
RESPONSE TO REVIEWERS FOR “ALLELE-SPECIFIC 

BINDING AND EXPRESSION: A UNIFORM SURVEY OVER THE 

1000-GENOMES-PROJECT INDIVIDUALS” 
 

RESPONSE LETTER 
 

Reviewer #1 

-- Ref1 – General positive comment -- 

Reviewer 

Comment 

This reviewer did not have formal comments to the authors 

as s/he found the revised paper to be satisfactory and 

endorses publication. 

Author 
Response 

We thank the reviewer for his/her thorough examination of our 
manuscript and endorsing our paper for publication. 

 

Reviewer #2 

-- Ref2.1 – General comment -- 

Reviewer 

Comment 

The authors did not adequately address my two major 

concerns.  

Author 
Response 

We thank the reviewer for the thorough examination of our 
manuscript. We have provided additional analyses and responses. 

 

-- Ref2.2 – mapping to the personal diploid genome -- 

Reviewer 

Comment 

My first comment was that mapping bias should be 

addressed. The authors replied by explaining that they 

excluded reads that map to more than one location. This is 

indeed a standard step in more alignment. Yet, the 

challenge when looking for ASE is not standard. Different 

alleles may have different mapping probabilities and this 

must be taken into account. Failing to do so results in a 

high number of falsely identified ASE. 

 

I must admit that it is a bit concerning to me that the 

authors interpreted my comment as a question regarding 

their standard alignment approach. In my mind, it points 

to a deep lack of familiarity with the ASE literature. 

Author 
Response 

We agree with the reviewer that allelic mapping bias is still an 
issue, mostly because allelic bias cannot be totally eradicated with 
current methods [1]. The two main types of allelic mapping bias 
that are most widely discussed in the field are the reference bias 
and mapping bias arising from sequence homology with other 
genomic locations [2].  
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Reference bias has been widely regarded as the main source of 
mapping bias, since the more standard alignment procedure is, in 
fact, alignment of reads to the human reference genome, not to 
personal genomes [1,3,4,6]. A recent study by Panousis et al. 
found that the bias towards the reference allele contributes to the 
main bulk of the overall mapping bias in allele-specific expression 
[5]. Many publications have specifically cited the use of personal 
genomes as a rigorous but computationally intensive procedure to 
correct for reference bias [1,3,4,5,6]. Thus, we are acutely aware 
of this primary issue in mapping bias, and have chosen to focus 
specifically on rectifying the reference bias by aligning to a diploid 
personal genome. Nonetheless, we undertook this endeavor, to 
not only construct diploid personal genomes for all 382 individuals, 
but also created tools for the personal genome construction. 
 
While we expect the majority of the allelic bias to be accounted for, 
or at least alleviated, in the form of reference bias by the use of the 
personal genomes, we agree with the reviewer that a small 
proportion of the mapping bias still exists. This is especially the 
case in situations where short reads that carry one allele may map 
perfectly to a reference genome but reads with the other allele 
(multi) map to multiple loci (due to sequence homology in other 
regions) (Figure 1) as described also by previous studies [1,5,6]. 
Most studies have examined this allelic bias due to sequence 
homology in the context of the human reference genome. The 
primary solution to date has been the removal of sites, in which 
>5% of the total number of reads exhibit such allelic mapping bias 
[1,5,7,8,9,10]. However, we note that this can be overly stringent, 
because it potentially removes a considerable number of sites that 
might still be allele-specific even after removing reads with 
mapping bias, especially at sites with many reads. 
 

 
Figure 1. Adapted from van de Geijn et al. showing allelic mapping bias in a 

personal genome due to sequence homology in other locations. Here, Read 1 

uniquely maps to the haplotype 1, but Read 2 with the alternate allele maps to 

multiple locations in the other haplotype, and is therefore removed.  

We investigated the effect of the allelic mapping bias (due to 
sequence homology) and the two removing strategies on the 
detection of allele-specific SNVs, in the context of the diploid 
personal genome. Briefly, for each individual, we (1) first align the 
reads to the two ‘reference’ haplotypes, each with their own sets 
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of SNVs and indels. For each haplotype, we (2) retain only those 
reads that uniquely mapped to regions with heterozygous SNVs, 
and then artificially create the same reads but with a single allele 
change at the heterozygous SNV position. (3) We then map these 
simulated reads to the other haplotype.  For those simulated reads 
that align to multiple loci in the other haplotype, (4) we filter their 
original reads from the read pool and conduct another remapping 
and counting with the beta-binomial test to detect allele-specific 
SNVs. At this juncture, we cautiously note that a read can map to 
more than one heterozygous SNV, and they can also affect allelic 
mapping bias. However, the number of simulated reads generated 
per original read increases exponentially with more SNVs that 
overlap. However, >90% of the reads typically map to a single 
heterozygous SNV; Table 1 shows an example from a ChIP-seq 
dataset of DNA-binding protein CTCF for the individual NA12878. 
Hence, given that we are able to capture almost all of the potential 
bias with reads that overlap a single heterozygous SNV, and also 
considering the fact that we do have to apply this on a large scale, 
we find it reasonable to trade a minor compromise in completeness 
for computational efficiency. The pipeline can be modified by the 
user to include all overlapping heterozygous SNVs, if required. 
 

Number of 
heterozygous 
SNVs 

Number of maternal 
reads overlapping 
this number of 
SNVs (%) 

Number of paternal 
reads overlapping 
this number of 
SNVs (%) 

1 197,532 (96.842%) 197,642 (96.859%) 

2 6,282 (3.0800%) 6,299 (3.0870%) 

3 156 (0.0765%) 107 (0.0524%) 

4 2 (0.0010%) 4 (0.002%) 
Table 1. Table showing the number of uniquely mapped maternal (column 2) 

and paternal (column 3) reads of an NA12878 CTCF ChIP-seq dataset, which 

overlap a certain number of heterozygous SNVs (column 1). ~97% of reads 

that map uniquely to the maternal or paternal haplotype overlap only 1 

heterozygous SNV. 

We chose two representative RNA-seq and two ChIP-seq datasets 
(from NA12878) for our allelic mapping bias analyses with personal 
genome alignments. In line with previous studies, we found that 
only a small proportion of SNVs (2-4%) associated with allele-
specific expression (ASE) had an allelic bias >5%. On the other 
hand, there is a higher proportion of SNVs associated with allele-
specific binding (ASB) that exhibit >5% allelic mapping bias (19-
21%) (Table 2).  
 
 
 



 

NA12878 
dataset 

Number of 
reads that map 
to multiple 
locations (% of 
input reads) 

Number of 
allele (AS) 
SNVs with 
>5% allelic 
bias removed 
(% AS SNVs 
originally)  

Number of 
allele-specific 
SNVs 
removed, 
after 
removing 
multi-
mapping 
reads (% AS 
SNVs 
originally) 

CTCF ChIP-
seq dataset 1 
(same dataset 
as in Table 1) 

Maternal: 
2,618 (1.34%) 
Paternal: 
2,575 (1.32%) 

4/19 (21%) 3/19 (15.8%) 

CTCF ChIP-
seq dataset 2 
 

Maternal: 
2,255 (1.48%) 
Paternal: 
2,202 (1.44%) 

11/58 (19%) 6/58 (10.3%) 

RNA-seq 
dataset 1 

Maternal: 
7,653 (0.66%) 
Paternal: 
8,359 (0.72%) 

10/369 (2.7%) 6/369 (1.6%) 

RNA-seq 
dataset 2 

Maternal: 
19,789 (0.93%) 
Paternal: 
25,899 (1.24%) 

21/607 (3.5%) 15/607 (2.5%) 

Table 2. Summary results for four NA12878 datasets, after removing sites 

(column 3) or removing reads (column 4). We chose four datasets, two ChIP-

seq and two RNA-seq datasets, to investigate how much allelic mapping bias 

might affect the detected allele-specific (AS) SNVs in ChIP-seq and RNA-seq 

datasets with personal genome alignments. Mapping bias seems to have a 

greater effect on ChIP-seq datasets. Between 10-21% of the detected AS SNVs 

are removed, depending on which bias removal strategy was adopted – 

removing reads that exhibit mapping bias is able to retain AS SNVs that are 

still allele-specific. 

As discussed before, the removal of sites rather stringent. Thus, 
we further examined the set of SNVs that showed >5% allelic 
mapping bias and found that if we remove only the reads that 
exhibit allelic mapping bias, many of them are still detected as 
allele-specific under the beta-binomial test; for example, 5 out of 
11 sites with >5% allelic bias (CTCF ChIP-seq dataset 2) and 4 out 
of 10 AS SNVs (RNA-seq dataset 1) were still considered allele-
specific (Table 2).  
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As a result, we decided on only removing reads that exhibit such a 
bias from the original pool of reads and then re-align the filtered 
read pool to both haplotypes. This is computationally more 
expensive, but this strategy effectively removes potential false 
positives, and at the same time, retains those that are strongly 
allele-specific. Interestingly, while we were working on this 
submission, van de Geijn et al. published in Nature Methods a tool 
that also similarly removes reads, instead of sites [6].  
 
Additionally, our approach is already conservative, with multiple 
filters in place, such as removing highly over-dispersed datasets 
and using the beta-binomial test with an FDR of 5% for RNA-seq 
and 10% for ChIP-seq datasets. The personal genome is also able 
to handle various mapping artefacts not easily handled by using 
only the reference genome. Particularly, with the ability to 
incorporate larger variants beyond single nucleotide variants (such 
as indels), the personal genome serves as a more representative 
genome, as demonstrated by a much better alignment of unique 
reads [11,12]. We also envision that this allelic mapping bias will 
be alleviated with longer reads being used in ChIP-seq and RNA-
seq datasets in the near future. 
 
[1] Castel et al. (2015). Genome Biol., 16(1):195 
[2] Degner et al. (2009) Bioinformatics. 25(24) 
[3] Satya et al. (2012) Nucleic Acids Res. 40(16):e127 
[4] Stevenson et al. (2013) BMC Genomics. 14:536 
[5] Panousis et al. (2014). Genome Biol., 15(9):467 
[6] van de Geijn et al. (2015). Nat Methods, doi: 
10.1038/nmeth.3582 [epub ahead of print] 
[7] Kilpinen et al. (2013). Science, 342(6159):744-7 
[8] Lappalainen et al. (2013). Nature, 501(7468):506-11 
[9] The GTEx Consortium (2015). Science, 348(6235):648-60 
[10] Dixon et al. (2015). Science, 518(7539):331-6 
[11] Rozowsky et al. (2011). Mol Syst Biol., 7:522 
[12] Sudmant et al. (2015). Nature, 526(7571):75:81 
 
We have included new sections in the ‘Results’, ‘Discussion’ and 
‘Methods’ section about our new addition on allelic mapping bias. 

Excerpt From 

Revised Manuscript 

 

 

-- Ref2.3 – Over-dispersion – 

Reviewer 

Comment 

My second major concern was regarding the binomial test to 

identify ASE. The authors begin their response by citing 

other papers that used such a test. I am not sure what it 

the argument presented here, especially since the authors 

proceed by acknowledging over-dispersion in their data. 
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So, yes, other paper got it wrong in the past, but this is 

hardly a reason to perpetuate this mistake. 

 

As for their revised approach, estimating a global over-

dispersion parameter is not effective. Removing some loci 

because of 'too much' over-dispersion is ad hoc and was 

not justified. But more importantly, there are at least 3 

published methods now to identify ASE using models that 

estimate site-specific over-dispersion, account for 

mapping bias, and report p values based on permutation. 

Why not use one of those published methods? 

Author 
Response 

While we thank the reviewer for his/her comment, the purpose of 
the references is not to make any claims on the ‘correctness’ of the 
methods, but to point to the broader reality that there is currently a 
diversity of methods in the field, where there is no firm consensus 
on the ‘right’ approach. The fact that these publications are recent 
and peer-reviewed at influential journals indicates the plurality of 
the methods accepted by the community, each with their own 
advantages and limitations. For example, van de Geijn et al. [1] is 
a very recent publication in Nature Methods that presented a 
software, which performs alignment to the human reference 
genome, accounts for mapping bias and uses the beta-binomial 
test to account for an individual-specific (not site-specific) global 
over-dispersion. However, it is not able to take into account indels 
and larger structural variants, which can be accommodated by the 
construction of personal genomes. In particular, we have utilized 
our approach in the 1000 Genomes Structural Variant group, 
whose manuscript has recently been peer-reviewed and published 
by Nature. Moreover, the estimation of a global over-dispersion 
has also been employed extensively in many recent and peer-
reviewed software that detect allele-specific expression [1-5]. 
 
Our revised approach estimates over-dispersion at two levels. An 
over-dispersion is estimated for each dataset to remove those that 
are deemed too over-dispersed and that might result in higher 
number of false positives. After which, for each sample (for RNA-
seq and each sample and transcription factor, TF, for ChIP-seq 
experiments), we pool the datasets and estimate the individual-
specific global over-dispersion (for each sample for RNA-seq and 
also each sample and transcription factor for ChIP-seq) and apply 
this estimation to the beta-binomial test for each site in that 
individual (or TF). Hence, in this manner, the estimation of the 
over-dispersion can accommodate user-defined site-specific 
estimation of over-dispersion if necessary. Our R code is provided 
on our website for modifications and more customized analyses by 
the user.  
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We further point out that our two-step serial procedure is novel and 
is introduced to homogenize the pooling of datasets, by removing 
datasets that are too over-dispersed at the outset. This fits very 
well into our pipeline as it facilitates the harmonization and uniform 
processing of large amounts of data and alleviates an 
ascertainment bias in which more positives might originate from 
these highly over-dispersed datasets if they are not removed.  
 
Hence, we have retained our estimation and use of a global over-
dispersion for detecting allele-specific variants. 
 
[1] van de Geijn et al. (2015). Nat Methods, doi: 
10.1038/nmeth.3582 [epub ahead of print] 
[2] Sun (20132). Biometrics. 68(1):1-11 
[3] Mayba et al. (2014). Genome Biology. 15(8):405 
[4] Crowley et al. (2015). Nature Genetics. 47(4):353-60 
[5] Harvey et al. (2015). Bioinformatics. 31(8):1235-42 
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Revised Manuscript 
 

 

 

Reviewer #3 

-- Ref3.1 – General positive comment -- 

Reviewer 

Comment 

The manuscript is much improved and the authors have 

sufficiently addressed the majority of my concerns. I have 

the following minor comments: 

Author 
Response 

We thank the reviewer for the thorough examination of the 
manuscript and we are pleased that the reviewer finds our 
improved manuscript satisfactory. 

 

-- Ref3.2 – Include additional references -- 

Reviewer 

Comment 

1) Imprinting discussion should reference recent 

imprinting paper from GTEx. Lappalainen in Genome 

Research. 

 

2) Heritability analyses of ASE should reference Li, AJHG, 

2014. 

 

Author 
Response 

We have included the references in the respective sections of the 
manuscript. 

Excerpt From 

Revised Manuscript 
Please refer to the ‘Discussion’ section and also the ‘Results’ section 

under “ASB and ASE Inheritance analyses using CEU trio”. 

 
“It could also be a result of other epigenetic effects such as genomic imprinting where no variants 

are causal.35”, where reference 35 is by the GTEx consortium and Baran et al. published in 

Genome Research. 
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“The CEU trio is a well-studied family and with multiple ChIP-seq studies performed on different 

TFs. Previous studies have also presented allele-specific inheritance.10,15,21”, where reference 21 

is by Li et al. published in American Journal of Human Genetics. 

 


