individuals) above the 

extremity threshold. Around half of the genes (indicated by dashed yellow lines) have higher than 

almost 0.3 extremity on average over all the individuals. Also, around median number of 1000 genes 

over the samples have higher than 0.45 extremity (indicated by dashed red lines). (c) Accuracy of 

extremity based genotype prediction with changing absolute correlation threshold. (d) The linking 

accuracy with changing absolute extremity (x-axis) and absolute correlation thresholds (y-axis).  

Supplementary Figure 7: A representative example of extremity based linking. The phenotype dataset 

(Consisting of gene expression levels for 6 genes) is shown above. Each phenotype measurement is 

represented by blue (negative extreme), yellow (positive extreme), or grey (non-extreme) dots. Based 

on the extremity of phenotypes, the attacker performs prediction of genotypes, which are shown below 

in (2). She uses the eQTL dataset (with genes and SNPs) for prediction. Blue and brown triangles 

correspond to the correct genotype predictions. The grey crosses correspond to the incorrect or 

unavailable genotype predictions. The attacker compares the predicted genotypes to the genotype 

dataset in (3), where triangles show the genotypes, and performs linking. The attacker links the 

predicted genotypes to the genotype dataset. 3 individuals (Bob, Alice, and John) are highlighted. The 

attacker can link Bob and John by matching them to their genotypes. The correct prediction of 

rs7274244 (in yellow dashed rectangle) enables the attacker to distinguish between correct entries and 

reveal both of their disease status as positive. For Alice, the predicted genotypes are equally matching at 

two entries both of which match at 2 genotypes; PID-b and PID-k (with negative and positive disease 

status) thus the attacker cannot exactly reveal Alice’s disease status.  

Supplementary Figure 8: Illustration of linking for 𝑗th individual. The attacker first predicts the 

genotypes (�̃�∙,𝒋) which are then used to compute the distance to all the individuals in the genotype 

dataset. The computed distances are then sorted in decreasing. The top matching individual (in the 
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example, individual a) is assigned as the linked individual. The first distance gap, 𝑑1,2, is computed as the 

difference between the second (𝑑𝑗,(2)) and the first (𝑑𝑗,(1)) distances in the sorted list. 

Supplementary Figure 9: The linking accuracy with different setups. (a) The accuracy of linking attack 

when the eQTLs are discovered on the training set and linking is performed on testing set. (b) The 

accuracy of linking when the simulated set of 100,000 individuals are used in the genotype dataset. (c) 

The positive predictive value (PPV) versus sensitivity with changing d_1,2 threshold for the eQTL 

selection in (b) where linking accuracy is around 70%, indicated by dashed yellow line. The grey dashed 

line marks the 95% PPV. (d) The distribution of ranks for close relatives (blue) and for random individuals 

(red) in the linking in 30 HAPMAP CEU trio dataset. Assigned rank is shown in x-axis and frequency is 

shown on y-axis. 

Supplementary Figure 10: Illustration of risk assessment procedure for joint genotyping/phenotyping 

data generation. There are two paths of risk assessment to be performed. The first path evaluates the 

risks associated with release of the QTL datasets. The genotype and phenotype data (on the left) is first 

used for quantitative trait loci identification (QTL identification box). This generates the significant QTLs. 

These are then utilized, in addition to the list of external QTL databases, in quantification of leakage 

versus predictability, as presented in Section 2.2. These results are then relayed to the risk assessment 

procedures. The second risk assessment procedure evaluates the release of genotype and phenotype 

datasets. For this, the datasets are input to application of a list of linking attacks (Presented in Sections 

2.3, and 2.4, and other linking attacks in the literature) for evaluation of characterization risks. The 

results are then relayed to risk assessment procedures. 

Supplementary Table 1: Linking accuracy of extremity based linking attack using the eQTLs are identified 

in different populations and different tissues. (a) The table shows the linking accuracies (for populations 

shown in the rows) when the eQTLs that are identified using data (indicated in each column) from 

different populations. (b) The linking accuracy of individuals in GEUVADIS project when eQTLs identified 

from different tissues are used in linking. (c) Linking attack accuracy comparison. The table shows linking 

accuracy for Schadt et al and extremity based linking attack methods. Each row corresponds (for Schadt 

et al Method) to a different number of data points in the training datasets that is input to Schadt et al 

method. 

8 ONLINE METHODS 

8.1 Genotype, Expression, and eQTL Datasets 
The eQTL, expression, and genotype datasets contain the information for linking attack (Supplementary 

Fig. 2). The eQTL dataset is composed of a list of gene-variant pairs such that the gene expression levels 

and variant genotypes are significantly correlated. We will denote the number of eQTL entries with 𝑞. 

The eQTL (gene) expression levels and eQTL (variant) genotypes are stored in 𝑞 × 𝑛𝑒 and 𝑞 × 𝑛𝑣 

matrices 𝑒 and 𝑣, respectively, where 𝑛𝑒 and 𝑛𝑣 denotes the number of individuals in gene expression 

dataset and individuals in genotype dataset.  The 𝑘th row of 𝑒, 𝒆𝒌, contains the gene expression values 

for 𝑘th eQTL entry and 𝑒𝑘,𝑗  represents the expression of the 𝑘th gene for 𝑗th individual. Similarly, 𝑘th 
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row of 𝑣, 𝒗𝒌, contains the genotypes for 𝑘th eQTL variant and 𝑣𝑘,𝑗 represents the genotype (𝑣𝑘,𝑗 ϵ 

{0,1,2}) of 𝑘 variant for 𝑗th individual. The coding of the genotypes from homozygous or heterozygous 

genotype categories to the numeric values are done according to the correlation dataset (Online 

Methods).  We assume that the variant genotypes and gene expression levels for the 𝑘th eQTL entry are 

distributed randomly over the samples in accordance with random variables (RVs) which we denote with 

𝑉𝑘 and  𝐸𝑘, respectively. We denote the correlation between the RVs with ρ(𝐸𝑘, 𝑉𝑘). In most of the 

eQTL studies, the value of the correlation is reported in terms of a gradient (or the regression 

coefficient) in addition to the significance of association (p-value) between genotypes and expression 

levels. 

8.2 Quantification of Characterizing Information and Predictability 
The genotype RV 𝑉𝑘 takes 3 different values, {0,1,2}, where the genotype coding is done per counting 

the number of alternate alleles in the genotype. Given that the genotype is 𝑔𝑘,𝑗, we quantify the 

individual characterizing information in terms of self-information26 of the event that RV takes the value 

𝑔𝑘,𝑗: 

 𝐼𝐶𝐼(𝑉𝑘 = 𝑔𝑘,𝑗) = 𝐼(𝑉𝑘 = 𝑔𝑘,𝑗) = − log2(𝑝(𝑉𝑘 = 𝑔𝑘,𝑗))  

 

(1) 

where 𝑉𝑘 is the RV that represents the 𝑘th eQTL genotype, 𝑝(𝑉𝑘 = 𝑔𝑘,𝑗) is the probability (frequency) 

of that 𝑉𝑘 takes the value 𝑔𝑘,𝑗, and 𝐼𝐶𝐼 denotes the individual characterizing information. Given multiple 

eQTL genotypes, assuming that they are independent, the total individual characterizing information is 

simply summation of those: 

 𝐼𝐶𝐼({𝑉1 = 𝑣1,𝑗 , 𝑉2 = 𝑣2,𝑗 , … , 𝑉𝑁 = 𝑣𝑁,𝑗})

= −∑ log2 (𝑝(𝑉𝑘 = 𝑣𝑘,𝑗))

𝑁

𝑘=1

. 

 

(2) 

The genotype probabilities are estimated by the frequency of genotypes in the genotype dataset. We 

measure the predictability of eQTL genotypes using an entropy based measure. Finally, the base of 

logarithm that is used determines the units in which ICI is reported. When base two logarithm is used as 

above, the unit of ICI is bits.  

Given the genotype RV, 𝑉𝑘, and the correlated gene expression RV, 𝐸𝑘, 

 𝜋(𝑉𝑘|𝐸𝑘 = 𝑒) = exp(−𝐻(𝑉𝑘|𝐸𝑘 = 𝑒)) 
 

(3) 

where 𝜋 denotes the predictability of  𝑉𝑘 given the gene expression level 𝑒, and 𝐻 denotes the entropy 

of 𝑉𝑘 given gene expression level 𝑒 for 𝐸𝑘 . The extension to multiple eQTLs is straightforward. For the 

𝑘th individual, given the expression levels  𝑒𝑘,𝑗 for all the eQTLs, the total predictability is computed as  

𝜋({𝑉𝑘}, {𝐸𝑘 = 𝑒𝑘,𝑗}) = exp(−𝐻({𝑉𝑘}|{𝐸𝑘 = 𝑒𝑘,𝑗})) 
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= exp(−∑𝐻(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗)

𝑘

) 

 

(4) 

In addition, this measure is guaranteed to be between 0 and 1 such that 0 represents no predictability 

and 1 representing perfect predictability. The measure can be thought as mapping the prediction 

process to a uniform random guessing where the average correct prediction probability is measured by 

𝜋. 

8.3 Extremity Based MAP Genotype Prediction 
Using an estimate of the joint distribution, the attacker can compute the a posteriori distribution of 

genotypes given gene expression levels. To quantify the extremeness of expression levels, we use a 

statistic we termed 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦. For the gene expression levels for 𝑘𝑡ℎ eQTL, 𝒆𝒌, 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 of the 𝑗𝑡ℎ 

individual’s expression level, 𝑒𝑘,𝑗, is defined as 

 
𝑒𝑥𝑡(𝑒𝑘,𝑗) =

rankof𝑒𝑘,𝑗in{𝑒𝑘,1, 𝑒𝑘,2, … , 𝑒𝑘,𝑛𝑒}

𝑛𝑒
− 0.5. 

 

(5) 

Extremity can be interpreted as a normalized rank, which is bounded between -0.5 and 0.5. The average 

median extremity is uniformly distributed among individuals (Supplementary Fig. 6a). In addition, 

around half of the genes (10,000) in each individual have higher than extremity value of 0.3. Also, 

around 1000 genes have higher than 0.45 absolute extremity (Supplementary Fig. 6b). In other words, 

each individual harbors substantial number of genes whose expressions are at the extremes within the 

population. These can potentially serve as quasi-identifiers. It is worth noting, however, that not all of 

these extreme genes are associated with eQTLs. 

Following from the above discussion, the adversary builds the posterior distribution for 𝑘th eQTL 

genotypes as 

 𝑃(𝑉𝑘 = 0|𝐸𝑘 = 𝑒𝑘,𝑗)

= {
1if|𝑒𝑥𝑡(𝑒𝑘,𝑗)| > 𝛿, 𝑒𝑥𝑡(𝑒𝑘,𝑗) × ρ(𝐸𝑘, 𝑉𝑘) < 0

0otherwise
 

(6) 

   
 𝑃(𝑉𝑘 = 2|𝐸𝑘 = 𝑒𝑘,𝑗)

= {
1if|𝑒𝑥𝑡(𝑒𝑘,𝑗)| > 𝛿, 𝑒𝑥𝑡(𝑒𝑘,𝑗) × ρ(𝐸𝑘, 𝑉𝑘) > 0

0otherwise
 

(7) 

   
 𝑃(𝑉𝑘 = 1|𝐸𝑘 = 𝑒𝑘,𝑗) = 0. (8) 

 

From the a posteriori probabilities, when the sign of the extremity and the reported correlation are the 

same, the attacker assigns the genotype value 2, and otherwise, genotype value 0. Finally, the genotype 

value 1 is never assigned in this prediction method, i.e., the a posteriori probability is zero. As yet 

another way of interpretation, the genotype prediction can be interpreted as a rank correlation 

between the genotypes and expression levels and choosing the homozygous genotypes that maximize 
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the absolute values of the rank correlation. Thus, this process can be generalized as a rank correlation 

based prediction. We are focusing on the extremes and heterozygous genotype is observed at medium 

levels of expression. The posterior distribution of genotypes in equations (4-6) can be derived from a 

simplified model of the genotype-expression distribution that utilizes just one parameter (Online 

Methods). We used the posterior genotype probabilities in extremity based prediction and assessed the 

genotype prediction accuracy. As expected, the accuracy of genotype predictions increases with 

increasing correlation threshold (Fig. 5c). The slight decrease of genotype accuracy at correlation 

thresholds higher than 0.7 is caused by the fact that the accuracy (fraction of correct genotype 

predictions within all genotypes) is not robust at very small number of SNPs. Although we expect very 

high accuracy, even one wrong prediction among small number of total genotypes decreases the 

accuracy significantly. 

8.4 First Distance Gap Statistic Computation 
Following the previous section, the attacker computes, for each individual, the distance to all the 

genotypes in genotype dataset, then identifies the individual with smallest distance. Let 𝑑𝑗,(1) and 𝑑𝑗,(2) 

denote the minimum and second minimum genotype distances (among 𝑑𝐻(�̃�∙,𝒋, 𝒗∙,𝒂) for all a) for 𝑗th 

individual. We propose using the difference between these distances, termed first distance gap statistic, 

as a measure of reliability of linking. For this, the attacker computes following difference: 

 𝑑1,2(𝑗) = 𝑑𝑗,(2) − 𝑑𝑗,(1) 

 

(9) 

First distance gap can be computed without the knowledge of the true genotypes, and is immediately 

accessible by the attacker with no need for auxiliary information (Supplementary Fig. 8). The basic 

motivation for this statistic comes from the observation that the first distance gap for correctly linked 

individuals are much higher compared to the incorrectly linked individuals. 

8.5 eQTL Identification with Matrix eQTL 
For identification of eQTLs, we used Matrix eQTL27 method. We first generated the testing and training 

sample lists by randomly picking 210 and 211 individuals, respectively, for testing and training sets. We 

then separated the genotype and expression matrices into training and testing sets. Matrix eQTL is run 

to identify the eQTLs using the training dataset. In order to decrease the run time, Matrix eQTL is run in 

cis-eQTL identification mode. After the eQTLs are generated, we filtered out the eQTLs whose FDR (as 

reported by Matrix eQTL) was larger than 5%. We finally removed the redundancy by ensuring that each 

gene and each SNP is used only once in the eQTL final list. To accomplish this, we selected the eQTL that 

is correlated with highest association with each gene. The association statistic reported by Matrix eQTL 

was used as the measure of strength of association between expression levels and genotypes. Similar 

procedure is applied when eQTLs for 30 trios are identified. 

8.6 Modeling of Genotype-Phenotype Distribution  
In the second step of the linking attack, the genotype predictions are performed. The genotype 

predictions are used, as an intermediate information, as input to the third step (Fig. 2c), where linking is 

performed. The main aim of attacker is to maximize the linking accuracy (not the genotype prediction 

accuracy), which depends jointly on the genotype prediction accuracy and the accuracy of the genotype 
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matching in the 3rd step. Other than the accuracy of linking, another important consideration, for risk 

management purposes, is the amount of auxiliary input data (like training data for prediction model) 

that the genotype prediction takes. The prediction methods that require high amount of auxiliary data 

would decrease the applicability of the linking attack as the attacker would need to gather extra 

information before performing the attack. On the other hand, the prediction methods that require little 

or no auxiliary data makes the linking attack much more realistic and prevalent. It is therefore useful, in 

the risk management strategies, to study complexities of genotype prediction methods and evaluate 

how these translate into assessing the accuracy and applicability of the linking attack. We study different 

simplifications of genotype prediction, and illustrate different levels of complexity for genotype 

prediction. 

In MAP based genotype prediction and linking attack, we assume that the attacker estimates the 

posterior distribution of genotypes and utilizes the maximum a posteriori estimate of the genotype as 

the general prediction method. For this, attacker must first model the joint genotype-phenotype 

distribution and then build the posterior genotype distribution (Supplementary Fig. 5a). The first level 

level of model can be built by decomposing the conditional distribution of expression with independent 

variances and means (Supplementary Fig. 5b). Assuming that mean and variance are sufficient statistics 

for the conditional distributions (e.g., normally distributed), the joint distributions can be modeled when 

the 6 parameters (3 means and 3 variances) are trained. The training can be performed using 

unsupervised methods like expectation maximization or can be performed using training data. This 

would, however, increase the required auxiliary data and decrease the applicability of the linking attack. 

A simplification of the model by assuming the variances of the conditional expression distributions are 

same for each genotype (Supplementary Fig. 5c). This decreases the number of parameters to be 

trained to 4 (3 means and 1 variance). An equally complex model with 4 parameters can be built 

assuming the conditional distributions are uniform at non-overlapping ranges of expression for each 

genotype (Supplementary Fig. 5d). This model requires 4 parameters to be trained corresponding to the 

expression range limits. Another simplification of the genotype prediction can be performed 

(Supplementary Fig. 5e), which requires only one parameter to be trained. In this model, the prediction 

only assigns uniform probability for homozygous genotypes when expression levels higher or lower than 

𝑒𝑚𝑖𝑑 and assigns 0 conditional probability to the heterozygous genotypes, which brings up an important 

point: This simplified model is exactly the distribution that is utilized in the extremity based genotype 

prediction. In the extremity based prediction, we estimate 𝑒𝑚𝑖𝑑 simply as the mid-point of the range of 

gene expression levels within the expression dataset (Supplementary Note).  

8.7 Datasets 
The normalized gene expression levels for 462 individuals and the eQTL dataset are obtained from 

GEUVADIS mRNA sequencing project17. The eQTL dataset contains all the significant (Identified at most 

5% false discovery rate) gene-variant pairs with high genotype-expression correlation. To ensure that 

there are no dependencies between the variant genotypes and expression levels, we used the eQTL 

entries where gene and variants are unique. In other words, each variant and gene are found exactly 

once in the final eQTL dataset (Section S4). The shuffled (randomized) eQTL datasets in comparisons are 

generated by shuffling the gene names in the gene-variant pairs in eQTL dataset. This way the gene and 
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variant matchings are randomized. The genotype, gender, and population information datasets for 1092 

individuals are obtained from 1000 Genomes Project18. For 421 individuals, both the genotype data and 

gene expression levels are available. For tissue analysis, the publicly available significant eQTLs for 6 

tissues that are computed by the GTex project are downloaded from the GTex Portal. 

8.8 Code Availability 
All the analysis code that is used to generate results can be obtained from 

http://privaseq.gersteinlab.org 
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