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[[HIGHLEGHTED PARTS TO BE MOVED TO 
SUPPLEMENTARY]] 

ABSTRACT  
Privacy is receiving much attention with the unprecedented increase in the breadth and depth of 

biomedical datasets, particularly personal genomics datasets. Moreover, considering the legislative 

plans for encouraging public data sharing in biomedical research fields, privacy will be the key 

consideration in designing data sharing mechanisms. Most studies on genomic privacy are focused on 

protection of variants in personal genomes. Molecular phenotype datasets, however, can also contain 

substantial amount of sensitive information. Although there is no explicit genotypic information in them, 

subtle genotype-phenotype correlations can be used to statistically link the phenotype and genotype 

datasets. The links can then be used to characterize individuals by identifying their sensitive phenotypes 

and breaching privacy. Here, we develop a formalism for the quantification and analysis of individual 

characterizing information leakage in a linking attack. We analyze the tradeoff between the 

predictability of the genotypes and the amount of leaked information that can be used in linking and 

individual characterization. Then we show how one could practically instantiate an attack focusing on 

the most commonly available data sets, those of RNA-seq and eQTL.  We develop a three step 

procedure showing how an attacker would select eQTLs, statistically predict the genotypes, and perform 

linking based on the predicted genotypes. The linking can be very accurate considering the high 

dimensionality of phenotypes. The linking attack becomes particularly easy to perform when one deals 

with outlier gene expression levels. To study this, we developed a particular realization of this attack for 

the outlier cases and quantified the amount of information leaked. 
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1 BACKGROUND 
Privacy is one of the most important topics of debate in data science that stands at the corner of many 

different fields, including ethics, sociology, law, political science, and forensic science. Recently, 

genomics has emerged as one of the major foci of studies on privacy. This can mainly be attributed to 

the advancement of technologies for high throughput biomedical data acquisition that bring about a 

surge of datasets1,2. Among these, high throughput molecular phenotype datasets, like functional 

genomic and metabolomic measurements, substantially grow the list of the quasi-identifiers (such as 

birth date, ZIP code, gender3) for participating individuals, which can be used by an adversary for re-

identification of the identities. With the recent announcement of Precision Medicine Initiative4, a large 

body of datasets are to be generated and shared among researchers5. The National Institutes of Health 

also released the plans to encourage public access to biomedical datasets from scientific studies 5–7. 

Considering the fact that one does not need many identifiers to uniquely pinpoint an individual3,8,9, 

these datasets have the potential to exacerbate the risk of privacy breach.  

Many consortia, like GTex10, ENCODE11, 1000 Genomes12, and TCGA13, are generating large amount of 

personalized biomedical datasets. Coupled with the generated data, sophisticated analysis methods are 

being developed to discover correlations between genotypes and phenotypes, some of which can 

contain sensitive information like disease status. Although these correlations are useful for discovering 

how genotypes and phenotypes interact, they could also be utilized by an adversary in a linking attack 

for matching the entries in genotype and phenotype datasets. For example, when a phenotype dataset 

is available, the adversary can utilize the genotype-phenotype correlations to statistically predict the 

genotypes, compare the predicted genotypes with the entries in another dataset that contains 

genotypes. For the entries that are correctly matching, he/she can reveal sensitive phenotypes of the 

individuals and characterize them. Even when the strength of each genotype-phenotype correlation is 

not high, the availability of a large number of genotype-phenotype correlations increases the scale of 

linking. In fact, an adversary can perform correct linking with relatively small number of genotypes14,15. 

Different aspects of privacy have been intensely studied. Recently, genomic privacy is receiving much 

attention as a result of the deluge of personalized genomics datasets that are being generated16,17. With 

the increase in the number of large scale genotyping and phenotyping studies, the protection of privacy 

of participating individuals emerged as an important issue. Homer et al18 proposed a statistical testing 

procedure that enables testing whether a genotyped individual is in a pool of samples, for which only 

the allele frequencies are known. Im et al19 showed that, given the genotypes of a large set of markers 

for an individual, an attacker can reliably predict whether the individual participated to a QTL study or 

not. These attacks, which we refer to as “detection of a genome in a mixture”, are one type of attacks 

on privacy (Fig S6). There is yet another important attack where the attacker links two or more datasets 

to pinpoint individuals in datasets and reveal sensitive information. One well-known and illustrative 

example of these “linking attacks”, although not in a genomic context, is the linking attack that matched 

the entries in Netflix Prize Database and the Internet Movie Database (IMDB)20. For research purposes, 
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Netflix released an anonymized dataset of movie ratings of thousands of viewers, which they thought 

was secure as the viewers’ names were removed. However, Narayanan et al20 used IMDB database, a 

seemingly unrelated and very large database of movie viewers, linked the two databases, and revealed 

identities and personal information (movie history and choices) of many viewers in the Netflix database. 

The fact that Netflix and IMDB host millions of individuals in their databases renders the question of 

detection of an individual in these database irrelevant since any random individual is very likely to be in 

one or both of these databases but the focus of attacks turns to matching individuals in the databases. 

Consequently, as the databases grow, the attacks for detection of an individual in a database become 

unimportant and the linking attacks become more admissible in order to characterize individuals’ 

sensitive information. In the genomic privacy context, as the size and number of the genotype and 

phenotype datasets increase, possibility of potentially linkable datasets will increase, which may make 

scenarios similar to Netflix attacks a reality in genomic privacy (Fig S6, Section S2).  

Several studies on genomic privacy address the linking of different datasets for re-identifying individuals 

and characterizing their sensitive information. Gymrek et al21 revealed the identities of several male 

participants of 1000 Genomes Project12 by using the short tandem repeats on Y-chromosome as an 

individual identifying biomarker and linking the genotypes to online genetic genealogy databases. A 

detailed review can be found elsewhere22. In addition, different formalisms for protecting sensitive 

information have been proposed and applied to genomic privacy. These censor or hide information, or 

aim at ensuring statistical indistinguishability of individuals in the released data. For example, 

differential privacy23 involves building data release mechanisms that have guaranteed bounds on the 

leakage of sensitive information. The release mechanisms track how much information is leaked and 

stops release when the estimated leakage is above a predetermined threshold. Although this approach 

is theoretically very appealing, it can substantially decrease the utility of the biological data24. In 

addition, the release mechanism must keep track of all the queries, which can cause complications in 

data sharing25. Homomorphic encryption26 enables performing analysis on encrypted data directly. 

Complete protection of sensitive information is guaranteed as the data processors never interact with 

the unencrypted sensitive information. The drawback, however, is high computational and storage 

requirements. Another well-established formalism is k-anonymization27,28. Before releasing the dataset, 

it is anonymized by data perturbation techniques for ensuring that no combination of features in the 

dataset are shared by fewer than k individuals. In this approach the anonymization process has, 

however, excessive computational complexity and is not practical for high dimensional biomedical 

datasets29. Several variants have been proposed for extending k-anonymity framework30,31. A majority of 

these studies aim at protecting the genomic variants and identities of individuals in databases. Different 

aspects of genomic privacy, pertaining linkability of high dimensional phenotype datasets to genotypes, 

are yet to be explored.  

In this paper, we focus on characterizability of the individuals’ sensitive information in the context of 

linking attacks, where the adversary exploits the genotype-phenotype correlations to link different 

datasets and potentially reveal sensitive information. In general, the high dimensional phenotype 

datasets generated in genomic studies harbor a number of phenotypes that contain sensitive 

information, like disease status, and other phenotypes, while not sensitive, may have subtle correlations 
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with genomic variant genotypes. Many quantitative phenotypes can be linked to genotypes using public 

quantitative trait loci (QTL) datasets. Some of the high dimensional genomic quantitative traits and 

corresponding QTLs are gene expression levels (eQTLs), protein levels (pQTLs32,33), DNase 

hypersensitivity site signals (dsQTLs34), ribosome occupancy (rQTLs35), DNA methylation levels 

(meQTLs36), histone modification levels (haQTLs37–39), RNA splicing (sQTLs40), and also higher order traits 

like network modularity (modQTLs41). Other QTLs associated with single dimensional non-genomic 

phenotypes include body mass index42, basal glucose levels43, and serum cholesterol levels32,44. Each QTL 

can potentially cause a small amount of genotypic information leakage. As these QTLs are often 

identified and reported at genomic scale, when an adversary utilizes a large number of QTLs in the 

attack, he/she can accurately link the sensitive phenotypes to the genotype dataset. Since genotypes 

can almost perfectly identify an individual, this linking attack can potentially cause a breach of privacy 

for the individuals who participated in the studies. 

Among all the datasets, the most abundant and well-studied genotype-phenotype correlation dataset is 

expression quantitative trait loci (eQTL) datasets. These datasets are generated by genome-wide 

screening for correlations between the variant genotypes and gene expression levels usually through 

RNA sequencing or expression arrays40,45,46. The eQTL datasets are especially useful in the context of 

linking attacks since there is a large and growing compendium of public eQTL datasets47. [For example, 

the GTex Project hosts a sizable set of eQTL dataset from multiple studies where the users can view in 

detail how the genotypes and expression levels are associated10,41. In order to demonstrate our results 

and build the formulations in a specific context, we will focus on eQTL datasets and linking of gene 

expression and genotype datasets. It is, however, worth noting that most of the results and analyses can 

be trivially generalized to other types of genotype-phenotype correlations. 

One publication48 relates to our study, where the authors demonstrate that an adversary can build a 

model for predicting genotypes for eQTLs using gene expression levels. The authors show that given the 

model, individuals can be identified with high accuracy. Our study follows48 and generalizes the results in 

two ways: First we study quantification of characterizing information leakage versus risk of 

characterization in an information theoretic setting. Secondly, we show that the linking can be 

performed in a much simplified setting by just utilizing the outliers in the data. For this, we introduce a 

new metric, we termed extremity, and show that this metric can be utilized in genotype prediction and 

linking attacks with high accuracy.  

The paper is organized as follows: We first analyze the genotype predictability and evaluate the tradeoff 

between the amount of information leakage and correct predictability of the genotypes. Next we 

present the 3 step individual characterization framework and study different aspects of vulnerability 

using the framework. In the last section, to illustrate the practicality of the attack scenario, we present 

extremity based genotype prediction method and evaluate the fraction of characterizable individuals on 

the representative dataset and we also present several different scenarios to test accuracy of the 

proposed linking attack. The analysis tools and code are available for download at 

http://privaseq.gersteinlab.org. 

http://privaseq.gersteinlab.org/
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2 RESULTS 

2.1 Overview of the Individual Characterization Scenario by Linking Attacks 
Figure 1a illustrates the general privacy breaching scenario that is considered. There are three datasets 

in the context of the breach. First dataset contains the phenotype information for a set of individuals. 

The phenotypes can include sensitive information such as disease status in addition to several molecular 

phenotypes such as gene expression levels. The second dataset contains the genotypes and the 

identities for another set of individuals.  The third dataset contains correlations between one or more of 

the phenotypes in the phenotype dataset and the genotypes. In this dataset, each entry contains a 

phenotype, a variant, and the degree to which these values are correlated. In order to formulate and 

demonstrate the results, we will focus on the gene expression datasets as the representative phenotype 

dataset. As explained earlier, the abundance of gene expression-genotype correlation (eQTL) datasets 

makes these datasets most suitable for linking attacks.  

Figure 1b illustrates the eQTL, expression, and genotype datasets. The eQTL dataset is composed of a list 

of gene-variant pairs such that the gene expression levels and variant genotypes are significantly 

correlated. We will denote the number of eQTL entries with 𝑞. The eQTL (gene) expression levels and 

eQTL (variant) genotypes are stored in 𝑞 × 𝑛𝑒 and 𝑞 × 𝑛𝑣 matrices 𝑒 and 𝑣, respectively, where 𝑛𝑒 and 

𝑛𝑣 denotes the number of individuals in gene expression dataset and individuals in genotype dataset.  

The 𝑘𝑡ℎ row of 𝑒, 𝒆𝒌, contains the gene expression values for 𝑘𝑡ℎ eQTL entry and 𝑒𝑘,𝑗 represents the 

expression of the 𝑘𝑡ℎ gene for 𝑗𝑡ℎ individual. Similarly, 𝑘𝑡ℎ row of 𝑣, 𝒗𝒌, contains the genotypes for 𝑘𝑡ℎ 

eQTL variant and 𝑣𝑘,𝑗 represents the genotype (𝑣𝑘,𝑗 ϵ {0,1,2}) of 𝑘 variant for 𝑗𝑡ℎ individual. The coding 

of the genotypes from homozygous or heterozygous genotype categories to the numeric values are 

done according to the correlation dataset (See Methods Section 4.1).  We assume that the variant 

genotypes and gene expression levels for the 𝑘𝑡ℎ eQTL entry are distributed randomly over the samples 

in accordance with random variables (RVs) which we denote with 𝑉𝑘 and  𝐸𝑘, respectively. We denote 

the correlation between the RVs with ρ(𝐸𝑘 , 𝑉𝑘). In most of the eQTL studies, the value of the correlation 

is reported in terms of a gradient (or the regression coefficient) in addition to the significance of 

association (p-value) between genotypes and expression levels. The absolute value of ρ(𝐸𝑘 , 𝑉𝑘) 

indicates the strength of association between the eQTL genotype and the eQTL expression level. The 

sign of ρ(𝐸𝑘 , 𝑉𝑘) represents the direction of association, i.e., which homozygous genotype corresponds 

to higher expression levels. This forms the basis for correct predictability of the eQTL genotypes using 

eQTL expression levels: The homozygous genotypes associate with the extremes of the gene expression 

levels and the heterozygous genotypes associate with moderate levels of expression. The eQTL studies 

utilize linear models to identify the gene and variant pairs whose expressions and genotypes that are 

significantly correlated. Given this knowledge, the adversary aims at reversing this operation so as to 

predict genotypes for each individual, using the respective gene expression levels and the genotype-

phenotype correlation. For general applicability of the analysis, we assume that he/she utilizes a 

prediction model that estimates correctly the a posteriori distribution of the eQTL genotypes given the 

eQTL expression levels, i.e., 𝑝(𝑉𝑘|𝐸𝑘), as illustrated in Fig S2b. This enables us to perform the analysis 

independent of the prediction methodology that the attacker utilizes without making any assumptions 

on the prediction model that is utilized by the attacker.  
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2.2 Quantification of Tradeoff between Correct Predictability of Genotypes 

and Leakage of Individual Characterizing Information  

[[MOVE TO SUPP, REPHRASE FOLLOWING]] 

We assume that the attacker will behave in a way that maximizes his/her chances of characterizing the 

most number of individuals. Thus, he/she will try and predict the genotypes, using the phenotype 

measurements, for the largest set of variants that he/she believes he/she can predict correctly. The 

most obvious way that the attacker does this is by first sorting the genotype-phenotype pairs with 

respect to decreasing strength of correlation as illustrated in Fig 2a. He/She will then predict the 

genotypes starting from the top genotype-phenotype pair. As he/she predicts more genotypes, he/she 

increases his/her chances of characterizing more individuals. As the attacker goes down the list, 

however, the correct predictability of the genotypes diminish, i.e., the strength of genotype-phenotype 

correlation decreases. Thus, each time he/she predicts a new genotype, he/she will encounter a tradeoff 

between the number of genotypes that can be predicted correctly versus the cumulative correctness of 

all the predicted genotypes. This tradeoff can also be viewed as the tradeoff between precision (fraction 

of the linkings that are correct) and recall (fraction of individuals that are correctly linked). In this section 

we will propose two measures to quantify this tradeoff.  

In the context of the linking attack, the attacker aims to correctly characterize 𝑛𝑒 individuals in the 

expression dataset among 𝑛𝑣 individuals in the genotype dataset. In order to correctly characterize an 

individual, he/she should select a set of eQTLs that he/she believes he/she can predict correctly. Next, 

given the individual’s expression levels, the attacker should predict the genotypes for the selected eQTLs 

correctly such that the predicted set of genotypes are not shared by more than 1 individual, i.e., the 

predicted genotypes can be matched to the correct individual. In other words, the joint frequency of the 

set of predicted genotypes for the selected eQTLs should be 
1

𝑛𝑣
. We can rephrase this condition as 

following in information theoretic terms: Given the genotypes of an individual, if the attacker can 

correctly predict a subset of genotypes that contain at least log2(𝑛𝑣) bits of information, the individual 

is vulnerable to characterization of his/her phenotypes. Following this statement, we can quantify the 

leakage from a set of correctly predicted eQTL variant genotypes as the logarithm of their joint 

frequency. Assuming that the genotypes of different eQTLs (See Section 5) are independent from each 

other, we can decompose the quantity of individual characterizing information that is leaked for a set of 

𝑛 correctly predicted eQTL genotypes:  

 

𝐼𝐶𝐼({𝑉1 = 𝑔1, 𝑉2 = 𝑔2, … , 𝑉𝑛 = 𝑔𝑛}) = ∑ −log(𝑝(𝑉𝑘 = 𝑔𝑘))⏟            
Convert the genotype 

frequency to number of bits
that can be used to characterize

individual

𝑛

𝑘=1

⏞                    

Sum individual characterizing 
information from all variants

 

 

(1) 

where 𝑉𝑘 is the random variable that corresponds to the genotypes for the kth eQTL, 𝑔𝑘 is a specific 

genotype (Refer to Methods Section 3.1 for more details), and 𝑝(𝑉𝑘 = 𝑔𝑘) denotes the genotype 
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frequency of 𝑔𝑘 within the population, and ICI denotes the total individual characterizing information. 

Evaluating the above formula, ICI increases as the frequency of the variant’s genotype 𝑔𝑘 decreases. In 

other words, the more rare genotypes contribute higher to ICI compared to the more common ones. 

Thus, individual linking information can be interpreted as a quantification of how rare the predicted 

genotypes are. The attacker aims to predict as many eQTLs as possible such that ICI for the predicted 

genotypes is at least log(𝑛𝑣). ICI can also be interpreted as the number of rare SNP genotypes that an 

individual harbors. 

In order to maximize the amount of ICI, the attacker will aim at correctly predicting as many eQTL 

genotypes as possible. The (correct) predictability of the eQTL genotypes from expression levels, 

however, varies over the eQTL dataset as some of the eQTL genotypes are more highly correlated (i.e., 

more correctly predictable) with the expression levels compared to others, given in |ρ(𝐸𝑘 , 𝑉𝑘)|. Thus, 

the attacker will try to select the eQTLs whose genotypes are the most correctly predictable to maximize 

ICI leakage. Although ρ(𝐸𝑘 , 𝑉𝑘) is a measure of predictability, it is computed differently in different 

studies. In addition, there is no easy way to combine these correlation values when we would like to 

estimate the joint predictability of multiple eQTL genotypes. In order to uniformly quantify the joint 

(correct) predictability of the eQTL genotypes using the expression levels, we use the exponential of 

entropy of the conditional genotype distribution given gene expression levels. Given the expression 

levels for  𝑗𝑡ℎ individual, we compute the predictability of the 𝑘𝑡ℎ eQTL genotypes as 

 

𝜋(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗) = exp (−1 × 𝐻(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗)⏞          

Randomness left in 𝑉𝑘
given 𝐸𝑘=𝑒𝑘,𝑗

)⏟                    
Convert the entropy to 
average probability

 

 

(2) 

where 𝜋 denotes the predictability of 𝑉𝑘 given the gene expression level 𝑒𝑘,𝑗. 𝜋 can be interpreted as 

the average probability (when sampling individuals from the population) that the attacker can correctly 

predict the eQTL genotype at the given expression level. In the above equation for 𝜋, the conditional 

entropy of the genotypes is a measure for the randomness that is left in genotype distribution when the 

expression level is known. In the case of high predictability, the conditional entropy is close to 0, and 

there is little randomness left in the genotype distribution. Taking the exponential of negative of the 

entropy converts the entropy to average probability of correct prediction of the genotype. In the most 

predictable case (conditional entropy close to 0), 𝜋 is close to 1, indicating very high predictability (Refer 

to Methods Section 4.1 for more details). 

We first considered each eQTL and evaluated the genotype predictability versus the characterizing 

information leakage. We use the GEUVADIS dataset as a representative dataset for this computation 

(Refer for Section 5). We computed, for each eQTL, average 𝜋 and average ICI over all the individuals, 

which is plotted in Fig 2b. Most of the data points are spread along the diagonal, which indicate that 

there is a natural tradeoff between correct predictability and ICI leakage. The eQTL variants with high 

frequency major allele frequencies have high predictability and low ICI and vice versa for eQTL variants 

with lower major allele frequency (Fig 2b, left). This is expected because the genotypes of the high 

frequency variants can be predicted, on average, easily (most individuals will harbor one dominant 
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genotype) and consequently does not deliver much characterizing information. The genotypes for the 

eQTLs with smaller major frequency alleles, however, are harder to predict as they are mostly uniformly 

distributed among population. On the other hand, these eQTLs contain high ICI on average. The eQTLs 

with high correlation (Fig 2b, right) deviate from the diagonal with high ICI and high predictability. In 

principle, the adversary will aim at identifying and using these highly informative eQTLs. The shuffled 

gene-variant pairs, on the other hand, are distributed mainly along the diagonal (Fig S1a). 

[[FOLLOWING CAN BE MOVED AND REPHRASED]] 

The risk of characterizability increases substantially when the adversary utilizes multiple genotype 

predictions at once. We will now use ICI and 𝜋 to evaluate how predictability changes with increasing 

leakage when multiple genotypes are utilized. As discussed earlier, the attacker will aim at predicting 

the largest number of eQTL genotypes given the expression levels to maximize characterization power. 

For this, we assume the attacker will sort the eQTLs with respect to the absolute value of correlation 

then predict the eQTL genotypes starting from the first eQTL. In order to evaluate the tradeoff between 

the characterizing information of the top predictable eQTLs and their predictabilities, we plotted 

average ICI versus average 𝜋 for top genotype predictions.  For this, we first sorted the eQTLs with 

respect to the reported correlation, |ρ(𝐸𝑘 , 𝑉𝑘)|. Then for top n=1,2,3,…,20 eQTLs, we estimated mean 𝜋 

and mean ICI over all the samples as illustrated in Fig S2a. We then plotted mean 𝜋 versus mean ICI for 

each n which is shown in Fig 2c. From the plot, we can first estimate the number of vulnerable 

individuals at different predictability levels. For example, at 20% predictability, there is approximately 8 

bits of ICI leakage. At this level of leakage, the adversary can correctly link all individuals, on average 

with 20% chance, in a sample of 28 = 256 individuals. At 5% predictability, the leakage is 11 bits and the 

characterizable sample size is 211 = 2048 individuals, which can be interpreted as a higher risk of 

characterizability. These estimates are useful when releasing QTL datasets such that the leakage risks 

can be assessed besides the released list of genotype-phenotype correlations. Another view is to 

evaluate the risk at which a given sample of individuals can be characterized. For a dataset of 𝑛𝑣 

individuals, as explained earlier, it is necessary to predict log (𝑛𝑣) bits of genotypic information correctly. 

The risk of characterization can be determined from the graph as the predictability level at which 

log (𝑛𝑣) bits of ICI leakage is observed. The auxiliary information knowledge can also be incorporated 

into this analysis easily. For example, assuming that the sample set contains 10,000 individuals, it is 

necessary to correctly predict log(𝑛𝑣 = 10,000) = 13.3 bits of information. At around 5% predictability, 

the adversary can gain 11 bits of information. Even though this cannot uniquely characterize all 

individuals, if the attacker can gain 13.3 − 11 = 2.3 bits of auxiliary information, e.g. gender and 

ethnicity, he/she can characterize all individuals correctly. Since many phenotypic measurements have 

significant predictive power for gender, the attacker can predict it correctly, which gains the attacker 1 

bit of auxiliary information. The presented quantification procedure can be utilized for evaluating the 

risk of information leakage while releasing QTL datasets. For example, the QTLs to be released can be 

assessed in terms of the characterizing information leakage versus the predictability so as to estimate 

the size and risk of a linking attack (Fig S8) that would be mediated by these QTLs.  
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2.3 A General Framework for Analysis of Individual Characterization 

[[REPHRASE FOLLOWING]] 

In this section, we present a 3 step framework for individual characterization in the context of linking 

attacks. Figure 3 summarizes the steps in the individual characterization for each individual. The input is 

the phenotype measurements for 𝑗𝑡ℎ individual. The aim of the attacker is to correctly link the disease 

state of the individual to the correct identity in the genotype dataset. In the first step, the attacker 

selects the QTLs, which will be used in linking 𝑗𝑡ℎ individual. The selection of QTLs can be based on 

different criteria. As described in the previous section, the most accessible criterion is selection based on 

the absolute gradient or the absolute strength of association between the phenotypes and genotypes. In 

the case of eQTLs, this is the reported correlation coefficient, |ρ(𝐸𝑘 , 𝑉𝑘)|. In our analysis, we evaluate 

the effect of changing correlation coefficient. It is worth noting that the adversary can use other 

measures of correct predictability to select the set of QTLs that he/she will utilize in the linking process. 

The second step is genotype prediction for the selected QTLs using a prediction model. For general 

applicability of our analysis we are assuming that the attacker’s prediction model can reliably construct 

the posterior probability distribution of the genotypes given the phenotypes. The attacker then uses the 

posterior probabilities of the genotypes to identify the maximum a posteriori (MAP) genotype. In this 

prediction, the attacker assigns the genotype that has the highest a posteriori probability given the 

expression level (Refer to Methods Section 4.3). The third and final step of individual characterization is 

comparison of the predicted genotypes to the genotypes of the 𝑛𝑣 individuals in genotype dataset to 

identify the individual that matches best to the predicted genotypes. In this step, the attacker links the 

predicted genotypes to the individual in the genotype dataset with the smallest number of mismatches 

compared to the predicted genotypes (Refer to Methods Section 4.4).  

2.3.1 Fraction of Vulnerable Individuals with MAP Genotype Prediction 

[[MOVE TO SUPPLEMENTARY, MENTION IN THE NEXT 

SECTION]] 

To illustrate the results of linking attack, we evaluate the fraction of individuals that are vulnerable to 

characterization using gene expression and genotype data in GEUVADIS Project. We assume that the 

attacker uses the absolute value of the reported correlation between the variant genotypes and gene 

expression levels to select the eQTLs for characterization. The genotypes for the selected eQTLs are 

predicted using MAP prediction (Refer to Methods Section 4.3). Figure 4a shows, for each correlation 

threshold, the number of selected eQTLs and the fraction correctly predicted genotypes.  

Using the list of predicted eQTL genotypes selected at each absolute correlation cutoff, the attacker 

performs the 3rd step in the attack and links the predicted genotypes to the genotype dataset to identify 

individuals (Refer to Methods Section 4.4). Each individual in expression dataset, who is linked to the 

right individual are flagged as vulnerable. Figure 4b shows the fraction of vulnerable individuals. The 

fraction of vulnerable individuals increase as the absolute correlation threshold increases and fraction is 

maximized at around 0.35 (Fig S3). At this value, 95% of the individuals are vulnerable. This behavior can 
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be explained by the increase in characterizing information leakage as the accuracy of the predicted 

genotypes increase while there is a balancing decrease in the characterizing information leakage with 

decreasing number of eQTL genotypes predicted.  

We also evaluate the scenario when the attacker gains access to auxiliary information. As the sources of 

auxiliary information, we use the gender and population information that is available for all the 

participants of 1000 Genomes Project on the project web site. It has been previously shown that gene 

expression levels show widespread differences with respect to gender49. In addition, it has been shown 

that the ethnicity and population differences can be observed in the gene expression levels50,51. These 

indicate that gender and ethnicity can be inferred from gene expression levels. We assume that the 

attacker either gains access to or predicts the gender and/or the population of the individuals and uses 

the information in the 3rd step of the attack (Refer to Methods Section 4.4). Figure 4b shows the fraction 

of vulnerable individuals when the auxiliary information is available. When the auxiliary information is 

available, more than 95% of the individuals are vulnerable to characterization for all the eQTL selections 

up to when the absolute correlation threshold is 0.6. These results show that a significant fraction of 

individuals are vulnerable for most of the correlation thresholds that the attacker can choose. 

2.4 Individual Characterization using Extremity based Genotype Prediction 

[[REPHRASE FOLLOWING]] 

In the previous section, we presented a general framework for analysis of vulnerability. For the 

applicability of the framework in different genotype prediction scenarios, we assumed that the attacker 

can correctly reconstruct the a posteriori distribution of genotypes given the gene expression levels, 

which is then used to estimate the MAP genotype. In general, correct reconstruction of the a posteriori 

distribution of the genotypes given expression levels may not be possible because the knowledge of only 

the genotype-phenotype correlation coefficient via eQTLs is not enough to regenerate the a posteriori 

distribution of genotypes given the expression levels.  

The attacker can, however, utilize a priori knowledge about the relation between gene expression levels 

and genotypes and build the joint genotype-expression distributions using models with varying 

complexities and parameters (See Methods Section 4.8). Even though the genotype prediction with 

these models may not be very accurate, the attacker can utilize a large number of eQTLs to maximize 

the accuracy of linking (Detailed in the Background Section). We focus on a highly simplified model here. 

We will assume the attacker exploits the knowledge that the eQTL genotypes and expression levels are 

correlated such that the allelic effects on expression are additive and extremes of the gene expression 

levels (highest and smallest expression levels) are observed with extremes of the genotypes 

(homozygous genotypes). Therefore, given the gradient of association, the attacker can estimate 

coarsely the joint distribution of the genotypes and expression levels. This idea is illustrated in Fig 5a. 

Using an estimate of the joint distribution, the attacker can compute the a posteriori distribution of 

genotypes given gene expression levels. To quantify the extremeness of expression levels, we use a 

statistic we termed 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦. For the gene expression levels for 𝑘𝑡ℎ eQTL, 𝒆𝒌, 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 of the 𝑗𝑡ℎ 

individual’s expression level, 𝑒𝑘,𝑗, is defined as 
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𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦(𝑒𝑘,𝑗) =

rank of 𝑒𝑘,𝑗in {𝑒𝑘,1, 𝑒𝑘,2, … , 𝑒𝑘,𝑛𝑒}

𝑛𝑒
− 0.5. 

 

(3) 

Extremity can be interpreted as a normalized rank, which is bounded between -0.5 and 0.5. Figure S4a 

shows the median absolute extremity distribution of all the gene expression levels among the 

individuals. The average median extremity is uniformly distributed among individuals. Figure S4b shows 

the median number of genes with minimum extremity. Almost half of the genes in each individual have 

higher than 0.3 extremity in the population. Also, around 1000 genes have higher than 0.45 absolute 

extremity. In other words, each individual harbors substantial number of genes whose expressions are 

at the extremes within the population. These can potentially serve as quasi-identifiers. It is worth 

noting, however, that not all of these extreme genes are associated with eQTLs (See Sections S1 and S6, 

Figure S7). 

Following from the above discussion, the adversary builds the posterior distribution for 𝑘𝑡ℎ eQTL 

genotypes as 

 
𝑃(𝑉𝑘 = 0  | 𝐸𝑘 = 𝑒𝑘,𝑗) = {

0 if 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦(𝑒𝑘,𝑗) × ρ(𝐸𝑘 , 𝑉𝑘) > 0  

1 otherwise                                                
 

(4) 

   
 

𝑃(𝑉𝑘 = 2  | 𝐸𝑘 = 𝑒𝑘,𝑗) = {
1 if 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦(𝑒𝑘,𝑗) × ρ(𝐸𝑘 , 𝑉𝑘) > 0  

0 otherwise                                                
 

(5) 

   
 𝑃(𝑉𝑘 = 1  | 𝐸𝑘 = 𝑒𝑘,𝑗) = 0. (6) 

 

From the a posteriori probabilities, when the sign of the extremity and the reported correlation are the 

same, the attacker assigns the genotype value 2, and otherwise, genotype value 0. Finally, the genotype 

value 1 is never assigned in this prediction method, i.e., the a posteriori probability is zero. This is 

expected since we are focusing on the extremes and heterozygous genotype is observed at medium 

levels of expression. The posterior distribution of genotypes in equations (4-6) can be derived from a 

simplified model of the genotype-expression distribution that utilizes just one parameter (See Methods 

Section 4.8, Fig S9). As yet another way of interpretation, the genotype prediction can be interpreted as 

a rank correlation between the genotypes and expression levels and choosing the homozygous 

genotypes that maximize the absolute values of the rank correlation. Thus, this process can be 

generalized as a rank correlation based prediction. We used the posterior genotype probabilities in 

extremity based prediction and assessed the genotype prediction accuracy. Figure 5b shows the 

accuracy of genotype predictions with changing correlation threshold. As expected, the accuracy of 

genotype predictions increases with increasing correlation threshold. The slight decrease of genotype 

accuracy at correlation thresholds higher than 0.7 is caused by the fact that the accuracy (fraction of 

correct genotype predictions within all genotypes) is not robust at very small number of SNPs. Although 

we expect very high accuracy, even one wrong prediction among small number of total genotypes 

decreases the accuracy significantly. 
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We next utilized extremity based genotype prediction in the 2nd step of the individual characterization 

framework (Fig 3) and evaluated the fraction of characterizable individuals in the GEUVADIS dataset. We 

utilized the correlation based eQTL selection in step 1, then extremity based genotype prediction in step 

2. In order to demonstrate the utility of the 3-step analysis framework; we evaluated two different 

distance measures for linking the predicted genotypes to the individuals in genotype dataset in the 3rd 

step of the attack. First is based on comparison of the predicted genotypes to all the genotypes in 

genotype dataset. Second is based on comparison of the predicted genotypes to only the homozygous 

genotypes in the genotype dataset (See Methods Section 4.5 for details). The motivation for using this 

distance measure is that the extremity based genotype prediction never assigns heterozygous 

genotypes. Thus the heterozygous genotypes are excluded from distance computation. 

[[FOLLOWING RESULTS CAN BE MOVED TO SUPPLEMENTARY 

AND CAN BE REPHRASED HERE BRIEFLY.]] 

For each measure, the attacker links the predicted genotypes to the individual whose genotypes 

minimize the selected distance measure. Figure 5c and 5d show the fraction of vulnerable individuals for 

both distance measures. More than 95% of the individuals are vulnerable for most of the parameter 

selections for both distance measures. The homozygous genotype matching distance measure has 

slightly higher linking accuracy. When the gender and/or population information is present as auxiliary 

information (red and green plots), the fraction of vulnerable individuals increases to 100% for most of 

the eQTL selections. These results show that linking attack with extremity based genotype prediction, 

although technically simple, can be extremely effective in characterizing individuals. We will focus on 

homozygous genotype matching based distance computation in the rest of the paper for simplicity of 

presentation. 

The previous results show that extremity based linking attacks are highly effective when the eQTLs are 

identified and linking attack is performed using the same expression and genotype datasets. In order to 

assess the accuracy when the eQTLs are computed and tested on different datasets, we divided the 

dataset into a training and a testing dataset. The training dataset, of 210 individuals, is used to discover 

the eQTLs, using Matrix eQTL52 method (See Methods Section for details). The testing dataset, of 211 

individuals, is utilized for assessing the accuracy of linking. Figure 6a shows the linking accuracy for 

individuals in testing dataset. The accuracy is very high, around 95%, which suggests that extremity 

based linking attacks are potentially effective when the datasets where eQTLs are identified do not 

match the data being tested. This is an important aspect of genotype prediction based linking attacks, as 

they exploit the generalizability of the correlations between phenotypes and genotypes. We also 

evaluated the accuracy of linking attack in comparison to the linking attack proposed by Schadt et al 

(See Section S3, Table S2). We observed that the two methods have comparable and very high accuracy, 

while extremity based linking attack uses much less input information compared to Schadt et al linking 

attack.  

We evaluated whether the attacker can estimate the reliability of the linkings. This may potentially 

increase the effectiveness of the linking and increase the risk associated with linking attacks because the 
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attacker can estimate reliability of the linkings and choose the ones that are more likely to be correct. 

This increases the risk associated with the linking attacks because although he/she may not have a high 

overall accuracy of linkings, the high ranking linkings may be much higher in accuracy. We observed that 

the measure we termed, first distance gap, denoted by 𝑑1,2 (See Methods Section 4.6), serves as a good 

reliability estimate for each linking. For a given linking, 𝑑1,2 is the difference between the genotype 

distances of the 1st closest and 2nd closest individuals to the predicted genotypes. When the linking is 

incorrect, we observed that 𝑑1,2 is very likely to be smaller than the distance difference when the linking 

is correct.  

To evaluate this measure further, we computed the positive predictive value (PPV) versus sensitivity of 

the linkings of individuals in the testing set with changing 𝑑1,2 threshold. For this, we first computed  

𝑑1,2 for each linking, then filtered the linkings that did not satisfy the threshold. Then we computed PPV 

and sensitivity of the linkings (See Methods Section 4.9), which is plotted in Fig 6b. It can be seen that 

the PPV of linkings can get very high at the same time with high sensitivity. For example, the attacker 

can link around 79% of the individuals at a PPV higher than 95%. The random sorting of the linkings, on 

the other hand, have significantly lower PPV (cyan in the plots) at the same sensitivity levels. These 

results suggest that the attacker can increase the potential risk (accuracy of linkings) of the attack by 

focusing on a slightly smaller set of linkings with high reliability.  

An important practical question is how well the linking accuracy changes with increasing genotype data 

size. In order to evaluate this, we simulated the genotypes of the eQTLs (discovered in the training set) 

for 100,000 individuals. The 100,000 simulated individuals are then merged with the testing dataset of 

211 individuals to build the large testing dataset. We then performed the extremity attack using the 

expression levels of the testing dataset and linked them to the merged testing genotype dataset of 

100,211 individuals. The linking accuracy is plotted in Fig 7a with changing eQTL selection criteria. The 

linking accuracy is very high (Around 96%). This result suggests that the extremity attack can be 

extended to a large testing sample set. Figure 7b shows the sensitivity versus PPV (with changing first 

distance gap) for the eQTLs for which the overall linking accuracy is 70% (Yellow dashed lines on Fig. 7b). 

It can be seen that the attacker can link around 55% of the individuals with PPV higher than 95%. Only 

the remaining 15% are predicted with accuracy lower than 95%. 

We also studied how the linking accuracy changes when the training and testing datasets are measured 

in different populations. For this, we used the 1000 Genomes Project sample information and divided 

the GEUVADIS samples into 5 populations. Then we used each population’s samples to discover the 

population specific eQTLs, then used the other populations to test the linking accuracy. Table S1a shows 

the accuracies in each case. It can be seen that when the eQTLs are disovered in European populations 

(CEU, GBR, TSI, FIN), the linking accuracies are very high (higher than 95%). When the eQTLs are 

discovered in YRI (African) population, the linking accuracies are smaller in European populations. 

Similarly, when eQTLs are discovered on European populations, the linking accuracy in YRI sample is 

relatively smaller. These results illustrate that extremity attack can still be effective when eQTLs are 

identified in populations that are genetically close to the population(s) of testing sample and decrease 

when the discovery and testing populations are diversified. We next studied scenario where the eQTLs 

are identified in tissues that are different from the tissues on which the expression data is generated. 
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For this, we used the eQTLs that are identified by GTex Project41. We downloaded the eQTLs for 6 

tissues and performed the linking attack on the whole GEUVADIS samples as test samples. The results 

are shown in Table S1b. The accuracy is general high (>80%) and is highest for Whole Blood eQTLs, 

which is 88%. This is expected since the expression levels in GEUVADIS project are measured in blood 

cell lines. The accuracy is smallest for Muscle Skeletal eQTLs, which is 76%. It is worth noting that the 

decrease in the accuracies stem also from the differences in data handling and processing between 

GEUVADIS and GTex projects. 

We also studied whether having close relatives in the genotype dataset affects the accuracy. To test this, 

we used the expression and genotype data from 30 CEU trios (mother-father-child) available from 

HAPMAP project53,54. We first identified the eQTLs from the 90 individuals and performed linking over 

the same individuals. We then computed the average rank of the close relatives in each linking. For 

example, when the tested individual is a father or mother, we computed the rank of his/her child and if 

the tested individual is a child, we computed the rank of his/her mother and father. We also selected, 

for each tested individual, a random individual and computed his/her rank in the linking. The 

distribution of the ranks are shown in Fig 8. It can be seen that the ranks of the related individuals are 

significantly shifted to smaller values compared to random individuals. This result shows that the close 

relatives can get linked to each other. This result indicates that the individuals that are close relatives 

may potentially be confused with each other. While the correct person may not get characterized, the 

attacker can still reveal sensitive information about the individual’s family, which might extend the 

reach of privacy breach and cause privacy concerns for the family. 

3 CONCLUSION AND DISCUSSION 
Increasing pace of data generation and the policies to encourage genomic data sharing will make 

genomic privacy a topic of hot debate. In the analysis of genomic privacy, it is necessary to consider the 

basic premise of sharing any type of personal information: There is always an amount of leakage in the 

sensitive information55.  In addition, as shown by previous studies, we often cannot propose black-and-

white solutions to problems in privacy which mainly roots from the multifaceted nature of privacy. We 

believe these make it necessary for the genomic data sharing and publishing mechanisms to incorporate 

statistical quantification methods before the datasets are released. This is recently recently 

recognised56. Legislative decision making processes should incorporate the quantified risk estimates of 

leakage as an objective factor. The quantification methodology and the analysis frameworks presented 

in this study can be applied for analysis of the information leakage in the datasets where the correlative 

relations between datasets can be exploited for performing linking attacks (Section S5, Figure S8). In 

accordance to a utility policy, the leakage risk can be evaluated against the utility requirements so as to 

assess the suitability of different data release mechanisms. 

Our study focuses on the individual privacy breaches in the context of linking attacks, where an 

individual’s existence in two seemingly independent databases (e.g., phenotype and the genotype) can 

cause a privacy concern when an attacker links statistically the databases using the a priori information 

about correlation of different entries in the databases. The fact that the available molecular phenotypes 

are (i.e., gene expression levels) generally very high in dimension makes this attack much more 
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probable. The obvious risk management strategy against these attacks is restricting access to the 

phenotype datasets. The statistical techniques like k-anonymization and differential privacy can also be 

utilized. These, however, have associated drawbacks about loss of biological utility, and high 

computational complexity. Moreover, some studies also demonstrated that there are still risks 

associated with linkability of the anonymized data24,30,31,57. We believe new studies should address 

protection and risk management strategies for serving utility maximized and privacy aware high 

dimensional phenotype datasets.  

The analysis of tradeoff between predictability and leakage of ICI can be generalized in two ways in 

future studies: First, the information theoretic measures that we proposed for measuring predictability 

versus the ICI leakage can be utilized for analyzing the tradeoff in other biomedical datasets where 

correlations can be exploited in linking attacks. Second, the analysis that we performed can be used to 

extrapolate the number of vulnerable individuals at different predictability levels. Depending on the risk 

of leakage that can be tolerated, the predictability versus ICI leakage can be utilized to assess whether 

the dataset can be released to public access or not. The 3-step framework aims at representing the 

framework for studying specific instantiations of the linking attacks.  

The 3-step decomposition of the attack makes the analysis of different attacks easier as each step can 

be separately evaluated. For example, the genotype prediction and linking steps can be replaced with 

different approaches so as to evaluate how the linking accuracy varies. These can reveal insight into how 

the datasets should be protected. We also presented a simple yet accurate linking attack that utilizes 

genotype prediction method based on the extremity statistic. This approach capitalizes on the fact that 

an individual who is an outlier for a phenotype will most likely harbor a homozygous genotype. When 

employed in the individual identification framework, this simple approach renders a very significant 

number of individuals vulnerable. In addition, we also showed that the attacker can estimate the 

reliability of the linkings using the first distance gap statistic so as to increase the risk of correct 

characterization. This illustrates the viability of individual characterization utilizing technically simple 

approaches. Even though we observed that the attacker can characterize a large fraction of individuals 

with high PPV, the smaller fraction of individuals that are linked at the top with high gap distance 

statistic are under higher risk of being characterized. 

Compared to other formalisms, our study aims to develop and build on other studies for quantifying the 

information leakage and help setup a framework for analysis of the leakage of individual characterizing 

information. Differential privacy, for example, aims at proposing release mechanisms for statistical 

databases where the mechanism guarantees that queries return results such that the probability of 

identifying a specific individual’s contribution to the result is vanishingly small. In order to maximize the 

utility of the biological data, however, it is necessary to analyze the sources of sensitive information 

leakage so that one can design the utility maximizing release mechanisms58.  The metrics that we 

presented can be used to analyze the correlative structures as the leakage sources and quantify the risk 

and amount of leakage associated with these sources. 
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4 METHODS 

4.1 Quantification of Individual Characterizing Information and 

Predictability 
The genotype RV 𝑉𝑘 takes 3 different values, {0,1,2}, where the genotype coding is done per counting 

the number of alternate alleles in the genotype. Given that the genotype is 𝑔𝑘,𝑗, we quantify the 

individual characterizing information in terms of self-information59 of the event that RV takes the value 

𝑔𝑘,𝑗: 

 𝐼𝐶𝐼(𝑉𝑘 = 𝑔𝑘,𝑗) = 𝐼(𝑉𝑘 = 𝑔𝑘,𝑗) = −log (𝑝(𝑉𝑘 = 𝑔𝑘,𝑗)) 

 

(7) 

 

where 𝑉𝑘 is the RV that represents the kth eQTL genotype, 𝑝(𝑉𝑘 = 𝑔𝑘,𝑗) is the probability (frequency) of 

that 𝑉𝑘 takes the value 𝑔𝑘,𝑗, and 𝐼𝐶𝐼 denotes the individual characterizing information. Given multiple 

eQTL genotypes, assuming that they are independent, the total individual characterizing information is 

simply summation of those: 

 𝐼𝐶𝐼({𝑉1 = 𝑣1,𝑗, 𝑉2 = 𝑣2,𝑗 , … , 𝑉𝑁 = 𝑣𝑁,𝑗})

= −∑ log (𝑝(𝑉𝑘 = 𝑣𝑘,𝑗))

𝑁

𝑘=1

. 

 

(8) 

The genotype probabilities are estimated by the frequency of genotypes in the genotype dataset. As 

presented in the Results Section 2.2, we measure the predictability of eQTL genotypes using an entropy 

based measure. Given the genotype RV, 𝑉𝑘, and the correlated gene expression RV, 𝐸𝑘, 

 𝜋(𝑉𝑘|𝐸𝑘 = 𝑒) = exp (−𝐻(𝑉𝑘|𝐸𝑘 = 𝑒)) 
 

(9) 

where 𝜋 denotes the predictability of  𝑉𝑘 given the gene expression level 𝑒, and 𝐻 denotes the entropy 

of 𝑉𝑘 given gene expression level 𝑒 for 𝐸𝑘 . The extension to multiple eQTLs is straightforward. For the 

𝑗𝑡ℎ individual, given the expression levels  𝑒𝑘,𝑗 for all the eQTLs, the total predictability is computed as  

𝜋({𝑉𝑘}, {𝐸𝑘 = 𝑒𝑘,𝑗}) = exp(−𝐻({𝑉𝑘} | {𝐸𝑘 = 𝑒𝑘,𝑗})) 

 
= exp (−∑𝐻(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗)

𝑘

) 

 

(10) 

In addition, this measure is guaranteed to be between 0 and 1 such that 0 represents no predictability 

and 1 representing perfect predictability. The measure can be thought as mapping the prediction 

process to a uniform random guessing where the average correct prediction probability is measured by 

𝜋. 
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4.2 Estimation of Genotype Entropy  
We estimate the genotype entropy using the Shannon’s entropy59: 

 
𝐻(𝑉𝑘) = − ∑ 𝑝(𝑉𝑘 = 𝑣) × log (𝑝(𝑉𝑘 = 𝑣))

𝑣∈{0,1,2}

 

 

(11) 

where 𝑉𝑘 represents the RV for 𝑘𝑡ℎ eQTL variant genotypes and 𝑝(𝑉𝑘 = 𝑣) represents the probability 

that 𝑉𝑘 takes the value 𝑣. This probability can be also interpreted as the population frequency of the 

genotype 𝑣 at the 𝑘𝑡ℎ eQTL’s variant locus. These probabilities are estimated from the distribution of 

genotypes over all the samples. As the genotypes are discrete valued, the above formula can be 

computed in a straightforward way by the summation after the probabilities are estimated. 

In the formulation for conditional predictability of genotypes given expression levels, we also use the 

conditional specific entropies59 of the genotypes given the gene expression levels. For this, we use the 

following formulation:  

 𝐻(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗) = − ∑ 𝑝(𝑉𝑘 = 𝑣|𝐸𝑘 = 𝑒𝑘,𝑗) × log (𝑝(𝑉𝑘 = 𝑣 |𝐸𝑘 = 𝑒𝑘,𝑗))

𝑣∈{0,1,2}

 

 

(12) 

where 𝑝(𝑉𝑘 = 𝑣|𝐸𝑘 = 𝑒𝑘,𝑗) represents the conditional probability that 𝑉𝑘 takes the value 𝑣 under the 

condition that the RV representing gene expression level for 𝑘𝑡ℎ eQTLs (𝐸𝑘) is 𝑒𝑘,𝑗. Since the gene 

expression levels are continuous, to estimate the conditional probabilities of genotypes given expression 

levels; we start with the joint distribution of 𝐸𝑘 and 𝑉𝑘, then bin the gene expression levels. For this, we 

use Sturges’ rule60 to choose the number of bins. This rule states that the number of bins should be 

selected as: 

 𝑛𝑏 = ⌈log2(𝑛𝑒)⌉ + 1 = ⌈log2(421)⌉ + 1 = 10 
  

(13) 

The binning is done for each gene by first sorting the expression levels for all the individuals, then the 

range of gene expression levels are divided into 𝑛𝑏 = 10 bins of equal size and each expression level is 

mapped to a value between in [0, 𝑛𝑏 − 1]. The expression level of 𝑘𝑡ℎ gene in 𝑗𝑡ℎ individual, 𝑒𝑘,𝑗, is 

mapped to  

 
�̃�𝑘,𝑗 = ⌈

(𝑒𝑘,𝑗 −min(𝒆𝒌)) × 𝑛𝑏

max(𝒆𝒌) − min(𝒆𝒌)
⌉ 

 

(14) 

where min(𝒆𝒌) and max(𝒆𝒌) represents the minimum and maximum values, respectively, for the 𝑘𝑡ℎ 

expression level over all the samples and �̃�𝑘,𝑗 represents the binned expression level. After the gene 

expression levels are binned, we use the binned expression levels and compute the conditional 

distribution of the variant genotypes at each binned gene expression level using the histograms: 

 
𝑝(𝑉𝑘 = 𝑣|�̃�𝑘 = �̃�𝑘,𝑗) =

∑ 𝐼(�̃�𝑘,𝑖 = �̃�𝑘,𝑗, 𝑉𝑘,𝑖 = 𝑣)𝑖

∑ 𝐼(�̃�𝑘,𝑖 = �̃�𝑘,𝑗)𝑖
 

 

(15) 
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where 𝐼(. ) is an indicator function for counting the number of matching mapped expression and 

genotype values: 

 
𝐼(�̃�𝑘,𝑖 = �̃�𝑘,𝑗, 𝑉𝑘,𝑖 = 𝑣) = {

1;  if �̃�𝑘,𝑖 = �̃�𝑘,𝑗, 𝑉𝑘,𝑖 = 𝑣

0;                     otherwise
 

 
(16) 

Finally, we utilize compute the Shannon entropy of the estimated conditional distribution as the 

condition specific entropies. 

4.3 Maximum a posteriori (MAP) Genotype Prediction 
While assigning the genotypes using maximum a posteriori prediction, the attacker assigns to 𝑉𝑘 the 

genotype that maximizes the estimated conditional probability: 

 MAP(𝑉𝑘|�̃�𝑘 = �̃�𝑘,𝑗) = �̃�𝑘,𝑗 = argmax
𝑣

(𝑝(𝑉𝑘 = 𝑣|�̃�𝑘 = �̃�𝑘,𝑗)) 

 

(17) 

where the conditional probabilities are estimated as in Methods Section 4.2 and �̃�𝑘,𝑗 denotes the 

predicted genotype for 𝑉𝑘, given �̃�𝑘 = �̃�𝑘,𝑗. 

4.4 Linking of the Predicted Genotypes to Genotype Dataset 
The linking is the 3rd and last step of the linking attack. The aim is to compare the predicted genotypes 

from the phenotype dataset to the genotypes in the genotype dataset so as to match the samples in the 

phenotype dataset to those in genotype dataset. We will use the linking approach that evaluates the 

minimal distance between the compared genotypes but different methods can be used for genotype 

comparison. Given a set of predicted eQTL genotypes for individual 𝑗, �̃�∙,𝒋 = {�̃�1,𝑗, �̃�2,𝑗, … , �̃�𝑛𝑞,𝑗}, the 

attacker links the predicted genotypes to the individual whose genotypes have the smallest distance to 

the predicted genotypes: 

 𝑝𝑟𝑒𝑑𝑗 = argmin
𝑎

{𝑑(�̃�∙,𝒋, 𝒗∙,𝒂)} . 

 

(18) 

𝑝𝑟𝑒𝑑𝑗 denotes the index for the linked individual and 𝑑(�̃�∙,𝒋, 𝒗∙,𝒂) represents the distance between the 

predicted eQTL genotypes and the genotypes of the 𝑎𝑡ℎ individual: 

 

𝑑(�̃�∙,𝒋, 𝒗∙,𝒂) = ∑(1 − 𝐼(�̃�𝑘,𝑗, 𝑣𝑘,𝑎))

𝑛𝑞

𝑘=1

 

 

(19) 

where 𝐼(�̃�𝑘,𝑗, 𝑣𝑘,𝑗) is the match indicator: 

 
𝐼(�̃�𝑘,𝑗, 𝑣𝑘,𝑎) = {

1 if �̃�𝑘,𝑗 = 𝑣𝑘,𝑎  

0 otherwise     
 

 

(20) 

Finally, 𝑗𝑡ℎ individual is vulnerable if 𝑝𝑟𝑒𝑑𝑗 = 𝑗. When auxiliary information is available, the attacker 

constrains the set of individuals while computing 𝑑(�̃�∙,𝒋, 𝒗∙,𝒂) to the individuals with matching auxiliary 

information. For example, if the gender of the individual is known, the attacker excludes the individuals 
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whose gender does not match while computing 𝑑(�̃�∙,𝒋, 𝒗∙,𝒂). This way the auxiliary information 

decreases the search space of the attacker. 

4.5 Homozygous Genotype Matching based Linking of the Predicted 

Genotypes to Genotype Dataset 
The extremity based genotype prediction predicts only homozygous genotypes. Therefore heterozygous 

genotypes in the genotype dataset will always increase the distance in linking step. To correct for this, 

the attacker can focus only on the homozygous genotypes while he/she is linking the predicted 

genotypes to the genotype dataset. For this, a simple modification of the distance function is sufficient: 

 
𝑑𝐻(�̃�∙,𝒋, 𝒗∙,𝒂) =

∑ (1 − 𝐼𝐻(�̃�𝑘,𝑗, 𝑣𝑘,𝑎))
𝑛𝑞
𝑘=1

𝑛𝑎
𝐻  

 

(21) 

where 𝑛𝑎
𝐻 represents the number of homozygous genotypes in ath individual and 𝐼𝐻(�̃�𝑘,𝑗, 𝑣𝑘,𝑗) 

represents the homozygous match indicator: 

 

𝐼𝐻(�̃�𝑘,𝑗, 𝑣𝑘,𝑗) =

{
 

 
1 if 𝑣𝑘,𝑎 = 0, �̃�𝑘,𝑗 = 𝑣𝑘,𝑎  

1 if 𝑣𝑘,𝑎 = 2, �̃�𝑘,𝑗 = 𝑣𝑘,𝑎  

1 if 𝑣𝑘,𝑎 = 1                       

0 otherwise                       

 

 

(22) 

This indicator function does comparison only when the genotype being matched (𝑣𝑘,𝑎) is homozygous. 

When 𝑣𝑘,𝑎 is heterozygous, it acts as if the genotypes are the same, thus the distance function is 

updated only when the genotype being matched is a homozygous genotype. The normalization is 

necessary to convert the distance into a fraction so that the distances can be compared among different 

genotype samples. 

4.6 First Distance Gap Statistic For Reliability Estimation of Each Linking  
Following the previous section, the attacker computes, for each individual, the distance to all the 

genotypes in genotype dataset, then identifies the individual with smallest distance. Let 𝑑𝑗,(1) and 𝑑𝑗,(2) 

denote the minimum and second minimum genotype distances (among 𝑑𝐻(�̃�∙,𝒋, 𝒗∙,𝒂) for all a) for 𝑗𝑡ℎ 

individual. We propose using the difference between these distances, termed first distance gap statistic, 

as a measure of reliability of linking. For this, the attacker computes following difference: 

 𝑑1,2(𝑗) = 𝑑𝑗,(2) − 𝑑𝑗,(1) 

 

(23) 

First distance gap can be computed without the knowledge of the true genotypes, and is immediately 

accessible by the attacker with no need for auxiliary information. The basic motivation for this statistic 

comes from the observation that the first distance gap for correctly linked individuals are much higher 

compared to the incorrectly linked individuals (See Figure S5). 

4.7 eQTL Identification on Training Sets with Matrix eQTL52 
For identification of eQTLs, we used Matrix eQTL52 method. We first generated the testing and training 

sample lists by randomly picking 210 and 211 individuals, respectively, for testing and training sets. We 
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then separated the genotype and expression matrices into training and testing sets. Matrix eQTL is run 

to identify the eQTLs using the training dataset. In order to decrease the run time, Matrix eQTL is run in 

cis-eQTL identification mode. After the eQTLs are generated, we filtered out the eQTLs whose FDR (as 

reported by Matrix eQTL) was larger than 5%. We finally removed the redundancy by ensuring that each 

gene and each SNP is used only once in the eQTL final list. To accomplish this, we selected the eQTL that 

is correlated with highest association with each gene. The association statistic reported by Matrix eQTL 

was used as the measure of strength of association between expression levels and genotypes. Similar 

procedure is applied when eQTLs for 30 trios are identified. 

4.8 On Modeling of Genotype-Phenotype Distribution for Genotype 

Prediction in Linking Attacks 
In the second step of the linking attack, the genotype predictions are performed. The genotype 

predictions are used, as an intermediate information, as input to the third step (Fig 3), where linking is 

performed. The main aim of attacker is to maximize the linking accuracy (not the genotype prediction 

accuracy), which depends jointly on the genotype prediction accuracy and the accuracy of the genotype 

matching in the 3rd step. Other than the accuracy of linking, another important consideration, for risk 

management purposes, is the amount of auxiliary input data (like training data for prediction model) 

that the genotype prediction takes. The prediction methods that require high amount of auxiliary data 

would decrease the applicability of the linking attack as the attacker would need to gather extra 

information before performing the attack. On the other hand, the prediction methods that require little 

or no auxiliary data makes the linking attack much more realistic and prevalent. It is therefore useful, in 

the risk management strategies, to study complexities of genotype prediction methods and evaluate 

how these translate into assessing the accuracy and applicability of the linking attack. We study different 

simplifications of genotype prediction, and illustrate different levels of complexity for genotype 

prediction. 

As we presented in Section 2.3, we assume that the attacker estimates the posterior distribution of 

genotypes and utilizes the maximum a posteriori estimate of the genotype as the general prediction 

method. For this, attacker must first model the joint genotype-phenotype distribution and then build 

the posterior genotype distribution. Figure S9a shows the joint genotype-expression distribution for an 

eQTL. Figure S9b shows the modeling of the joint distribution using 3 conditional distributions of 

expression levels at each genotype. First, the means and variances of the distributions are assumed 

independent. Assuming that mean and variance are sufficient statistics for the conditional distributions 

(e.g., normally distributed), the joint distributions can be modeled when the 6 parameters (3 means and 

3 variances) are trained. The training can be performed using unsupervised methods like expectation 

maximization or can be performed using training data. This would, however, increase the required 

auxiliary data and decrease the applicability of the linking attack. Figure S9c shows a simplification of the 

model by assuming the variances of the conditional expression distributions are same for each 

genotype. This decreases the number of parameters to be trained to 4 (3 means and 1 variance). Figure 

S9d shows an equally complex model with 4 parameters where the conditional distributions are uniform 

at non-overlapping ranges of expression for each genotype. This model requires 4 parameters to be 

trained corresponding to the expression range limits. Figure S9e shows the final simplification of the 
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genotype prediction, which requires only one parameter to be trained. In this model, the prediction only 

assigns uniform probability for homozygous genotypes when expression levels higher or lower than 𝑒𝑚𝑖𝑑 

and assigns 0 conditional probability to the heterozygous genotypes, which brings up an important 

point: This simplified model is exactly the distribution that is utilized in the extremity based genotype 

prediction. In the extremity based prediction, we estimate 𝑒𝑚𝑖𝑑 simply as the mid-point of the range of 

gene expression levels within the expression dataset (Equations 3 and 4-6).  

4.9 Accuracy, Positive Predictive Value, and Sensitivity of Linkings 
The accuracy of the linkings are evaluated with respect to 3 measures. First is the overall accuracy of 

linkings, which measures the fraction of correctly linked individuals. This is simply among the all the 

linkings that we performed, the fraction of correct linkings: 

 
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

∑ 𝐼(𝑝𝑟𝑒𝑑𝑗 = 𝑗)𝑗∈(1,𝑛𝑒)

𝑛𝑒
 

 

(24) 

where 𝑝𝑟𝑒𝑑𝑗 is defined in Equation (18) and 𝐼(𝑝𝑟𝑒𝑑𝑗 = 𝑗) returns 1 if 𝑝𝑟𝑒𝑑𝑗 is equal to 𝑗 (i.e., correct 

linking) and 0 otherwise. When we are studying the effectiveness of first distance gap, 𝑑1,2, for 

estimating reliability of linkings, we select the subset of linkings for which 𝑑1,2 is above the first distance 

gap threshold and computed the sensitivity and positive predictive value (PPV) for the selected set of 

linkings, which are defined below: 

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑓𝑜𝑟 𝑑1,2 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝜏 =  

∑ 𝐼(𝑝𝑟𝑒𝑑𝑗 = 𝑗, 𝑑1,2(𝑗) > 𝜏)𝑗∈(1,𝑛𝑒)

𝑛𝑒
 

 

(25) 

 
𝑃𝑃𝑉 𝑓𝑜𝑟 𝑑1,2 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝜏 =  

∑ 𝐼(𝑝𝑟𝑒𝑑𝑗 = 𝑗, 𝑑1,2(𝑗) > 𝜏)𝑗∈(1,𝑛𝑒)

𝑛𝜏
 

 

(26) 

where 𝑛𝜏 represents the number of individuals for which the first distance gap for the linking is greater 

than the threshold 𝜏,  

 𝑛𝜏 = ∑ 𝐼(𝑑1,2(𝑗) > 𝜏)

𝑗∈(1,𝑛𝑒)

 

 

(27) 

In summary, sensitivity measures the fraction of correctly linked individuals among all the 𝑛𝑒 individuals 

and PPV measures the fraction of correctly linked individuals among the selected 𝑛𝜏 individuals, for 

which the first distance gap for linking is greater than 𝜏. When 𝜏 is increased, 𝑛𝜏 will decrease (Less 

number of linkings will be higher than 𝜏), the reliabilities of the linking will increase and PPV will 

increase. Sensitivity, however, decreases as we select smaller number of individuals. When we are 

evaluating the random sortings of the data, we first randomly sorted the linkings but did not shuffle the 

first distance gap values. Then we computed the accuracies and plotted the sensitivity vs PPV curves. 



22 
 

5 DATASETS 
The normalized gene expression levels for 462 individuals and the eQTL dataset are obtained from 

gEUVADIS mRNA sequencing project61. The eQTL dataset contains all the significant (Identified at most 

5% false discovery rate) gene-variant pairs with high genotype-expression correlation. To ensure that 

there are no dependencies between the variant genotypes and expression levels, we used the eQTL 

entries where gene and variants are unique. In other words, each variant and gene are found exactly 

once in the final eQTL dataset (See Section S4 for a detailed discussion). The genotype, gender, and 

population information datasets for 1092 individuals are obtained from 1000 Genomes Project12. For 

421 individuals, both the genotype data and gene expression levels are available. For tissue analysis, the 

publicly available significant eQTLs for 6 tissues that are computed by the GTex project are downloaded 

from the GTex Portal. 
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8 FIGURE CAPTIONS 
Figure 1: Illustration of the linking attack. (a) Phenotype dataset contains q different phenotype 

measurements and the HIV Status for a list of  individuals. Genotype dataset contains the variants 

genotypes for m individuals. Phenotype-Genotype correlation datasets contains q phenotypes, variants, 

and their correlations. The attacker does genotype prediction for all the variants. The attacker then links 

the phenotype dataset to the genotype dataset by matching the genotypes. The linking potentially 

reveals the HIV status for the subjects in the genotypes dataset. The IDs and HIV Status are colored to 

illustrate how the linking combines the entries in the two datasets. The non-shaded columns are used 

for linking. (b) Illustration of the expression and genotype datasets. Variant genotype dataset contains 

the genotypes for q eQTL variants for 𝑛𝑣 individuals. 𝑗𝑡ℎ entry for 𝑘𝑡ℎ eQTL is denoted by 𝑣𝑘,𝑗. Similarly, 

the expression dataset contains the expression levels for q genes. The 𝑘𝑡ℎexpression level for 𝑗𝑡ℎ 

individual is denoted by 𝑒𝑘,𝑗. The variant genotypes for 𝑘𝑡ℎ variant is distributed over samples with 

distribution specified by the random variable 𝑉𝑘. Likewise, the expression levels for 𝑘𝑡ℎ gene is 

distributed per random variable 𝐸𝑘. These random variables are correlated with each other with 

correlation coefficient, denoted by ρ(𝐸𝑘 , 𝑉𝑘) (right). 
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Figure 2: Quantification of ICI and correct genotype predictability (a) Adversary’s genotype prediction 

strategy. The phenotype-genotype correlations ρ1, ρ2,… are sorted with respect to decreasing absolute 

value, as shown on each line. For a selected set of n variants, the genotypes are predicted using the 

phenotypes. The green and red individuals on the right represent the vulnerable and non-vulnerable 

individuals, respectively. (b) Plots show, for each eQTL, the information leakage (x-axis) versus correct 

genotype predictability (y-axis). For each eQTL, the estimated ICI leakage and genotype predictability are 

plotted. The dots are colored with respect to the major allele frequency (left) and with respect to 

absolute correlation of the eQTL (right). (c) Average predictability versus average individual 

characterizing information leakage. For the top 20 eQTLs, the plot shows the distribution of average 

predictability and average ICI leakage for the top eQTLs. The number of eQTLs that are used for 

computing the values at each point are shown next the the point. Only 10 of them are numbered in the 

figure. The error bars show one standard deviation around the mean among the sample set. The cyan 

plot shows the mean leakage plot for shuffled gene-variant pairs. The error bars are left out for 

simplification.  

Figure 3: The figure illustrates three steps of the linking attack. The first step consists of selecting the 

phenotypes and genotype to be used in linking. The absolute value of correlation can be used as one of 

the selection criteria. The second step comprises the genotype prediction using the selected set of 

phenotypes. Maximum a posteriori genotype prediction can be used for prediction. Third step in 

characterization is the linking step, where the predicted genotypes are matched to the genotype 

dataset. The matching can be performed by comparing the distance between the predicted genotypes 

and individual genotypes in the dataset. 

Figure 4: MAP genotype prediction accuracy and vulnerable fraction. (a) The number of selected eQTLs 

(blue) and the number of eQTLs with correctly predicted eQTL (red) are shown. At each absolute 

correlation threshold, the number of eQTLs passing the threshold are shown and the number of 

correctly predicted genotypes using MAP prediction are shown. The error bars show the distribution of 

accuracy over all the samples. (b) The fraction of vulnerable individuals with MAP genotype prediction. 

X-axis shows the absolute correlation threshold used to select eQTLs. Y-axis shows the fraction of 

vulnerable individuals. At correlation threshold of 0.35, the fraction is maximized, as indicated by the 

yellow arrow. The red, green, and cyan lines show the fraction of vulnerable individuals when gender, 

population, and gender and population information, respectively, are available as auxiliary information. 

Figure 5: Extremity based genotype prediction and extremity based linking attack (a) Figure illustrates 

the extremity based genotype prediction. The joint distribution of expression levels and genotypes is 

shown on left. Given the relation between expression and genotypes, the lower expression levels 

(Labelled with “Negative Extremity” shown in red ellipse on left) are assigned the genotype “TT” and 

higher expression levels (Labelled with “Positive Extremity” shown in green ellipse on left) are assigned 

the genotype “CC”. The extremity value 0 is indicated with the dashed grey line which is the midpoint 

between the highest and lowest expression levels. The heterozygous genotype (TC) is shaded with grey 

to indicate that it is not used in the genotype prediction. (b) The extremity based genotype prediction 

accuracy versus the absolute correlation threshold used to select the eQTLs. (c) The fraction of 

vulnerable individuals versus the correlation threshold in blue. The red, green, and cyan plots show the 
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vulnerable fraction when gender, population, and gender + population are available, respectively, as 

auxiliary information. (d) The vulnerable individual fraction with homozygous only matching. 

Figure 6: The accuracy of linking on the testing dataset. (a) The fraction of vulnerable individuals on the 

testing dataset. (b) The sensitivity versus positive predictive value (PPV) of linking with changing 𝑑1,2 

threshold. The plot is generated with eQTLs with higher than 11.3 absolute association strength 

(indicated with yellow dashed lines) strength. Blue line shows the ranking with 𝑑1,2 and cyan lines shows 

PPV and sensitivity with 10 random rankings for comparison. The grey lines indicate 95% PPV, at which 

approximately 80% sensitivity is achieved. 

Figure 7: The vulnerable individual fraction statistics for simulated genotypes dataset. (7a) The fraction 

of vulnerable individuals. (7b) The sensitivity versus positive predictive value. The plot is for the eQTL 

selection at association strength 9.9, as indicated by the yellow dashed line in (a), where the vulnerable 

fraction is around 70%. The dashed grey line show the 95% PPV level, where the sensitivity is around 

55%. The cyan plots show the sensitivity-PPV plot for 10 randomized rankings of the data for 

comparison. 

Figure 8: The distribution of linking ranks (in genotype comparison) of close relatives in 30 trios from the 

HAPMAP project. The blue plot shows the distribution of ranks assigned to close relatives (child-mother 

or child-father relations) excluding the self ranks of the individual being linked. Red plot shows, as a 

control, the same distribution for randomly selected individuals for each individual being linked. The 

ranks for close relatives are much smaller, indicating that they are scored much higher than random 

individuals. 

Table S1: Linking accuracy of extremity based linking attack using the eQTLs are identified in different 

populations and different tissues. (a) The table shows the linking accuracies (for populations shown in 

the rows) when the eQTLs that are identified using data (indicated in each column) from different 

populations. (b) The linking accuracy of individuals in GEUVADIS project when eQTLs identified from 

different tissues are used in linking. 

Table S2: Linking attack accuracy comparison. The table shows linking accuracy for Schadt et al and 

extremity based linking attack methods. Each row corresponds (for Schadt et al Method) to a different 

number of data points in the training datasets that is input to Schadt et al method. 

Figure S1: Different properties of the eQTLs. (a) The average ICI leakage versus the genotype 

predictability is shown for real (red) and shuffled (blue) eQTL dataset is shown. (b) The absolute 

correlation versus predictability is shown. 

Figure S2: Figure shows the attacker’s presumed strategy for linking attack. (a) The phenotype and 

variant pairs are sorted with respect to decreasing absolute correlations values. For the top n pairs, joint 

predictability and ICI are computed. (b) Illustration of prior, joint, and posterior distributions of 

genotypes and expression levels. Leftmost figure shows the distribution of genotypes over the sample 

set, which is labelled as the prior distribution. Middle figure shows the joint distribution of genotypes 

and expression levels. Notice that there is a significant negative correlation between genotype values 
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and the expression levels. Rightmost figure shows the posterior distribution of genotypes given that the 

gene expression level is 10. The posterior distribution has a maximum (MAP prediction) at genotype 2, 

which is indicated by a star. 

Figure S3: The distribution of ranks of the individuals in the linking step. At each gradient threshold, the 

box plots show, for each individual, their ranks in the genotype comparison in the 3rd step of linking 

attack with MAP genotype prediction. Notice that at around 0.35 correlation threshold, the assigned 

ranks are minimized, i.e., most of the individual are linked correctly. 

Figure S4: The median absolute gene expression extremity statistics over 462 individuals in GEUVADIS 

dataset. (a) For each individual, the extremity is computed over all the genes (23,662 genes) reported in 

the expression dataset. The median of the absolute value of the extremity is plotted. X-axis shows the 

sample index and y-axis shows the extremity. The absolute median extremity fluctuates around 0.25, 

which is exactly the midpoint between minimum and maximum values of absolute extremity. (b) For 

each individual, we count the number of genes above the extremity threshold. The plot shows the 

extremity threshold versus the median number of genes (over 462 individuals) above the extremity 

threshold. Around half of the genes (indicated by dashed yellow lines) have higher than almost 0.3 

extremity on average over all the individuals. Also, around median number of 1000 genes over the 

samples have higher than 0.45 extremity (indicated by dashed red lines). 

Figure S5: Illustration of linking for 𝑗𝑡ℎ individual. The attacker first predicts the genotypes (�̃�∙,𝒋) which 

are then used to compute the distance to all the individuals in the genotype dataset. The computed 

distances are then sorted in decreasing. The top matching individual (in the example, individual a) is 

assigned as the linked individual. The first distance gap, 𝑑1,2, is computed as the difference between the 

second (𝑑𝑗,(2)) and the first (𝑑𝑗,(1)) distances in the sorted list. 

Figure S6: Schematic comparison of linking attacks (Left) and detection of a genome in a mixture attacks 

(Right). Each box in the figure represents a dataset in the form of a matrix. Multiple boxes next to each 

other correspond to concatenation of matrices. Linking attacks aim at linking genotype and phenotype 

datasets. The phenotype datasets contain both “predicting” phenotypes and other phenotypes, some of 

which can be sensitive. The attacker first predict genotypes for each of the predicting phenotype. The 

predicted genotypes are then compared with the genotypes in the genotype dataset. After the linking, 

all the datasets are concatenated where the identifiers can be matched to the sensitive phenotypes. 

Different colors indicate how the linking merges different information. The detection of a genome in a 

mixture attacks start with a genotype dataset. The attacker gets access to the statistics of a GWAS or 

genotyping dataset (for example, regression coefficients or allele frequencies). Then the attacker 

generates a statistic and tests it against that of a reference population. The testing result can be 

converted into the study membership indicator (attended/not attended) which shows whether the 

tested individual was in the study cohort or not. 

Figure S7: A representative example of extremity based linking. The phenotype dataset (Consisting of 

gene expression levels for 6 genes) is shown above. Each phenotype measurement is represented by 

green (negative extreme), red (positive extreme), or grey (non-extreme) dots. Based on the extremity of 
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phenotypes, the attacker performs prediction of genotypes, which are shown below in (2). He/she uses 

the eQTL dataset (with genes and SNPs) for prediction. Blue and brown triangles correspond to the 

correct genotype predictions. The grey crosses correspond to the incorrect or unavailable genotype 

predictions. The attacker compares the predicted genotypes to the genotype dataset in (3), where 

triangles show the genotypes, and performs linking. The attacker links the predicted genotypes to the 

genotype dataset. 3 individuals (Bob, Alice, and John) are highlighted. The attacker can link Bob and 

John by matching them to their genotypes. The correct prediction of rs7274244 (in yellow dashed 

rectangle) enables the attacker to distinguish between correct entries and reveal both of their disease 

status as positive. For Alice, the predicted genotypes are equally matching at two entries both of which 

match at 2 genotypes; PID-b and PID-k (with negative and positive disease status) thus the attacker 

cannot exactly reveal Alice’s disease status.  

Figure S8: Illustration of risk assessment procedure for joint genotyping/phenotyping data generation. 

There are two paths of risk assessment to be performed. The first path evaluates the risks associated 

with release of the QTL datasets. The genotype and phenotype data (on the left) is first used for 

quantitative trait loci identification (QTL identification box). This generates the significant QTLs. These 

are then utilized, in addition to the list of external QTL databases, in quantification of leakage versus 

predictability, as presented in Section 2.2. These results are then relayed to the risk assessment 

procedures. The second risk assessment procedure evaluates the release of genotype and phenotype 

datasets. For this, the datasets are input to application of a list of linking attacks (Presented in Sections 

2.3, and 2.4, and other linking attacks in the literature) for evaluation of characterization risks. The 

results are then relayed to risk assessment procedures. 

Figure S9: Models of joint genotype-expression distribution with varying numbers of parameters for a 

positively correlated eQTL. (a) shows the true distribution where grey boxes represent the expression 

distributions given different genotypes. Red line show the gradient of correlation between genotype and 

expression. First simplification of the model is shown in (b). The expression distribution can be modeled 

with Gaussians with different means and variances with total of 6 parameters. The variances can be 

assumed same for different genotypes (c), where 4 parameters are required. (d) illustrates a 

representation of the uniform expression distribution given genotypes, where 4 parameters are 

required. The conditional distribution of expression is uniform (cross shaded rectangles) over the ranges 

(𝑒1, 𝑒2), (𝑒2, 𝑒3), and (𝑒3, 𝑒4) given genotypes 0, 1, and 2, respectively. The transparent grey rectangles 

shows the original distributions. (e) is a simplification of (d) where no conditional probability of 

expression is assigned given genotype is 1. In this model, only 1 parameter (𝑒𝑚𝑖𝑑) is necessary. The 

conditional probability of expression given genotypes 0 and 2 are uniform for expression levels below 

𝑒𝑚𝑖𝑑 and above 𝑒𝑚𝑖𝑑, respectively (shown with cross shaded rectangles). The original distribution is 

included with grey rectangles for comparison. Extremity based prediction is an instantiation of the 

model in (e). 
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