Abstract
LARVA — An Integrative Framework for Large-scale Analysis of Recurrent
Variants in Noncoding Annotations — And Other Tools for Cancer Genome
Analysis
Lucas Sze-wan Fong Lochovsky
2015
Initial approaches to cancer treatment have involved classifying cancer by
the site in which it is first formed, and treating it with drugs and other therapies that
have very broad targeting. These therapies are often prone to damaging healthy
cells in the process, which may lead to additional health complications. With the
advent of high-throughput sequencing, and the development of computational tools
and software to process the subsequent deluge of sequencing data, much progress
has been made on functionally annotating the human genome. Many genomes have
been cost-effectively sequenced, providing insight into genetic variation between
various human populations. The methods used to study population variation may
also be used to study the basis of genetic disease, including cancer. It has now been
demonstrated that there are many molecular subtypes of cancer, where each
subtype is differentiated based on which important cellular molecule or DNA
sequence has been disrupted. Hence, understanding the genetic basis of cancer is
paramount to the development of new, personalized molecular therapies to treat
cancer.
Noncoding variants are known to be associated with disease, but they are not

as commonly investigated as coding variants since assessing the functional impact
of a mutation is difficult. For rare mutations, background mutation models have

been set up for burden tests to discover highly mutated regions, which might be

potential drivers of cancer. This has been developed for coding regions, leading to



the successful use of burden tests to find highly mutated genes. However, this is
challenging for noncoding regions because of mutation rate heterogeneity and
potential correlations across regions, which give rise to huge overdispersion in the
mutation count data. If not corrected, such overdispersions may suggest artefactual
mutational hotspots. We address these issues with the development of a new
computational framework called LARVA. LARVA intersects whole genome single
nucleotide variant (SNV) calls with a comprehensive set of noncoding regulatory
elements, and models these elements’ mutation counts with a beta-binomial
distribution to handle the overdispersion in a principled fashion. Furthermore, in
estimating this distribution and determining the local mutation rate, LARVA
incorporates regional genomic features like replication timing.

The LARVA framework can be extended in certain ways to facilitate the
analysis of its results. By storing information on highly mutated annotations in a
relational database, it is possible to quickly extract the most interesting results for
further analysis. Furthermore, results from multiple LARVA runs can be combined
for a meta-analysis that could involve, for example, finding highly mutated pathways
in cancer and other types of genetic disease. Since LARVA’s computation consists of
many independent units of work, it can benefit from various forms of parallel
computation. These forms of computation include distributed computing with a
large number of commodity processors, as well as more esoteric types of
parallelization, such as general purpose graphics processing unit (GPU)

computation.



We make LARVA available as free software tool at larva.gersteinlab.org. We
demonstrate the effectiveness of LARVA by showing how it identifies the well-
known noncoding drivers, such as TERT promoter, on 760 cancer whole genomes.
Furthermore, we show it is able to highlight several novel noncoding regulators that
could be potential new noncoding drivers. We also make all of the highly mutated
annotations available online.

We also describe the Aggregation and Correlation Toolbox (ACT), a collection
of software tools that facilitates the analysis of genomic signal tracks. The
aggregation component takes a signal track and a series of genome regions, and
creates an aggregate profile of the signal over the given regions. This enables the
discovery of consistent signal patterns over related sets of annotations, implying
potential connections between the signal and the regions. The correlation
component of ACT takes two or more signal tracks and computes all pairwise track
correlations. Correlation analyses are useful for finding similarities between various
experiments, such as the binding sites of transcription factors as determined by
ChIP-seq. The final component of ACT is a saturation tool designed to determine the
number of experiments necessary to cover genomic features to saturation. This type
of analysis can be illustrated with a ChIP-seq experiment where the inclusion of
additional cell lines will reveal more binding sites for a transcription factor of
interest: with each new cell line, a smaller fraction of the sites will be newly
discovered, and a larger fraction will overlap discovered sites from previously used

cell lines. The objective of ACT’s saturation tool is to find the point of diminishing



returns in the discovery of new sites, which may result in more efficiently planned

experiments.
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1. Introduction
1.1. Motivation

Cancer is the second leading cause of death in the US (Leaf 2004). Despite
decades of research and attempts to find the “silver bullet” miracle cure, cancer still
kills the same percentage of Americans annually today as it did half a century ago.
Thanks to the progress that has been made on heart disease, the current leading
cause of death, it is anticipated that cancer will soon take the number one spot,
given that its death rate has remained relatively steady year after year. Many
ostensible working treatments have been developed, but many have not panned out,
ultimately only working on a small fraction of cancers.

The rise of next generation sequencing technologies in the past decade, such
as the Illumina and AB SOLiD sequencers (CT 2008), have enabled the whole
genome sequencing of a large number of individuals in both a time-effective and
cost-effective manner. These technologies assisted in the development of a
functional map of the human genome after the Human Genome Project was
completed (Birney 2007). Now they are being turned towards the whole genome
sequencing of as many cancer patients as possible to understand the molecular
basis of cancer disruption processes. We now understand that each cancer,
previously classified by the site of the primary tumor, has many different molecular
variants, where one particular variant may represent a very small fraction of all
patients with that cancer. Combatting cancer will therefore require a precisely

targeted molecular therapy for each of these molecular variants.



1.2. Problem Statement

Cancer genomes in general develop a wide range of mutations, owing to the
breakage of DNA repair processes that frequently accompanies cancer. Typically, a
small fraction of these mutations are actually connected to the breaking of cellular
functions that allow cancer to progress. These are known as “driver mutations”
(Carter 2009). The rest are considered “passenger mutations”, so named because
they happen to occur when the cell becomes cancerous, but do not serve any
function in making the cell cancerous. Understanding molecular cancer disruptions
requires separating the drivers from the passengers.

One of the most common approaches to identifying driver mutations is to
identify those mutations that appear frequently and consistently in the sequences of
a cancer patient cohort (Parmigiani 2009). Mutations that appear recurrently across
many samples more often than would be expected by stochastic mutation processes
are likely to be involved in driving cancer progression. This thesis describes the
design and development of a software framework built to find recurrent mutations,
named LARVA, for Large-scale Analysis of Recurrent Variants in noncoding
Annotations. Operating on single nucleotide variant (SNV) data from the whole
genome sequence data of cancer patients, LARVA will intersect the SNVs with user-
specified annotation sets. These annotation sets can include any region of interest,
including genes, pseudogenes, and noncoding RNA, among others. In performing
this intersection, LARVA will track the recurrent mutations in the variant dataset,

and produce its findings for the user.



Included in the output is a statistical significance test for each recurrently
mutated annotation discovered by LARVA. LARVA employs a novel null mutation
model that spans the entire genome, and addresses a shortcoming of previous whole
genome null models. In previous work (Lohr 2012, Parmigiani 2009, Weinhold
2014), background mutation was modelled as a constant rate over the entire
genome. LARVA’s model incorporates a variable background mutation rate, which is
a more accurate representation of observed mutation patterns. LARVA’s model also
incorporates the variable mutation accumulation of different genome regions owing
to the DNA replication timing of each region in the synthesis S phase of the cell cycle.
These two factors are used to produce an expected distribution of variants to
determine if the observed recurrent mutations appear at a significantly higher or
lower frequency. These significant findings are highlighted for the user, enabling
followup analyses to focus specifically on the most likely candidates for cancer

progression involvement.

1.3. Thesis Summary and Outline

In this thesis, we describe LARVA—Large-scale Analysis of Recurrent
Variants in noncoding Annotations—a computational framework for aggregating
rare somatic and germline variants from multiple samples on genomic elements.
These recurrent mutations serve as a measure of an element’s mutation burden, and
high-burden elements may correspond to important sites of disruptions for diseases
like cancer, and therefore may be crucial for understanding diseases’ mechanisms
and treatment. LARVA enables the discovery of both recurrent somatic and germline

variants in the same annotation, which could implicate previously unknown



disease-causing variants. The following sections explain the concepts of LARVA’s
framework, and how it functions to identify recurrently mutated genome
annotations. This dissertation illustrates how LARVA may be used to study
recurrent mutation patterns in both coding regions and noncoding regulatory
elements, and sets of pathways and interaction networks. For the purposes of
determining if observed recurrent variation is statistically significant, a beta-
binomial model of whole genome background mutation is introduced to assess the
statistical significance of recurrent variation. This model makes use of a variable
genomewide background mutation rate, and the influence of DNA replication timing
on the regional background mutation rate, to simulate expected variation across the
entire human genome. LARVA’s methods have been applied to a set of cancer WGS
data, consisting of variants from 760 samples, to demonstrate its usefulness.

This thesis is organized as follows. Section 2 describes previous work
relevant to LARVA, recounting earlier uses of whole genome sequencing technology
to study population variants, as well as previously developed computational tools
with similar design goals, and previous studies involving cancer driver identification
and cancer exome studies. Section 3 describes the extensive efforts and procedures
that were followed to obtain sets of cancer sequence data suitable for use with
LARVA. Section 4 describes early work involving the study of the distribution of
cancer single nucleotide variants (SNVs) compared to the variant distribution seen
in healthy individuals. Section 5 covers the core concepts behind LARVA, and
explains the types of recurrent mutations it is designed to identify. Section 6

provides a detailed description of LARVA and its implementation. Section 7



describes the results that have been obtained on variant data spanning 14 cancers
using LARVA. Section 8 describes additional computational tools that may be used
to complement a LARVA analysis. Concluding remarks and future directions are

given in Section 9.

1.4. Thesis Contributions

LARVA represents a highly optimized method for the discovery of
recurrently mutated annotations in any set of SNV calls, spanning any number of
samples, across any set of genome annotations. LARVA facilitates the analysis of
cancer, and other diseases with a genetic basis, by rapidly identifying the portions of
the genome that are consistently broken across many patients. These points of
mutation could imply the basis of new molecular therapies that may be used to treat
genetic disease. LARVA could also be applied to the analysis of rare germline
variants to identify potential connections between these variants and somatic
disease variants. If both somatic and germline variants coincide in the same
functional elements, the presence of these rare germline variants in individuals
could serve as a precursor indication of future disease development.

LARVA also introduces a model of the human genome’s rate of SNV
acquisition that represents the naturally occurring mutation rate biases present in
healthy individuals. This whole genome “null model” of the mutation rate is a novel
extension of an exome null model developed for the Broad Institute’s MutSig tool
(Lawrence 2013). We utilize this model to evaluate if the frequency of a recurrently
mutated annotation is a statistically significant enrichment relative to the frequency

expected in a healthy genome due to natural variation.



2. Previous Work
2.1. Genome Annotation and Population Variation Studies

2.1.1. Followup to the Human Genome Project

In the wake of the completion of the Human Genome Project (Lander 2001),
the primary followup work has concerned the discovery of the portions of the
genome that perform some role in the operation of the cell. At the most basic level,
this includes the protein-coding exons of the genome, which lead to the production
of the cell’s workhorses. Beyond these, the genome also contains noncoding
elements that regulate the transcription and translation processes that produce
proteins. Some of these involve the production of RNA transcripts that bind to other
transcripts to control their translation. These include the various classes of
noncoding RNA, such as micro-RNA, small interfering RNA (siRNA), small nuclear
RNA (snRNA), and small nucleolar RNA (snoRNA). Other noncoding elements serve
as places where regulatory proteins may bind to promote or inhibit access to a
protein-coding region.

Initial genomic element identification studies aimed to look for genome
regions under evolutionary constraint. Regions important for proper cellular
functioning cannot tolerate mutations to the degree that non-important regions can.
Hence, we expect that more constrained regions are likely to correspond to the
elements we want to identify. Such regions are said to be under “negative selection”,
since when these regions are mutated, they are likely not to persist in the

population, as said mutations probably break some important function that leaves

the carrier at a selective disadvantage (Birney 2007).



2.1.2. Next Generation Sequencing (NGS) Technologies and its Applications

The development of next generation sequencing (NGS) technologies reduced
both the time and cost of determining the whole genome sequences of individuals
(Chi 2008). Early next generation sequencing technologies, which are now known as
second generation sequencing technologies, were first developed by three
providers: 454 Life Sciences, [llumina, and AB SOLiD. Although each of these
involves unique mechanisms, they are all based upon DNA strand synthesis. Starting
with a single strand of DNA whose sequence is to be identified (the query), the
biochemical aspect of these methods involves the creation of a complementary DNA
strand in a manner that facilitates the identification of the basepairs that were
incorporated into the complementary strand. The complementary strand basepairs
can then be translated into query strand basepairs.

Voelkerding et al. (2009) provide a review of the major NGS companies and
their sequencing methods. 454 Life Sciences sequencing technology is based on
pyrosequencing, which is a means of synthesizing the complementary DNA strand
that involves the release of pyrophosphatase. This reaction will produce a certain
intensity of light depending on the identity of the incorporated nucleotide. A
photosensor is used to capture these intensities and identify the sequence of
basepairs on the complementary strand.

[llumina’s sequencing technology, however, involves the use of reversible
terminator bases. These bases are unique in that they do not permit the extension of
any DNA strand in which they are incorporated. Hence, the strand terminates with

these bases, which gives rise to the name. Many copies of the query strand are used



in a complementary strand synthesis procedure that includes both non-terminator
and terminator bases. As a result, many partial complementary strands will be
synthesized. A dye is used to determine the identity of the terminator base in each
experiment. Performed in sufficient quantity, there will be enough partial strands
such that each base along the complete strand is represented among the terminator
bases. Hence, the terminator base identities, combined with the partial strand
lengths, allow the derivation of the complete sequence.

Applied Biosystems’ technology has a more unique approach to its
sequencing technology. Query sequences undergo complementary strand synthesis
using an emulsion polymerase chain reaction (PCR) method, similar to 454 Life
Sciences’ technology. However, the components of the strand synthesis step are a
set of fluorescently labelled di-base probes. Each probe represents each possible
two-base permutation, and each emits a distinct fluorescent signal. Hence, the
sequence of signals can be used to infer the sequence of basepairs in the query
sequence.

A new generation of sequencing technology, driven by single molecule
sequencing, have begun appearing on the market around 2010. Two of the first
companies involved in developing and manufacturing single molecular sequencing
kits are Pacific Biosystems and Helicos Biosciences. Their sequencers operate by
filling in the complementary strand of the query sequence, but it is done one
basepair at a time. A series of fluorescently labelled nucleotides, as well as
polymerase, are used in each reaction round, as well as a labelling molecule that

caps the complementary strand and prevents sequence extension. Photosensors

10



capture the fluorescent signal from the incorporated nucleotide for identification,
and then the label is cleaved and washed away, and a new reaction round begins.

A number of applications of next generation sequencing technology
accelerated the annotation of the human genome. Chromatin immunoprecipitation
(ChIP) is a method for determining the sequences of protein binding sites.
Crosslinking proteins when they are bound to DNA sequences leaves the protein
and DNA irreversibly bound to each other. Upon digestion of the DNA, the sequences
bound by the proteins will be protected, allowing them to be elucidated. Previously,
the sequence determination step was accomplished by probing the DNA binding
sites against a microarray chip. These chips required bits of sequence from many
different parts of the genome to probe against the query sequence derived from the
immunoprecipitation step. Replacing the microarray chip with next generation
sequencing vastly sped up the immunoprecipitation step. This enabled much higher
throughput ChIP experiments, leading to greatly expanded knowledge of various
protein-DNA binding sites (Mardis 2007).

Another important application of next generation sequencing is RNA-seq.
This method involves the reverse transcription of mRNA transcripts into more
stable cDNA molecules, which are then sequenced at high speed with a next
generation sequencer. This allowed researchers to capture a snapshot of the
genome’s transcription, indicating which regions are transcribed, and the quantity
of transcription under various conditions (Wang 2009). This drove the discovery of

both protein coding regions, and elucidated the presence of regulatory transcripts.
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2.1.3. Functional Genome Annotation

The development of these technologies, as well as work performed in
projects such as the ENCODE consortium (Birney 2007), spurred the creation of a
comprehensive catalog of genome annotations. However, additional work was
necessary to connect the genome differences between various persons to their
observed individual characteristics. In other words, genome-phenome associations
still had to be elucidated.

Connecting genetic variation to phenotype was the goal of the 1000 Genomes
(1KG) Project (Durbin 2010). This comprised of work carried out by a consortium of
labs that aimed to study and functionally characterize at least 95% of human genetic
variants with an allele frequency of at least 1%—the minimum allele frequency
necessary for a variant to be considered a polymorphism. The overall study spanned
five major population groups from Europe, East Asia, South Asia, West Africa, and
the Americas. The 1KG pilot phase consisted of three experimental designs. The first,
the trio project, involved high coverage whole genome shotgun sequencing of two
families (one from Nigeria, one from Utah) including two parents and one daughter.
The second project aimed to sequence a large number of individuals at low coverage
(2-6x). The sequenced population spanned 59 unrelated subjects from Nigeria, 60
unrelated subjects from Utah, 30 unrelated Han Chinese from Beijing, and 30
unrelated Japanese from Tokyo. The third project involved exon capture of 8,140
exons from 906 randomly selected genes from 697 subjects spanning 7 populations

of African, European, and East Asian origin.
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Throughout the 1KG project, high throughput sequencing was applied to the
discovery of variants within human populations, spanning single nucleotide variants
(SNVs), indels, and structural variants. Researchers also discovered more about the
evolutionary conservation (or divergence) of various genome regions. Additionally,
the similarities and differences between various human populations throughout the
world were elucidated (McVean 2012). The 1KG project also motivated the
development of new computational methods to characterize variants, and identify
which ones to prioritize for more rigorous characterization experiments. Such tools
include the Function-based Prioritization of Sequence Variants (FunSeq) tool (Fu
2014), which is specifically designed to bring together multiple datasets concerning
sequence-function relationships, and mark a set of variant calls with the annotations
that they overlap, along with other relevant function information. The development
of these tools for population variants led to the idea that these same tools could be
applied to cancer variants to understand the molecular mechanisms behind cancer,

as well as other diseases with a genetic basis.

2.2. Previous Computational Tools

A number of computational tools have been previously developed to
facilitate the analysis of the impact of variants on noncoding genome annotations.
HaploReg (Ward 2011) is one such tool. Its creators have collected information on
noncoding annotations from TRANSFAC (Matys 2003), JASPAR (Mathelier 2013),
and protein-binding microarray (PBM) experiments (Berger 2006, Berger 2008,
Badis 2009). HaploReg also draws upon various SNP and small indel databases to

assist in the functional annotation of input variants, including the 1000 Genomes
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Project (Durbin 2010) and dbSNP (Sayers 2010). Variant sets used as input are
intersected with HaploReg’s annotations using BEDTools (Quinlan 2010), a package
of often-used scripts for BED files, or data that can be represented in BED files.
HaploReg’s output presents the user with information to prioritize variants in the
input set according to their functional relevance within their linkage disequilibrium
(LD) blocks.

RegulomeDB (Boyle 2012) is a similar system that is geared towards the
integration of data from the ENCODE project (Birney 2007) and other sources
(Badis 2009, Berger 2006, Berger 2008, Boyle 2010, Bryne 2007, Matys 2003,
Pique-Regi 2010, Scharer 2009, Wei 2010) to evaluate variant functionality in
regulatory regions. Its datasets include experimentally characterized regulatory
regions, ChIP-seq information, chromatin state information, and expression
quantitative trait loci (eQTL). RegulomeDB also includes computational predictions
of regulatory regions to supplement the experimental evidence. These include the
use of DNase-seq (Madrigal 2012) to identify protein-DNA binding sites: such sites
represent genome regions with a more exposed chromatin state to allow easier
access for protein binding, making these sites more sensitive to DNase I digestion.
The authors also conducted their own scan of the human genome for position
weight matrices (PWMs) corresponding to known transcription factor (TF) motifs.
These motifs were also included in RegulomeDB’s data. One final source of
regulatory annotations was derived from manual curation of literature sources.

Other previously developed computational tools have focused on facilitating

the understanding of cancer disruption by identifying pathways whose
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consequences are abrogated in cancer patients. These include two recent systems
known as cBio (Cerami 2012) and Multi-Dendrix (Leiserson 2013). cBio starts with
variant datasets, and a database of genes and their pathway membership
information. The cBio system then identifies those pathways mutated with high
coverage and high mutual exclusivity. High coverage refers to the presence of
mutations in a large proportion of samples, and high exclusivity means that many of
the highly damaging, driver mutations appear in mutually exclusive samples, owing
to the sufficiency of mutating just one part of a pathway to nullify its function. Multi-
Dendrix extends these ideas by introducing new algorithms to find arbitrary sets of
genes that exhibit high coverage and mutual exclusivity of variants, rather than
being limited to previously established pathways. GEMINI (Paila 2013) is another
general system that manages variant call sets and genome annotation sets through
an SQL database, and allows users to formulate their own SQL-based queries over

the stored data, allowing a wide range of flexibility for exploring variant data.

2.3. Cancer Driver Identification

Many previous approaches to cancer therapy have revolved around “one size
fits all” solutions (Urruticoechea 2010). Aside from the physical location of the
tumor, it was assumed that many cancers were fundamentally similar to each other.
However, drugs developed to treat these cancers were found to only be effective on
certain subsets of patients. Studies of cancer on a genetic level revealed that cancers
could be subtyped into versions that each had a different molecular basis. With this

new understanding, the focus is now on developing therapies that precisely target
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the molecular disruptions specific to each patient in a new form of personalized
medicine.

The development of these targeted therapies relies on the identification of
mutations that drive cancer progression, known as “drivers”. Only a small fraction of
the total set of somatic variants in cancer genomes is drivers. The rest are
considered “passengers”. Their occurrence is due to the breakdown of DNA repair
processes as the cancer becomes more advanced. As a result, many mutations that
would be fixed in normal, healthy cells are acquired. Passenger variants are
therefore incidental to cancer disruption processes, not the cause of such processes
(Parmigiani 2009).

Separating cancer drivers from passengers has been the focus of much
cancer research in the years since the cost-effective sequencing of cancer genomes
became possible (Torkamani 2008). One approach involves the use of probabilistic
models to simulate the variant distribution assuming everything is mutating at the
passenger mutation rate (Parmigiani 2009). These models can be used to determine
if a gene’s observed mutation pattern significantly differs from its expected
mutation pattern. Driver identification has also been attempted by identifying the
biological processes that are disrupted (Vandin 2011, Vandin 2012, Leiserson 2013).
This method views a process, driven by multiple genomic elements, as a single
functional unit that can be disrupted in multiple places. As a result, individual
elements within that process may not be significantly mutated across many samples,
but the process as an aggregate of its elements is significantly mutated across

samples.
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There have also been attempts to classify drivers and passengers based on
sequence features that indicate functional significance. Representative of this
approach is the Cancer-specific High-throughput Annotation of Somatic Mutations
(CHASM) tool (Wong 2011). CHASM is designed to classify missense mutations as
drivers by looking at the consequences of each mutation to the nucleotide and
amino acid context of the surrounding gene/protein. These context features are
used in a Random Forest classifier to take advantage of the most predictive features
in the final software. CHASM’s output includes both an empirical p-value, and a
Benjamini-Hochberg-corrected p-value. CHASM was originally developed for
deployment on servers, but later received a web-based front end called CRAVAT
(http://www.cravat.us).

More recently, new approaches have focused on the idea of using the
structure of protein-protein interaction (PPI) networks and other functional
networks to identify disease-associated genes. These approaches are based on the
expectation that the genes responsible for driving disease phenotype are either
close to each other in functional networks, or are connected through some indirect,
network-based metric. Chuang et al. (2007) devised a method to identify PPI
subnetworks that served as predictive markers for metastatic breast cancer. This
method starts with single genes that exhibit high differential expression between
benign and metastatic breast cancer. The surrounding network is then explored for
other genes with marked expression differences between the two types of breast
cancer. Chuang et al's method then determines whether the combination of

neighboring genes, treated as a subnetwork marker, serves as a better classifier of
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benign and metastatic breast cancer. The surrounding network is explored for genes
that improve this classification until there is no significant improvement. These
subnetwork markers were found to outperform single gene markers in validation
tests.

Other methods, such as Kohler et al’s (2008), incorporate the global PPI
network structure, opening up the potential for any protein in the network to be
disease-associated. The Kohler algorithm initiates a random walker at a known
disease-associated protein, chosen with uniform probability over all known disease-
associated proteins. The walker will, on each iteration, randomly move to a
neighboring node (also chosen with uniform probability), or will restart its walk at a
known disease-associated protein. Over the long term, the probability distribution
of where the walker will be in the network on a given iteration approaches a steady
state. This steady state distribution is used to identify those proteins that have many
connections to known disease-associated proteins, which are flagged as high
priority proteins to study for disease associations.

Vanunu et al. (2010) extended the random walk concept by using a disease
similarity network and a disease-gene association network along with a PPI
network. Using the Online Mendelian Inheritance in Man (OMIM) data on diseases
and their associated genes, the authors created a network where nodes are diseases,
and edges connect similar diseases. The authors then added disease-protein
association nodes and edges, and protein interaction edges. A query disease is
investigated by finding those diseases it is similar to, and using the proteins

associated with those diseases as prior information for a random network walk over
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the PPI portion of the network. Vanunu et al's method was demonstrated to be
effective at implicating protein complexes in the causation of various diseases,

including prostate cancer, Alzheimer’s, and diabetes.

2.4. Cancer Exome Studies

So far, many studies of the genetic causes of cancer have been focused on
studying the exome features of cancer cells. The focus of this section is to highlight
the findings of a few of these studies.

Grasso et al. (2012) sequenced the exomes of some 50 lethal, heavily pre-
treated metastatic castration-resistant prostate cancers (CRPCs), and 11 treatment-
naive, high-grade localized prostate cancers. The sequence data generated was then
used to study a range of mutation classes, including SNVs, insertions, deletions, and
copy number variants (CNVs). The analyses drew attention to the roles of CHD1 and
ETS deletions in prostate cancer. Also important was the discovery of recurrent
mutations in chromatin- and histone-modifying genes, which interact with androgen
receptor (AR), which was previously demonstrated to drive prostate cancer
progression (Shen 2010). Other genes known to interact with AR were also found to
be mutated, including FOXA1, MLL2, UTX, and ASXL1.

Alarger study was conducted by Barbieri et al. (2012) that spanned 112
prostate tumor/normal sample pairs. Exome sequences were used to identify
recurrent variants and recurrently mutated genes. Most notable in the findings was
the discovery of recurrent SPOP, MED12, and FOXA1 mutations (thus backing up the
Grasso analyses). The authors put extra emphasis on exploring the SPOP mutations,

as these had been previously reported in prostate cancer, but not fully understood
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on a functional level. It was discovered that SPOP’s mutations affect conserved
residues in the substrate binding cleft.

Krauthammer et al. (2012) studied the exomes of some 147 tumor/normal
melanomas. They split these melanomas by the amount of sunlight shining on the
tumor site (i.e. sun-exposed vs. sun-shielded), and determined the mutation
landscape of each melanoma type. The sun-shielded samples were further
segregated by primary tumor site, which included acral, mucosal, and uveal
melanomas. Sun-exposed melanomas had far more ultraviolet somatic mutations, as
expected. The two most frequently mutated genes were BRAF and NRAS, confirming
previous melanoma driver research (Ribas 2011, Jakob 2012). Newly discovered
from this analysis was an activating mutation in RAC1, appearing with the third-
highest frequency of all recurrent mutations in sun-exposed melanomas. The
authors also discovered a number of other genes mutated at a lower frequency in

both sun-exposed and sun-shielded melanomas.

20



3. Assemblage of Cancer Data
3.1. Special Challenges with Obtaining Data from Protected Data Sources

Cancer data that can be linked to the contributing individuals, either directly
or by joining multiple datasets on a foreign key relationship, is considered protected
data. Prospective users of this data are required to submit applications detailing the
specific uses of the data in their research, and indicate that their IT systems meet
the requirements of storing the data securely. We have navigated the protected data
access applications and incidental procedures of several cancer data repositories,
including The Cancer Genome Atlas (TCGA)(Muzny 2012, Bell 2011), the Database
of Genotypes and Phenotypes (dbGaP)(Sayers 2010), the International Cancer
Genome Consortium (ICGC)(Hudson 2010), and the European Genome-Phenome
Archive (EGA)(Leinonen 2010). Following is a description of the requirements we
encountered on the path to obtaining protected data access.

Protected data access applications require a description of the research in
which the requested data will be used. In some cases, a layman’s description is also
required for the purposes of demonstrating the usefulness of the data to the general
public and to benefactors. A list of relevant publications is required to demonstrate
the experience and pedigree of the applying lab. Individuals who will be granted
access to the data must also be listed. Access renewal is typically required every
year, with updates on research progress and future plans.

Additionally, applicants’ computational infrastructure must support certain
safeguards to prevent unauthorized access to the data while it remains in the

possession of the applicants. Computer systems containing the data, and any backup
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copies, must be physically secure, typically by having them under lock and key.
Logins must be controlled so that only the individuals named on the access
application can access the data, and any network access to the data must be secure
from external intrusion. Any copies of the data taken onto portable devices,
including laptops, smartphones, and tablets, must be encrypted due to the greater
risk of data falling into the wrong hands. Furthermore, when all research using the
protected data is complete, all copies must be destroyed. Exceptions are allowed
when the data must be archived to comply with national audits or legal
requirements. Finally, everyone working with the data must be trained in the
responsible use of confidential patient data, and the security protocols established
around the data.

The use of data involving human subjects is, in most cases, subject to the
approval of an institutional review board (IRB), which must examine the proposed
research plan and verify that the human subjects and their data are treated with
proper ethical standards. However, human subject research only requires IRB
approval if the research involves collecting data on human subjects through
intervention or interaction with the individual, or data that can be used to
personally identify the individual it was collected from. Since these conditions did
not apply to the research described in this dissertation, IRB approval was not

required.

3.2. Manifest of Cancer Data Collected

The first data portal for which we applied for protected access was The

Cancer Genome Atlas (TCGA)(Bell 2011, Muzny 2012). TCGA is a collaborative effort
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between multiple labs and groups located throughout the US, Canada, Europe, and
Australia. Our initial examination of the Data Portal revealed that there were a
number of whole exome sequence variant datasets available, which are described in

Table 1.

Table 1: List of exome cancer datasets obtained from TCGA.

Cancer Protocol | Center | Sequencer | # Tumor/ Reference
Normal Samples

Colon adenocarcinoma WXS BCM Illumina 52 Muzny 2012
Colon adenocarcinoma WXS BCM SOLiD 53 Muzny 2012
Ovarian serous cystadenocarcinoma | WXS BCM SOLiD 91 Bell 2011
Ovarian serous cystadenocarcinoma | WXS WUSTL | lllumina 88 Bell 2011
Rectum adenocarcinoma WXS BCM llumina 12 Muzny 2012
Rectum adenocarcinoma WXS BCM SOLiD 35 Muzny 2012

Later, we were granted access to the TCGA protected data stored in the
Database of Genotypes and Phenotypes (dbGaP)(Sayers 2010). This data can be
searched and downloaded using CGHub (https://cghub.ucsc.edu/index.html), a
utility built by the TCGA to facilitate bulk downloading of TCGA data. Using CGHub,
we obtained additional data, including TCGA’s prostate cancer RNA-seq and whole

genome sequence (WGS) data (Table 2).

Table 2: List of protected cancer datasets obtained from TCGA via CGHub.

Cancer Protocol | # Tumor/Normal
Samples
Prostate cancer RNA-seq
497
Prostate cancer WGS 20
Ovarian serous cystadenocarcinoma | WGS 8
Kidney carcinoma WGS 32

In addition to this, we have initiated a number of collaborations with groups that
have directly sequenced cancer patients. This has given us access to the cancer data

listed in Table 3.

23




Table 3: List of cancer datasets obtained from collaborators

Cancer Source Lab Protocol | # Samples | Reference

Prostate cancer Dr. Mark Rubin WGS 7 Berger 2011

Glioma Dr. Murat Glinel | WGS 26 [unpublished]
Melanoma Dr. Ruth Halaban | WXS 316 Krauthammer 2012
Medulloblastoma | Dr. Jan Korbel WGS 3 Rausch 2012
Prostate cancer Dr. Jan Korbel WGS 11 Weischenfeldt 2013

The remainder of the cancer data we have worked with was derived from a review

of major cancer publications at the time. These datasets are listed in Table 4.

Table 4: List of cancer datasets obtained from publications

Cancer Source Lab Protocol | # Reference
Samples

Breast cancer Dr. Michael Stratton WGS 21 Nik-Zainal 2012

Prostate cancer Dr. Levi Garraway WGS 57 Baca 2013

Prostate cancer Dr. Scott A. Tomlins WXS 61 Grasso 2012

Prostate cancer Dr. Levi Garraway WXS 112 Barbieri 2012

Malignant melanoma Dr. Michael Stratton WGS 1 Pleasance 2009

Lung cancer Dr. Matthew Meyerson WXS 183 Imielinski 2012

Stomach cancer Dr. Mao Mao and Dr. Suet Yi WGS 100 Wang 2014

Leung

Breast cancer Dr. Michael Stratton WGS 119 Alexandrov
2013

Lung adenocarcinoma Dr. Michael Stratton WGS 24 Alexandrov
2013

Acute Myeloid Leukemia Dr. Michael Stratton WGS 7 Alexandrov
2013

Acute Lymphoblastic Dr. Michael Stratton WGS 1 Alexandrov

Leukemia 2013

Chronic Lymphocytic Dr. Michael Stratton WGS 28 Alexandrov

Leukemia 2013

Pancreatic cancer Dr. Michael Stratton WGS 15 Alexandrov
2013

Pilocytic Astrocytoma Dr. Michael Stratton WGS 101 Alexandrov
2013

Medulloblastoma Dr. Michael Stratton WGS 100 Alexandrov
2013

Liver cancer Dr. Michael Stratton WGS 88 Alexandrov
2013

Lymphoma B-cell Dr. Michael Stratton WGS 24 Alexandrov
2013
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4. Comparison of Population Variation Patterns with Cancer
Variation Patterns

At the time of this analysis, the cancer exome data available spanned the
TCGA exomes from Table 1, and the melanoma exomes provided by Dr. Ruth
Halaban (Table 3). With this data, the nonsynonymous:synonymous (NS:S) ratio of
each cancer was compared to the NS:S ratio of the 1000 Genomes Project (1KG)
phase 1 samples. An intersection analysis was also conducted between the cancer
exome variants and the 1KG phase 1 variants. Each cancer’s variants were
intersected with the 1KG coding variant set. The cancer variants were also divided
into drivers and passengers using the Cancer-Specific High-throughput Annotation
of Somatic Mutations (CHASM)(Wong 2011), a computational classification engine
that separates nonsynonymous variants into driver and passenger groups using
multiple relevant features. The 1KG coding set was also divided into common and
rare variants (according to the derived allele frequency (DAF)), and into
nonsynonymous and synonymous variants. These sets, along with the set of all 1KG
variants, resulted in a total of five 1KG variant sets. Each of these sets was
intersected with the cancer exome driver and passenger sets to identify
enrichments and depletions of drivers and passengers in each 1KG variant set.

Enrichments and depletions were determined by comparing the observed
intersection with an expected intersection computed by simulation. These
simulations involved randomizing the positions of the variants in each cancer
dataset 10,000 times, producing 10,000 sets of random variants for each cancer.

Each of these random datasets was intersected with each of the five 1KG coding
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variant sets. Hence, a distribution of intersections expected at random was created.
These distributions were used to determine any significant enrichments or
depletions of cancer variant intersections with the 1KG coding variants.

Comparison of the cancer nonsynonymous:synonymous (NS:S) ratio to that
of the 1KG phase 1 variants indicates that there is an almost threefold difference
(Fig. 1). This finding indicates that cancer variants hit sites with a significant protein
coding effect much more than sites that are silent in the protein code. Given cancer’s
disruption to important growth and regulatory processes, this is a logical

expectation.

Fig. 1: The ratio of nonsynonymous to synonymous variants in the phase 1 protein coding variants of the
1000 Genomes Project, compared to the ratio seen in variants derived from the exomes of two studies of
colon adenocarcinoma, two studies of ovarian serous cystadenocarcinoma, and two studies of rectum
adenocarcinoma.
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The intersection analysis with the Halaban melanoma variants
(Krauthammer 2012) and 1KG coding variants (Table 5) indicates that there is no
significant enrichment among cancer drivers. This means that there is a significant
non-overlap between cancer drivers and 1KG coding variants, which is expected,
since the healthy samples in 1KG should have cancer if that were not true. Among
the cancer passenger variants, there is a significant enrichment, which makes sense
given that cancer often disrupts DNA repair mechanisms, allowing everything to
mutate randomly. When the 1KG variants are split into common and rare variants, it
is clear that cancer passengers are enriched in both groups, but the enrichment ratio
is much higher in rare variants. This is probably reflective of the fact that rare
variants likely represent risk alleles that serve as precursors to genetic disease,
hence mutation of rare variants is favored for driving cancer processes. The
intersection analysis between cancer variants and nonsynonymous/synonymous
1KG variants indicated that there was an enrichment of cancer variants in both 1KG
categories, but there was no significant difference in the enrichment between the

two groups.

Table 5: Melanoma variants obtained from the lab of Dr. Ruth Halaban were intersected with variants
derived from the 1000 Genomes Project sequence data to identify significant enrichments or depletions
of somatic cancer variants in germline variants. P-values and confidence intervals were determined by
comparison to an expected distribution of intersecting variants derived by random variant simulation.
Drivers are neither enriched nor depleted in 1KG coding variants. Passengers are enriched in 1KG coding
variants, with a clear difference in the enrichment ratios of common and rare variants.

Drivers intersection with Observed count | Average Observed/Random | p-value
random count | Ratio

1KG coding variants 0 0.0150 0 0.452

1KG coding common variants 0 0.0027 0 0.479

1KG coding rare variants 0 0.0106 0 0.459

1KG coding nonsyn variants 0 0.0093 0 0.462

1KG coding syn variants 0 0.0057 0 0.470
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Passengers intersection with Observed count | Average Observed/Random | p-value
random count | Ratio

1KG coding variants 3924 543.199 7.22 0

1KG coding common variants 638 110.720 5.76 0

1KG coding rare variants 2866 388.141 7.38 0

1KG coding nonsyn variants 2245 313.112 7.17 0

1KG coding syn variants 1708 230.104 7.42 0

At the time of this WGS analysis, there were three WGS cancer datasets
available from Berger et al. (2011), Pleasance et al. (2009), and Nik-Zainal et al.
(2012). With this data, the sample-normalized fraction of variants in each dataset
that fall within GENCODE v7 (Harrow 2012) genes, pseudogenes, noncoding RNA
(ncRNA) regions like microRNA (miRNA) sites, and transcription factor binding sites
(TFBSes) was calculated. These fractions were compared to the corresponding
fractions for NA12878, one of the deeply sequenced trios from the 1KG project’s
pilot phase (Durbin 2010). Table 6, which shows the percent of variants from each
whole genome sequenced (WGS) cancer dataset that map to major genomic regions,
indicates differences in cancer variant distribution compared to the normal
distribution of NA12878. A larger proportion of cancer variants map to genes and
pseudogenes, while a smaller proportion map to TFBSes. The regions with larger
proportions of cancer variants indicate that cancer targets coding regions for

disruption relatively more often than regulatory targets.
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Table 6: The percent of variants from various WGS cancer datasets in four major classes of genome
annotation, with NA12878 serving as a normal reference. Enrichment and depletion observed in these
categories indicates the targets of cancer disruption.

Variant data Genes (Exons) Pseudogenes RNA TFBSes
NA12878 0.664% 0.314% 0.125% 16.4%
Prostate Cancer (Berger | 0.653% 0.386% 0.115% 12.2%
2007)

Melanoma (Pleasance 0.879% 0.360% 0.084% 11.9%
2009)

Breast Cancer (Nik- 0.944% 0.390% 0.121% 12.9%
Zainal 2012)

29




5. Introduction to LARVA

5.1. Preamble

Genomes of numerous patients have been sequenced (Almasy 2014, Baca
2013, Barbieri 2012, Grasso 2012, Shi 2013) opening up opportunities to identify
the underlying genetic causes for complex disease (Chen 2014, Stefansson 2014,
Tervasmaki 2014, Zhang 2014) and develop more effective therapies targeted at
specific molecular disease subtypes (Kurtova 2014). Most of these studies have so
far focused on identifying mutations and defects in the protein coding regions, or
exomes, of disease genomes (Baca 2013, Lawrence 2013, Long 2014, Rudd 2014,
Yadav 2014). These methods usually search for coding regions with higher than
expected mutation frequencies in protein coding genes through rigorous
background mutation rate control over a variety of genomic features (Lawrence
2013). Such methods have been successfully used on numerous cancer genomes
(Youn & Simon 2011). However, the noncoding regions, which comprise more than
98% of the human genome, were rarely investigated, primarily due to the difficulty
of functional interpretation of noncoding variants.

Recent genome annotation analysis has revealed that a significant portion of
the human genome is functional in a certain tissue or development stage (Dunham
2012, Gerstein 2014), and several noncoding variants have been implicated in
disease (Fu 2014). For example, several genome-wide association studies (GWAS)
studies have discovered the phenotypic effect of common noncoding variants in

regulatory regions (Dees 2012, Futreal 2004). Other studies have reported that
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noncoding TERT mutations drive cancer progression in multiple tumor types,
including melanomas and gliomas (Grossman 2013, Maurano 2012, Vinagre 2013).
Moreover, mutations in the promoter regions of PLEKHS1, WDR74 and SDHD were
also identified as recurrent driver mutations in some cancer types (Weinhold 2014).
In another example, analysis of the miRNA-binding sites on BRCA1 and BRCA2, the
established risk genes of breast cancer, indicated that certain variants in these sites
are associated with increased likelihood of early onset breast cancer (Erturk 2014).
Furthermore, some references showed that a histone H1 variant is linked to
oncogene expression in ovarian cancer (Medrzycki 2014). In light of these
discoveries, and the growing availability of whole-genome sequencing data
(Alexandrov 2013, Baca 2013, Berger 2011, Cancer Genome Atlas Research 2013,
McLendon 2008, Wang 2014, Weischenfeldt 2013), a statistical framework
facilitating the identification of highly mutated noncoding mutations is called for.
More recently, a genome wide computational effort has been made to
discover the noncoding regions with higher mutation burden in cancer genomes
(Weinhold 2014). The authors called whole genome somatic variants for 863 human
tumor sequences from The Cancer Genome Atlas (TCGA) (McLendon 2008), and
analyzed the variants that fall into noncoding annotations. A p-value was computed
for each annotation reflecting the likelihood that the given annotation had more
variants than expected from background mutation processes, which was modelled
with a binomial distribution. They successfully identified some known noncoding
drivers, such as the TERT promoter, and reported some novel candidates that were

not discovered previously. The use of the binomial distribution is based on two
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assumptions: 1) the mutation rate is homogeneous; 2) variants arise independently.
However, cancer genomes often violate these assumptions. First, studies on the
coding variants already proved that the mutation rates in cancer genomes
demonstrate substantial cancer type, sample, and regional heterogeneity (Lawrence
2013). Second, some passenger mutations were generated by other driver events,
such as structural alterations and mutations in DNA replication or repair genes
(Hodgkinson 2011). In the human genome, there are many regions with highly
correlated mutational profiles. For instance, the germline variant distribution is
influenced by the high linkage disequilibrium (LD) of many regions, and for somatic
variants, there are many known hotspots. Hence, some degree of dependency is to
be expected in the human germline and somatic mutation landscape. Consistent
with these statements, we observed that the somatic mutation counts in the
noncoding elements exhibited substantially higher variance than expected, or
overdispersion, indicating that a binomial distribution might be potentially
inadequate to handle such data, and the resultant p-values might be heavily inflated.
Hence, if this p-value inflation is not taken care of, a significance calculation based
on a binomial distribution might report some artificial mutation hotspots by chance
instead of real driver events.

Sections 5-7 present a computational system, LARVA (Large-scale Analysis of
Recurrent Variants in noncoding Annotations), that identifies highly mutated
noncoding regulatory elements using whole genome sequencing (WGS) variant data
from multiple genetic disease patients. LARVA treats the mutation counts within a

given regulatory element as a beta-binomial distributed random variable. This
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design automatically accommodates the heterogeneous nature of mutation
accumulation in cancer genomes and the potential dependency among neighboring
loci by allowing the local mutation rate to be drawn from a beta distribution.
Furthermore, we also divided the whole genome into several local bins and
classified them using some known genomic confounders of the mutation rate, such
as replication timing, for a more accurate local background mutation model. Such
integrative analysis could potentially control the false positive rate in an effective
manner. We demonstrate the usefulness of LARVA for finding both well-known and
novel noncoding regulators with higher mutation burdens in a set of WGS cancer
data that represents all the different types of whole genome sequenced cancers to
our knowledge (see section 7 for details). We release the noncoding annotations, the
mutation counts, and the corresponding p-values on the 760 cancer genomes used
in this dissertation as a potentially powerful resource to facilitate cancer
researchers for driver events discovery and validation in the future. Although
designed for somatic variant analysis, the logic of LARVA can be immediately
extended for germline variant analysis in complex diseases. The following sections
describe LARVA’s concepts, their applications to the study of genetic disease, and
cancer findings derived with LARVA. LARVA was published in Nucleic Acids Research

(Lochovsky 2015).

5.2. Recurrent Variants

Recurrent variants here mean SNVs from multiple samples that overlap (i.e.
they have the same coordinate). In Fig. 2, which is a simple example illustrating the

SNVs in three samples around the same annotation, the annotation contains variants
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from all 3 samples, but the variants from samples 1 and 2, highlighted in red,
overlap perfectly. Such mutations may correspond to a critical component of a
gene’s product that is important for tumor suppression. These mutations may also

be used to classify the subtype and severity of cancer patients (Vandin 2011).

Fig 2: Recurrent variants are single nucleotide variants (SNVs) from multiple samples that overlap in a
single annotation.

annotation

sample 1 |

sample2 —— !

sample 3 4'* |

5.3. Recurrently Mutated Annotations

Recurrently mutated annotations refer to annotations that contain SNVs from
multiple samples that do not necessarily overlap. Such annotations may be
functionally disruptable in multiple places, and therefore, multiple patients with the
same functional disruption may carry SNVs in different places of the same gene.
Hence, it is important to detect whether the annotation itself is mutated in multiple
cancer patients, rather than individual positions. Fig. 3 illustrates an annotation
recurrently mutated in two samples, with the relevant variants highlighted in red.

Unlike Fig. 2, these variants do not overlap.
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Fig 3: Recurrently mutated annotations contain variants from multiple samples that are positioned
anywhere within the annotation boundaries.
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The focus of LARVA is to identify noncoding regulatory annotations that are

sample 1

recurrently mutated. The following section describes the collection of WGS cancer
variants, noncoding annotations, and LARVA’s methods for finding significant

mutation burdens in those annotations.
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6. LARVA Data and Implementation

6.1. Whole genome cancer variant data

We collected whole genome cancer variant calls from a large number of
previously sequenced cancer genomes. The majority of our data came from a set of
507 whole genome cancer samples published in Alexandrov et al. (2013). This data
spans breast cancer, lung cancer, leukemia, pancreatic cancer, pilocytic astrocytoma,
medulloblastoma, liver cancer, and lymphoma (Fig 4 and Table S1). This was
supplemented with a collection of 95 prostate cancer samples we obtained from
publications (Baca 2013, McLendon 2008, Berger 2011, Weischenfeldt 2013), a set
of 26 unpublished glial tumor samples, 32 kidney cancer samples from the TCGA

(McLendon 2008), a set of 100 stomach cancer samples from Wang et al. (2014).

Fig. 4: Distribution of WGS cancer samples obtained for LARVA analysis.
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6.2. Quality control of the WGS variants

A number of genomic regions are known to have poor read mappability due
to sequence phenomena that cause ambiguous mapping results, such as a large
number of tandem repeats. These regions are known as signal artifact blacklist
regions (Derrien 2012). Since it is likely that variant calls in this region are possibly
inaccurate, we opted not to use these regions or any intersecting variants in our
mutation rate calculations (details in Fig. S1). Blacklist regions were derived from
Derrien et al. (2012), and downloaded from the UCSC Genome Browser. Variants
intersecting these regions, as determined by BEDTools (Quinlan 2010), were

removed from the analysis.

6.3. Noncoding annotation summary

Our analysis covered a range of noncoding regulatory annotations. The
GENCODE v16 main annotation file was parsed to derive the coordinates of
regulatory annotations close to gene regions, including promoters and untranslated
regions (UTRs)(Harrow 2012). Transcription factor (TF) binding sites were derived
from the Chip-seq experiments conducted as part of the ENCODE project (Rozowsky
2009). We collected the full list of TF binding sites in all possible tissues and cell
lines from ENCODE. Distal regulatory modules (DRM) enhancers, which regulate the
expression of genes at non-adjacent sites, were derived from (Yip 2012). Another
class of regulators, the Dnase I hypersensitive (DHS) sites (Thurman 2012), were
also derived from the ENCODE project. Additionally, we added a set of sites deemed
“ultra-conserved” in Bejerano (2004) due to their extremely high level of

conservation across many species. Furthermore, we used a set of “ultra-sensitive”
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sites from Khurana et al. (2013), so named because they are noncoding regions
under higher selective pressure from the population genetics perspective. Finally,
similar to the 2500bp promoter sites, we studied the more proximal transcription
start sites (TSSes) by extracting the 100bp regions immediately upstream of
GENCODE gene coding annotations (Harrow 2012). Table 7 summarizes the

noncoding annotations.

Table 7: A summary of the noncoding annotations of interest

Feature
Feature Nucleotide Number Mean Length Length SD Genome
Fraction
Promoters 89325819 72965 2500 0 0.028473455
TF Peaks 376580899 5710734 632.3407 434.9489 0.120038744
DHS Sites 434080020 2890742 150.162145 4.519059 0.138367136
DRM 8273100 9599 861.871 987.8922 0.002637129
Enhancers
Ultra-
. 126007 481 261.96881 70.47657 4.02E-05
conserved sites
g't::'sens't've 610048 1354 683.1492 769.1901 0.000194459
UTRs 41398790 155052 392.5388 781.4613 0.013196258

Pseudogenes are known hotspots for artifacts due to their high context
resemblance to their parent genes. In order to avoid potential variant calling bias,
partially due to mapping difficulty, we removed the promoters, TSS, and UTR

analyses for pseudogenes in the GENCODE annotation (details in Fig S2).

6.4. Models used for significance evaluation of mutation burden

The mutation counts for each regulatory element were calculated from the
760 cancer genomes mentioned above. For each regulatory element category, three
models were used to calculate the mutation rate that would be expected due to

background stochastic mutation processes for significance evaluation.
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Suppose there are k noncoding regulatory elements (e.g. TF binding sites) to
be analyzed. For the i" element, let n; stand for the total number of nucleotides in i.
x;and p represent the number of mutations within element ; and the probability of

observing a mutation in each position. Some previous models (Ding 2010, Weinhold

2014) assumed that p is constant over the entire genome and mutations occur in an

independent way. Hence, in model 1 x, can be described as a binomial distribution:

x, : Binomial (n;, p) (1)

However, due to the heterogeneous nature of the cancer genomes and the
possible dependencies among neighboring loci, large overdispersion was found in
the mutation count data (as seen in Fig. 8 in section 7.3). As a result we first
improved model 1 into a two-layer hierarchical model (model 2). Instead of setting

p as a constant, we allow it to be drawn from a beta distribution with two
parameters p and o indicating the average mutation rate and overdispersion

respectively (details in Supplemental section 2.2). As a result, the marginal

distribution of x, follows a beta-binomial distribution:

x,|p, : Binomial (n,, p,) (2)
D; :Beta(u,o)
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Furthermore, mutation rates are known to be confounded by a lot of genomic
features, such as replication timing (represented by R ), so we further divided the
noncoding regulatory elements into 10 bins according to the averaged replication
timing signal. Within each bin, we assumed that the mutation rate follows the same

distribution. Therefore, model 3 can be represented as:

X, ‘pi :Binomial(ni,pi)
D; :Beta(u|R,(7|R) (3)

M|R,O’|R : constant within the same R bin

Maximum likelihood estimation was used for model 1. The moment estimator
mentioned in (Kleinman 1975, Young-Xu 2008) was used to estimate the
parameters in models 2 and 3, and the p-values were calculated accordingly for the

three models (for details see Supplemental section 2.2).

6.5. Workflow of LARVA

The workflow of LARVA is given in Fig. 5. The cancer variants in VCF format
pass through a quality control filter that includes removing those variants that fall
into blacklist regions. The preprocessed variants, along with our collected set of
noncoding annotations that do not overlap blacklist regions, are used in the main
computation. The main processing step includes counting all variant intersections
with the noncoding annotations. DNA replication timing was used in model 3 for

local mutation rate corrections. For each annotation category, the background
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mutation model was calculated using models 1-3 mentioned above, and p-values

were given accordingly.

Fig 5: A flowchart of LARVA's procedure for identifying significant highly mutated noncoding elements.
Cancer variants in VCF format are passed through quality control filters, and then intersected with our
noncoding annotation corpus. After factoring in regional mutation rate corrections, a beta-binomial
distribution is fitted to the observed data, which allows the identification of elements with a significant
mutational burden.
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6.6. Release of results

We release the noncoding annotations, the mutation counts, and the
corresponding p-values on the 760 cancer genomes used in this paper as a
potentially useful resource to facilitate cancer researchers for driver event
discovery and validation in the future. The files can be directly downloaded from

larva.gersteinlab.org. The files available for download include:

* (C++ source code with documentation and a regression test suite

41



A LARVA Docker image, which encapsulates all of LARVA’s prerequisite
software and greatly simplifies installation

Our noncoding annotation collection, and

Our p-values from running LARVA with our cancer variant collection on our

noncoding annotation collection
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7. LARVA Cancer Results

7.1. Overview of the annotated noncoding variants on various cancer genomes

We sought to study the whole genome somatic mutation patterns of as many
different cancer patients as possible. To that end, we collected whole genome cancer
variant call sets from a range of cancer data repositories (Alexandrov 2013,
McLendon 2008) and publications (Alexandrov 2013, Baca 2013, Berger 2011,
Cancer Genome Atlas Research 2013, Wang 2014, Weischenfeldt 2013). Our data
spans 760 genomes, and includes 14 types of cancer (Fig 4 and Table S1).

As shown in Table 7, our noncoding annotation list spans approximately 30%
of the human genome. We observed different cancer types demonstrate distinct
mutational preferences over these noncoding regions. To illustrate this
phenomenon, we used 11 types of cancer from our overall dataset for which there
are at least 20 samples and calculated the fraction of WGS mutations within each
noncoding element category (boxplots of various colors in Fig. 6). The overall
nucleotide percentage of each annotation over the genome was used as the
background (black dash lines in Fig. 6). In one instance representative of the large
differences observed between cancer types, variants in kidney cancer genomes were
found to be preferentially located in the TF binding site while lung adenocarcinoma
is mutation depleted in this region (0.140 average vs. 0.098 average, in Fig. 6). A
large sample difference was also observed in several cancer types. For instance,
within Pilocytic Astrocytoma, there are samples that have a TF binding peak

mutation fraction as high as 0.252 and as low as 0.011, which represents a ~23-fold
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difference. Hence, it is important to understand the mutation patterns in these

noncoding annotations, and take their unique characteristics into consideration.

Fig 6: Boxplots illustrating the distribution of variants intersecting several prominent classes of noncoding

annotations in various cancer types. The percentage of mutations varies widely between noncoding

element types, between cancer types, and between samples of the same cancer type.
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7.2. Large cancer type, sample, regional heterogeneity of cancer genomes, and
the potential dependency among neighboring regions violate the binomial
assumption

In Weinhold et al. (2014), the mutation burden tests are performed based on
the binomial distribution, which inherently assumes a constant mutation rate and
completely independent mutation events. However, these assumptions might not be
appropriate for either somatic or germline variant analysis.

First, in our analysis of hundreds of WGS somatic mutation signatures, we
observed huge cancer type, sample, and regional somatic mutation rate
heterogeneity. To demonstrate cancer type and sample mutation rate heterogeneity,
we selected all cancer types with more than 20 samples in it. We split the human
genome into 1 mega-basepair (Mbp) size bins, and intersected the individual sample
variants from our dataset to calculate the mutation rate of each sample. Consistent
with the analysis in coding regions (Lawrence 2013), we observed huge mutation
rate differences between cancer types. For instance, the average whole genome
mutation rate in stomach cancer is as high as 11.389 mutations/Mbp (Fig 7A), which
is ~800 times the mutation rate in medulloblastoma (0.0142, Fig 7A). Furthermore,
the whole genome mutation rate also fluctuates wildly across samples, and such
changes may go up to 100 times within the same cancer type (0.359 vs. 21.8 in
breast cancer for example). Additionally, to illustrate regional mutation rate
heterogeneity, we randomly selected 50 one-megabase-length regions to calculate
the mean and standard deviation (SD) of the local mutation rate across samples in
lung cancer and prostate cancer (Fig 7B). As shown in Fig 7B, the average local

mutation rate may vary from 0 to 50.8 mutations/Mbp across the randomly selected
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cancers, the mutation rate spans several orders of magnitude. (B) Variation in the mutation rate across

Fig 7: (A) Between samples of the same cancer type, there is huge mutation rate heterogeneity. For most
chromosome 1 in lung cancer (top) and prostate cancer (bottom).

bins, and the SD range is unusually huge for each bin. Similar results were also

observed in prostate cancer (Fig 7B).
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Several biological signatures could partially explain the observed mutation

rate heterogeneity. For example, the later replicating regions usually suffer from



accumulative DNA damage, and therefore are prone to mutations
(Stamatoyannopoulos 2009). Furthermore, methylated cytosines in CpG sites are
often unstable and undergo deamination to thymine, which yields a C to T transition
(Hodgkinson 2011). Hence, there is a noticeable mutation rate difference at CpG and
non CpG sites. Several other hypotheses were also proposed and summarized in
Hodgkinson and Eyre-Walker’s review paper (2011).

Second, mutation events might not be independent of each other. For
example, in germline mutation analysis, mutations with high LD are prone to co-
occur. Additionally, some passenger mutations are generated by other driver
mutations. The driver mutation might be a mutation in a DNA replication or repair
gene. Moreover, some structural variations, such as long insertions or deletions,
might cause problems in pairing during meiosis and thus generate additional point
mutations in neighboring regions (Tian 2008). Consistent with this hypothesis, the
mutation rates of the surrounding structural variations are elevated in several
eukaryotic species (Tian 2008, Hollister 2010, McDonald 2011).

Perhaps due to the violation of these two assumptions, we observed a much
higher than expected variance in the mutation count data. For example, at a 10kb
bin resolution, the observed mutation count variance is 7.679 times the expected
value under the binomial assumption. Hence, it is necessary to introduce other

statistical models to handle such overdispersion in the mutation count data.

7.3. Improved mutation count fitting through a beta-binomial distribution
As discussed in the previous section, a binomial distribution model used in

Weinhold et al. (2014), which assumes a constant mutation rate and independent
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mutation process, could be problematic in more practical data analysis applications
when the mutation counts are highly overdispersed. Hence, we first proposed a two-
layer model to fit the variant count data (model 2 in Section 6.4). Instead of setting a
constant mutation rate, our model treats the mutation rate as a beta-distributed
random variable, which flexibly provides the underlying mutation rate with desired
mean and variance properties. Then the mutation counts within each regulatory
element could be easily modelled as a beta-binomial distribution (further details in
Section 6.4).

We fitted the mutation count data at a 10kb bin resolution of the 760 WGS
cancer genomes under the fixed (binomial) and variable (beta-binomial) mutation
rate assumptions in Fig. 8. We calculated the frequency of the observed mutation
count in each bin and compared it with the binomial (model 1) and beta-binomial
(model 2) fittings respectively. It is shown in Fig. 8A that the observed data
demonstrates much heavier tails than the binomial distribution, while the beta-
binomial distribution fits the right tail very well. In order to quantitatively exhibit
the improved performance of beta-binomial fitting, we utilized Kolmogorov-
Smirnov (KS) statistics to compare the two distributions with the observed data in a
nonparametric way. A larger KS statistic indicates a higher level of deviation
between the two distributions. Specifically, 1000 bins were drawn from beta-
binomial and binomial fitted distributions separately to calculate the KS statistic
against the randomly sampled 1000 mutation counts from the observed data. This
scheme was repeated 1000 times and the cumulative distribution function (C.D.F) of

the KS statistics were given in Fig. 8B. The median KS statistic value for the beta-
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binomial distribution was 0.087, significantly smaller than 0.218 of the binomial
distribution (p-value for two-sided Wilcoxon test < 2.2x10-16, boxplots given in Fig.
8C). Different bin sizes were analyzed using the sample method and results were
similar (100kb bins in Fig. S3, 1kb bins in Fig. S4). In order to avoid overfitting, we
utilized half of the data for distribution fitting, and the remaining half as the input to
calculate the KS statistic for evaluation. This scheme was repeated 100 times. The
beta-binomial distribution still significantly outperforms the binomial distribution
(0.0821 vs. 0.216, p-value for two sided Wilcoxon test < 2.2x10-16, Fig. S5). Hence,
the improved performance of the beta-binomial distribution is due to its enhanced
flexibility to handle the overdispersed mutation count data instead of overfitting.

In the significance analysis, p-values were usually calculated from the right
tail of the null distribution. However, the huge deviation of the binomial distribution
from the observed one could potentially introduce huge p-value inflation, and
consequently result in numerous false positives. We defined the p-values for the
observed distribution as the percentage of bins with equal or larger mutation counts.
However, the improved fitting of the beta-binomial distribution could solve this

problem and provide more accurate p-value assessment.
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Fig 8: (A) The beta-binomial distribution (pink line) provides better fitting to the observed mutation counts
at 10kb resolutation (black line) of 760 cancer genomes, especially at the right tail as compared to the
binomial distribution (turquoise line). (B) A comparison of the cumulative distribution function (CDF) of
the binomial distribution and the beta-binomial distribution from part A. (C) Boxplots of the Kolmogorov-

Smirnov (KS) statistics for the two distributions.
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7.4. Local background mutation rate calculation through replication timing
correction further controls false positives and false negatives

Recently, several computational efforts have been made to link somatic
mutation rates with several genomic features in protein-coding regions
(Hodgkinson 2011, Lawrence 2013). A particularly well-known example is DNA
replication timing. During replication, the single stranded DNA usually accrues
endogenous DNA damage, such as oxidation and deamination (Stamatoyannopoulos
2009). Hence, DNA that is replicated in a later stage would be susceptible to the
effects of accumulative damage, and would be prone to all classes of substitutions.
Consistent with this assumption, scientists observed that the later replicating
regions demonstrate remarkably higher mutation rates (Stamatoyannopoulos
2009). Although replication timing has been used successfully to calculate the
background model in the coding regions, little work has been done in the noncoding
regions in cancer genomics. Hence, we explored the effect of replication timing on
the mutation rate calculation (model 3 in Section 6.4), and the consequential effect
on the p-value evaluation.

Using 1kb bins, we counted the average replication timing value within each
bin, and then separated the top and bottom 10% of replication timing bins for
mutation rate calculation. As shown in Fig. 9A, we observed noticeable differences
in the mutation rate vis-a-vis the replication timing signal. The average mutation
count of the 760 samples was 1.200 for the bottom 10% replicating timing bins, as
compared to 4.028 for the top 10% (p-value for two-sided Wilcoxon test <

2.2x10-16). A KS test was performed to determine whether these two sets of
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mutation counts data follow the same distribution, and the p-value is less than
2.2x10-16, indicating that the two distributions are significantly different.

Moreover, we observed that the mutation counts data for bins with similar
replication timing values still shows extensive overdispersion. For example, for the
bottom 10% of replication timing bins, the observed variance of mutation counts
was 4.168, which is 3.477 times that under the binomial assumption. Consistently,
we observed poor fitting of the binomial distribution against the observed
distribution, especially in the right tails (Fig. 9A). The huge deviation in the right
tails would result in huge p-value calculation inflation as shown in Fig. 9B. The p-
value for 16 mutations in the bottom replication timing 1kb region from the
empirical distribution shows only marginal significance (3.994x10-4), but the
binomial distribution could inflate it to 2.585x10-13 due to its bad fitting of the heavy
tails on the right side. But our beta-binomial distribution rigorously controls the p-
values through the flexible mutation rate assumption (p-value = 1.002x10-3). We
demonstrated the better p-value curve of the beta-binomial distribution in a variety

of data points and replication timings, indicating the robustness of our method (Fig.

9B).
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Fig 9: (A) The 1 kb genome bins representing the top 10% and bottom 10% of the DNA replication timing
were used to derive an observed distribution of mutation counts, demonstrating the influence of
replication timing. The fitted binomial and beta-binomial distributions are plotted as bar plots. (B) P-
values at different mutation counts were given by the observed, beta-binomial, and binomial distribution.
The binomial distribution’s p-values demonstrate an inflation that is not observed in either the observed
or beta-binomial distribution’s p-values.
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Additionally, the replication timing effect correction further improves the p-
value calculation to avoid potential false positives and false negatives. For instance,
for a region among the top replication timing regions, 8 mutations in 1kb bin would
give a p-value of 0.094 after replication timing correction from the beta-binomial
model, but might be reported as positive when ignoring replication timing effect (p-
value = 0.038 from beta-binomial by mixing the top and bottom 10% replication
timing points). Similarly, a p-value of 0.064 would reject 7 mutations within 1kb bin
as significant without correction. However, if this point comes from the bottom
10% of replication timing regions, the true p-value should be 0.030 due to its
relatively lower local mutation rate. Hence, it is important to perform covariate

correction before calculating p-values.
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7.5. LARVA discovered a list of highly recurrent noncoding regulatory regions
from WGS data

We first applied LARVA to the 760 genomes’ variants, intersecting them with
the noncoding regions listed in Table 7. In total, LARVA reported 3964 and 3776
highly mutated regions before and after replication timing corrections, respectively
(as shown in Table 8). On the other hand, the binomial distribution models reported
at least 30 times more regions as significant because of the aforementioned p-value
inflation, giving rise to a high false positive rate. We also tested the immediate
100bp upstream of every possible transcription start site (see Section 6.3 for
details), the results of which are depicted in Fig. 10B. Forty-five TSSs passed the
0.05 p-value thresholds after p-value adjustment (BH method, Benjamini &
Hochberg 1995). Consistent with previous studies, we observed that the TSS for
TERT came up in the top regions (Fig. 10B), and the oncogene TP53 also ranked
second among all sites. LMO3, which ranked third after replication timing correction,
is a protein coding oncogene that is predominantly expressed in brain tissue. It has
been reported to be involved in a variety of cancer types, such as lung cancer (Kwon
2012) and neuroblastoma (Isogai 2011). PRRC2B’s TSS was reported as the most
significantly recurrent region among all TSSes. It is a protein coding gene that is
extensively expressed in brain tissue, but to our best of knowledge, there is no study
to show the link of PRRC2B to cancer. Further investigations should be performed
for the purpose of validation. Similar results were given for promoters and UTR
regions as well. We selected all the genes with highly mutated TSSes, promoters, or

UTRs (adjusted p-values after corrections < 0.05) and performed GO analysis
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(Ashburner 2000). The top three enriched GO terms are: “negative regulation of

» «

fibroblast proliferation”, “regulation of extrinsic apoptotic signaling pathway in

absence of ligand”, and “regulation of cell growth”.

Table 8: The number of highly recurrent regions in each class of noncoding annotation discovered by
LARVA and the binomial distribution-based model, with or without replication timing (RT) correction.

LARVA without RT | LARVA with RT Binomial without Binomial with RT
correction correction RT correction correction
Ultra-sensitive 1 0 47 66
sites
DRM Enhancers 9 6 181 183
UTRs 169 164 1415 1402
Promoters 47 47 2277 2264
TSSs 45 45 3835 932
DHS Sites 1605 1491 40316 40311
TFBSs 2112 2063 88609 88693
Sum 3988 3816 136680 133851

55




Fig 10: (A) The number of significant p-values implied by beta-binomial distribution and binomial
distribution (with and without DNA replication timing correction). (B) A sorted p-value plot of the top
significant TSSes derived from the LARVA analysis.
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In terms of transcription factor binding sites, LARVA claimed 2054 out of the
5,710,954 tested binding sites are highly recurrent (0.036%). The transcription
factor CTCF had 852 binding sites reported as significant (Table 9). CTCF is a
multifunctional protein that is linked with multiple cancer types (Filippova 2008).

Specifically, several studies have reported that disruption of CTCF binding sites
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through mutations or abnormal methylation sites is closely associated with cancer
(Ohlsson 2001, Takai 2001). Moreover, we found that the oncogene BCL3 has a
noticeably higher significant percentage with respect to the average (7.721 times of
the average, p-value for two-sided binomial test = 6.762x10-13). Interestingly, BCL3
is a proto-oncogene candidate which is closely associated with progression of
diverse solid tumors (Maldonado 2011). For example, BCL3 is aberrantly up- and
down-regulated in breast cancer and nasopharyngeal carcinoma, respectively, and
is also reported to be strongly associated with survival in colorectal cancer.
However, it is not a highly mutated gene according to our data: BCL3’s mutation rate
is 1.22 mutations/Mbp while the gene average is 2.52 mutations/Mbp. Our analysis
suggests another possibility—that the misregulation of BCL3 is possibly due to
binding site disruption instead of the changes in the protein itself. Further
computational and experimental effort should be made to clarify the mechanism of

BCL3 regulation in different cancer types.
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Table 9: A summary of the highly recurrent transcription factor binding sites (TFBSs).

TF Significant Total Percent
CTCF 870 2659116 0.000327176
RAD21 133 352066 0.00037777
MAFK 90 112696 0.000798609
CEBPB 77 111583 0.000690069
SPI1 53 81053 0.000653893
STAT3 46 140549 0.000327288
NR2C2 44 4555 0.009659715
MYC 39 129206 0.000301844
NFKB1 39 85426 0.000456535
sSMC3 31 73788 0.000420123
MAX 30 84339 0.000355707
JUND 29 75579 0.000383704
BCL3 22 7806 0.002818345
EP300 22 87290 0.000252033
FOXA1 22 88981 0.000247244
USF1 22 70983 0.000309933
GATA2 20 70723 0.000282793

7.6. Whole genome recurrent events evaluation

Despite great efforts to annotate noncoding regions, there are still many
regions with as yet unknown regulatory roles. In order to evaluate the recurrent
events in these regions, LARVA provides all possible p-values, whether before or
after adjustment, and with or without replication timing corrections, for high
confidence bins on the genome (see Section 6.5 for details) of variable length. We
also compared the results from our beta-binomial model with the binomial model.
For example, we randomly sampled five thousand 10kb bins from the whole
genome and made a Manhattan plot of p-values from both methods. It is obvious
that the p-values from the binomial distribution were noticeably inflated (Fig. 11B),
while our beta-binomial model effectively controls the p-values (Fig. 11A).
Consistent with this result, we found that p-values from LARVA follow a uniform

distribution much better than those from binomial distribution (Fig. S13). We want
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to emphasize that as the sample size grows larger (such as in the following section,
which describes our LARVA exome analysis), and as the target region grows larger,
we expect more severe deviation from the constant mutation rate assumption,

usually resulting in better performance for LARVA compared to the binomial model.

Fig 11: Manhattan plot of the p-values from 5000 randomly samples 10kb bins from the beta-binomial
distribution (A) and the binomial distribution (B). The binomial distribution may provide heavily inflated p-
values due to its inadequacy to capture the extensive overdispersion of the mutation count data.
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7.7 Coding region calibration

It is difficult to rigorously test LARVA's sensitivity and specificity due to the
lack of a benchmark dataset. In contrast to our expectations for the coding regions,
we have less information for how LARVA should behave on noncoding regions. Thus,
although LARVA is not optimized on coding region analysis, we re-estimated the
background model on just the coding regions. In particular, given our better

understanding of coding cancer drivers, we have evaluated LARVA on coding
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regions on a total of 5,032 whole exome sequencing samples from TCGA (see
Supplement for details). To compare the beta-binomial model with the binomial
model we used a consistent and conservative threshold for both.

Many highly mutated genes discovered by LARVA were clearly documented
as associated with some type of cancer. On the other hand, many false positives
were reported by the simple binomial test. Moreover, p-values calculated from
LARVA follow a uniform distribution quite well, and our replication timing
correction further improves the p-value distribution (Fig. S12). However, the p-
value distribution from the binomial model severely violates the uniform
distribution assumption, providing further evidence of the binomial model’s

inappropriate fitting.
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8. Complementary Computational Tools
8.1. ACT

In addition to LARVA, there are a number of other useful computational
analyses that would be useful to conduct with whole genome data. We have
implemented a number of these workflows in our Aggregation and Correlation
Toolbox (ACT), an efficient, multifaceted toolbox for analyzing continuous signal and
discrete region tracks from high-throughput genomic experiments, such as RNA-seq
or ChIP-chip signal profiles from the ENCODE and modENCODE projects, or lists of
single nucleotide polymorphisms from the 1000 Genomes Project. ACT is able to
generate aggregate profiles of a given track around a set of specified anchor points,
such as transcription start sites. It is also able to correlate related tracks and analyze
them for saturation—i.e. how much of a certain feature is covered with each new
succeeding experiment. The ACT site contains downloadable code in a variety of
formats, interactive web servers (for use on small quantities of data), example
datasets, documentation and a gallery of outputs. This section explains the
components of the toolbox in more detail, and its applications in various contexts.

There is now an abundance of genome-sized data from high-throughput
genomic experiments. For instance, there are ChIP-chip, ChIP-seq and RNA-seq
experiments from the ENCODE (Birney 2007) and modENCODE (Celniker 2009)
projects. There are also genome sequence data that can be used to generate tracks
measuring sequence content, such as the densities of single nucleotide
polymorphisms (SNPs) from dbSNP (Sherry 2001) and the 1000 Genomes Project

(Durbin 2010). In most cases, the representations of these data take the form of
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either signal tracks that describe a genomic landscape or distinct region tracks that
tag portions of the genome as active. The aggregation and correlation toolbox (ACT)
provides a powerful set of programs that can be applied to any experiments
producing data in these formats. The ability to analyze multiple genomic datasets is
important, as demonstrated by tools like Galaxy (Giardine 2005). ACT provides a

unique set of functionality that complements existing methods of analysis.

8.1.1. ACT Overview

ACT facilitates three main types of analysis:
Aggregation: In many scenarios, it is useful to determine the distribution of signals
in a signal track relative to certain genomic anchors (Fig. 12, aggregation). For
example, it has recently been reported that the contribution of each transcription
factor binding site to tissue-specific gene expression depends on its position relative
to the transcription start site (TSS) (Maclsaac 2010). It is thus useful to aggregate
binding signals of transcription factors at a certain distance from the TSSs of all
genes (the anchors). In general, this type of aggregation analyses helps identify
proximity correlations and functional relationships between the signals and anchors.
In the ENCODE pilot study (Birney 2007), aggregation analysis was used to
demonstrate positional relationships between chromatin features and TSSs.
Correlation: It is also useful to consider how multiple related signal tracks are
correlated with each other. For example, a previous study (Zhang 2007)
demonstrated, using whole-track correlation methods, that there was a consistent
relationship among transcription factors as judged by their signal profiles across

several ChIP-chip experiments. By providing a means of correlating signal tracks
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with each other, ACT allows for initial comparison of different experiments to see
which are more similar or related than others (Fig. 12, correlation).

Saturation: Another important type of analysis is determining the number of
experimental conditions required to achieve a high genomic coverage of the
biological phenomenon under study. For example, using ChIP-chip or ChIP-seq
experiments, one could identify a set of transcription factor binding sites from a
human cell line. When the experiment is repeated using another cell line, some
additional binding sites could be identified. How many cell lines need to be
considered in order to reach the point of saturation, so that few new binding sites
would be identified by extra experiments? ACT produces plots that help answer this
type of question.

ACT was developed primarily by Justin Jee, with supporting contributions
from myself and others (Jee 2011). My specific contributions included the
development of portions of the saturation tool, as well as improvements to the

efficiency of the implementation of the correlation tool.
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Fig. 12: Uses of ACT using signal tracks from various sources. Signal around all TSSs is aggregated to give
an average signal profile, for example of Baf155 binding around TSSs (Encode Project) (aggregation).
Figure made in Excel (correlation). Multiple signal tracks are correlated to show which tracks are more or
less related to each other. In the selected example, a heatmap of the SNP track correlation between four
individuals (dbSNP) leads to a dendogram of their phylogenetic relationship. Figure made using Web ACT.
Each additional signal track increases the number of base pairs covered (saturation). When the addition of
signal tracks is considered in all possible combinations, the average increase in coverage, with error bars,
can be visualized by a saturation plot. In the example, data are taken from individuals from dbSNP [with
additional genomes from Ahn et al. (2009), Bentley et al. (2008), Drmanac et al. (2010), Kim et al. (2009)].
In each box plot, the top and bottom pink bars correspond to the maximum and minimum normal values,
the top edge, middle line and bottom edge of the box correspond to the top 25 percentile, median and
bottom 25 percentile, the black dot is the mean, and red circles are outliers. Figure made using ACT
downloadable saturation program.
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8.1.2. Details and Use Cases

ACT is available as a suite of downloadable scripts corresponding to the
aggregation, correlation and saturation components of the toolbox. The tool is
intended for Linux/Unix users with Java and Python. In addition, it is useful to have
R for output visualization for the aggregation and correlation tools. There is also a
compendium of other versions of the tool components written in different languages
and with varied functionality. For some types of analysis, there are web components
for demonstration purposes on small datasets with built-in visualization features.
However, because most whole-genome signal tracks are too large to upload via
standard Internet connections, users are recommended to download the toolbox
and run it locally. As performing these calculations on whole-genome
data can be especially time intensive, the version of the tools presented here has
been designed to run efficiently on large datasets.

Aggregation: The aggregation component is designed to take a signal track
(.sgr or .wig) and an annotation track (.bed) as input, and compute the average
signal over a certain number of base pairs upstream and downstream of (i.e. a fixed
radius around) the annotations. In other words, signal values are taken from the
region surrounding each annotation, and averaged over the number of annotation
anchors provided. The base pair resolution of the aggregation can be specified by
the number of bins (narrower bins give more data points and therefore finer
granularity). Results of such calculation can be plotted as in Fig. 12 (aggregation).
ACT also provides features such as computing the standard deviation, median and

quartiles that can be viewed as a boxplot, as well as scaling aggregation over regions
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such as areas between transcription start and end sites or within exons so that all of
the aggregate signals within those regions fall into a fixed number of bins. In this
case, bin size is dynamically computed for each region so that the same number of
bins cover regions of different sizes.

Correlation: The correlation analysis takes a set of active genomic
regions (.bed) such as a SNP track or a genomic signal track (.wig). It then divides
genomic coordinates into bins and gives each bin a value corresponding to the mean
or maximum signal values which fall within the bin, or assigns value based on the
number of ‘active regions’ which fall within the bin. A final correlation matrix is
created based on either the Spearman’s, Pearson’s or normal score correlation
between each pair of binned datasets. The results can be visualized as a heatmap or
as a phylogenetic tree using programs such as PHYLIP (Felsenstein, 1996). One
version of the correlation tool uses parallelization to decrease the program’s overall
running time. This component was written largely in Java. Examples of correlation
output based on SNP tracks and ChIP-chip data are shown in Fig. 12 (correlation).

Saturation: We provide an efficiently implemented saturation plot generator.
Each input file corresponds to one dataset (e.g. one new individual, in .bed format),
and each line in a file specifies a genomic location that has the biological
phenomenon under study (e.g. tagged SNPs). The saturation plot shows, with each
new dataset (x-axis), what percentage of genomic base pairs are covered (y-axis).
The program considers the various combinations in which tracks can be added so
that the increase in base pair coverage is a range of values based on all the files in

the input. The resulting plot is output in PDF format (Fig. 12, saturation), in which a
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series of boxplots depicts increasing base pair coverage, where the boxplot at each
position m on the x-axis shows the coverage values of all combinations of m
conditions. Boxplots that approach a horizontal asymptote indicate that the
coverage has reached saturation. Our implementation makes use of special data
structures to avoid redundant counting. It normally takes less than a minute to
generate the plot for up to 30 input files each with a few thousand lines. To handle
more files and files with more lines, the tool also provides an option to compute the

coverage of a random sample of the input file combinations.

8.1.3. Discussion

There are number of additional analyses that can be done to finetune the
output of ACT. For instance, it is possible to use the online genomic signal
aggregator (GSA), which assigns each genomic position to the nearest anchor in
order to reduce the artifacts caused by the subsets of anchors clustering together, to
handle tightly clustered anchors. Also, aggregation can be used in conjunction with
genome structure correction to determine if the enrichments of a given signal with
respect to anchor points are significant relative to the non-random positioning of
the anchors (Birney 2007). This correction takes into account the fact that a
‘random’ distribution of anchors on the genome arises from a distinctly non-uniform
distribution. Practically, this could be carried out through ACT by comparing the
aggregation over anchors (e.g. TSSs) to that from ‘randomized anchors’, where the
latter is generated by shifting anchor coordinates along the chromosome or

transferring anchor coordinates from a second chromosome to the one of interest.
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Finally, ACT can be used as a starting point for other downstream analyses.
In the instance of RNA-seq data tracks, further analysis can be conducted with
RseqTools (Habegger 2011) to, for example, determine additional similarities
between two or more highly correlated tracks. The results of correlation analysis,
for instance, can also be fed into downstream principal component analysis,
allowing for grouping of coregulating factors with their coregulated sites. This
would simply involve diagonalization of the output correlation matrix from ACT.

Saturation analysis can also be used to inform future experimental design.
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9. Conclusions & Future Work

Due to the rapid decline in time and money involved to perform whole
genome sequencing, data is now available for thousands of genomes where
previously only a handful were available (Shendure 2008). However, the analyses
necessary for finding useful patterns in this data, and making sense of it for clinical
benefit, have not kept pace with this sudden increase. Therefore, it is important that
new algorithms are developed that can efficiently mine relevant patterns from
genome sequence data, and that user interfaces for finding and understanding that
data are optimized so that clinicians and biologists, who may not have extensive
technical expertise, can use these results effectively in their work.

Compared with the extensive computational and experimental efforts on the
mutation patterns in the protein coding regions in the past decade (Koch 2014), the
noncoding regions, which were viewed as “dark matter”, and comprise up to 98% of
the human genome, are less investigated in cancer research studies, partially due to
limited knowledge of noncoding function. However, recently several examples
clearly pinpointed the phenotypic effect of mutations in noncoding regulatory
regions in a variety of cancer types. For instance, the TERT promoter, a well-known
example, has been associated with several cancer types (Grossman 2013, Maurano
2012, Vinagre 2013). Fusions of the 5’ UTR of TMPRSS2 with ETS genes frequently
observed in prostate cancer, as well as mutations in certain miRNA binding sites
(Lin 2012), can influence the binding affinity at these sites, and thus affect androgen
receptor regulation in prostate cancer. Hence, it is important to explore the

mutation landscapes of such noncoding regions.
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In this dissertation, we have introduced a new computational framework for
exploring patterns of mutation in the noncoding regulatory regions of human
genomes. Unlike coding region analyses, where burden tests may be conducted with
naturally defined segments—genes—and synonymous sites may serve as a
biologically meaningful background, whole genome burden tests are hindered by
the fact that many noncoding functional regions are poorly defined, if at all. We took
advantage of the complete genome annotation efforts of the ENCODE project
(Dunham 2012) to extract the most extensive catalog of noncoding regulatory
regions to date. We included the TF binding sites and DHS sites from all ENCODE
experiments, promoters, UTRs, predicted enhancers, conserved and sensitive
noncoding regions from our previous efforts (Fu 2014). These annotations are
tested for mutation burden, and the functional significance of each highly mutated
region is immediately clear. Hence, LARVA’s complete design, in terms of both
software and provided data, offers a new, convenient processing engine for whole
genome mutation burden analysis.

We then ran our algorithm on 760 cancer genomes using the comprehensive
list of noncoding annotations to search for highly mutated regulatory regions as
potential noncoding driver candidates. Consistent with the highly heterogeneous
protein coding regions (Lawrence 2013), we observed larger than expected
mutation variation across cancer types, samples, and genomic regions (Fig. 7).
Therefore, the recently proposed binomial models, which assume a constant
mutation rate and independence of mutation events, might be inadequate for the

observed data (Fig. 8, Fig. S3-S4). Instead, we set up two hierarchical models to
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handle mutation count overdispersion (model 2 and model 3 in Section 6.4). First,
we flexibly modeled the mutation rate in the regulatory elements as a two-

parameter beta distribution beta(u,é), resulting in a beta-binomial distribution for
the variant counts; beta(u,é) can be seen as the distribution from which the whole
genome region-specific mutation rates (p) are sampled. Alternatively, beta(u,é) can

be treated as the distribution from which patient-specific or cancer type-specific
mutation rates are sampled. Therefore, when analyzing large regions, such as
enhancers that might be over 10kb, or small regions (such as 200bp TSS sites) in
cohorts with a large number of samples, the beta-binomial model provides
improved fitting over the binomial model. On the other hand, when the target region
is small, or the patients are more homogeneous, we expect less overdispersion from
the data. Then, the estimated beta-binomial parameters will be similar to those of
the binomial distribution.

In addition, genomic features, such as replication timing, expression level,
and GC content, have a major effect on the background mutation rate (Fig.
S6)(Lawrence 2013). As a consequence, the overall background mutation rate is
actually a mixture of several different distributions, resulting in extra variance in the
mutation count data (Fig. S14). Therefore, it is necessary to separate the covariate
effects. In this dissertation, we found replication timing is the feature that explains
the largest amount of variation in the mutation counts data, so we started from this
major covariate and corrected its effect by estimating the local mutation parameters
in the beta-binomial model. In the future, we plan to further correct multiple

covariates jointly. Moreover, in general the quality of LARVA output depends on the
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quality of the input variants. There are some known artifacts in the earlier variant
call sets which might introduce biased results. In the future, the release of large
scale uniformly processed variant call sets will definitely improve subsequent
LARVA analyses.

In the 760 cancer whole genomes in our analysis, we discovered 3776
noncoding regulatory regions that have significantly higher mutations than
expected and provided the mutation enrichment significance of bins with variable
length on the whole genome (Table 8). A list of known noncoding hypomutated
regions, such as TERT and TP53 TSS, were also reported by our analysis, which
convincingly proved the effectiveness of LARVA in discovering functionally relevant
results. We also observed some relatively novel results such as PRRC2B TSS, CTCF
and BCL3 binding sites. BCL3 is a known oncogene that is highly associated with
several solid tumors (Kim 2008, Maldonado 2011), but this gene itself is not
enriched in our analysis. Our results advocate an alternate possibility: its mutation
in cancer cells is actually in the disruption of its binding sites, rather than the
disabling of the protein itself. We released our annotations to the public, which
would potentially serve as a useful resource for cancer researchers in the future.

[t is worth pointing out that although LARVA was designed to analyze
somatic variants, it can be immediately extended to discover the hypermutated
regions for germline variants. As with somatic variants, the germline mutation
landscape demonstrates extensive heterogeneity and dependency, which can’t be
properly handled by a binomial distribution. Furthermore, unlike GWAS common

variants discovery, LARVA could combine both rare and common variants to assess

72



the mutation burden in noncoding regulatory regions. Due to the popularity of
studying rare variants in human genomes, LARVA could potentially serve as a
powerful tool to discover hypermutated noncoding regulatory regions.

LARVA'’s future capabilities may include the study of genetic diseases at a
systems level, with pathway analyses and interaction network analyses. This use of
LARVA extends the idea of finding recurrently mutated annotations to a larger scope.
Instead of looking for variants from multiple samples in a single annotation, LARVA
would look for the accumulation of variants from multiple samples across a group of
annotations (Fig 13). These annotation groups would correspond to functionally
related annotations, such as a series of metabolic pathway enzymes, or a cluster of
physically interacting proteins. The application of LARVA to aggregating variants on
the metabolome, using pathway databases like the Kyoto Encyclopedia of Genes and
Genomes (KEGG)(Kanehisa 2000, 2011), and on protein-protein interaction (PPI)
networks, using pairwise interaction databases such as the Human Protein
Reference Database (HPRD)(Prasad 2009), could enable a fresh understanding of
cancer disruption on a system-wide level.

Fig. 13: A recurrently mutated annotation set. Intersecting variants (red) span multiple samples.
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of variants from multiple samples in a fraction of the total annotation’s length, or in
specific functional domains (Fig 14). The identification of these recurrently mutated
annotation domains would facilitate the discovery of the functional relevance of

recurrently mutated annotations.

Fig. 14: Recurrently mutated annotation domains represent a fraction of an annotation that contains
intersecting variants from multiple samples.
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LARVA introduces a new model for the distribution of background mutations
in cancer genomes. This model addresses a specific shortcoming of previous models
that assumed a constant mutation rate over the entire genome. LARVA’s background
mutation model represents the mutation rate as a beta distribution, allowing the
rate to vary between basepairs and regions in accordance with the observed
mutation counts across a broad swath of cancer variant data. LARVA’s model
significantly improves the false positive rate relative to previous models, and
enables the identification and prioritization of recurrently mutated annotations in

an annotation set of interest.
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The annotations that LARVA discovers and ranks as important can be fed
into downstream analyses for further verification of the annotations’ roles in cancer
disruption. This includes functional annotation analyses to pinpoint the impact of
mutated sites. Incorporating these features into LARVA in the future would help
make LARVA more generally and broadly applicable, and bring it into a potential
role as a “one-stop shop” for studying variants.

We will also continue to improve LARVA’s algorithms. As the amount of
genetic data increases, it will be important to further optimize LARVA’s
computational efficiency, and therefore we are investigating these issues for future
iterations of LARVA. One particular focus for the speedup of LARVA is to produce a
general purpose GPU (graphics processing unit) version of the code. GPUs are
specialized processors used in computers for the specific purpose of performing the
massively parallel computations necessary to render computer graphics. GPUs are
also good for running other computations that can be parallelized and optimized for
the onboard hardware resources of the GPU. Future research will include
determining the suitability of LARVA’s algorithms for GPGPU computing, and
adapting the code for that type of processing.

Although LARVA may be run as a command line tool, its usage in this form
requires a setup that necessitates some technical skill to accomplish, a limitation
that hinders the potential reach of LARVA. The availability of a Dockerized version
of LARVA mitigates the complexity of first-time setup. However, a Web version of
LARVA would make it even easier for nontechnical users to take advantage of

LARVA'’s capabilities. On the other hand, a Web version would be hampered by the
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fact that the amount of data that can be used is limited by the upload and download
speed of the user, making the Web version unsuitable for large scale use. There
would also be the issue of properly protecting data that is under strict usage
restrictions so that no unauthorized users can access the data on LARVA’s servers,

or in transit. These and other issues will be considered in future iterations of LARVA.

Finally, we will continue to gain insights by applying LARVA to additional
cancer types and subtypes. The Cancer Genome Atlas (TCGA) is anticipated to have
generated roughly 2.5 petabytes (PB) of data by its conclusion (“NCI Cancer
Genomics”). Other consortia spanning many other countries and populations have
similar efforts under way to study the most pressing cancers particular to those
populations. With the availability of such a tremendous trove of data, LARVA’s
development is most opportune. LARVA'’s simple and efficient methods for studying
recurrent mutation patterns will be invaluable for gaining new information on the
molecular characteristics of cancer disruption. In the long term, we envision LARVA
becoming increasingly useful for elucidating important insights and understanding
about all types of genetic diseases.

In summary, LARVA is a powerful computational method to explore a broad
range of genome annotations to uncover the ones that are mutated across many
samples. LARVA makes it possible to predict putative noncoding drivers of genetic
disease, and prioritize these predicted drivers for more rigorous downstream
analysis. This may lead to faster identification of important targets that may be used

to suppress disease with therapies and drugs.
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Supplementary Material for LARVA
1. Pseudogene UTR, TSS, and promoter sites removal

Pseudogenes are known to be hotspots of artifacts in numerous genomics
analyses (Guo 2014). Part of the reason lies in the fact that read mapping in
pseudogenes might be complicated due to their context similarity with their parent
genes. In order to analyze the mutation events in the pseudogene regions, we
extracted all the pseudogenes from the Gencode annotation (version 19) and
calculated the average mutation counts from the pooled samples in gene and
pseudogene regions, and also the upstream and downstream 2kb region of all
pseudogenes. Possibly due to the shorter length of the pseudogenes, a larger
variance of the mutation rate was observed in the pseudogenes compared to the
genes, although two-sided Wilcoxon test shows no significant difference (P = 0.453).
However, we observed a noticeable elevated mutation rate in the upstream and
downstream regions of pseudogenes (Fig. S2), which can potentially affect the UTR,
TSS, and promoter regions analysis. In order to exclude potential artifacts, such as
variant calling artifacts, we excluded the pseudogenes from the Gencode gene list

when analyzing these regions.

2. Details of model fittings

2.1. The constant mutation rate assumption and the resultant binomial
distribution

The underlying assumption of the binomial model used in Alexandrov et al
(2013) is that the mutation rate within the given region is a constant. Suppose the

target region has n based in length, and the homogeneous mutation rate is p. Then
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the mutation count x inside this region falls into a binomial distribution with the

probability mass function as:

Pr(x:k>=( n }pm—p)""‘

(1.1)
Given the mutation count data, the maximum likelihood estimator of the mutation

rate is:
p=5— (1.2)

where k represents the total number of regions and i is the region index.

2.2. The beta-binomial distribution used in LARVA
Instead of the fixed mutation rate assumption, we provided more flexibility

of the mutation rate by allowing it to follow a beta distribution:

_ =)
()= Bea(er p)= o UL
“T(a)r(B)” 1= (1.3)

Suppose the mutation countis x,,i =1,2,...,k, and the sample size and binomial

probability can be expressed as n; and p;. Instead of assuming the mutation counts

in all bins is a constant, we can set up a two stage model:

D, ~ Binomial(ni,pi)
p, ~ Beta(a, B) (1.4)

Xi
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Then the total number of mutations within a bin of length n follows the beta

binomial distribution as in (1.5):

(a)T(B)T(a+B+n,) (1.5)

To estimate the parameters in the beta-binomial distribution, we used the scheme
described in Young-Xu & Chan (2008) and Kleinman (1975). When the target bin

length is fixed, resulting in n, =n,i =1,2,...,k, the mean and variance of mutation

counts can be written as:

a j—
a+p
var[ X|=nu(1-u)o,

1
G_Ot+ﬂ+1 (16)

E[X]=n

nit

For simplicity, we directly estimate u and o instead of @ and S. Hence, the

moment estimator can be immediately derived from equation (1.6).
When the target region length is variable, the estimation is a little bit more

complicated. We define additional parameters for mathmetical convenience in (1.7):

- (1.7)

From this, we can derive the moment estimator in (1.8):
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(1.8)

However, from (1.8), w; is also a function of g, which is to be estimated, and there is
no analytical solution to it. Hence, as suggested in Kleinman (1975), we initially
assigned the w; proportional to n; to get a rough estimate of y. Then w; was updated

with this estimate to obtain a more accurate estimation of o.

3. Coding Region Mutation Burden Analysis

LARVA is not designed for coding region analysis due to the availability of
synonymous sites, which serve as a natural and biologically meaningful background
in these regions. For the sake of gaining additional insight from an exome
performance calibration, we nevertheless evaluated LARVA'’s ability to identify
statistically significant mutation burdens in genes. Exome variant data was obtained
from The Cancer Genome Atlas (TCGA) Data Portal (Cancer Genome Atlas Research
2008). The complete set of exome variant calls includes 20 cancer types and 5032
samples in total. A detailed graph of the collected data is provided in Fig S8.

Gene annotation data was derived from the GENCODE v19 annotation files
(Harrow 2012). All complete protein coding transcripts were extracted, and all the
exons for each gene were merged, as demonstrated in Fig S9. This data spanned
19,822 genes, and a total of 252,356,877 nucleotides. We plotted the distribution of
gene lengths in Fig S10. The total number of mutations falling into the merged gene

regions is 3,547,350, and the average mutation rate is 0.0141 for the pooled samples.

88



As with the noncoding regions, huge mutation heterogeneity was observed in the
coding regions (Fig S11). Then we calculated the replication timing for each merged
exon and gave the final replication timing for each gene as its exon length weighted
average value.

We removed the genes with length less than the bottom 5% of gene lengths
for higher annotation confidence, and then compared the performance of LARVA
and the binomial test. After p-value adjustment, LARVA found 15 genes that are
potentially under higher mutation burden (Table S2). For each of these genes, we
searched for literature supporting cancer association. We found 11 out of 15 genes
are clearly documented with some cancer association. Note that we reported only
one Pubmed ID per gene, even if there are many more supporting references. Our
findings effectively demonstrate that LARVA is capable of finding meaningful results
on protein coding regions. On the other hand, the p-values for the binomial test
method were heavily inflated. After p-value adjustment, there are 3,927 out of
19,110 genes, roughly 20.55%, with adjusted p-value less than 0.1. It is very unlikely
that all such genes are associated with cancer.

Q-Q plots of p-values given by LARVA and the binomial test are given in Fig.
S12. It is shown that the p-value distribution from the binomial test severely violates
the uniform distribution assumption, which is consistent with its bad fitting of the
data. On the other hand, the p-values from the LARVA method (Fig. S12, left hand

side) roughly follow a uniform distribution.
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4. Importance of covariate correction

It is well known that local mutation rate is affected by various factors, such as
replication timing and GC content (Lawrence 2013). Due to these confounding
factors, the observed mutation count data distribution is actually a mixture of
several different distributions, which further increases the overdispersion. We used
some simulations to show this effect in Fig S14. We randomly simulated five
binomial distributions of binomial (n=100,000), where the mutation rate p; was
uniformly sampled from [1e¢, 5e->] to mimic the mutation rate difference from
various replication timing regions. The empirical distribution of the pooled data is
given in the pink line in Fig S14. It is shown that even if we ignore patient-specific
heterogeneity, the observed data demonstrates much larger variation than expected
simply by mixing several different binomial distributions. It is necessary to remove

such effects for more reasonable p-value calculation.

5. Factors that affect overdispersion in the mutation count data

5.1 Heterogeneity in mutation rates in different patients/cancer types

Suppose that even if mutation rate per sample is constant across the whole
genome, it may vary between different patients/cancer types. Each patient-specific
mutation rate can be considered a random sample from beta distribution, so after
pooling all samples together, the mutation counts for each bin follows a beta-
binomial distribution. The overdispersion under this condition depends on how

different these patients are.
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5.2 Length of the target region to be analyzed

Assume that y is the number of somatic variants in n bases, the point
mutation rate is €. Unlike the constant mutation assumption in binomial
distribution, we assume that € is a random variable with:

E(e)=p
Var(g)=¢p(1-p)

So the variance of y can be calculated as:

Var(y) =E, (Var(y|£)) + Var(E(y|£))
=FE, [ns(l - 8)] + Var(ne)

=n[p-op(1-p)-p* |+ n’ep(1-p)
=np(1-p)[1+(n-1)p]

The variance in the mutation count data is scaled by a factor of 1+(n—1)¢

Biologically speaking, the difference of the point mutation rate within the analyzed
noncoding region varies much more in longer noncoding elements (2.5kb promoters)
compared to smaller regions (200bp TSS), resulting in very different overdispersion
parameters in the estimation stage. Hence, we do not recommend evaluation of

regions of non-comparable length in the same run.
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6. Supplementary figures

Figure S1: Boxplot of mutations counts in 10k, 100k, and 1mb regions with or without overlapping
blacklist regions. P-values were calculated from the two-sided Wilcoxon tests. It is clear that in the smaller
10kb and 100kb regions the mutation rate is much larger in the blacklist bins compared to the nonblacklist
bins. Due to the mappability issues surrounding blacklist regions, many of these intersecting variants are
likely to be spurious, and hence they were excluded from the remaining analyses.
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Figure S2: The distribution of mutation rates of all gene types (both protein coding genes and

pseudogenes), protein coding genes only, pseudogenes only, and the 2kb regions upstream and
downstream of pseudogene annotations. Pseudogenes exhibit a much larger mutation rate variance. If
genes and pseudogenes were evaluated together, the extremely high mutation rate pseudogenes could
be mistakenly classified as significantly mutated (false positives). Hence, the pseudogene annotations

were removed from the LARVA gene analysis.
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Figure S3: Fitting comparison between the beta-binomial and binomial distribution. (A) Density plot of the
beta-binomial, binomial, and empirical distribution of read count data in 100kb bins; (B) C.D.F curve of the
KS statistics of beta-binomial and binomial generated counts vs. random samplings in the observed
counts; (C) Boxplots of the KS statistics.
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Figure S4: Fitting comparison between beta-binomial and binomial distribution. (A) Density plot of the
beta-binomial, binomial, and empirical distribution of read count data in 1kb bins; (B) C.D.F curve of the
KS statistics of beta-binomial and binomial generated counts vs. random samplings in the observed
counts; (C) Boxplots of the KS statistics.
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Figure S5: Half of the observed data is used for model fitting of both beta-binomial and binomial
distribution, and the remaining half was used to calculate the KS statistics with generalizations from the
fitted distributions. Boxplots of 100 repeats were given below.
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Figure S6: The smooth scatterplot of the mutations count in all tumor samples within 1kb bins vs. its
averaged replication timing value. A linear regression was fitted and the R-squared values are up to 0.124.
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Figure S7: The fitted u and ¢ were plotted for each the 10 used replication timing bins.
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Figure S8: TCGA Whole Exome Sequencing samples by cancer types.
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Figure S9: Details of gene regions definition. Note that only coding transcripts were used for the Whole

Exome Sequencing data analysis.
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Figure S10: Distribution of gene length
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Figure S12: In the coding regions: A) The average mutation rate vs. replication timing; B) QQ plots of
calculated p-values vs. uniform theoretical ones of the coding region analysis.
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Figure S13: QQ plots of calculated p-values vs. uniform theoretical ones of the real and permuted datasets.
Variants were derived from the pan-cancer dataset from Alexandrov et al. (2013), the prostate cancer
variants from Baca et al. (2013), and the stomach cancer variants from Wang et al. (2014) “Real” refers to
the original variant data, and “permutated” refers to the dataset created by randomizing the variant
positions of the original dataset within a 25kb window centered on the original position.
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Figure S14: Importance of covariate correction. The pink line shows a mixture of five different binomial
distributions. This mixture effect introduced extra variation of the mutation count data.

© |
o —+— combined
— p1
(e} —_—
- p2
< — p4
o | — pS
Py
‘m ™M
c © |
©
(q\]
N -
g_
o I} I} [} 1
c>'_ T T T T =‘

I
15
mutation count in 100kb bin

102



7. Supplementary tables

Table S1: Summary of the whole genome sequencing cancer data used for the LARVA study

Cancer Type # Samples
Acute Lymphoblastic Leukemia 1
Acute Myeloid Leukemia 7
Breast Cancer 119
Chronic Lymphocytic Leukemia 28
Glial Tumor 26
Kidney Carcinoma 32
Liver Cancer 88
Lung Adenocarcinoma 24
Lymphoma B-cell 24
Medulloblastoma 100
Pancreatic Cancer 15
Pilocytic Astrocytoma 101
Prostate Cancer 95
Stomach Cancer 100
TOTAL 760
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Table S2: Genes with significant mutation burden, according to LARVA’s exome analysis. CGC stands for
Cancer Gene Census.

PubMed

Rank | Gene name D Annotation
17401430 CGC listed, breast; colorectal; lung; sarcoma;
1 TP53 adrenocortical; glioma; Spitzoid tumour; multiple
other tumour types
CGC listed, pancreatic; colorectal; lung; thyroid;
2 KRAS 24755884 AML; other tumour types
19586940 . .
3 FRGIB 24084849 ALL (Acute lymphocytic leukemia)
4 NRAS 20619739 CGC listed, melanoma; MM; AML; thyroid
5 PTEN 18794879 CGC listed, glioma; prostate; endometrial
6 KRTAP4-11 NA NA
- PIK3CA 16449998 CGC listed, colorectal; gastric; glioblastoma;
breast
8 IDHI 19935646 CGC listed, glioblastoma
CGC listed, melanoma; colorectal; papillary
thyroid; borderline ovarian; NSCLC;
12068308 | cholangiocarcinoma; pilocytic astrocytoma;
9 BRAF . . .
Spitzoid tumour; pancreas acinar carcinoma;
melanocytic nevus; prostate; gastric
10 B2M 18506145 Colorectal cancer
11 CDKN2A 14993899 CGC listed, melanoT;Ii erélultlple other tumour
TBP is up-regulated by oncogenic signaling
12 TBP 12697307 pathways aqd may be a critical component in
dysregulated signaling that occurs downstream of
genetic lesions that cause tumors
13 KRTAPS5-4 NA NA
14 KRTAPS-5 NA NA
15 KRTAP4-5 NA NA
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