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ABSTRACT  
Privacy is receiving much attention with the increase in the breadth and depth of personalized 

biomedical datasets. Studies on genomic privacy are mainly focused on protection of variants. Molecular 

phenotype datasets can also contain substantial amount of sensitive information. Although there is no 

explicit genotypic information in them, subtle genotype-phenotype correlations can be used to 

statistically link the phenotype and genotype. The links can then be used to characterize individuals’ 

sensitive phenotypes. Here, we first develop a formalism for the quantification of individual 

characterizing information leakage in a linking attack. We analyze the tradeoff between the 

predictability of the genotypes and the amount of leaked information that can be used for individual 

characterization. Then we present a general three step procedure that can be used to practically 

instantiate an accurate attack. We develop a particular realization of the attack for outlier cases and 

study different aspects of the attack. 

1 INTRODUCTION 
Genomics has recently emerged as one of the major foci of studies on privacy. This can be attributed to 

high throughput biomedical data acquisition that brings about a surge of datasets1–3. Among these, 

molecular phenotype datasets, like functional genomics measurements, substantially grow the list of the 

quasi-identifiers4 which may lead to re-identification and characterization4–6. In general, statistical 

analysis methods are used to discover genotype-phenotype correlations7,8, which can be utilized by an 
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adversary for linking the entries in genotype and phenotype datasets, and revealing sensitive 

information. The availability of a large number of correlations increases the possibility of linking9,10. 

Along with the initial genotype-phenotype association studies, the protection of privacy of participating 

individuals emerged as an important issue. Several studies addressed the problem of detecting whether 

an individual, with known genotype, participated in a study11. As study participants choose to remain 

anonymous, the detection of an individual causes privacy concern12–15 by revealing their existence in the 

study cohort. We refer to these systematic breaches as “detection of a genome in a mixture” attacks 

(Supplementary Fig. 1). As the number and size of phenotype and genotype datasets increase, the 

detection of individuals in these datasets will be irrelevant since any individual will already have their 

genotype or phenotype information stored in a dataset, i.e., participation will already be known. 

Consequently, an adversary can then aim at pinpointing an individual among multiple, seemingly 

independent, genotype and phenotype datasets by linking the entries in these datasets. As personalized 

genomics gain more prominence, e.g. large genotype and phenotype datasets are used in medicine, the 

attackers will focus on gaining access to these datasets, then aim at linking different datasets that can 

reveal sensitive information. We will refer to these attacks as “linking attacks”4,5. One well-known 

example of these attacks is the attack that matched the entries in Netflix Prize Database and the 

Internet Movie Database (IMDB)16, and revealed sensitive information. For research purposes, Netflix 

released an anonymized dataset of movie ratings of thousands of viewers, which was assumed to be 

secure as the viewer’s names were removed. However, Narayanan et al used the Internet Movie 

Database (IMDb), a seemingly unrelated and very large database of movie viewers, linked two 

databases, and revealed identities and personal information of many viewers in the Netflix database. 

This attack is underpinned by the fact that both Netflix and IMDb host millions of individuals and any 

individual who is in one dataset is very likely to be in the other dataset. As the size and number of the 

genotype and phenotype datasets increase, number of potentially linkable datasets will increase, which 

can render similar scenarios a reality in genomic privacy (Supplementary Note). Different aspects of 

genomic privacy, pertaining linkability of high dimensional phenotype datasets to genotypes, are yet to 

be explored. 

2 RESULTS 

2.1 Linking Attack Scenario  
In the linking attacks, the attacker aims at characterizing sensitive information about a set of individuals 

in a genotype dataset (Fig. 1). For each individual in the genotype dataset, she aims at querying the 

publicly available anonymized phenotype datasets in order to characterize their sensitive phenotypes. 

For this, she first utilizes a public quantitative trait loci (QTL) dataset that contains phenotype-genotype 

correlations. She statistically predicts genotypes using the phenotypes and QTLs. Then she compares the 

predicted genotypes to the genotype dataset and links the entries that have good genotype 

concordance. Consequently, the sensitive information for the linked individuals in genotype dataset is 

revealed to the attacker.  
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Among the QTL datasets, the abundance of eQTL datasets makes them most suitable for linking attacks. 

In an eQTL dataset, each entry contains a gene, a variant, and correlation coefficient, denoted by 𝜌, 

between the expression levels and genotypes. We assume that the attacker aims to build a genotype 

prediction model that utilizes the relation between expression levels and genotypes (Fig. 2a, 

Supplementary Fig. 2). As a representative dataset for reporting results and for performing mock linking 

attacks, we use the eQTLs and gene expression levels from the GEUVADIS project17, and the genotypes 

from the 1000 Genomes Project18. 

2.2 Genotype Predictability and Information Leakage 
We assume that the attacker will behave in a way that maximizes his or her chances of correctly 

characterizing the most number of individuals. Thus, she will try and predict the genotypes, using the 

phenotype measurements, for the largest set of variants that she believes she can predict correctly. The 

most obvious way that the attacker does this is by first sorting the genotype-phenotype pairs with 

respect to decreasing strength of correlation then predicting the genotypes for each variant 

(Supplementary Fig. 3). The attacker will encounter a tradeoff: As she goes down the list, more 

individuals can be characterized (more genotypes can characterize more individuals) but it also becomes 

more likely that she makes an error in the prediction since the correlation decreases going down the list. 

This tradeoff can also be viewed as the tradeoff between precision (fraction of the linkings that are 

correct) and recall (fraction of individuals that are correctly linked). We will propose two measures, 

individual characterizing information (ICI) and genotype predictability (𝜋), to study this tradeoff.  

ICI can be interpreted as the total amount of information in a set of variant genotypes that can be used 

to pinpoint an individual in a linking attack. This quantity depends on the joint frequency of the variant 

genotypes. For example, if the set contains many common genotypes, they will not be very useful for 

pinpointing individuals. On the other hand, rare variant genotypes would give much information for 

linking. Thus, the information content of a set of genotypes is inversely proportional to the joint 

frequency of the variant genotypes. We utilize this property to quantify ICI in terms of genotype 

frequencies (Online Methods, Fig 3).  

For a set of variants, 𝜋 measures how predictable genotypes are given the gene expression levels. Since 

genotypes and expression levels are correlated, knowledge of the expression enables one to predict the 

genotype more accurately than predicting genotype with no knowledge. In order to quantify the 

predictability, we use an information theoretic measure for randomness left in genotypes, given gene 

expression levels (Online Methods, Fig. 3). Although the reported correlation coefficient is a measure of 

predictability, it is computed differently in different studies and there is no easy way to combine and 

interpret the correlation coefficients when we would like to estimate the joint predictability of multiple 

eQTL genotypes.  

We first considered each eQTL and evaluated the genotype predictability versus the characterizing 

information leakage. We use the GEUVADIS dataset as a representative dataset for this computation. 

We computed, for each eQTL, average 𝜋 and average ICI over all the individuals (Fig. 4a). Most of the 

data points are spread along the anti-diagonal: The eQTL variants with high major allele frequencies 

have high predictability and low ICI and vice versa for eQTL variants with lower major allele frequencies 
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(Fig. 4b). This is expected because the genotypes of the high frequency variants can be predicted, on 

average, easily (most individuals will harbor one dominant genotype) and consequently does not deliver 

much characterizing information and vice versa for the eQTLs with smaller major frequency alleles. The 

eQTLs with high absolute correlation (Fig. 4b) deviate from the anti-diagonal, compared to shuffled data 

(Fig. 4c). These eQTLs have high ICI and high predictability. 

When multiple genotypes are utilized, the information leakage is greatly increased. To study this, we 

computed ICI (in bits) and predictability for increasing number of eQTLs (Supplementary Note, Fig. 4d). 

As expected, the predictability decreases with increasing ICI leakage. Inspection of mean predictability 

versus mean ICI enables us to estimate the number of vulnerable individuals at different predictability 

levels. For example, at 20% predictability, there is approximately 8 bits of ICI leakage. At this level of 

leakage, the adversary can pinpoint an individual, with 20% accuracy, within a sample of 28 = 256 

individuals. Thus, within any sample of 256 individuals, we expect the attacker to be correctly link 

256x20%=51 individuals. At 5% predictability, the leakage is 11 bits and the attacker can pinpoint an 

individual in a sample of 211 = 2048 individuals. This corresponds to approximately 100 individuals 

getting correctly linked (5% of 2048). Auxiliary information can be easily added into ICI. For example, 

gender information, which can be predicted with high accuracy from many molecular phenotype 

datasets brings 1 bit of additional auxiliary information to ICI (Supplementary Note).  

2.3 Framework for Instantiation of Linking Attacks 
We present a three step framework for practical instantiation of linking attacks (Fig. 2b). This framework 

can be used to perform mock linking attacks on datasets for evaluating whether they will be effective for 

risk assessment purposes. We use this framework to simulate mock attacks in the following sections for 

assessing their accuracies. The input is the phenotype measurements for an individual, who is being 
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discussed earlier, the genotype predictability (𝜋) is the most suitable QTL selection criterion. Although 

the attacker cannot practically compute predictability using only the QTL list, any function of 
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individuals in genotype dataset to identify the individual that matches best to the predicted genotypes. 

In this step, the attacker links the predicted genotypes to the individual in the genotype dataset (Online 

Methods).  
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maximum a posteriori probability given gene expression level (Supplementary Note, Supplementary Fig. 

4). For several eQTL selections with changing correlation threshold, the linking accuracy is above 95% 

and gets close to 100% when auxiliary information is available (Fig. 5a). 

In general, knowledge or correct reconstruction of the exact joint genotype expression distribution may 

not be possible because the the genotype-phenotype correlation coefficient alone is not sufficient to 

perfectly reconstruct the genotype distribution given the expression levels. The attacker can, however, 

utilize a priori knowledge about the relation between gene expression levels and genotypes and build 

the joint genotype-expression distributions using models with varying complexities and parameters 

(Online Methods, Supplementary Note, Supplementary Fig. 5). We focus on a highly simplified model 

where the attacker exploits the knowledge that the eQTL genotypes and expression levels are correlated 

such that the extremes of the gene expression levels (highest and smallest expression levels) are 

observed with extremes of the genotypes (homozygous genotypes). We use a measure, termed 

extremity, to quantify the outlierness of expression levels (Online Methods, Supplementary Note, 

Supplementary Fig. 6, 7). Based on the extremity of expression level and the gradient of association, the 

attacker first builds an estimate of the joint genotype-expression distribution, then constructs the 

posterior distribution of genotypes and finally chooses the genotypes with maximum a posterior 

probability (Online Methods, Supplementary Note, Fig. 2a, b).  

The prediction methodology assigns zero probability to heterozygous genotype, and assigns only 

homozygous genotypes to variants, for which the associated gene’s expression level has absolute 

extremity higher than a threshold. We performed linking attack using this prediction method (in 2nd step 

of linking). In the 1st step of the attack, we used absolute correlation and extremity thresholds for eQTL 

selection. The linking accuracy is higher than 95% for much of the eQTL selections (Fig 2a, 

Supplementary Fig. 6d). We also observed that changing extremity threshold does not affect the linking 

accuracy substantially compared to changing absolute correlation threshold. We thus focus on attack 

scenarios where the absolute extremity threshold is set to zero. With this approach, the genotype 

prediction accuracy increases with increasing absolute correlation threshold, as expected 

(Supplementary Fig. 6c). We next performed linking attack with this model where we used the 

correlation based eQTL selection in step 1, then extremity based genotype prediction in step 2. In the 

step 3, we evaluated two distance measures for linking the predicted genotypes to the individuals in 

genotype dataset (Online Methods, Supplementary Fig. 8). More than 95% of the individuals (Fig. 5c, d) 

are vulnerable for most of the parameter selections. When the auxiliary information is present, the 

fraction of vulnerable individuals increases to 100% for most of the eQTL selections. These results show 

that linking attack with extremity based genotype prediction, although technically simple, can be 

extremely effective in characterizing individuals. We evaluated whether the attacker can estimate the 

reliability of the linkings so as to focus on highly reliable linkings. We observed that the measure we 

termed, first distance gap, denoted by 𝑑1,2 (Online Methods), serves as a good reliability estimate for 

each linking. We computed the positive predictive value (PPV) versus sensitivity of the linkings in the 

testing set with changing 𝑑1,2 threshold (Online Methods). Compared to random sortings, the attacker 

can link a large fraction (79%) of the individuals at a PPV higher than 95% (Fig. 5d, Supplementary Fig. 

9).  We also studied several biases that can affect linking accuracy. First when the eQTLs are discovered 
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on a sample set that and the linking attack is performed on another sample set, the accuracies are still 

very high (Supplementary Note, Supplementary Fig. 9a). Moreover, attacks are accurate when there is 

mismatch between the tissue or population of eQTL discovery sample set and tissue or population of 

linking attack sample set (Supplementary Note, Supplementary Table 1a, b). In addition, we observed 

that the extremity attack is still effective when genotype sample size is very large (Supplementary Note, 

Supplementary Fig. 9c, d), which points out the applicability on large sample sizes. We also observed 

that the extremity attack may link close relatives to each other, which can create potential privacy 

concerns for the family (Supplementary Fig. 10). 

3 DISCUSSION 
In genomic privacy, it is necessary to consider the basic premise of sharing any type of personal 

information: There is always an amount of leakage in the sensitive information19.  In addition, as shown 

by previous studies, we often cannot propose black-and-white solutions to problems in privacy which 

mainly roots from the multifaceted nature of privacy. We believe these make it necessary for the 

genomic data sharing and publishing mechanisms to incorporate statistical quantification methods to 

objectively quantify risk estimates before the datasets are released. The quantification methodology and 

the analysis frameworks presented here and in future studies can be applied for analysis of the 

information leakage in the datasets where the correlative relations can be exploited for performing 

linking attacks (Supplementary Note, Supplementary Fig. 11).  

Our study focuses on the individual privacy breaches in the context of linking attacks, where an 

individual’s existence in two seemingly independent databases (e.g., phenotype and the genotype) can 

cause a privacy concern when an attacker links statistically the databases using the a priori information 

about correlation of different entries in the databases. The obvious risk management strategy against 

these attacks is restricting access to the phenotype datasets. This approach has, however, high cost in 

terms of lost research opportunities. Another approach is serving encrypted data, where data analysis is 

performed directly on the encrypted data, for example, using homomorphic encryption20. This approach 

has very high compute requirements and not practical yet. One other approach is to utilize statistical 

techniques like k-anonymization21. These can be employed on the phenotype datasets before being 

published. For this, it is necessary to develop new approaches and heuristics that can effectively 

circumvent high computational requirements22.  In addition, several other approaches have addressed 

scenarios where k-anonymization may fail to protect data23,24. These scenarios must be properly handled 

in the risk management strategies. The anonymization strategies can use the estimates of leakage and 

predictability from our study to determine the QTLs that cause most leakage and anonymize the 

phenotype data accordingly. Another approach is to serve phenotypic data from a statistical database. 

In this context, differential privacy has been proposed as an optimal way for privacy aware data serving 

from statistical databases. The data release mechanisms in a differentially private scenario can benefit 

from the estimates of ICI leakage in each QTL. Differentially private data serving may, however, decrease 

the biological utility of the data significantly25. We believe new studies should address protection and 

risk management strategies for serving utility maximized and privacy aware high dimensional phenotype 

datasets. 
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4 DATASETS 
The normalized gene expression levels for 462 individuals and the eQTL dataset are obtained from 

GEUVADIS mRNA sequencing project17. The eQTL dataset contains all the significant (Identified at most 

5% false discovery rate) gene-variant pairs with high genotype-expression correlation. To ensure that 

there are no dependencies between the variant genotypes and expression levels, we used the eQTL 

entries where gene and variants are unique. In other words, each variant and gene are found exactly 

once in the final eQTL dataset (Section S4). The genotype, gender, and population information datasets 

for 1092 individuals are obtained from 1000 Genomes Project18. For 421 individuals, both the genotype 

data and gene expression levels are available. For tissue analysis, the publicly available significant eQTLs 

for 6 tissues that are computed by the GTex project are downloaded from the GTex Portal. 
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the phenotype dataset to the genotype dataset by matching the genotypes. The linking potentially 

reveals the HIV status for the subjects in the genotypes dataset. The IDs and HIV Status are colored to 

illustrate how the linking combines the entries in the two datasets. The non-shaded columns are used 

for linking.  

Figure 2: Illustration of genotype-expression associations and linking attacks (a) Schematic 

representation of genotype and expression associations. Genotype (y-axis) and expression (x-axis) are 

correlated, indicated by line fit and 𝜌. The rectangles represent conditional distribution of expression 

given genotype values. (b) Illustration of extremity based genotype prediction. Expression range is 

divided into two equal ranges (separated by 𝑒𝑚𝑖𝑑). The blue rectangles represent the distribution used 

for prediction. Given the distribution of expression (tri-model distribution on right), the positive 

extremity is assigned genotype 2, and negative extremity is assigned genotype 0. (c) Three step linking 

process. First step is selection of phenotypes and genotypes to be used in linking. Second step is 

prediction of genotypes. Last step is linking of predicted genotypes to the genotype dataset. 

Figure 3: Illustration of individual characterizing information (ICI) and correct predictability of 

genotypes. (a) Graphical representation of ICI formulation. ICI for a set of 𝑛 variant genotypes is 

computed in terms of population genotype frequencies. Each genotype contributes to ICI additively with 

the logarithm of reciprocal of the genotype frequency (illustrated by the genotype distributions). (b) 

Graphical representation of 𝜋. Given the joint distribution of genotype and expression (shown below), 

the conditional distribution of genotypes given expression level 𝑒 is computed. The exponential of the 

conditional distribution entropy is used for computing the predictability. 

Figure 4: ICI versus 𝜋 for each eQTL. Plots show, for each eQTL, the information leakage (x-axis) versus 

correct genotype predictability (y-axis). For each eQTL, the estimated ICI leakage and genotype 

predictability are plotted. The dots are colored with respect to the major allele frequency (a) and with 

respect to absolute correlation of the eQTL (b). ICI versus 𝜋 for shuffled data (red) is compared to the 

real dataset (blue) in (c). 

Figure 5: Accuracy measures for linking attacks. (a) Linking accuracy with MAP genotype predictions. 

Absolute correlation threshold (x-axis) versus fraction of vulnerable individuals (y-axis). The yellow 

arrow indicates the maximized position of linking accuracy. Red, green, and cyan plots show linking 

accuracy with gender, population, and gender + population as auxiliary information. (b) The genotype 

prediction accuracy. The genotype prediction accuracy (y-axis) of with changing absolute correlation 

threshold (x-axis). (c) Linking accuracy with extremity based linking with all genotypes. (d) Linking 

accuracy with extremity based linking with homozygous genotypes. 

[[FOLLOWING ARE NOT UPDATED, YET]] 

Table S1: Linking accuracy of extremity based linking attack using the eQTLs are identified in different 

populations and different tissues. (a) The table shows the linking accuracies (for populations shown in 

the rows) when the eQTLs that are identified using data (indicated in each column) from different 
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populations. (b) The linking accuracy of individuals in GEUVADIS project when eQTLs identified from 

different tissues are used in linking. 

Table S2: Linking attack accuracy comparison. The table shows linking accuracy for Schadt et al and 

extremity based linking attack methods. Each row corresponds (for Schadt et al Method) to a different 

number of data points in the training datasets that is input to Schadt et al method. 

Supplementary Figure 1: Schematic comparison of linking attacks (Left) and detection of a genome in a 

mixture attacks (Right). Each box in the figure represents a dataset in the form of a matrix. Multiple 

boxes next to each other correspond to concatenation of matrices. Linking attacks aim at linking 

genotype and phenotype datasets. The phenotype datasets contain both “predicting” phenotypes and 

other phenotypes, some of which can be sensitive. The attacker first predict genotypes for each of the 

predicting phenotype. The predicted genotypes are then compared with the genotypes in the genotype 

dataset. After the linking, all the datasets are concatenated where the identifiers can be matched to the 

sensitive phenotypes. Different colors indicate how the linking merges different information. The 

detection of a genome in a mixture attacks start with a genotype dataset. The attacker gets access to 

the statistics of a GWAS or genotyping dataset (for example, regression coefficients or allele 

frequencies). Then the attacker generates a statistic and tests it against that of a reference population. 

The testing result can be converted into the study membership indicator (attended/not attended) which 

shows whether the tested individual was in the study cohort or not. 

Supplementary Figure 2: Representation of the eQTLs. (a) The average ICI leakage versus the genotype 

predictability is shown for real (red) and shuffled (blue) eQTL dataset is shown. (b) The absolute 

correlation versus predictability is shown. 

 

 

Figure shows the attacker’s presumed strategy for linking attack. (a) The phenotype and variant pairs are 

sorted with respect to decreasing absolute correlations values. For the top n pairs, joint predictability 

and ICI are computed. (b) Illustration of prior, joint, and posterior distributions of genotypes and 

expression levels. Leftmost figure shows the distribution of genotypes over the sample set, which is 

labelled as the prior distribution. Middle figure shows the joint distribution of genotypes and expression 

levels. Notice that there is a significant negative correlation between genotype values and the 

expression levels. Rightmost figure shows the posterior distribution of genotypes given that the gene 

expression level is 10. The posterior distribution has a maximum (MAP prediction) at genotype 2, which 

is indicated by a star. 

Supplementary Figure 3: The distribution of ranks of the individuals in the linking step. At each gradient 

threshold, the box plots show, for each individual, their ranks in the genotype comparison in the 3rd step 

of linking attack with MAP genotype prediction. Notice that at around 0.35 correlation threshold, the 

assigned ranks are minimized, i.e., most of the individual are linked correctly. 
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Supplementary Figure 4: The median absolute gene expression extremity statistics over 462 individuals 

in GEUVADIS dataset. (a) For each individual, the extremity is computed over all the genes (23,662 

genes) reported in the expression dataset. The median of the absolute value of the extremity is plotted. 

X-axis shows the sample index and y-axis shows the extremity. The absolute median extremity fluctuates 

around 0.25, which is exactly the midpoint between minimum and maximum values of absolute 

extremity. (b) For each individual, we count the number of genes above the extremity threshold. The 

plot shows the extremity threshold versus the median number of genes (over 462 individuals) above the 

extremity threshold. Around half of the genes (indicated by dashed yellow lines) have higher than 

almost 0.3 extremity on average over all the individuals. Also, around median number of 1000 genes 

over the samples have higher than 0.45 extremity (indicated by dashed red lines). 

Supplementary Figure 5: Illustration of linking for 𝑗th individual. The attacker first predicts the 

genotypes (𝒗̃∙,𝒋) which are then used to compute the distance to all the individuals in the genotype 

dataset. The computed distances are then sorted in decreasing. The top matching individual (in the 

example, individual a) is assigned as the linked individual. The first distance gap, 𝑑1,2, is computed as the 

difference between the second (𝑑𝑗,(2)) and the first (𝑑𝑗,(1)) distances in the sorted list. 

Supplementary Figure 6:  

Supplementary Figure 7: A representative example of extremity based linking. The phenotype dataset 

(Consisting of gene expression levels for 6 genes) is shown above. Each phenotype measurement is 

represented by blue (negative extreme), yellow (positive extreme), or grey (non-extreme) dots. Based 

on the extremity of phenotypes, the attacker performs prediction of genotypes, which are shown below 

in (2). She uses the eQTL dataset (with genes and SNPs) for prediction. Blue and brown triangles 

correspond to the correct genotype predictions. The grey crosses correspond to the incorrect or 

unavailable genotype predictions. The attacker compares the predicted genotypes to the genotype 

dataset in (3), where triangles show the genotypes, and performs linking. The attacker links the 

predicted genotypes to the genotype dataset. 3 individuals (Bob, Alice, and John) are highlighted. The 

attacker can link Bob and John by matching them to their genotypes. The correct prediction of 

rs7274244 (in yellow dashed rectangle) enables the attacker to distinguish between correct entries and 

reveal both of their disease status as positive. For Alice, the predicted genotypes are equally matching at 

two entries both of which match at 2 genotypes; PID-b and PID-k (with negative and positive disease 

status) thus the attacker cannot exactly reveal Alice’s disease status.  

Supplementary Figure 8: Illustration of risk assessment procedure for joint genotyping/phenotyping 

data generation. There are two paths of risk assessment to be performed. The first path evaluates the 

risks associated with release of the QTL datasets. The genotype and phenotype data (on the left) is first 

used for quantitative trait loci identification (QTL identification box). This generates the significant QTLs. 

These are then utilized, in addition to the list of external QTL databases, in quantification of leakage 

versus predictability, as presented in Section 2.2. These results are then relayed to the risk assessment 

procedures. The second risk assessment procedure evaluates the release of genotype and phenotype 

datasets. For this, the datasets are input to application of a list of linking attacks (Presented in Sections 
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2.3, and 2.4, and other linking attacks in the literature) for evaluation of characterization risks. The 

results are then relayed to risk assessment procedures. 

Supplementary Figure 9: Models of joint genotype-expression distribution with varying numbers of 

parameters for a positively correlated eQTL. (a) shows the true distribution where grey boxes represent 

the expression distributions given different genotypes. Red line show the gradient of correlation 

between genotype and expression. First simplification of the model is shown in (b). The expression 

distribution can be modeled with Gaussians with different means and variances with total of 6 

parameters. The variances can be assumed same for different genotypes (c), where 4 parameters are 

required. (d) illustrates a representation of the uniform expression distribution given genotypes, where 

4 parameters are required. The conditional distribution of expression is uniform (cross shaded 

rectangles) over the ranges (𝑒1, 𝑒2), (𝑒2, 𝑒3), and (𝑒3, 𝑒4) given genotypes 0, 1, and 2, respectively. The 

transparent grey rectangles shows the original distributions. (e) is a simplification of (d) where no 

conditional probability of expression is assigned given genotype is 1. In this model, only one parameter 

(𝑒𝑚𝑖𝑑) is necessary. The conditional probability of expression given genotypes 0 and 2 are uniform for 

expression levels below 𝑒𝑚𝑖𝑑 and above 𝑒𝑚𝑖𝑑, respectively (shown with cross shaded rectangles). The 

original distribution is included with grey rectangles for comparison. Extremity based prediction is an 

instantiation of the model in (e). 

9 ONLINE METHODS 

9.1 Genotype, Expression, and eQTL Datasets 
The eQTL, expression, and genotype datasets contain the information for linking attack (Supplementary 

Fig. 2). The eQTL dataset is composed of a list of gene-variant pairs such that the gene expression levels 

and variant genotypes are significantly correlated. We will denote the number of eQTL entries with 𝑞. 

The eQTL (gene) expression levels and eQTL (variant) genotypes are stored in 𝑞 × 𝑛𝑒 and 𝑞 × 𝑛𝑣 

matrices 𝑒 and 𝑣, respectively, where 𝑛𝑒 and 𝑛𝑣 denotes the number of individuals in gene expression 

dataset and individuals in genotype dataset.  The 𝑘th row of 𝑒, 𝒆𝒌, contains the gene expression values 

for 𝑘th eQTL entry and 𝑒𝑘,𝑗  represents the expression of the 𝑘th gene for 𝑗th individual. Similarly, 𝑘th 

row of 𝑣, 𝒗𝒌, contains the genotypes for 𝑘th eQTL variant and 𝑣𝑘,𝑗 represents the genotype (𝑣𝑘,𝑗 ϵ 

{0,1,2}) of 𝑘 variant for 𝑗th individual. The coding of the genotypes from homozygous or heterozygous 

genotype categories to the numeric values are done according to the correlation dataset (Online 

Methods).  We assume that the variant genotypes and gene expression levels for the 𝑘th eQTL entry are 

distributed randomly over the samples in accordance with random variables (RVs) which we denote with 

𝑉𝑘 and  𝐸𝑘, respectively. We denote the correlation between the RVs with ρ(𝐸𝑘, 𝑉𝑘). In most of the 

eQTL studies, the value of the correlation is reported in terms of a gradient (or the regression 

coefficient) in addition to the significance of association (p-value) between genotypes and expression 

levels. 
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9.2 Quantification of Characterizing Information and Predictability 
The genotype RV 𝑉𝑘 takes 3 different values, {0,1,2}, where the genotype coding is done per counting 

the number of alternate alleles in the genotype. Given that the genotype is 𝑔𝑘,𝑗, we quantify the 

individual characterizing information in terms of self-information26 of the event that RV takes the value 

𝑔𝑘,𝑗: 

 𝐼𝐶𝐼(𝑉𝑘 = 𝑔𝑘,𝑗) = 𝐼(𝑉𝑘 = 𝑔𝑘,𝑗) = − log2(𝑝(𝑉𝑘 = 𝑔𝑘,𝑗)) ⁡ 

 

(1) 

where 𝑉𝑘 is the RV that represents the 𝑘th eQTL genotype, 𝑝(𝑉𝑘 = 𝑔𝑘,𝑗) is the probability (frequency) 

of that 𝑉𝑘 takes the value 𝑔𝑘,𝑗, and 𝐼𝐶𝐼 denotes the individual characterizing information. Given multiple 

eQTL genotypes, assuming that they are independent, the total individual characterizing information is 

simply summation of those: 

 𝐼𝐶𝐼({𝑉1 = 𝑣1,𝑗 , 𝑉2 = 𝑣2,𝑗 , … , 𝑉𝑁 = 𝑣𝑁,𝑗})

= −∑ log2 (𝑝(𝑉𝑘 = 𝑣𝑘,𝑗))

𝑁

𝑘=1

. 

 

(2) 

The genotype probabilities are estimated by the frequency of genotypes in the genotype dataset. We 

measure the predictability of eQTL genotypes using an entropy based measure. Finally, the base of 

logarithm that is used determines the units in which ICI is reported. When base two logarithm is used as 

above, the unit of ICI is bits.  

Given the genotype RV, 𝑉𝑘, and the correlated gene expression RV, 𝐸𝑘, 

 𝜋(𝑉𝑘|𝐸𝑘 = 𝑒) = exp⁡(−𝐻(𝑉𝑘|𝐸𝑘 = 𝑒)) 
 

(3) 

where 𝜋 denotes the predictability of  𝑉𝑘 given the gene expression level 𝑒, and 𝐻 denotes the entropy 

of 𝑉𝑘 given gene expression level 𝑒 for 𝐸𝑘 . The extension to multiple eQTLs is straightforward. For the 

𝑘th individual, given the expression levels  𝑒𝑘,𝑗 for all the eQTLs, the total predictability is computed as  

𝜋({𝑉𝑘}, {𝐸𝑘 = 𝑒𝑘,𝑗}) = exp(−𝐻({𝑉𝑘}⁡|⁡{𝐸𝑘 = 𝑒𝑘,𝑗})) 

 
= exp⁡(−∑𝐻(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗)

𝑘

) 

 

(4) 

In addition, this measure is guaranteed to be between 0 and 1 such that 0 represents no predictability 

and 1 representing perfect predictability. The measure can be thought as mapping the prediction 

process to a uniform random guessing where the average correct prediction probability is measured by 

𝜋. 

9.3 Extremity Based MAP Genotype Prediction 
Using an estimate of the joint distribution, the attacker can compute the a posteriori distribution of 

genotypes given gene expression levels. To quantify the extremeness of expression levels, we use a 
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statistic we termed 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦. For the gene expression levels for 𝑘𝑡ℎ eQTL, 𝒆𝒌, 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 of the 𝑗𝑡ℎ 

individual’s expression level, 𝑒𝑘,𝑗, is defined as 

 
𝑒𝑥𝑡(𝑒𝑘,𝑗) =

rank⁡of⁡𝑒𝑘,𝑗in⁡{𝑒𝑘,1, 𝑒𝑘,2, … , 𝑒𝑘,𝑛𝑒}

𝑛𝑒
− 0.5. 

 

(5) 

Extremity can be interpreted as a normalized rank, which is bounded between -0.5 and 0.5. The average 

median extremity is uniformly distributed among individuals (Supplementary Fig. 6a). In addition, 

around half of the genes (10,000) in each individual have higher than extremity value of 0.3. Also, 

around 1000 genes have higher than 0.45 absolute extremity (Supplementary Fig. 6b). In other words, 

each individual harbors substantial number of genes whose expressions are at the extremes within the 

population. These can potentially serve as quasi-identifiers. It is worth noting, however, that not all of 

these extreme genes are associated with eQTLs. 

Following from the above discussion, the adversary builds the posterior distribution for 𝑘th eQTL 

genotypes as 

 𝑃(𝑉𝑘 = 0⁡⁡|⁡𝐸𝑘 = 𝑒𝑘,𝑗)

= {
1⁡if⁡|𝑒𝑥𝑡(𝑒𝑘,𝑗)| > 𝛿, 𝑒𝑥𝑡(𝑒𝑘,𝑗) × ρ(𝐸𝑘, 𝑉𝑘) < 0⁡⁡

0⁡otherwise⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
 

(6) 

   
 𝑃(𝑉𝑘 = 2⁡⁡|⁡𝐸𝑘 = 𝑒𝑘,𝑗)

= {
1⁡if|𝑒𝑥𝑡(𝑒𝑘,𝑗)| > 𝛿, 𝑒𝑥𝑡(𝑒𝑘,𝑗) × ρ(𝐸𝑘, 𝑉𝑘) > 0⁡⁡

0⁡otherwise⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
 

(7) 

   
 𝑃(𝑉𝑘 = 1⁡⁡|⁡𝐸𝑘 = 𝑒𝑘,𝑗) = 0. (8) 

 

From the a posteriori probabilities, when the sign of the extremity and the reported correlation are the 

same, the attacker assigns the genotype value 2, and otherwise, genotype value 0. Finally, the genotype 

value 1 is never assigned in this prediction method, i.e., the a posteriori probability is zero. As yet 

another way of interpretation, the genotype prediction can be interpreted as a rank correlation 

between the genotypes and expression levels and choosing the homozygous genotypes that maximize 

the absolute values of the rank correlation. Thus, this process can be generalized as a rank correlation 

based prediction. We are focusing on the extremes and heterozygous genotype is observed at medium 

levels of expression. The posterior distribution of genotypes in equations (4-6) can be derived from a 

simplified model of the genotype-expression distribution that utilizes just one parameter (Online 

Methods). We used the posterior genotype probabilities in extremity based prediction and assessed the 

genotype prediction accuracy. As expected, the accuracy of genotype predictions increases with 

increasing correlation threshold (Fig. 5b). 

The slight decrease of genotype accuracy at correlation thresholds higher than 0.7 is caused by the fact 

that the accuracy (fraction of correct genotype predictions within all genotypes) is not robust at very 

small number of SNPs. Although we expect very high accuracy, even one wrong prediction among small 

number of total genotypes decreases the accuracy significantly. 
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genotypes over all the samples. As the genotypes are discrete 
valued, the above formula can be computed in a straightforward 
way by the summation after the probabilities are estimated.¶
In the formulation for conditional predictability of genotypes given 
expression levels, we also use the conditional specific entropies24 of 
the genotypes given the gene expression levels. For this, we use the 
following formulation: ¶
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RV representing gene expression level for 𝑘𝑡ℎ eQTLs (𝐸𝑘) is 𝑒𝑘,𝑗. 

Since the gene expression levels are continuous, to estimate the 
conditional probabilities of genotypes given expression levels; we 
start with the joint distribution of 𝐸𝑘 and 𝑉𝑘, then bin the gene 
expression levels. For this, we use Sturges’ rule25 to choose the 
number of bins. This rule states that the number of bins should be 
selected as 𝑛𝑏 = ⌈log2(𝑛𝑒)⌉ + 1 = ⌈log2(421)⌉ + 1 = 10. The 
binning is done for each gene by first sorting the expression levels 
for all the individuals, then the range of gene expression levels are 
divided into 𝑛𝑏 = 10 bins of equal size and each expression level is 
mapped to a value between in [0, 𝑛𝑏 − 1]. The expression level of 

𝑘𝑡ℎ gene in 𝑗𝑡ℎ individual, 𝑒𝑘,𝑗, is mapped to ¶ ...



 

16 
 

9.4 First Distance Gap Statistic Computation 
Following the previous section, the attacker computes, for each individual, the distance to all the 

genotypes in genotype dataset, then identifies the individual with smallest distance. Let 𝑑𝑗,(1) and 𝑑𝑗,(2) 

denote the minimum and second minimum genotype distances (among 𝑑𝐻(𝒗̃∙,𝒋, 𝒗∙,𝒂) for all a) for 𝑗th 

individual. We propose using the difference between these distances, termed first distance gap statistic, 

as a measure of reliability of linking. For this, the attacker computes following difference: 

 𝑑1,2(𝑗) = 𝑑𝑗,(2) − 𝑑𝑗,(1) 

 

(9) 

First distance gap can be computed without the knowledge of the true genotypes, and is immediately 

accessible by the attacker with no need for auxiliary information (Supplementary Fig. 8). The basic 

motivation for this statistic comes from the observation that the first distance gap for correctly linked 

individuals are much higher compared to the incorrectly linked individuals. 

9.5 eQTL Identification with Matrix eQTL 
For identification of eQTLs, we used Matrix eQTL27 method. We first generated the testing and training 

sample lists by randomly picking 210 and 211 individuals, respectively, for testing and training sets. We 

then separated the genotype and expression matrices into training and testing sets. Matrix eQTL is run 

to identify the eQTLs using the training dataset. In order to decrease the run time, Matrix eQTL is run in 

cis-eQTL identification mode. After the eQTLs are generated, we filtered out the eQTLs whose FDR (as 

reported by Matrix eQTL) was larger than 5%. We finally removed the redundancy by ensuring that each 

gene and each SNP is used only once in the eQTL final list. To accomplish this, we selected the eQTL that 

is correlated with highest association with each gene. The association statistic reported by Matrix eQTL 

was used as the measure of strength of association between expression levels and genotypes. Similar 

procedure is applied when eQTLs for 30 trios are identified. 

9.6 Modeling of Genotype-Phenotype Distribution  
In the second step of the linking attack, the genotype predictions are performed. The genotype 

predictions are used, as an intermediate information, as input to the third step (Fig. 2c), where linking is 

performed. The main aim of attacker is to maximize the linking accuracy (not the genotype prediction 

accuracy), which depends jointly on the genotype prediction accuracy and the accuracy of the genotype 

matching in the 3rd step. Other than the accuracy of linking, another important consideration, for risk 

management purposes, is the amount of auxiliary input data (like training data for prediction model) 

that the genotype prediction takes. The prediction methods that require high amount of auxiliary data 

would decrease the applicability of the linking attack as the attacker would need to gather extra 

information before performing the attack. On the other hand, the prediction methods that require little 

or no auxiliary data makes the linking attack much more realistic and prevalent. It is therefore useful, in 

the risk management strategies, to study complexities of genotype prediction methods and evaluate 

how these translate into assessing the accuracy and applicability of the linking attack. We study different 

simplifications of genotype prediction, and illustrate different levels of complexity for genotype 

prediction. 
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In MAP based genotype prediction and linking attack, we assume that the attacker estimates the 

posterior distribution of genotypes and utilizes the maximum a posteriori estimate of the genotype as 

the general prediction method. For this, attacker must first model the joint genotype-phenotype 

distribution and then build the posterior genotype distribution (Supplementary Fig. 5a). The first level 

level of model can be built by decomposing the conditional distribution of expression with independent 

variances and means (Supplementary Fig. 5b). Assuming that mean and variance are sufficient statistics 

for the conditional distributions (e.g., normally distributed), the joint distributions can be modeled when 

the 6 parameters (3 means and 3 variances) are trained. The training can be performed using 

unsupervised methods like expectation maximization or can be performed using training data. This 

would, however, increase the required auxiliary data and decrease the applicability of the linking attack. 

A simplification of the model by assuming the variances of the conditional expression distributions are 

same for each genotype (Supplementary Fig. 5c). This decreases the number of parameters to be 

trained to 4 (3 means and 1 variance). An equally complex model with 4 parameters can be built 

assuming the conditional distributions are uniform at non-overlapping ranges of expression for each 

genotype (Supplementary Fig. 5d). This model requires 4 parameters to be trained corresponding to the 

expression range limits. Another simplification of the genotype prediction can be performed 

(Supplementary Fig. 5e), which requires only one parameter to be trained. In this model, the prediction 

only assigns uniform probability for homozygous genotypes when expression levels higher or lower than 

𝑒𝑚𝑖𝑑 and assigns 0 conditional probability to the heterozygous genotypes, which brings up an important 

point: This simplified model is exactly the distribution that is utilized in the extremity based genotype 

prediction. In the extremity based prediction, we estimate 𝑒𝑚𝑖𝑑 simply as the mid-point of the range of 

gene expression levels within the expression dataset (Supplementary Note).  

9.7 Code Availability 
All the analysis code that is used to generate results can be obtained from 

http://privaseq.gersteinlab.org 
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