# **RESPONSE TO REVIEWERS FOR "ALLELE-SPECIFIC BINDING AND EXPRESSION: A UNIFORM SURVEY OVER THE 1000-GENOMES-PROJECT INDIVIDUALS**"

# **RESPONSE LETTER**

### Reviewer #1

#### -- Ref1 - General positive comment --

| Reviewer | This reviewer did not have formal comments to the authors     |
|----------|---------------------------------------------------------------|
| Comment  | as s/he found the revised paper to be satisfactory and        |
|          | endorses publication.                                         |
| Author   | We thank the reviewer for his/her thorough examination of our |
| Response | manuscript and endorsing our paper for publication.           |

#### **Reviewer #2**

#### -- Ref2.1 - General comment --

| Reviewer | The authors did not adequately address my two major             |
|----------|-----------------------------------------------------------------|
| Comment  | concerns.                                                       |
| Author   | We thank the reviewer for the thorough examination of our       |
| Response | manuscript. We have provided additional analyses and responses. |

### -- Ref2.2 - mapping to the personal diploid genome --

Ź.

| Reviewer | My first comment was that mapping bias should be                     |                  |
|----------|----------------------------------------------------------------------|------------------|
| Comment  | addressed. The authors replied by explaining that they               |                  |
|          | excluded reads that map to more than one location. This is           |                  |
|          | indeed a standard step in more alignment. Yet, the                   |                  |
|          | challenge when looking for ASE is not standard. Different            |                  |
|          | alleles may have different mapping probabilities and this            |                  |
|          | must be taken into account. Failing to do so results in a            |                  |
|          | high number of falsely identified ASE.                               |                  |
|          |                                                                      |                  |
|          | I must admit that it is a bit concerning to me that the              |                  |
|          | authors interpreted my comment as a question regarding               |                  |
|          | their stappard alignment approach. In my mind, it points             |                  |
|          | to a deep lack of familiarity with the ASE literature.               |                  |
| Author   | We agree with the reviewer that allelic mapping bias is still an     | <br>Deleted: can |
| Response | issue, mostly because allelic bias cannot be totally eradicated with | <br>Deleted: and |
|          | current methods [1]. The two main types of allelic mapping bias      | [1]. We are      |
|          | that are most widely discussed in the field are the reference bias   | Deleted: W       |
|          | and mapping bias arising from sequence homology with other           |                  |
|          | denomic locations [2]                                                |                  |
|          | gonomio locatorio (2).                                               |                  |
|          |                                                                      |                  |

be

it has first been mentioned in Degner et al aware of the

e believe that it is

Reference bias has been widely regarded as the main source of mapping bias, since the more standard alignment procedure is, in fact, alignment of reads to the human reference genome, not to personal genomes [1,3,4,6]. A recent study by Panousis et al. found that the bias towards the reference allele contributes to the main bulk of the overall mapping bias in allele-specific expression [5]. Many publications have specifically cited the use of personal genomes as a rigorous but computationally intensive procedure to correct for reference bias [1,3,4,5,6]. Thus, we are acutely aware of this primary issue in mapping bias, and have chosen to focus specifically on rectifying the reference bias by aligning to a diploid personal genome. Nonetheless, we undertook this endeavor, to not only construct diploid personal genomes for all 382 individuale but also created tools for the personal genome construction While we expect the majority of the allelic bias to be accounted for. Formatted: Font color: Auto or at least alleviated, in the form of reference bias by the use of the **Deleted:** largely personal genomes, we agree with the reviewer that a small Formatted: Font color: Auto proportion of the mapping bias still exists. This is especially the **Deleted:** construction case in situations where short reads that carry one allele may mad Formatted: Font color: Auto perfectly to a reference genome but reads with the other allele (multi) map to multiple loci (due to sequence homology in other Formatted: Font color: Auto regions) (Figure 1) as described also by previous studies [1,5,6]. **Deleted: two parental** Most studies have examined this allelic bias due to sequence Formatted: Font color: Auto homology in the context of the human reference genome. The Deleted: Here primary solution to date has been the removal of sites, in which Formatted: Font color: Auto >5% of the total number of reads exhibit such allelic mapping bias Deleted: performed additional analyses to show [1,5,7,8,9,10]. However, we note that this can be overly stringent, because it potentially removes a considerable number of sites that Formatted: Font color: Auto might still be allele-specific even after removing reads with Deleted: allelic bias only affects mapping bias, especially at sites with many reads. Formatted: Font color: Auto Deleted: our Read 1 haplotype 1 haplotype 2 G-Read 2 Figure 1. Adapted from van de Geijn et al. showing allelic mapping bias in a personal genome due to sequence homology in other locations. Here, Read 1 uniquely maps to the haplotype 1, but Read 2 with the alternate allele maps to multiple locations in the other haplotype, and is therefore removed. We investigated the effect of the allelic mapping bias (due to sequence homology) and the two removing strategies on the detection of allele-specific SNVs, in the context of the diploid personal genome. Briefly, for each individual, we (1) first align the reads to the two reference haplotypes, each with their own sets 25/20

.

of SNVs and indels. For each haplotype, we (2) retain only those reads that uniquely mapped to regions with heterozygous SNVs, and then artificially create the same reads but with a single allele change at the heterozygous SNV position. (3) We then map these simulated reads to the other haplotype. For those simulated reads that align to multiple loci in the other hapletype, (4) we filter their original reads from the read pool and conduct another remapping and counting with the beta-binomial test to detect all test specific SNVs. At this juncture, we cautiously note that a read can map to more than one heterezygous SNV, and they can also affect allelic mapping bias However, the number of simulated reads generated per original road increases exponentially with more SNVs that overlap. However >90% of the reads typically map to a single heterozygous SNV; Table 1 shows an example from a ChIP-seq dataset of DNA-binding protein CTCF for the individual NA12878. Hence, given that we are able to capture almost all of the potential bias with reads that overlap a single heterozygous SNV, and also considering the fact that we do have to apply this en a large scale, we find it reasonable to trade a minor compromise in completeness for computational efficiency. The pipeline can be modified by the user to include all overlapping heterozygous SNVs, if required.

| Number c     | of | Number of maternal       | Number of paternal     |
|--------------|----|--------------------------|------------------------|
| heterozygous |    | reads overlapping        | reads overlapping      |
| <u>SNVs</u>  |    | this number of           | this number of         |
|              |    | <u>SNVs (%)</u>          | <u>SNVs (%)</u>        |
|              | 1  | <u>197,532 (96.842%)</u> | 197,642 (96.859%)      |
|              | 2  | <u>6,282 (3.0800%)</u>   | <u>6,299 (3.0870%)</u> |
|              | 3  | <u>156 (0.0765%)</u>     | <u>107 (0.0524%)</u>   |
|              | 4  | 2 (0.0010%)              | 4 (0.002%)             |

**Table 1.** Table showing the number of uniquely mapped maternal (column 2) and paternal (column 3) reads of an NA12878 CTCF ChIP-seq dataset, which overlap a certain number of heterozygous SNVs (column 1). ~97% of reads that map uniquely to the maternal or paternal haplotype overlap only 1 heterozygous SNV.

We chose two representative RNA-seq and two ChIP-seq datasets (from NA12878) for our allelic mapping bias analyses with personal genome alignments. In line with previous studies, we found that only a small proportion of SNVs (2-4%) associated with allelespecific expression (ASE) had an allelic bias >5%. On the other hand, there is a higher proportion of SNVs associated with allelespecific binding (ASB) that exhibit >5% allelic mapping bias (19-21%) (Table 2).



|                         |                            |                            | 1                    |                                                  |
|-------------------------|----------------------------|----------------------------|----------------------|--------------------------------------------------|
| NA12878                 | Number of                  | Number of                  | Number of            |                                                  |
| dataset                 | reads that map             | allele (AS)                | allele-specific      |                                                  |
|                         | to multiple                | SNVs with                  | SNVs                 |                                                  |
|                         | locations (% of            | >5% allelic                | removed,             | 10                                               |
|                         | input reads)               | bias removed               | after                | (175)                                            |
|                         |                            | (% AS SNVs                 | removing             | $\Box$                                           |
|                         |                            | originally)                | multi-               |                                                  |
|                         |                            |                            | mapping              |                                                  |
|                         |                            | · · ·                      | reads (% AS          |                                                  |
|                         |                            |                            | SNVs                 |                                                  |
|                         |                            |                            | originally)          |                                                  |
| CTCF ChIP-              | Maternal:                  | 4/19 (21%)                 | <u>3/19 (15.8%)</u>  |                                                  |
| seq dataset 1           | <u>2,618 (1.34%)</u>       |                            | A Constant           |                                                  |
| (same dataset           | Paternal:                  |                            |                      |                                                  |
| as in Table 1)          | <u>2,575 (1.32%)</u>       |                            |                      |                                                  |
| CTCF ChIP-              | Maternal:                  | <u>11/58 (19%)</u>         | <u>6/58 (10.3%)</u>  |                                                  |
| seq dataset 2           | <u>2,255 (1.48%)</u>       |                            |                      |                                                  |
|                         | Paternal:                  |                            |                      |                                                  |
|                         | <u>2,202 (1.44%)</u>       |                            |                      |                                                  |
| RNA-seq                 | Maternal:                  | <u>10/369 (2.7%)</u>       | <u>6/369 (1.6%)</u>  |                                                  |
| dataset 1               | <u>7,653 (0.66%)</u>       |                            |                      |                                                  |
|                         | Paternal:                  |                            |                      |                                                  |
|                         | <u>8,359 (0.72%)</u>       |                            |                      |                                                  |
| RNA-seq                 | Maternal:                  | <u>21/607 (3.5%)</u>       | <u>15/607 (2.5%)</u> | N                                                |
| dataset 2               | <u>19,789 (0.93%)</u>      |                            |                      |                                                  |
|                         | Paternal:                  |                            |                      |                                                  |
| <b>T</b> 11 2 G         | <u>25,899 (1.24%)</u>      |                            | • •,                 |                                                  |
| <u>Iable 2. Summary</u> | results for four NA12      | <u>1) We chose four de</u> | removing sites       | Formatted: Font: 11 pt, Bold, Font color: Text 2 |
| sed and two RNA-s       | eq datasets to investi-    | gate how much allel        | lic mapping bias     | Deleted: We attribute this to                    |
| might affect the det    | ected allele-specific (    | AS) SNVs in ChIP-          | seq and RNA-seq      |                                                  |
| datasets with persor    | al genome alignment        | s. Mapping bies see        | ms to have a         | m M                                              |
| greater effect on Ch    | IP-seq datasets. Betw      | <u>een 10-21% of the c</u> | detected AS SNVs     |                                                  |
| are removed, depen      | ding on which bias re      | moval strategy was         | adopted –            |                                                  |
| removing reads that     | exhibit mapping bias       | is able to retain AS       | SNVs that are        |                                                  |
| sun aneie-specific.     |                            |                            |                      |                                                  |
| As discussed be         | fore, the removal          | of sites rather s          | stringent. Thus.     |                                                  |
| we further exan         | nined the set of           | SNVs that show             | ved >5% allelic      |                                                  |
| mapping bias a          | nd found that if v         | ve remove only             | the reads that       |                                                  |
| exhibit allelic ma      | apping bias, man           | y of them are s            | till detected as     |                                                  |
| allele-specific ur      | der the beta-bino          | mial test; for ex          | ample, 5 out of      |                                                  |
| 11 sites with >5%       | <u>6 allelic bias (CTC</u> | F ChIP-seq data            | set 2) and 4 out     |                                                  |
| of 10 AS SNVs           | (RNA-seq dataset           | t 1) were still co         | nsidered allele-     |                                                  |
| specific (Table 2       | <u>).</u>                  |                            |                      |                                                  |
|                         |                            |                            |                      |                                                  |

|                                    | As a result, we decided on only removing reads that exhibit such a                                              |         |                                                                                                                 |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|
|                                    | bias from the original pool of reads and then re-align the filtered                                             |         |                                                                                                                 |
|                                    | read pool to both haplotypes. This is computationally more                                                      |         | Formatted: Font color: Auto                                                                                     |
|                                    | expensive, but this strategy effectively removes potential false                                                |         | Deleted: being                                                                                                  |
|                                    | allele-specific Interestingly while we were working on this                                                     |         | Formatted: Font color: Auto                                                                                     |
|                                    | submission, van de Geiin <i>et al.</i> published in <i>Nature Methods</i> a tool                                |         | Formatted: Font color: Auto                                                                                     |
|                                    | that also similarly removes reads, instead of sites [6].                                                        |         | Deleted: filtering                                                                                              |
|                                    |                                                                                                                 |         | Formatted: Font color: Auto                                                                                     |
|                                    | Additionally, our approach is already conservative, with multiple                                               |         | Deleted: or                                                                                                     |
|                                    | filters in place, such as removing highly over-dispersed datasets                                               |         | Formatted: Font color: Auto                                                                                     |
|                                    | and using the beta-binomial <u>test</u> with an FDR of 5% <u>JOI</u> RINA-Seq                                   | $\leq$  | Formatted: Font color: Auto                                                                                     |
|                                    | to handle various mapping artefacts not easily handled by using                                                 |         | Formatted: Font color: Auto                                                                                     |
|                                    | only the reference genome. Particularly, with the ability to                                                    |         | Formatted: Font color: Auto                                                                                     |
|                                    | incorporate larger variants beyond single nucleotide variants (such                                             |         | <b>Deleted:</b> Together, these conservative thresholds                                                         |
|                                    | as indels), the personal genome serves as a more representative                                                 |         | filtering steps, the accommodation of larger variants                                                           |
|                                    | genome, as demonstrated by a much better alignment of unique                                                    |         | and not using the reference genome are able to detect                                                           |
|                                    | reads.[11,12]. We also envision that this allelic mapping bias will                                             |         | Exempting: East color: Auto                                                                                     |
|                                    | be alleviated with longer reads being used in ChIP-seq and RNA-                                                 | $\leq$  | Pointated: Foint color: Auto                                                                                    |
|                                    | seq datasets in the near luture.                                                                                |         |                                                                                                                 |
|                                    | [1] Castel et al. (2015). Genome Biol. 16(1):195                                                                |         | Formatted: Font color: Auto                                                                                     |
|                                    | [2] Degner et al. (2009) Bioinformatics, 25(24)                                                                 |         | <b>Deleted:</b> Moreover, there is indeed still a discussion in the community on how to handle these issue. For |
|                                    | [3] Satya et al. (2012) Nucleic Acids Res. 40(16):e127                                                          |         | example, while Kasowski et al [2] and Ding et al. [3]                                                           |
|                                    | [4] Stevenson et al. (2013) BMC Genomics. 14:536                                                                |         | accounted for several other biases, both did not account for allelic bias, the former using personal            |
|                                    | [5] Panousis et al. (2014). <u>Genome Biol., 15(9):467</u>                                                      | Λ       | genomes while the latter used the reference genome.                                                             |
|                                    | [6] van de Geijn et al. (2015). Nat Methods, doi:                                                               | ()      | ¶ <br>  [1                                                                                                      |
|                                    | 10,1038/nmeth.3582 [epub ahead of print]                                                                        | ()      | Formatted: Font color: Auto                                                                                     |
|                                    | [7] Kilpinen et al. (2013). Science, 342(6159):744-7                                                            | X (   ) | Poleted [2] Kooowski M                                                                                          |
|                                    | [8] Lappalainen et al. (2013). Nature, 501(7468):506-11, 4                                                      |         | Formettade Fonty Italia                                                                                         |
|                                    | [9] The GTEX Consolitum (2015). Science, 548(6235):648-60<br>[10] Divon et al. (2015). Science, 518(7520):231.6 |         |                                                                                                                 |
|                                    | [11] Rozowsky et al. (2011). Mol Syst Riol. 7:522                                                               | //////  | Deleted: ). Science. 342(6159):750-2                                                                            |
|                                    | [12] Sudmant <i>et al.</i> (2015), <i>Nature</i> , 526(7571):75:81                                              | //////  | Formatted: Font: Arial                                                                                          |
|                                    |                                                                                                                 |         | Deleted: 3] Ding, Z.                                                                                            |
|                                    | We have included new sections in the 'Results', 'Discussion' and                                                |         | Formatted: Font: Arial                                                                                          |
|                                    | 'Methods' section about our new addition on allelic mapping bias.                                               |         | Formatted: Font: Arial, Italic                                                                                  |
| Excerpt From<br>Revised Manuscript |                                                                                                                 |         | Formatted: Font: Arial                                                                                          |
| Keviseu Wanuscript                 | l                                                                                                               | -       | Deleted: PLoS Genet.                                                                                            |
|                                    |                                                                                                                 |         | Formatted: Font: Arial                                                                                          |

Deleted: (

Formatted: Normal, Left Formatted: Font: Arial Deleted: ):e1004798 Formatted: Font: Arial, Italic

-

# -- Ref2.3 - Over-dispersion -

| Reviewer | My second major concern was regarding the binomial test to |
|----------|------------------------------------------------------------|
| Comment  | identify ASE. The authors begin their response by citing   |
|          | other papers that used such a test. I am not sure what it  |
|          | the argument presented here, especially since the authors  |
|          | proceed by acknowledging over-dispersion in their data.    |

|          | So, yes, other paper got it wrong in the past, but this is              |   |                                          |
|----------|-------------------------------------------------------------------------|---|------------------------------------------|
|          | hardiy a reason to perpetuate this mistake.                             |   |                                          |
|          | As for their revised approach, estimating a global over-                |   |                                          |
|          | because of 'too much' over-dispersion is ad hoc and was                 |   |                                          |
|          | not justified. But more importantly, there are at least 3               |   |                                          |
|          | published methods now to identify ASE using models that                 |   | N                                        |
|          | mapping bias, and report p values based on permutation.                 |   |                                          |
|          | Why not use one of those published methods?                             |   |                                          |
| Author   | While we thank the reviewer for his/her comment, the purpose of         |   |                                          |
| Response | the references is not to make any claims on the 'correctness' of the    |   |                                          |
|          | methods, but to point to the broader reality that there is currently a  |   |                                          |
|          | diversity of methods in the field, where there is no firm consensus     |   |                                          |
|          | on the 'right' approach. The fact that these publications are recent    |   |                                          |
|          | and peer-reviewed at influential journals indicates the plurality of    |   |                                          |
|          | the methods accepted by the community, each with their own              |   |                                          |
|          | advantages and limitations. For example, van de Geijn et al. [1] is     |   | Formatted: Font color: Red               |
|          | a very recent publication in Nature Methods that presented a            |   |                                          |
|          | software, which performs alignment to the human reference               |   | Deleted: that perform                    |
|          | test to account for an individual specific (not site specific) debal    | < | Deleted: allelic                         |
|          | over-dispersion. However, it is not able to take into account indels    |   | Deleted: allele-specific detection using |
|          | and larger structural variants, which can be accommodated by the        |   | Deleted: a                               |
|          | construction of personal genomes. In particular, we have utilized       |   |                                          |
|          | our approach in the 1000 Genomes Structural Variant group               |   |                                          |
|          | whose manuscript has recently been peer-reviewed and published          |   | Deleted: accepted by Nature              |
|          | by <i>Nature</i> . Moreover, the estimation of a global over-dispersion | - |                                          |
|          | has also been employed extensively in many recent and peer-             |   |                                          |
|          | reviewed software that detect allele-specific expression [1-5].         |   |                                          |
|          |                                                                         |   |                                          |
|          | Our revised approach estimates over-dispersion at two levels. An        |   |                                          |
|          | over-dispersion is estimated for each dataset to remove those that      |   | Deleted: individual                      |
|          | are deemed too over-dispersed and that might result in higher           |   | Deleted: entire datasets                 |
|          | number of false positives. After which, for each sample (for RNA-       |   |                                          |
|          | seq and each sample and transcription factor, TF, for ChIP-seq          |   |                                          |
|          | experiments), we pool the datasets and estimate the individual-         |   |                                          |
|          | specific global over-dispersion (for each sample for RNA-seq and        |   |                                          |
|          | also each sample and transcription factor for ChIP-seq) and apply       |   |                                          |
|          | this estimation to the beta-binomial test for each site in that         |   |                                          |
|          | Individual (or IF). Hence, in this manner, the estimation of the        |   |                                          |
|          | over-dispersion can accommodate user-defined site-specific              |   |                                          |
|          | esumation of over-dispersion if necessary. Our K code is provided       |   |                                          |
|          | the user                                                                |   |                                          |
|          | the user.                                                               |   |                                          |
|          |                                                                         |   |                                          |

|                    | We further point out that our two-step serial procedure is novel and<br>is introduced to homogenize the pooling of datasets, by removing<br>datasets that are too over-dispersed at the outset. This fits very |                        | <b>Deleted:</b> While the estimation of a global over-dispersion has also been employed extensively in many recent software that detects allele-specific expression [1-5], we |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Well into our pipeline as it facilitates the harmonization and uniform                                                                                                                                         | $\langle \rangle$      | Deleted: homogenizes                                                                                                                                                          |
|                    | ascertainment bias in which more positives might originate from                                                                                                                                                |                        | <b>Deleted:</b> in the first place. The two-step procedure additionally                                                                                                       |
|                    | these highly over-dispersed datasets if they are not removed.                                                                                                                                                  |                        | Deleted: our                                                                                                                                                                  |
|                    | Hence, we have retained our estimation and use of a global over-<br>dispersion for detecting allele-specific variants.                                                                                         |                        |                                                                                                                                                                               |
|                    | [1] van de Geijn <i>et al.</i> (2015). <u>Nat Methods,</u> doi:                                                                                                                                                | _                      | Formatted: Font: Arial                                                                                                                                                        |
|                    | 10,1038/nmeth.3582 [epub ahead of print]                                                                                                                                                                       |                        | Formatted: Normal, Left                                                                                                                                                       |
|                    | [2] Sun (20132). <i>Biometrics</i> . 68(1):1-11                                                                                                                                                                | $\left  \right\rangle$ | Deleted: bioRxiv.                                                                                                                                                             |
|                    | [3] Mayba et al. (2014). Genome Biology. 15(8):405                                                                                                                                                             | ()                     | Formatted: Font: Arial                                                                                                                                                        |
|                    | [4] Growley et al. (2015). Wature Genetics. $47(4).555-60$<br>[5] Harvey et al. (2015). Bioinformatics. $31(8):1235-42$                                                                                        | $\left( \right) $      | Deleted: http://dx.doi.org/                                                                                                                                                   |
| Excerpt From       |                                                                                                                                                                                                                |                        | Formatted: Font: Arial                                                                                                                                                        |
| Revised Manuscript |                                                                                                                                                                                                                | ] //                   | Deleted: 1101/011221                                                                                                                                                          |

Formatted: Font: Arial

### Reviewer #3

## -- Ref3.1 - General positive comment --

| Reviewer           | The manuscript is much improved and the authors have                                                                |
|--------------------|---------------------------------------------------------------------------------------------------------------------|
| Comment            | sufficiently addressed the majority of my concerns. I have                                                          |
|                    | the following minor comments:                                                                                       |
|                    |                                                                                                                     |
| Author             | We thank the reviewer for the thorough examination of the                                                           |
| Author<br>Response | We thank the reviewer for the thorough examination of the manuscript and we are pleased that the reviewer finds our |

## -- Ref3.2 - Include additional references --

| Reviewer<br>Comment                | 1) Imprinting discussion should reference recent<br>imprinting paper from GTEx. Lappalainen in Genome<br>Research.                                                                                                                         |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | <ol> <li>Heritability analyses of ASE should reference Li, AJHG,<br/>2014.</li> </ol>                                                                                                                                                      |
| Author                             | We have included the references in the respective sections of the                                                                                                                                                                          |
| Response                           | manuscript.                                                                                                                                                                                                                                |
| Excerpt From<br>Revised Manuscript | Please refer to the 'Discussion' section and also the 'Results' section<br>under "ASB and ASE Inheritance analyses using CEU trio".                                                                                                        |
|                                    | "It could also be a result of other epigenetic effects such as genomic imprinting where no variants are causal. <sup>35</sup> ", where reference 35 is by the GTEx consortium and Baran <i>et al.</i> published in <i>Genome Research.</i> |

| "The CEU trio is a well-studied family and with multiple ChIP-seq studies performed on different                 |
|------------------------------------------------------------------------------------------------------------------|
| TFs. Previous studies have also presented allele-specific inheritance. <sup>10,15,21</sup> ", where reference 21 |
| is by Li et al. published in American Journal of Human Genetics.                                                 |