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SI METHODS 
Identifying Potential Allosteric Residues 
Identifying Surface-Critical Residues 

All biological assembly files were downloaded from the Protein Data Bank (26). 

With the objective of identifying potential allosteric residues on the protein surface, we 

employed a modified version of the binding leverage method for identifying likely ligand 

binding sites (Fig. 1A), as described previously (14). Allosteric signals may be 

transmitted over large distances by a mechanism in which the allosteric ligand has a 

global affect on a protein’s functionally important motions. For instance, introducing a 

bulky ligand into the site of an open pocket may disrupt large-scale motions if those 

motions normally entail that the pocket become collapsed over the course of a motion. 

Such a modulation of the global motions may affect activity within sites that are distant 

from the allosteric ligand-binding site. 

We refer the reader to the work by Mitternacht and Berezovsky for details 

regarding the binding leverage method, though a general overview of the approach 

follows (14). Many candidate allosteric sites are generated by simulations in which a 

simple flexible ligand (comprising of 4 “atoms” linked by bonds of fixed length 3.8 

Angstroms, but variable bond and dihedral angles) explores the protein’s surface through 

many Monte Carlo steps. The number of Monte Carlo simulations is set to 10 times the 

number of residues in the protein structure, and the number of MC steps per simulation is 

set to 10,000 times the size of the simulation box (in our implementation), as measured in 

Angstroms. The size of this simulation box is set to twice the maximum size of the PDB 

along any of the x, y or z-axes. Apo structures were used when probing protein surfaces 

for putative ligand binding sites in the canonical set of proteins. 

A simple square well potential (i.e., modeling hard-sphere interactions) is used to 

model the attractive and repulsive energy terms associated with the ligand’s interaction 

with the protein surface. In the unmodified implementation of the method, these energy 

terms depend only on the ligand atoms’ distance to alpha carbon atoms in the protein – 

other heavy atoms or biophysical properties are not considered.  
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Once these candidate sites are produced, normal modes analysis is applied to 

generate a model of the protein’s low-frequency motions. To generate these modes, we 

use the alpha carbon atoms in building the protein’s elastic networks. Using default 

parameters, we use the top 10 (lowest-frequency) available non-trivial modes generated 

using the Molecular Modeling Toolkit (MMTK) (39). Note that this exact same method 

for producing the modes was also used in the identification of interior-critical residues 

(below). 

Once the modes are produced, each of the candidate sites is then scored based on 

the degree to which deformations in the site couple to the low-frequency modes; that is, 

those sites which are heavily deformed as a result of the normal mode fluctuations (Fig. 

1A, top-right) receive a high score (termed the binding leverage for that site), whereas 

shallow sites with few interacting residues (Fig. 1A, bottom-left) or sites that undergo 

minimal change over the course of a mode fluctuation (Fig. 1A, bottom-right) receive a 

low binding leverage score. Strongly overlapping sites are merged, and the list is then 

ranked by binding leverage score. This generates a ranked list of N sites. Using 

knowledge of the experimentally determined binding sites (i.e., from holo structures), the 

processed list of ranked sites is then used to evaluate predictive performance (see below). 

Our approach and set of applications differ from those previously developed in 

several key ways. When running Monte Carlo simulations to probe the protein surface 

and generate candidate binding sites, we used all heavy atoms in the protein when 

evaluating a ligand’s affinity for each location. By including all heavy atoms (i.e., as 

oppose to using the protein’s alpha carbon atoms exclusively), our hope is to generate a 

more selective set of candidate sites. Indeed, the use of alpha carbon atoms alone leaves 

‘holes’ in the protein which do not actually exist in the context of the dense topology of 

side chain atoms. Thus, by including all heavy atoms, we hope to reduce the number of 

false positive candidate sites, as well as more realistically model ligand binding affinities 

in general. 

In the original binding leverage framework, an interaction between a ligand atom 

and an alpha carbon atom in the protein contributes -0.75 to the binding energy if the 

interaction distance is within the range of 5.5 to 8 Angstroms. Interaction distances 

greater than 8 Angstroms do not contribute to the binding energy, but distances in the 
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range of 5.0 to 5.5 are repulsive, and those between 4.5 to 5.0 Angstroms are strongly 

repulsive (distances below 4.5 Angstroms are not permitted). However, given the much 

higher density of atoms interacting with the ligand in our all-heavy atom model of each 

protein, it is necessary to accordingly change the energy parameters associated with the 

ligand’s binding affinity. In particular, we varied both the ranges of favorable and 

unfavorable interactions, as well as the attractive and repulsive energies themselves. That 

is, we varied both the square well’s width as well as depth when evaluating the ligand’s 

affinity for a given site. 

For well depths, we employed models using attractive potentials ranging from -

0.05 to -0.75, including all intermediate factors of 0.05. For well widths, we tried 

performing the ligand simulations using the cutoff distances originally used (attractive in 

the range of 5.5 to 8.0 Angstroms, repulsive in the range of 5.0 to 5.5, and strongly 

repulsive in the range of 4.5 to 5.0). However, these cutoffs, which were originally 

devised to model the ligand’s affinity to the alpha carbon atom skeleton alone, were 

observed to be inappropriate when including all heavy atoms. Thus, we also performed 

the simulations using a revised set of cutoffs, with attractive interactions in the range of 

3.5 to 4.5 Angstroms, repulsive interactions in the range of 3.0 to 3.5 Angstroms, and 

strongly repulsive interactions in the range of 2.5 to 3.0 Angstroms. 

In order to identify the optimal set of parameters for defining the potential 

function, we determined which combination of parameters best predicts known ligand 

binding sites in threonine synthase (1E5X), phosphoribosyltransferase (1XTT), tyrosine 

phosphatase (2HNP), arginine kinase (3JU5), and adenylate kinase (4AKE). Using this 

approach, an attractive term of -0.35 for ligand-protein atom interactions within the range 

of 3.5 to 4.5 Angstroms was determined to be the best overall. 

As discussed in the main text, without applying thresholding to the list of ranked 

surface sites that remain after running the binding leverage calculations, a very large 

number of sites would occupy the protein surface (Fig. S2). Thus, it is necessary to 

process this list. To do so, we borrow from principles in energy gap theory (40). The 

calculations for establishing a threshold on the number of sites are as follows:  

For each of the N candidate binding sites in the pre-processed ranked list of sites, 

we calculate ∂BL(j)/∆BL. Here, j is the jth site to appear in the pre-processed ranked 
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list of sites, with this list of sites being ranked on the basis of each site’s binding leverage 

score (see above). ∂BL(j) is defined as the difference in the binding leverage scores of 

the jth site and the (j-1)th site in the ranked list. Because the list of sites is organized in 

descending order of binding leverage scores, ∂BL(j) ≥ 0. ∆BL is a constant that equals 

maxbinding_leverage_score - minbinding_leverage_score in the pre-processed ranked list of sites. ∆BL is 

thus the top binding leverage score that appears in this ranked list minus the bottom 

score. Qualitatively, a large value for ∂BL(j)/∆BL indicates that there is a large drop in 

binding leverage scores in going from site (j) to site (j-1) within the pre-processed ranked 

list. 

We then consider those sites with the highest ∂BL/∆BL values – specifically, we 

consider the top 5.5% of sites in terms of their ∂BL/∆BL values. Thus, we are 

considering site j if there is a very large gap in binding leverage scores between sites j 

and (j-1). The lowest-occurring site within this considered list of high ∂BL/∆BL values 

demarcates a threshold beyond which we reject all lower sites within the pre-processed 

ranked list, leaving only the processed ranked list of sites. 

We then go up from to bottom through the top of this processed ranked list of 

sites, and for each site, we determine the jaccard similarity with all sites above. If the 

jaccard similarity with any site above exceeds 0.7, then the lower site is removed from 

the processed ranked list. The final list obtained after performing these jaccard similarity 

filters is taken to represent the set of surface-critical sites on a structure. 

In counting the final number of truly distinct surface-critical sites for any given 

structure, we remove redundant sites within the set of surface-critical sites obtained in the 

process above, as some of the sites within this set may still exhibit considerable mutual 

overlap. A site i within the list of surface-critical sites is said to be redundant if it is 

assigned a redundancy score that exceeds 0.4, where redundancy_score(i) = [residuessite_i!
�{�(set of residues in all accepted sites above site i in the ranked list of sites)}] / [# 

residues in site i]. If this redundancy score is less than 0.4, then site i is included in the 

list of accepted sites. If it exceeds 0.4, then the site overlaps with another site on the 

surface, and it is thus rejected from the set of accepted distinct sites. Finally, the total 

number of sites in the accepted set of sites is taken as the number of distinct sites for a 

structure. 
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Capturing Known Ligand-Binding Sites 

Known ligand-binding residues are those within 4.5 Angstroms of the ligand in 

the holo structure (Table S1). It has previously been shown that the sites in aspartate 

transcarbamoylase are especially difficult to identify (14); excluding this protein results 

in finding an average of 65% of known biological ligand binding sites (Table S2). Note 

that these statistics are achieved by covering an average of 15% of proteins’ residues, 

even though more than 15% of residues are actually involved in ligand- or substrate-

binding for most proteins (Table S3). 

 

Dynamical Network Analysis to Identify Interior-Critical Residues 

In our implementation of the Girvan-Newman framework (Fig. 1B), an edge 

between residues i and j is drawn if any heavy atom within residue i is located within 4.5 

Angstroms of any heavy atom within residue j, and we exclude the trivial cases of pairs 

of residues that are adjacent in sequence, which are not considered to be in contact.  

Network edges are then weighted on the basis of correlated motions of the 

interacting residues, with these motions provided by the same ANMs that had been used 

in the identification of surface-critical residues. We emphasize that, although ANMs are 

more coarse-grained than molecular dynamics, our use of ANMs is motivated by their 

much faster computational efficiency. This added efficiency is a required feature for our 

database-scale analysis. As an alternative to using ANMs, it is also possible to infer 

motion by simply using information regarding pairs of distinct conformations (see SI 

Methods subsection titled “Modeling Protein Motions by Directly Using Displacement 

Vectors from Alternative Conformations”, below). 

The edge weighting scheme is performed as follows: an “effective distance” dij 

for an edge between interacting residues i and j is set to dij = −log(∣Cij∣), where Cij 

designates the correlated motions between residue i and j: 

Cij  =  Covij  /  √(⟨ri
2⟩⟨rj

2⟩) 
where 

Covij  =  ⟨ri ! rj⟩ 
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Here, ri and rj designate the vectors associated with residues i and j (respectively) under a 

particular mode. The brackets in the term ⟨ri ! rj⟩ indicate that we are taking the mean 

value for the dot product ri ! rj over the 10 lowest-frequency non-trivial modes. 

An example may help to clarify this. If two interacting residues exhibit a high 

degree of correlated motion, then the motion of one may tell us about the motion of the 

other, suggesting a strong flow of energy or information between the two residues, 

resulting in a low value for dij: a strong correlation (or a strong anti-correlation) between 

nodes i and j result in a value for ∣Cij∣ that is close to 1. This gives a low value for dij 

(−log(∣Cij∣) ≈ 0). Thus, given a strong correlated motion, this effective distance dij 

between residues i and j is very short. This small dij means that any path involving this 

pair of residues is likewise shorter as a result, thereby more likely placing this pair of 

residues within a shortest path, and more likely rendering this pair a bottleneck pair. In 

sum, this edge-weighting scheme is such that a high correlation in motion results in a 

short effective distance, thereby more likely rendering this a bottleneck pair of residues.  

In the opposite scenario, for interacting residues with poor correlation values (Cij 

≈ 0), a large effective distance dij results, thereby making it more difficult for the pair of 

residues to lie within shortest paths or within the same community. 

Once all connections between interacting pairs of residues are appropriately 

weighted and the communities are assigned using the GN algorithm with these effective 

distances, a residue is deemed to be critical for allosteric signal transmission (i.e., an 

interior-critical residue) if it is involved in the highest-betweenness edge connecting two 

distinct communities. A given edge’s betweenness is taken to be the number of shortest 

paths involving that edge. For demonstration, this results in the community partitions and 

associated interior-critical residues highlighted in Figs. S3 and S4. 

 

Decomposing Proteins into Modules Using Different Algorithms 

Many algorithms have been devised to identify the community structure of 

networks. By this, we are referring to the problem of finding the optimal partitioning of a 

network into different “modules” (i.e., communties), such that each node within a module 

is highly connected to other nodes within the same module, and minimally conntected to 

other nodes in outside modules. In a comprehensive study comparing different algorithms 
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(41), an information theory-based approach (42) was shown to be one of the strongest. 

This method (termed “Infomap”) effectively reduces the network community detection 

problem to a problem in information compression: the prominent features of the network 

are extracted in this compression process, giving rise to distinct modules; further details 

are provided in (42).  

Perhaps surprisingly, even though both Infomap and GN achieve similar network 

modularity, Infomap produces at least twice the number of communities relative to that of 

GN when applied to protein structures, and it thus generates many more interior-critical 

residues (Table S5 and Fig. S20). Within the set of 12 canonical proteins, GN and 

Infomap generate an average of 12.0 and 36.8 communities, respectively. This 

corresponds to an average of 44.8 and 201.4 interior-critical residues when using GN and 

Infomap, respectively. Thus, given that GN produces a more selective set of residues for 

each protein, we use GN throughout our analyses. 

Although the critical residues identified by GN do not always correspond to those 

identified by Infomap, the mean fraction of GN-identified interior-critical residues that 

match Infomap-identified residues is 0.30 (the expected mean, based on a uniformly-

random distribution of critical residues throughout the protein, is 0.21, p-value=0.058), 

further justifying our decision to focus on GN). Furthermore, we observe that obvious 

structural communities are detected when applying both methods: a community generated 

by GN is often the same as that generated by Infomap, and in other cases, a community 

generated by GN is often composed of sub-communities generated by Infomap. 

As noted, the modularity from the network partitions generated by GN and 

Infomap are very similar. For the 12 canonical systems, the mean modularity for GN and 

Infomap is 0.73 and 0.68, respectively. Presumably, GN modularity values are 

consistently at least as high as those in Infomap because GN explicitly optimizes 

modularity in partitioning the network, whereas Infomap does not. 

 

STRESS (STRucturally-identified ESSential residues) 

Our server has been designed to be both user-friendly and highly efficient. We use 

local searching supported by hashing to perform a local search in each sampling step of 

the Monte Carlo simulations, which takes constant time. This approach brings down the 
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asymptotic computational complexity by an order of magnitude, relative to a simpler 

implementation without optimization (Fig. S6). The time complexity of the core 

computation, Monte Carlo sampling, is O(|T||S|), where T and S are simulation trials and 

steps for each trial, respectively. After carefully profiling and optimizing for speed (with 

optimizations introduced through changes in the workflow, data structures, numerical 

arithmetic, etc.), a typical case takes ~30 minutes on a E5-2660 v3 (2.60GHz) core. 

In terms of operation, our tool utilizes two types of servers: front-end servers that 

handle incoming HTTP requests and back-end servers that perform algorithmic 

calculations (Fig. S7). Communication between these two types of servers is handled by 

Amazon's Simple Queue Service. When our front-end servers receive a new request, they 

add the job to the queue and then return to requests immediately. Our back-end servers 

poll the queue for new jobs and run them when capacity is available. Amazon's Elastic 

Beanstalk offers several features that enable us to dynamically scale our web application. 

We use Auto Scaling to automatically adjust the number of back-end servers backing our 

application based on predefined conditions, such as the number of jobs in the queue and 

CPU utilization. Elastic Load Balancer automatically distributes incoming network 

traffic. This system ensures that we are able to handle varying levels of demand in a 

reliable and cost-effective manner. Since we may have multiple servers backing our tool 

simultaneously (some handling HTTP requests and some performing calculations, any of 

which may be terminated at any time by Auto Scaling), it is important that our servers are 

stateless. We thus store input and output files remotely in an S3 bucket, which is 

accessible to each server via RESTful conventions. The corresponding source code and 

README files are made available through Github (github.com/gersteinlab/STRESS). 

 

High-Throughput Identification of Alternative 
Conformations 

An overview of our pipeline for identifying alternative conformations is provided 

in Fig. S9. We perform MSAs for thousands of structures, with each alignment consisting 

of sequence-identical groups. Within each alignment, we cluster structures using RMSD 
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to determine the distinct conformational states. We then use information regarding 

protein motions to identify surface- and interior-critical residues. Details are given below. 

 

Database-Wide Multiple Structure Alignments 

 FASTA files of all SCOP domains were downloaded from the SCOP website 

(version 2.03) (43, 44). We first worked with domains to probe for intra-domain 

conformational changes, as better alignments are generally possible at the domain level. 

In order to better ensure that large structural differences between domains are a 

result of differing biological states (such as holo vs. apo, phosphorylated vs. 

unphosphorylated, etc.), and not an artifact of missing coordinates in X-ray crystal 

structures, the FASTA sequences used were those corresponding to the ATOM records of 

their respective PDBs. In total, this set comprises 162,517 FASTA sequences. 

BLASTClust (45) was used to organize these FASTA sequences into sequence-

similar groups at seven levels of sequence identity (100%, 95%, 90%, 70%, 50%, 40%, 

and 30%). Thus, for instance, running BLASTClust with a parameter value of 100 

provides a list of FASTA sequence groups such that each sequence within each group is 

100% sequence identical, and in general, running BLASTClust with any given parameter 

value provides sequence groups such that each member within a group shares at least that 

specified degree of sequence identity with any other member of the same group (see top 

of Fig. 1). Note that sequence identity values below 100% were only used to evaluate the 

pairwise RMSD distributions shown in Fig. S21. For all other analyses reported, all 

results are based on groups of structures that are 100% sequence identical. 

To ensure that the X-Ray structures used in our downstream analysis are of 

sufficiently high quality, we removed all of those structures corresponding to PDB files 

with resolution values poorer than 2.8, as well as any PDB files with R-Free values 

poorer than 0.28. The question of how to set these quality thresholds is an important 

consideration, and was guided here by a combination of the thresholds conventionally 

used in other studies which rely on large datasets of structures, as well as the 

consideration that many interesting allosteric-related conformational changes may 

correlate with physical properties that sometimes render very high resolution values 

difficult (such as localized disorder or order-disorder transitions). As a result of applying 
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these filters, 45,937 PDB IDs out of a total of 58,308 unique X-Ray structures (~79%) 

were kept for downstream analysis. The PDB was accessed in December 2013. 

For each sequence-similar group at each of the seven levels of sequence identity, 

we performed multiple structure alignment (MSA) using only those domain structures 

that satisfy the criteria outlined above. Thus, the MSAs were generated only for those 

groups containing a minimum of two domains that pass the filtering criteria. The STAMP 

(46) and MultiSeq (47) plugins of VMD (48) were used to generate the MSAs. 

Heteroatoms were removed from each structure prior to performing the alignments. 

The quality of the resultant MSA for each sequence-similar group depends on the 

root structure used in the alignment. To obtain the optimal MSA for each group of N 

structures, we generated N MSAs, with each alignment using a different one of the N 

domains as the root. The best MSA (as measured by STAMP’s sc score) was taken as the 

MSA for that group. Note that, in order to aid in performing the MSAs, MultiSeq was 

used to generate sequence alignments for each group. 

Finally, MultiSeq was used calculate two measures of structural similarity 

between each pair of domains within a group: RMSD and QH. QH, an alternative metric to 

RMSD, quantifies the degree to which residue-residue distances differ between two 

conformations, and is detailed in (49). For each group of sequence-similar domains, the 

final output of the structure alignment is a symmetric matrix representing all pairwise 

RMSD values (as well as a separate matrix representing all pairwise QH values) within 

that group. The matrices for all MSAs are then used as input to the K-means module. 

PDB-wide MSAs across sequence-similar groups reveal that, in agreement with 

expectation, average RMSD values increase at lower levels of sequence identity (Fig. 

S21). Grouping structures within a multiple-structure alignment on the basis of RMSD 

did not change substantially when grouping structures using QH (Fig. S22). Thus, we use 

RMSD as a similarity metric throughout. 

 

Identifying Distinct Conformations within a Multiple Structure Alignment 

 For each MSA produced in the previous step (using only sets of sequences that 

are 100% sequence-identical), the corresponding matrix of pairwise RMSD values 

describes the degree and nature of structural heterogeneity among the crystal structures 
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for a particular protein. The objective is to use this data in order to identify the 

biologically distinct conformations represented by an ensemble of structures. For a 

particular structure, there may be many available crystal structures. In total, these 

structures may actually represent only a small number of distinct biological states and 

conformations. For instance, there may be several crystal structures in which the domain 

is bound to its cognate ligand, while the remaining structures are in the apo state.  

Our framework for identifying the number of distinct conformational states in an 

ensemble of structures relies on a modified version of the K-means clustering algorithm. 

This modified form of the algorithm is termed K-means clustering with the gap statistic, 

and it was introduced in (50). 

A priori, performing K-means clustering assumes prior knowledge of the number 

of clusters (i.e., “K”) to describe a dataset. The purpose of K-means clustering with the 

gap statistic is to identify the optimal number of clusters intrinsic to a complex or noisy 

set of data points (which lie in N-dimensional space). Given multiple resolved crystal 

structures for a given domain, this method estimates the number of conformational states 

represented in the ensemble of structures (with these states likely occupying different 

wells within the energetic landscape), thereby identifying proteins which are likely to 

undergo conformational change as part of their functionality. 

As a first step toward clustering the structure ensemble represented by an RMSD 

matrix, it is necessary to convert this RMSD matrix (which explicitly represents only the 

relationships between distinct structures) into a form in which each structure is given its 

own set of coordinates. This step is taken because the K-means algorithm acts directly on 

individual data points, rather than the distances between such points. Thus, we use 

multidimensional scaling (MDS) to convert an N-by-N matrix (which provides all RMSD 

values between each pair of structures within a group of N structures) into a set of N 

distinct points, with each point representing a domain in (N-1)-dimensional space (see 

below). The values of the N-1 coordinates assigned to each of these N points are such 

that the Euclidean distance between each pair of points is the same as that corresponding 

pair’s RMSD value in the original matrix.  

For an intuition into why N points are mapped to (N-1)-dimensional space, 

consider an MSA between two structures. The RMSD between these two structures can 
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be used to map the two structures to one-dimensional space, such that the distance 

between the points is the RMSD value. Similarly, an MSA of 3 structures may be 

mapped to 2-dimensional space in such a way that the pairwise distances are preserved; 4 

domains may be mapped to 3-dimensional space, etc. The output of this multidimensional 

scaling is used as input to the K-means clustering with the gap statistic.  

We refer the reader to the work by Tibshirani et al for details governing how we 

perform K-means clustering with the gap statistic, as well as more details on the 

theoretical justifications of this approach (50). However, an overview of the general 

intuition behind the formalism is provided here.  

For the purpose of demonstration, assume that the data takes the form of 60 data 

points, with each point represented in 2D space. These are represented by the blue points 

in Fig. S23. Of course, our observed data in the case of MSAs may lie in N-dimensional 

space, in which case all Euclidean distances are just as easily calculated.! 
1) Start by assuming that the input data can be represented with K clusters. 

Perform Lloyd's algorithm (i.e., standard K-means clustering) on the dataset in order to 

assign each point to one of K clusters. Then, for each cluster k (which contains data 

points in the set Ck) measure Dk, which describes the ‘density’ of points within cluster k: 

 

     
 
2) Calculate an overall normalized score W to describe how well-clustered the 

resultant system has become when assigning all 60 data points to the K clusters (nk 

denotes the number of points in cluster k):  

 

        
 
3) Given our observed data, how well does this number of assigned clusters K 

actually represent the ‘true’ number of clusters represented by the data, relative to a null 

model without any apparent clustering? To address this question, produce a null 

distribution of 60 randomly (i.e., uniformly) distributed data points that lack any clear 
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clustering (grey points in Fig. S23) such that the randomly-placed points lie within the 

same bounding box of the observed data (blue points). 

4) Repeat step (3) M times, and each time a random null distribution is produced, 

calculate Wnull(K) for each distribution (assuming K clusters), just as W is calculated for 

the observed data. Then calculate the meanM{log(Wnull(K))} for these M null distributions. 

Intuitively, the value meanM{log(Wnull(K))} measures how well random systems (with the 

same number of data points and within the same variable ranges as the observed data) can 

be described by K clusters. The M log(Wnull(K)) values produced by the null models have a 

standard deviation that is ultimately converted to sk (see (50) for details): 

      
5) Calculate the gap statistic δ(K), given K clusters – this is a measure of how 

well our observed data may be described by K clusters relative to null models containing 

the same number of points and within the same variable ranges. Intuitively, a high value 

for this statistic signifies that our data is well-described using K clusters, relative to the 

assignment of K clusters in a randomized null distribution. Assuming K clusters, the gap 

statistic is given as:  

   
δ(K)  =  meanM{log(Wnull(K))} – log(W) 

 
 6) Obtain successive values δ(K+1), δ(K+2), δ(K+3), etc. This is done simply by 

incrementing the value for K and repeating the steps (1) through (5) above. Note that the 

optimal value of K (Koptimal, which is 3 in our demonstration case) is taken to be the first 

(i.e., lowest) K such that δ(K) >= δ(K+1) – sk+1: 

 

Koptimal = {K| δ(K) >= δ(K+1) – sk+1} 

 

Once the optimal K-value was determined for each MSA, we confirmed that these 

values accurately reflect the number of clusters by manually studying dozens of MSAs, 

including several MSAs corresponding of proteins known to constitute distinct 

conformations. We also examined several negative controls, such as CAP, an allosteric 

protein that does not undergo conformational change (19).  
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In manually annotating the alignments, we identified a vast array well-studied 

canonical allosteric domains and proteins. There may be many factors driving 

conformational change, and those cases for which the change is induced by the binding to 

a simple ligand (i.e., a simple consideration of apo or holo states) constitute only a very 

small subset of the conformational shifts observed in the PDB (Fig. S11). The gap 

statistic performed well in discriminating crystal structures that constitute such a diverse 

set, and this method has been validated using both domains and protein chains. 

RMSD values were used to generate dendrograms for each of the selected MSAs. 

The dendrograms are constructed using the hierarchical clustering algorithm built into R, 

hclust (51), with UPGMA (mean values) used as the chosen agglomeration method 

(52). 

Each domain is assigned to its respective cluster using the assigned optimal K-

values as input to Lloyd’s algorithm. For each sequence group, we perform 1000 K-

means clustering simulations on the MDS coordinates, and take the most common 

partition generated in these simulations to assign each structure to its respective cluster.  

We then select a representative structure from each of the assigned clusters. The 

representative member for each cluster is the member with the lowest Euclidean distance 

to the cluster mean, using the coordinates obtained by multidimensional scaling (see 

description above). These cluster representatives are then taken as the distinct 

conformations for this protein, and they are used for the binding leverage calculations and 

networks analyses (below). 

 

Modeling Protein Motions by Directly Using Displacement Vectors from 

Alternative Conformations 

As discussed, conformational changes may be modeled using vectors connecting 

pairs of corresponding residues in crystal structures of alternative conformations (which 

we term “ACT”, for “absolute conformational transitions”). This more direct model of 

conformational change is especially straightforward to apply to single-chain proteins; 

applying this method on a database scale to multi-chain complexes introduces 

confounding factors related to chain-chain correspondence between such complexes 

when each complex has multiple copies of a given chain. 
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When we use ACT to apply the modified binding leverage framework for these 

proteins, we observe that our surface-critical residues are significantly more conserved 

than are non-critical residues (Fig. S17, left), and the same trend is observed when this is 

applied in our dynamical network analysis for identifying interior-critical residues (Fig. 

S17, right). There are too few human single-chain proteins to perform a reliable analysis 

in which conservation is evaluated using 1000 Genomes or ExAC data – for instance, 

only 9 (16) structures are such that 1000 Genomes (ExAC) SNVs overlap with interior-

critical residues. 

 

Evaluating Conservation of Critical Residues 
Using Various Metrics and Sources of Data  
Conservation Across Species 

All cross-species conservation scores represent the ConSurf scores, as 

downloaded from the ConSurf Server (53-56), in which scores for each protein chain are 

normalized to 0. Low (i.e., negative) ConSurf scores represent a stronger degree of 

conservation, and high (i.e., positive) scores designate weaker conservation. We perform 

cross-species conservation analysis on those proteins for which ConSurf files are 

available from the ConSurf server, and all ConSurf scores were calculated using default 

parameters, listed here: 
 Homolog search algorithm: CSI-BLAST 
 Number of iterations: 3 
 E-value cutoff: 0.0001 
 Proteins database: UniRef-90 
 Maximum homologs to collect: 150 
 Maximal %ID between sequences: 95 
 Minimal %ID for homologs: 35 
 Alignment method: MAFT-L-INS-i 
 Calculation method: Baysian 
 Calculation method: JTT 
 

Each individual point within the cross-species conservation plots (e.g., Figs. 3B 

and 3F, and Fig. S17) represents data from one structure: the value of the point for any 

given structure represents the mean conservation score for all residues within one of two 

classes: the set of N critical residues within a protein structure (surface or interior) or a 

randomly-selected set of N non-critical residues (with the same “degree”, see below) 
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within the same structure. The randomly selected non-critical set of residues was chosen 

in a way such that, for each critical residue with degree k (k being the number of non-

adjacent residues with which the critical residue is in contact, see below), a randomly 

selected non-critical residue with the same degree k was included in the set. The 

distributions of non-critical residues shown are very much representative of the 

distributions observed when re-building the random set many times. 

Note that the degree (i.e., k) of residue j is defined as the number of residues 

which interact with residue j, where residues adjacent to residue j in sequence are not 

considered, and an interaction is defined whenever any heavy atom in an interacting 

residue is within 4.5 Angstroms of any heavy atom in the residue j. We use degree as a 

measure of residue burial for several reasons. This metric for burial is consistent with our 

networks-based analysis for identifying interior-critical residues, as well as our use of 

residue-residue contacts in building networks for producing the ANMs. In addition, 

degree is also an attractive metric because it is discrete in nature, thereby allowing us to 

generate null distributions of non-critical residues with the exact same degree 

distribution. 

 

Measures of Conservation Amongst Humans from Next-Generation Sequencing 

All SNVs hitting protein-coding regions that result in amino acids changes (i.e., 

nonsynonymous SNVs) were collected from the phase 3 release of The 1000 Genomes 

Project (28). VCF files containing the annotated variants were generated using VAT (57). 

For nonsynonymous SNVs, the VCF files included the residue ID of the affected residue, 

as well as additional information (such as the corresponding allele frequency, the 

ancestral allele, and the residue type). To map the 1000 Genomes SNVs on to protein 

structures, FASTA files corresponding to the translated chain(s) of the respective 

transcript ID(s) were obtained using BioMart (58). FASTA files for each of the PDB 

structures associated with these transcript IDs (the PDB ID-transcript ID correspondence 

was also obtained using BioMart) were generated based on the ATOM records of the 

PDB files. For each given protein chain, BLAST was used to align the FASTA file 

obtained from BioMart with that generated from the PDB structure. The residue-residue 

correspondence obtained from these alignments was then used in order to map each SNV 
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to specific residues within the PDB. As a quality assurance mechanism, we confirmed 

that the residue type reported in the VCF file matched that specified in the PDB file. 

 ExAC SNVs were downloaded from the ExAC Browser (Beta), as hosted at the 

Broad Institute (29). SNVs were mapped to all PDBs following the same protocol as that 

used to map 1000G SNVs, and only non-synonymous SNVs in ExAC were analyzed. 

When evaluating SNVs from the ExAC dataset, minor allele frequencies (MAF) were 

used instead of DAF values. The ancestral allele is not provided in the ExAC dataset – 

thus, analysis is performed for MAF rather than DAF. However, we note that little 

difference was observed when using AF or DAF values with 1000 Genomes data, and we 

believe that the results with MAF values would generally be the same as those with DAF 

values. We also highlight the attractive feature of recapitulating the general conservation 

trends observed using a separate matric. 

When analyzing both 1000 Genomes and ExAC data, we consider only those 

structures in which at least one critical and one non-critical residue are hit by a non-

synonymous SNV. This enables a more direct comparison between critical and non-

critical residues, as comparisons between two different proteins would rely on the 

assumption of equal degrees of selection between such proteins. 

Each individual point within the intra-human conservation plots (e.g., Figs. 3C, 

3D, 3G, and 3H) represents data from one structure: the value of the point for any given 

structure represents the mean score (DAF or MAF, for 1000 Genomes or ExAC SNVs, 

respectively) for all critical (red bars) or non-critical (blue bars) residues to be hit by 

SNVs. 

The fraction of rare SNVs to hit a particular “protein annotation” (described 

below) is defined to be the ratio of the number of rare non-synonymous SNVs in that 

annotation to the total number of non-synonymous SNVs to hit that annotation. An 

annotation for a given protein is simply the set of residues within a particular category, 

such as the set of all surface-critical residues (or alternatively the set of all interior-critical 

residues, or the set of non-critical residues). We define the term “rare” to mean that a 

1000 Genomes SNV has a DAF value below a certain threshold – for instance, variable 

thresholds ranging from DAF = 0.05% to 0.50% are evaluated in Fig. S15. An SNV in 
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ExAC is defined to be rare if it has a MAF value below a certain threshold – variable 

thresholds ranging from MAF = 0.05% to 0.50% are evaluated in Fig. S16.  

If a particular annotation, such as the set of surface-critical residues, has a rare 

SNV, then this rarity may potentially be a consequence of purifying selection acting to 

remove a deleterious SNV from the population pool (thereby making it rare). Such an 

annotation may thus be sensitive to sequence changes, and would thus be conserved. If 

there is a high fraction of such rare SNVs within the annotation, it provides further 

confidence to the claim that the annotation is conserved. Thus, a high fraction of rare 

SNVs is used as a signature for stronger conservation. Supporting this intuition, previous 

studies have observed that conserved genomic regions within the human population 

harbor higher fractions of rare SNVs (28, 30, 59). 
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Fig. S1: Canonical proteins with surface-critical and known ligand-binding sites 
Each left image shows sites that are scored highly (i.e., surface-critical residues, in red), and each 
right image shows the residues (yellow) that actually come into contact of known ligands, based 
on the corresponding holo structure (Supp. Table 1). 
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Glu Dehydrogenase (PDB ID 1nr7) 
 
 

 
Thr Synthase (PDB ID 1e5x) 
 
 

 
Malic Enzyme (PDB ID 1efk) 
 
 

 
Tyr Phosphatase (PDB ID 2hnp) 
 
 

 
Arg Kinase (PDB ID 3ju5) 
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Phosphoribosyltransferase (PDB ID 1xtt) 
 
 

 
Asp Transcarbamoylase (PDB ID 3d7s) 
 
 

 
cAMP-dependent Kinase (PDB ID 1j3h) 
 
 

 
Fig. S2: Number of surface-critical sites per complex without thresholding  
Complexes are taken from the the PDB biological assembly files. Shown is the distribution of the 
number of sites per complex. Without applying thresholds to the list of ranked surface-critical 
sites, the protein is often covered with an excess of identified critical sites. 
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Fig. S3: Community partitioning for canonical systems 
Different network communities are colored differently, and communities were identified using 
the dynamical network-based analysis with the GN formalism discussed in the main text and SI 
Methods. Residues shown as spheres are interior-critical residues, and they are colored based on 
community membership, and black lines connecting pairs of critical residues represent the 
highest-betweenness edges between the corresponding communities. 
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Fig. S4: Interior-critical residues highlighted in canonical systems 
Shown above are the same proteins shown in Fig. S3, but with interior-critical residues 
highlighted in red spheres. 
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Fig. S5: Home page of the STRESS server (stress.molmovdb.org) 
The server enables users to either provide PDB IDs or to upload their own PDB files for proteins 
of interest. Users may opt to identify surface-critical residues, interior-critical residues, or both. 
 
 
 
 
 
 

 
 
Fig. S6: Running times and optimization in the search of surface-critical residues 
(A) Running times are shown for systems of various sizes. Shown in red are the running times 
without optimizing for speed. Performing local searching supported with hashing and 
implementing additional algorithmic optimizations for computational efficiency reduce running 
times considerably (in green), relative to a more naïve approach without optimization (in red). (B) 
The same data is represented as a log-log plot. The slopes of these two approaches demonstrate 
that our algorithm reduces the computational complexity by an order of magnitude.  Our speed-
optimized algorithm scales at O(n1.3), where n is the number of residues. 
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Fig. S7: Architecture of the STRESS server 
A thin front-end server handles incoming user requests, and more powerful back-end servers 
perform the heavier algorithmic calculations. The back-end servers are dynamically scalable, 
making them capable of handling wide fluctuations in user demand. Amazon’s Simple Queue 
Service is used to coordinate between user requests at the front end and the back-end compute 
nodes: when the front-end server receives a request, it adds the job to the queue, and back-end 
servers pull that job from the queue when ready. Source code is available through Github 
(github.com/gersteinlab/STRESS). 
 

 
Fig. S8: Energy landscapes to describe distributions of different conformations 
Energy landscape theory may be used to describe the relative populations of alternative biological 
states and conformations  (for instance, active/inactive, or holo/apo). In the apo state, the 
landscape may take the form of the red curve, resulting in most proteins favoring the 
conformation shown in red. Once binding to ligand, the landscape becomes reconfigured to take 
the shape in the cyan curve, thereby shifting the distribution of conformations to that shown in 
cyan. One may use multiple structure alignments for domains or proteins to identify these distinct 
biological states in a database of structures. The schematized dendrogram represents the 
partitioning of these structures by a metric such as RMSD. The example shown is a  multiple 
structure alignment of adenylate kinase. SCOP IDs of the apo domains: d4akea1 and d4akeb1; 
those of the holo domains: d3hpqb1, d3hpqa1, d2eckb1, d2ecka1, d1akeb1, and d1akea1. 
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Fig. S9: Pipeline for identifying distinct conformations and critical residues 
Top to bottom: BLASTClust is applied to the sequences corresponding to a filtered set of 
structures, thereby providing a large number of sequence-identical sets of proteins (i.e., “sequence 
groups”). For each sequence-identical group, a multiple structure alignment is performed using 
STAMP. The example shown here is adenylate kinase; details are provided in Fig. S8. Using the 
pairwise RMSD values in this structure alignment, the structures are clustered using the UPGMA 
algorithm, and K-means with the gap statistic (δ) is performed to identify the number of distinct 
conformations. The plot at left identifies 2 as the optimal value for K: the solid line represents 
δ(K) values at each value of K, and the dotted line represents δ(K+1) – sk+1 for each value of K 
(see SI Methods for details). The structures that exhibit multiple clusters (i.e., those with K > 1) 
are then taken to exhibit multiple conformations. Finally, surface-critical (bottom-left) and 
interior-critical (bottom-right) residues are identified on those proteins determined to exist as 
multiple conformations. 
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A) 

 
 
 
B) 

 
 
 
Fig. S10: Distributions of the number of chains and domains in the dataset of alternative 
conformations 
Each structure the dataset of alternative conformations is taken from the first biological assembly 
file of the corresponding PDB. The structures in this database vary considerably in terms of size. 
Shown in panel (A) is the histogram representing the distribution for the number of chains in 
these biological assemblies, and shown in (B) is the corresponding distribution for the number of 
SCOP domains. 
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Fig. S12: A single annotated entry from our database of alternative conformations 
The clustering for the protein adenosylcobinamide kinase is shown. Two distinct conformations 
are represented in the ensemble of structures. The measure kf designates the fraction of times that 
the optimal value of K (here, K=2) was obtained out of 1000 simulations in which the algorithm 
(K-means with the gap statistic) obtained this particular value of K. The high kf value (0.969) 
signifies that these structures are very well clustered into two groups. n designates the number of 
distinct structures (PDB chains in this case) in the multiple structure alignment. pf designates the 
fraction of times (out of 1000 simulations of running Lloyd’s algorithm, the standard K-means 
algorithm) that this particular set of structure-group assignments were assigned. In this this 
example, for all 1000 simulations, 1C9K_C and 1C9K_A were clustered in one group, and 
1CBU_A, 1CBU_B, 1CBU_C clustered together. Within each cluster (the two clusters shown as 
two red boxes), the chain preceding the “::” tag designates the cluster representative (i.e., the 
structure closest to the Euclidean centroid of the cluster). The last field gives the RMSD values 
between cluster representatives. See the header information within Supp. File 1 for further details. 
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A) Cumulative distribution functions for mean DAF values of surface-critical and non-critical 
residues (p-val = 0.159, KS test) 
 
 

 
B) Cumulative distribution functions for mean DAF values of interior-critical and non-critical 
residues (p-val = 1.79e-4, KS test) 
 
Fig. S13: Potential shifts in DAF distributions (in 1000 Genomes) using two-sample 
Kolmogorov-Smirnov tests 
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A) Cumulative distribution functions for mean minor allele frequencies of surface-critical and 
non-critical residues (p-val = 9.49e-2, KS test) 
 
 
 

 
B) Cumulative distribution functions for mean minor allele frequencies of interior-critical and 
non-critical residues (p-val = 1.75e-4, KS test) 
 
Fig. S14: Potential shifts in mean minor allele frequency distributions (in ExAC) using two-
sample Kolmogorov-Smirnov tests 
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Fig. S15: Measuring relative conservation by the fraction of rare (low-DAF) variants using 
1000 Genomes data 
Protein regions with high fractions of rare variants are believed to be more sensitive to sequence 
variants than are other regions (thereby explaining why such variants occur infrequently in the 
population). Here, a rarely occurring SNV within the human population is defined to be one with 
a DAF less than or equal to the rarity thresholds  given on the y-axis. We consider all structures 
such that at least one critical and at least one non-critical residue are hit by a 1000 Genomes non-
synonymous SNV. Distributions in which the critical residues are defined to be the surface-
critical (A) and interior-critical (B) residues are shown. For varying thresholds to define rarity, 
there are more structures in which the fraction of rare variants is higher in critical residues than in 
non-critical residues. Cases in which the fraction is equal in both categories are not shown. (A) 
represents data from 31 structures, and (B) represents data from 32 structures. 
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Fig. S16: Measuring relative conservation by the fraction of rare (low-MAF) variants using 
ExAC data 
Protein regions with high fractions of rare variants are believed to be more sensitive to sequence 
variants than are other regions (thereby explaining why such variants occur infrequently in the 
population). Here, a rarely occurring SNV within the human population is defined to be one with 
a MAF less than or equal to the rarity thresholds  given on the y-axis. We consider all structures 
such that at least one critical and at least one non-critical residue are hit by a non-synonymous 
SNV in the ExAC dataset. Distributions in which the critical residues are defined to be the 
surface-critical (A) and interior-critical (B) residues are shown. For varying thresholds to define 
rarity, there are more structures in which the fraction of rare variants is higher in critical residues 
than in non-critical residues. Cases in which the fraction is equal in both categories are not 
shown. (A) represents data from 90 structures, and (B) represents data from 84 structures. 
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Fig. S17: Modeling protein conformational change through a direct use of crystal structures 
from alternative conformations using absolute conformational transitions (ACT) 
Left: Distributions (155 structures) of the mean conservation scores on surface-critical (red) and 
non-critical residues with the same degree of burial (blue). Right: Distributions (159 structures) of 
the mean conservation scores for interior-critical (red) and non-critical residues with the same 
degree of burial (blue). Mean values are given in parentheses. Results for single-chain proteins 
are shown, and p-values were calculated using a Wilcoxon rank sum test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p=8.26e-14 p=4.94e-13
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Fig. S18: Mean PolyPhen scores for critical- and non-critical residues, as identified by 
ExAC   
Left: Distributions (64 structures) of mean PolyPhen values on surface-critical residues (red) and 
non-critical residues (blue). Right: Distributions (70 structures) of mean PolyPhen values on 
interior-critical residues (red) and non-critical residues (blue). Overall mean values and p-values 
are given below plots. Note that higher PolyPhen scores denote more damaging variants. 
 

 
Fig. S19: Mean SIFT scores for critical- and non-critical residues, as identified by ExAC 
Left: Distributions (63 structures) of mean SIFT values on surface-critical residues (red) and non-
critical residues (blue). Right: Distributions (65 structures) of mean SIFT values on interior-
critical residues (red) and non-critical residues (blue). Overall mean values and p-values are given 
below plots. Note that lower SIFT scores denote more damaging variants. 
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Fig. S20: Network modularization by GN and Infomap 
Different colors correspond to different communities. Network modularization by the GN (left) 
and Infomap (right) algorithms are shown for the crystal structure of glutamyl-tRNA synthetase 
complexed with tRNA(Glu) and glutamol-AMP (PDB 1N78). 
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Fig. S21: Probability distributions of pairwise-RMSD by sequence identity 
Distributions for average pairwise RMSD values across domains within all multiple structure 
alignments at varying levels of sequence identity. 
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Fig. S22: Representative clustering of domains based on RMSD and QH: RMSD generally 
matches the clustering obtained when using QH 
Shown are the dendrograms for domains in adenylate kinase (A), arginine kinase (B), calcyclin 
(C), and catabolite activator protein (D) 
A) 

 
 
B) 
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Fig. S23: Intuition behind the k-means algorithm with the gap statistic 
The objective is to identify the ideal number of clusters to describe the observed data of 60 points 
(in blue). This entails defining how well-clustered our observed data appears (given an assigned 
number of clusters, K) relative to a null model consisting of a randomly distributed set of 60 
points (grey) that fall within the same variable ranges as the observed data. Further details are 
provided by Tibshirani et al, 2001. 
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A) 

 
 
 
B) 
 

 
 

 
Fig. S24: Quantifying the number of distinct surface-critical sites 
(A) The distribution of the number of surface-critical sites per PDB chain; (B) The density of 
surface-critical residues with respect to the total number of residues in the biological assembly 
(here referred to as a “complex”, though in some cases, the biological assembly may in fact be a 
single chain). 
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Fig. S25: Growth rate of deposited PDB structures, and the concomitant growth rate in the 
number of folds (as defined by CATH and SCOP) 
The growing appreciation for dynamic behavior and the importance of conformational 
heterogeneity is being facilitated by a growing redundancy within the PDB. Such redundancy is 
represented, for instance, when the same protein is structurally resolved under different 
conditions, potentially resulting in alternative conformations. 
 
 
 

 
Fig. S26: Trends in data generation point to growing opportunities for leveraging sequence 
variants to study structure (and vice versa) 
The volume of sequenced exomes is outpacing that of structures, while solved structures have 
become more complex in nature. Red: Average number of chains per PDB (considering the 
biological assembly PDB files for the top 10% of PDBs for a each year). Green: Cumulative 
number of X-Ray structures deposited in the PDB. Blue: Cumulative number of exomes stored in 
the NCBI Sequence Read Archive (SRA). All data were downloaded in May 2015. 
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Table S1: Set of 12 canonical proteins, organized by state (apo or holo) 
Ligands are given in parentheses (those in bold text designate the ligand used to define residues 
involved in canonical ligand-binding interactions). 
 
 
 

 
Table S2: Identifying known ligand-binding sites 
The 2nd column designates the fraction of residues that constitute surface-critical residues, and the 
3rd column represents, for each structure, the fraction of known ligand-binding sites that strongly 
overlap with surface-critical sites. 
 
 
 

 
Table S3: Do surface-critical sites occupy an exceedingly large fraction of the protein? 
For most proteins in the canonical set, the fraction of the protein occupied by surface-critical 
residues roughly matches the fraction of residues known to be directly involved in ligand binding. 
For most proteins (blue), the fraction of critical-surface residue is actually lower than that of 
known ligand-binding residues. 
 

HOLO$ APO$
1ake%(AP5)% 4ake%
3cep%(G3P,$IDM,$PLP)% 1bks%(PLP)%
1hor%(AGP,%PO4,%[&%16G%in%pdb%1HOT])% 1cd5%
2c2b%(SAM,%[&%LLP%in%pdb%2c2g])% 1e5x%
1gz3%(ATP,$FUM,$OXL)% 1e@%(MAK)%
1atp%(ATP)% 1j3h%
1hwz%(GLU,%GTP,$NDP%[&%ADP%in%PDB%1NQT])% 1nr7%
1xtu%(CTP,$U5P)% 1xN%(ACY,%U5P)%
1aax%(BPM%[&%892%in%PDB%1T49])% 2hnp%
7at1%(ATP,%MAL,%PCT%[&%CTP%in%PDB%1RAC],%[&%
PAL%in%PDB%1D09])% 3d7s%
3ju6%(ANP,%ARG)% 3ju5%
6p@%(PGA%[&%F6P$+$ADP$in%PDB%4PFK])% 3p@%(PO4)%
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Table S4: Capturing known-ligand binding sites at varying thresholds 
Here, n designates the number of residues within a surface-critical site that overlap with known 
ligand-binding residues. For the calculations reported above and in the main text, this value is 
taken to be n=6 (because each surface-critical site typically has 10 residues, and never has more 
than 10 residues, this criterion enforces that a majority of surface-critical residues within a given 
site overlap with known ligand-binding residues in order to be counted as a site match). However, 
as this threshold is relaxed to lower n, the fraction of captured known ligand-binding sites 
improves rapidly, suggesting that surface-critical sites generally lie close to known ligand binding 
sites in many cases. 
 
 
 
 

 
 
Table S5: Comparing the two network module identification algorithms GN & Infomap 
Though both GN (values to the left of “|” symbols throughout the table) and Infomap (values to 
the right) decompose networks to give similar modularity, the number of communities, and hence 
the number of critical residues connecting communities, is substantially larger when decomposing 
networks using Infomap than using GN. 
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