Large-scale Transcriptome Mining:
Building Integrative Models, while Protecting Individual Privacy

Slides freely
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Lectures.GersteinLab.org
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(via @markgerstein).
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Personal Genomics & Transcriptomics
as a Gateway into Biology

Personal genomes soon will become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Placing the
individual
into the
context of the
population &
using the
population to
build a model
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gi,ga,gb,gc: input genes
go: output gene

erat Vector Function

the o
input is on

the output is on if at the
least one of the inputs
is on

the output is on only if
both inputs are on

the output is on if the
AND NOT | first input is on and the

second is off

brackets for subsidiary

functions

the vector equation can incorporate
different module or functions

galgb|go

go: if ga=1 OR gb=1 then=1 else=0 -
galgb|go

go: if ga=1 AND gb=1 then=1 else=0

go: if ga=1 AND NOT gb=1 the
else=0

go: if ga=1 AND [ gb=1 OR gc=1]
then=1 else=0

go: if Mod1 OR Mod2 then=1 else=0
Mod1 : if ga=1 then=1 else=0
Mod?2 : if gb=1 then=1 else=0
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* The Dilemma of Genomic Large-scale Transcriptome Mining:

Privacy Building Interpretative Models while

- Fundamental, inherited info that's very Protecting Individual Privacy

private vs the need for large-scale .
data-sharing to enable med. research ¢ Large-scale Mining of RNA-

- Current Social & Tech Approaches seq to Determine State

* Issues: burdensome security, Space Models
inconsistencies + ways the

solutions have been partially
"hacked”

- Using dimensionality reduction to
help determine internal & external
drivers

Decoupling expression changes into

those driven by worm-fly conserved

genes Vs species-specific ones. Also,

Conserved genes have similar

* RNA-seq: How to Publicly canonical patterns (iPDPs) in
Share Some of it contrast to species specific ones (Ex

of ribosomal v signaling genes)

In human cell cycle, only conserved

genes show matching periodic

pattern

Strawman Hybrid Soc-Tech
Proposal (Cloud Enclaves.
Quantifying Leaks, & Closely
Coupled priv.-public data)

- Removing SNVs in reads using MRF

- Quantifying & removing variant info
from expression levels + eQTLs

- Linking Attack using extreme
expression levels

= Lectures.GersteinLab.org




The Conundrum of Genomic Privacy: Is it a Problem?

Yes

Genetic Exceptionalism :
genome is potentially very revealing
about one’s identity & characteristics

 Most discussion of ldentification Risk
but what about Characterization Risk?

- Finding you were in study X vs
identifying that you have trait Y from
studying your identified genome

No

Shifting societal foci

No one really cares
about your genes

You mlght not care [Klitzman & Sweeney ('11), J Genet Couns
- 20:98I; Greenbaum & Gerstein ('09), New Sci.

(Sep 23) ]

[ - Lectures.GersteinLab.org



Tricky Privacy Considerations in Personal Genomics

* Personal Genomic info.
essentially meaningless
currently but will it be in 20
yrs? 50 yrs?

- Genomic sequence very
revealing about one’s

child_ren. Is true consent
possible?

- Once put on the web it can'’t
be taken back

 Culture Clash: Genomics
historically has been a
proponent of “open data”
but not clear personal
genomics fits this

 Ethically challenged history
of genetics

« Ownership of the data &
what consent means
(Hela)

- Could your genetic data
give rise to a product line?

[D Greenbaum & M Gerstein ('08). Am J. Bioethics; D Greenbaum & M Gerstein, Hartford Courant, 10 Jul. '08 ; SF Chronicle, 2 Nov. '08;
Greenbaum et al. PLOS CB (‘11) ; Greenbaum & Gerstein ('13), The Scientist; Photo from NY Times]



The Other Side of the Coin:

Why we should share

« Sharing helps speed research

- Large-scale mining of this
information is important for
medical research

- Privacy is cumbersome,
particularly for big data

- Sharing is important for
reproducible research

« Sharing is useful for education

Robert Munsch

We Share

EVERYTHING!

illustrated by Michael Martchenko

[Yale Law Roundtable (‘10). Comp. in Sci. &
Eng. 12:8; D Greenbaum & M Gerstein (‘09).
Am. J. Bioethics; D Greenbaum & M Gerstein
(“10). SF Chronicle, May 2, Page E-4;
Greenbaum et al. PLOS CB (11)]
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The Dilemma

Dawd Parkins

[Economist, 15 Aug ‘15]

» What is acceptable risk? What is acceptable data leakage?
Can we quantify leakage?

» Cost Benefit Analysis: how helpful is identifiable data in
genomic research v. potential harm from a breach?

* The individual (harmed?) v the collective (benefits)
- But do sick patients care about their privacy?

« Maybe a we need a few "test pilots” (ala PGP)?
- Sports stars & celebrities?

10 = Lectures.GersteinLab.org



Genomics has
similar "Big Data"
Dilemma in the Rest
of Society

« Sharing & "peer-production” is
central to success of many
new ventures, with the same
risks as in genomics

* We confront privacy risks
every day we access the
internet

* (...or is the genome more
exceptional & fundamental?)

11 - Lectures.GersteinLab.org
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Current Social & Technical Solutions

Consents
“Protected” distribution of data (dbGAP)
Local computes on secure computer

Issues

- Non-uniformity of consents & paperwork
 Different international norms, leading to confusion

- Encryption & computer security creates burdensome
requirements on data sharing & large scale analysis

- Many schemes get “hacked”

[Greenbuam et al ('04), Nat. Biotech; Greenbaum & Gerstein ('13), The Scientist]
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|dentifying Personal Genomes by
Surname Inference

Melissa Gymrek,“%** Amy L. McGuire,” David Golan,® Eran Halperin,”®? Yaniv Erlich™*

Resolving Individuals Contributing Trace Amounts of
DNA to Highly Complex Mixtures Using High-Density
SNP Genotyping Microarrays

Nils Homer""?, Szabolcs Szelinger1, Margot Redman', David Duggan', Waibhav Tembe', Jill Muehling',
John V. Pearson’, Dietrich A. Stephan', Stanley F. Nelson?, David W. Craig'*

On Sharing Quantitative Trait GWAS Results
in an Era of Multiple-omics Data and the Limits
of Genomic Privacy

2,3,%

Hae Kyung Im,"* Eric R. Gamazon,2 Dan L. Nicolae,23# and Nancy J. Cox

Identifying Participants in the Personal Genome Project by Name
Latanya Sweeney, Akua Abu, Julia Winn
Harvard College

Cambridge, Massachusetts
latanya(@fas harvard.edu, aabu(@college.harvard.edu, jwinn(@post.harvard.edu
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Privacy Hacks

« Early genomic studies were based on small cohorts
- The focus was on hiding the participation of individuals

- Individuals give consent to participate but request anonymity
« HAPMAP, Personal Genome Project, 1000 Genomes...

- Attacks aimed at detecting whether an individual with known
genotypes participated a study
» “Detection of genomes in a mixture”
* Homer et al 2008, Im et al 2012

« As more people are genotyped, more individuals are in large private
genomic databases

- Detection of an individual is irrelevant, as their participation is
already known

« Example: “An individual’s genomic/phenotypic data is most certainly stored in
their hospital”

» Future: Everyone’s is genotype is recorded in a centralized dataset

» The attacks will now focus on pinpointing individuals by cross-
referencing large seemingly independent datasets

- A leaked/hacker/stolen dataset, even when anonymized, can leak
information

- Sweeney et al 2013, Gymrek et al 2013

Gymrek et al, “Identifying Personal Genomes by Surname Inference” (2013)

Homer et al, “Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping
microarrays.” (2008)

Im et al, “On Sharing Quantitative Trait GWAS Results in an Era of Multiple-omics Data and the Limits of Genomic Privacy” (2012)
Sweeney et al, “Identifying Participants in the Personal Genome Project by Name” (2013)

Identii
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Earth’s Biggest Movie uubc:St

Robust De-anonymization of Large Datasets
(How to Break Anonymity of the Netflix Prize Dataset)
Arvind Narayanan and Vitaly Shmatikov
The University of Texas at Austin

[""H-‘_
) February 5. 2008
-
(|

= Abstract

o
Z We present a new class of statistical de-anonymization attacks against high-dimensional micro-data,
~ such as individual preferences, recommendations, transaction records and so on. Our techniques are
] robust to perturbation in the data and tolerate some mistakes in the adversary’s background knowledge.

We apply our de-anonymization methodology to the Netflix Prize dataset. which contains anony mous

-~ movie ratings of 500,000 subscribers of Netflix, the world’s largest online movie rental service. We
e demonstrate that an adversary who knows only a little bit about an individual subscriber can easily
‘-) identify this subscriber’s record in the dataset. Using the Internet Movie Database as the source of
vl background knowledge, we successfully identified the Netflix records of known users, uncovering their
9 apparent political preferences and other potentially sensitive information.
(g

Cross correlated small set of identifiable IMDB movie database rating
records with large set of “anonymized” Netflix customer ratings

15 = Lectures.GersteinLab.org



Strawman Hybrid Social & Tech Proposed Solution?

 Fundamentally, researchers < Quantifying Leakage &

have to keep genetic allowing a small amounts of it
secrets (eg photos of eye color)

- Genetic Licensure & « Careful separation & coupling
training for individuals of private & public data

(similar to medical license,

drivers license) - Lightweight, freely accessible

secondary datasets coupled

* Technology to make things to underlying variants
easier - Selection of stub & "test pilot"

- Cloud computing & datasets for benchmarking
enclaves (eg solution of - Develop programs on public
Genomics England) stubs on your laptop, then move

- Technological barriers the program to the cloud for
shouldn't create a social private production run

incentive for “hacking”

[D Greenbaum, M Gerstein (‘11). Am J Bioeth 11:39. Greenbaum & Gerstein, The Scientist ('13)]
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: Th_e Dilemma of Genomic Large-scale Transcriptome Mining:
Privacy Building Interpretative Models while

- Fundamental, inherited info that's very Protecting Individual Privacy

private vs the need for large-scale .
data-sharing to enable med. research ¢ Large-scale Mining of RNA-

- Current Social & Tech Approaches seq to Determine State

* Issues: burdensome security, Space Models
inconsistencies + ways the

solutions have been partially
"hacked”

Strawman Hybrid Soc-Tech
Proposal (Cloud Enclaves.
Quantifying Leaks, & Closely
Coupled priv.-public data)

- Using dimensionality reduction to
help determine internal & external
drivers

Decoupling expression changes into
those driven by worm-fly conserved
genes Vs species-specific ones. Also,
Conserved genes have similar

* RNA-seq: How to Publicly canonical patterns (iPDPs) in

Share Some of it contrast to species specific ones (Ex £
of ribosomal v signaling genes)

In human cell cycle, only conserved
genes show matching periodic
pattern

- Removing SNVs in reads using MRF

- Quantifying & removing variant info
from expression levels + eQTLs

= Lectures.GersteinLab

- Linking Attack using extreme
expression levels




RNA-seq

RNA-seq uses next-generation sequencing technologies to reveal RNA presence
and quantity within a biological sample.

ATACAAGCAAGTATAAGTTCGTATGCCGTCTT -
GGAGGCTGGAGTTGGGGACGTATGCGGCATAG -
TACCGATCGAGTCGACTGTAAACGTAGGCATA -
ATTCTGACTGGTGTCATGCTGATGTACTTAAA -

Reads (fasta) -
— Quality scores (fastq)
— Mapping (BAM)

— Contain variant information in transcribed regions Overlap
identification
hESC-A ' i | B 1 R e 5 3 B . ‘ cor e e
NT-A - Overlap profile
N2-A oo hild A i . (L m
N3-A T i [ OE—— ‘ 2 u :
hESC—B -SRI S I | Y S N S S e L L..Lh._ %
N2-B TR 1| VA N I WSVNUD T T | 4 .__.__.Ll L h.L
ucsc i e i
Genes i ' / \
NCAM1 - A

Quantitative information from RNA-seq signal: average

Reads => Signal I
signals at exon level (RPKMs)

00)
[PLOS CB 4:€1000158; PNAS 4:107: 5254 ; 1JC 123:569] «H



Light-weight formats

« Some lightweight format clearly separate public &
private info., aiding exchange

* Files become much smaller

« Distinction between formats to compute on and those
to archive with — become sharper with big data

Public Private

AlignmentBlocks ID
chrl:+:201:250:1:50 1 -#----=--=----

ID Sequences
1 GTCGTGTCTGTATCCA...

H H emeElng=slmElalmilis Lokl =ipessososoos 2 ATGGCTCGTTGGGATT. ..
Anonymlzatlon she-ta2d : 773150 3 == 1"3 CiCPGGICTGICTACT, .
(Optional)
- - - ----- - o
Reads
R (linked via ID,

Mapping coordinates 10X larger than

. . ) ] mapping coord.
[Bioinformatics 27: 281] Wlthout Varlants (MRF) pp g )
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MRF
Examples

10X Compression Ex.

Raw ELAND export file has
uncompressed file size: ~4
GB; total number of reads:
~20 million; number of

mapped reads: ~12 million .

MREF file is significantly
smaller (~400 MB
uncompressed, ~130 MB
compressed with gzip).

BAM file
has a size of ~1.2 GB.

Reference based
compression (ie
CRAM) is similar but it
stores actual variant
beyond just position of
alignment block

chr2:+:601:630:1:30,chr2:+:921:940:31:50

----- [ - [ -l Reference

AlignmentBlock 1 AlignmentBlock 2

Splice junction Read

QS QE/QS QE

Legend: TS = TargetStart, TE = TargetEnd, QS = QueryStart, QE = QueryEnd

chr9:+:431:480:1:50|chr9:+:945:994:1:50

TS TE TS TE
- - [@--- Reference
AlignmentBlock AlignmentBlock
Paired-end Read
Qs QE Qs QE

Legend: TS = TargetStart, TE = TargetEnd, QS = QueryStart, QE = QueryEnd
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: Th_e Dilemma of Genomic Large-scale Transcriptome Mining:
Privacy Building Interpretative Models while

- Fundamental, inherited info that's very Protecting Individual Privacy

private vs the need for large-scale .
data-sharing to enable med. research ¢ Large-scale Mining of RNA-

- Current Social & Tech Approaches seq to Determine State

* Issues: burdensome security, Space Models
inconsistencies + ways the

solutions have been partially
"hacked”

Strawman Hybrid Soc-Tech
Proposal (Cloud Enclaves.
Quantifying Leaks, & Closely
Coupled priv.-public data)

- Using dimensionality reduction to
help determine internal & external
drivers

Decoupling expression changes into
those driven by worm-fly conserved
genes Vs species-specific ones. Also,
Conserved genes have similar

* RNA-seq: How to Publicly canonical patterns (iPDPs) in

Share Some of it contrast to species specific ones (Ex £
of ribosomal v signaling genes)

In human cell cycle, only conserved
genes show matching periodic
pattern

- Removing SNVs in reads using MRF

- Quantifying & removing variant info
from expression levels + eQTLs

= Lectures.GersteinLab

- Linking Attack using extreme
expression levels
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eQTL Mapping
Using RNA-Seq

Data

« eQTLs are genomic loci

that contribute to
variation in mRNA
expression levels

eQTLs provide insights
on transcription
regulation, and the
molecular basis of
phenotypic outcomes

eQTL mapping can be
done with RNA-Seq data

22 = Lectures.GersteinLab.org



Information Content and Predictability
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[Harmanciet al. Nat. Meth. (in.gvision)]
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Representative Expression, Genotype,
eQTL Datasets

e Genotypes are available from the 1000 Genomes
Project

* mMRNA sequencing for 462 individuals
* Publicly available quantification for protein coding genes

* Approximately 3,000 cis-eQTL (FDR<0.05)

1000 Genomes

A Deep Cataleg of Human Genetic Variation




Per eQTL and ICI Cumulative Leakage
versus Genotype Predictability
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Cumulative Leakage versus Joint
Predictability

20
= —»— Real
S Shuffled
O
-
S 15}
C —
- &
)
S S
@ @ 10
g § Best 5 eQTLs
[ S Best 4 eQTLs
© 5 Best 3 eQTLs
-
g Best 2 eQTLs
O
Best eQTL
0 . a 2 » - 'l
0.05 0.20 0.40 0.60 0.80 1.00

Joint Average per Individual Predictability



Linking Attack Scenario

Phenotype dataset Genotype dataset
(Public) (Stolen/Hacked/Queried)

vW'J Phenotype-Genotype

S :
Qs,c,*’ oof.f;o‘# " correlation dataset

Phenotype 1 «—Variant 1
Phenotype 2 +—>Variant 2

Ly o
o o G
RO iy

0| 1| e | 1

HIV+ 01 -2.7 90.3
HIV- 05 86 - 635

2 1 0

Phenotype g4—>Variant q

Predicted/Matched genotypes

N O
N N
Status @@:ﬁ P 4"‘\0‘

Predicted variant

! genotypes ' '
vy Y & o HIV+ 0/0 1/1 - ‘ 11
Status | ;._-z*“' ;@& \ga‘\a Y :
& a - Vv 202 11 = 0f0
HIV+| 1 |0 | .- 2 -[Genotype comparison /0 1/0 ... 02
HIV- 2 2 1 and matching . HIV+ 2/2 0/0 ... 11

o/1 1/1 .. 2/1

HiV- o 1 1

[Harmanciet al. Nat. Meth. (in revision)]



Steps in Instantiation of a (Mock)
Linking Attack

Step 1
4 A

G-P
correlation
dataset

Phenotype and
genotype
selection

* Absolute Value of
Correlation

%, .

[Harmanciet al. Nat. Meth. (in revision)]

Step 2

/

o

Prediction
methodology

Genotype
prediction

Maximum a
Posteriori
Genotype

\

Step 3

/

/' Gender,

Population, Age

Auxiliary
information

Linking

Minimum Distance
between Predicted
and Individual

Genotypes

/

Estimate
Reliability of
Linking

How far is the linked
genotype distance
from second in
ranked list? (d ;)
(Higher: More
accurate linking)



Extremity based Simplified extremity based
joint distribution A joint distribution

Positive
extremity
(Genotype: 2)

Negative
extremity.
(Genotype: 0)

Frequency 0o 1 2 Probabi"ty(j 1 2 01 2

Genotype m Genotype Genotype
o 1

Levels of Expression-Genotype Model Simplifications:

Ee  pEav0

P(Ex, Vi)

[Harmanciet al. Nat. Meth. (in revision)]



Levels of Expression-Genotype Model Simplifications:

1 2’ Vi

Extremity based Simplified extremity based
joint distribution joint distribution

i
u’ p : Positive
J I extremity
5 I (Genotype: :
[
5 [ Negative
| extremity.
| (Genotype: (

Genotype Genotype Genotype

T Expression &
é[
o
-
—

Frequency



Levels of Expression-Genotype Model Simplifications:
Ex

p(Ex, Vi) E;

My 71 |
I i V
0 1 2 » Vi
Extremity based Simplified extremity based
A joint distnbution joint distribution
"""""" B TTTTTTTTTTET Y
| | Positive
L----7=====" :- : extremity
g 5 I | (Genotype: 2)
b ecsnans JREH T NEESRR 1
é I : Negative
fe- e ! : extremity.
I : ' {Genotype: 0)

Frequency o 1 2 0 1 2 0O 1 2
Genotype Genotype Genotype



Extremity based linking with Attacker can estimate the
homozygous genotypes reliability of linkings

—
L ]

0.8

_O
(o))
T

.D'
o
T

Positive Predictive Value

— Genotypes

0.2} —— Genotypes + Gender

—— Genotypes + Population
Genotypes + Gender + Populatio

—_— 12 thresholds

Fraction of Vulnerable Individuals

—— Random thresholds

0.0 0.6 1 1 ]
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Absolute Correlation Threshold Sensitivity
Sensitivity: Fraction of correctly linked PPV: Fraction of correctly linked individuals

Individuals among all individuals among selected individuals



: Th_e Dilemma of Genomic Large-scale Transcriptome Mining:
Privacy Building Interpretative Models while

- Fundamental, inherited info that's very Protecting Individual Privacy

private vs the need for large-scale .
data-sharing to enable med. research ¢ Large-scale Mining of RNA-

- Current Social & Tech Approaches seq to Determine State

* Issues: burdensome security, Space Models
inconsistencies + ways the

solutions have been partially
"hacked”

Strawman Hybrid Soc-Tech
Proposal (Cloud Enclaves.
Quantifying Leaks, & Closely
Coupled priv.-public data)

- Using dimensionality reduction to
help determine internal & external
drivers

Decoupling expression changes into
those driven by worm-fly conserved
genes Vs species-specific ones. Also,
Conserved genes have similar

* RNA-seq: How to Publicly canonical patterns (iPDPs) in

Share Some of it contrast to species specific ones (Ex £
of ribosomal v signaling genes)

In human cell cycle, only conserved
genes show matching periodic
pattern

- Removing SNVs in reads using MRF

- Quantifying & removing variant info
from expression levels + eQTLs

= Lectures.GersteinLab

- Linking Attack using extreme
expression levels




A gene can be regulated by multiple gene
regulatory factors

Next generation sequencing _ Binding signal Gene regulatory network
techniques (e.g., ChlP-seq, | :
CLIP-seq) predict gene 5 Factor (RF) (1)

TF1 Gene 1

regulatory factors (RFs) e Gene 1

. Peak'lcalling
and their target genes » » T
« transcription factors - mRNAZ _ Gened

(T FS) . mi?lNA 3 Ge:e 2
« micro-RNAs I—EI

Binding peaks

Q-0

. RF . non-RF

Many genes are regulated by multiple RFs.

How RFs coordinate to regulate target gene expression?
* cooperative?
« competitive?
* Independent?



Modeling cooperativity between RFs
to target gene using logic gates

A regulatory triplet

10110101...

10110101...

0 — gene off

1 —gene on

after binarizing gene
expression data*

*BoolNet, R package

2-input-1-output logic gate

10110101...
RF1

00110101...

01110111... 00110101...

RF2

/ Input type RF1 |0

(RF1,RF2) [ rr2 lol1lol1] L Binarized
expression
Output T XXX [X

—

X can be 0 or 1, so there are 24=16 possible
output combinations, each of which corresponds
to a unique 2-input-1-output logic gate

DD D




An example: selection of the best-
matched logic gate

TR TF2 Gene 20 samples
RF1=TF1 O] Of 1 of of 1 of of 1 ofjojg 1 ofjof 1
RF2=TF2 O0f 1} O of 1§ O of 1} o of 1§ o0 og 1o
Gene 1 T=Gene1 O} Of O of 1] o Of oo 0 ofjogo OfJoj o
/
RF1 0 0 1
RF2 0

Laplace’s rule of succession
s=(# of selected output state for
the input type + 1)

/(# of input type + 2)

T
s1=(5+1)/(5+2)

50

=6/7

0

1

Consistency score:
6/7*5/7*6/7*

=0.37 -

1 0
WOV sy
0 1 0 1

s2=(4+1)/(5+2)

=

0
s3=(5+1)/(5+2)
=5/7 =6/7
TF1 TF2
RF1=TF 1 ol 1
RF2=TF 2 110 |:>
T=Gene 1 ol o Gene 1

Wang, et al., PLoS Computational Biology, 2015



Application 1 — transcription factor
cooperativity in Yeast cell cycle

[ Yeast Cell Cycle
Triplet Matched
Regulatory triplets ID logic gate
TF1 TF2
1 YHR084W  YBR083W YBR082C AND
2 YKL112W YIL131C YMR198W  OR

All common gene
targets

Target gene 2464

9011 YOR113W  YBL103C YDR042C  XOR }

fe
\

TF 176

Triplet 39,011 2 @
=t _ ]
Time point 59 = 800 - -
C
2 600 -
@
2
S 400 -
Q@
£ 200 - L |:|
(@]
2 ) U IHHeeO=oooold
E O IOl N|~ NN O£ OC C £ N N ~ N QO +~
£ ﬂ%&&&&gogg&&&%ézﬂ
1 x g 11 1 * 3
2 ook - L
i |G s T

AND-like gates:}_ D—

—C} Wang, et al., PLoS Computational Biology, 2015




Application 2 — transcription factor
cooperativity in Acute Myeloid
Leukemia (AML)

Target gene

TF

Regulatory
triplet

Patient
sample

1824

70

50,865

197

ENCODE Data (K562, ChIP-seq)
http://encodenets.gersteinlab.org/

Natisnal Human Genome Research lnstitute

W4l

TCGA Data (AML, level 3, RNA-seq)
https://tcga-
data.nci.nih.gov/tcga/tcgaDownload.jsp

™ - 1
W — el £ -
——

"HE CANCER (GENOME ATLAS @

Wang, et al., PLoS Computational Biology, 2015



Application 2 — transcription factor
cooperativity in Acute Myeloid Leukemia (AML)

OR-like gates
(2 _D_
G) - o —
2 2500 _OD— Human TF-TF-target
[ -
T RF2 Common Matched
% 2000 — Target logic gate
g - Gene (T)
S 1500 | B ATF3 BDP1  YPELT AND
% - — MYC BCL3 BCR T=RF1
o)) =
é 1000 —] ATF3 BRF2 AIF1L AND
S -
9o
Y
O oo TF1 TF2
()
E
2 o z_____D__D_____i All common gene targets
o () [aV) — [a\] Al o o o Ay Al [a\] — [a\) [a) —
T2 k& & Qoo elklE|gh
L ST I B el s
s T id o

Wang, et al., PLoS Computational Biology, 2015



number of logic-gate consistent triplets
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Cancer-related TF, MYC universally
amplifies target expression
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for high target gene expression

c-Myc Is a Universal Amplifier Cell
of Expressed Genes in Lymphocytes
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Proposal (Cloud Enclaves.
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- Using dimensionality reduction to
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Internal and external gene regulatory networks

Internal Group External Group

How to identify gene <& Internal regulation

i i External lati
expression dynam|cs «— External regulation
driven by
internal/external é

regulation?
r:ﬁ;: —jr—
. - Cross-species conserved  Conserved Non-conserved TFs
= ' genes transcriptional factors
i . _ _ (TFs) _
X Protein-coding genes TFs micro-RNAs
equilibrium — n . n
pOSItion Individual’s protein Wild-type TFs Somatic mutated TFs

coding genes

Protein-coding genesin ~ Commonly expressed Brain-specific expressed
brain TFs TFs

Protein-coding genes in ~ House-keeping TFs Developmental TFs
development

External force ¥

[Wang et al. PLOS CB (in revision, ‘15)]



State-space model for internal and
external gene regulatory networks

Internal Group External Group
“ <& Internal regulation

How to identify gene T
. . <& External regulation
expression dynamics “
driven by .
internal/external
regulation? a B

Control: Gene

expression
vector of
State external factors
Sp ace + at time ¢
model
B,, captures temporal
casual influence from
State: Gene expression A;; captures temporal State: Gene external factor & to Gene /
vector of Group X at casual influence from expression vector of in internal group
time f+1 Gene i to Genej in internal group at
internal group time ¢

[Wang et al. PLOS CB (in revision, ‘15)]



Effective state space model for meta-genes

Not enough data to estimate state

space model for genes
(e.g., 25 time points per gene to estimate 4
million elements of 4 or B for 2000 genes)

X,,,=A4X, +BU,

.

Dimensionality reduction from
genes to meta-genes (e.g., SVD)

.

Effective state space model for meta-genes

(e.g., 250 time points to estimate 50 matrix elements
If 5 meta-genes)

Xq

~ ~ ~

X AX+BU

[Wang et al. PLOS CB (in revision, ‘15)]
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Canonical temporal expression trajectories
from effective state space model

Internal driven t Externally driven
dynamics dynamics
pinternal principal dynamic pattern g™ external principal dynamic pattern

(IPDP): [4, ! Ay 2 LA 7] (ePDP): [0 0 , 0 7]
where 4, Is pth elgenvalue of 4. where o, IS qth elgenvalue of B.
‘ Canonical temporal expression trajectories ‘
(e.g., degradation, growth, damped oscillation, etc.)
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[Wang et al. PLOS CB (in revision, ‘15)]

Flowchart

C. Meta-gene state-space model

A. Gene state-space model

B. Dimensionality
Red — N

E. Gene’s internal (INT) and
external (EXT) driven expression time
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Breast cancer cell cycle under hormonal stimulation

Group X (internal) Group U (external) Time samples of a full cell
cycle
Human breast cancer 1132 metazoan conserved 1870 non-conserved T=12 time points: 0, 4, 6, 8, 12, ...,
cell cycle under genes incl. 150 orthologous metazoan transcription 28, 32 hours
hormonal stimulation ~ TFs factors

Oscillated iPDP by
conserved TFs

a full cell cycle:

ePDP 1 ePDP 2 ePDP 3 : ePDP 4

| | “ r 1 ' Oscillated ePDP by
h R : Al non-conserved TFs

faster cycle dueé
to hormone :

[Wang et al. PLOS CB (in revision, ‘15)]



Are gene regulations among orthologs conserved
across species?

Are gene regulatory

specesn ;||| _________________ Fﬁ ________________________ networks among

orthologs conserved
across species?

orthologs co-expressed

&— Regulation among orthologs (internal)

& Regulation from species-specific factors (external)

Orthologous genes (orthologs)

Species-specific transcription factors

To what degree can’t ortholog expression levels
be predicted due to species-specific regulation

52 -

[Wang et al. PLOS CB (in revision, ‘15)]



[Nature 512:445 ('14); doi: 10.1038/nature13424]

Time-course gene expression data of
worm & fly development

i

datasets: 219
factors: 93

s NG %
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o &o, 6:2-
i 9
= § =
=5 3
< 2
=3 9 datasets: 93
~ 3 factors: 52

)

% N -_
% \ ‘
l 2 @\

Late EmbtY®

Organism Major developmental stages

worm
(C. elegans)

33 stages: 0,0.5, 1, ..., 12 hours, L1, L2, L3,
L4, ..., Young Adults, Adults

fly
(D. mel.)

30 stages: 0, 2, 4, 6, 8,..., 20, 22 hours, L1-
L4, Pupaes, Adults
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Orthologs have similar internal but different external
dynamic patterns during embryonic development

Worm's effective state space model —
G-, 1=+

iPDPs: time exponentials
of 4 eigenvalues in worm

ePDPs: time exponentials
of B eigenvalues in worm
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Fly’s effective state space model
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Orthologs have correlated IPDP coefficients
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Evolutionarily conserved and younger genes exhibit
the opposite internal and external PDP coefficients

iPDP coeffs > ePDP coeffs m Fly

Ribosomal genes p<0.001 p<2.2e- Fly
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Ribosomal genes have significantly larger
coefficients for the internal than external PDPs,
but signaling genes exhibit the opposite trend

100 200
L1

0
|

Coefficients of ribosomal
related genes (absolute)

iPDPs ePDPs

iPDP coeffs < ePDP coeffs m Fly

Signaling genes p<7e-4 p<6e-4

* p-values from KS-test
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More Information on this Talk

SUBJECT: Networks

DESCRIPTION:

NOTES:
This PPT should work on mac & PC. Paper references in the talk were mostly from
Papers.GersteinLab.org.

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2010. Please read
permissions statement at http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in
the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped
images in this presentation see http://streams.gerstein.info . In particular, many of the images have
particular EXIF tags, such as kwpotppt , that can be easily queried from flickr, viz:
http://www.flickr.com/photos/mbgmbg/tags/kwpotppt .
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