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ABSTRACT 
The rapidly growing volume of data being produced by next-generation sequencing 

initiatives is enabling more in-depth analyses of protein conservation than previously 

possible. Deep sequencing is uncovering disease loci and protein regions under strong 

selective constraint, despite the fact that, in many cases, we cannot find intuitive 

biophysical reasons for such constraint (such as the need to engage in protein-protein 

interactions or to achieve a close-packed hydrophobic core). Allosteric hotspots may 

often provide the missing explanatory link. Here, we use models of protein 

conformational change to identify such allosteric residues. In particular, we predict 

allosteric residues that can act as surface cavities or information flow bottlenecks, and we 

develop a software tool (stress.molmovdb.org) that enables users to perform this analysis 

on their own proteins of interest. While our tool is fundamentally 3D-structural in nature, 

it is still computationally fast and tractable. This allows us to run it across the entire 

Protein Data Bank and to evaluate large-scale properties of the predicted allosteric 

residues. We find that these tend to be significantly conserved over both long and short 

evolutionary time scales. Finally, we highlight specific examples in which allosteric 

residues can help explain previously poorly understood disease-associated variants. 
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SIGNIFICANCE STATEMENT 
Advances in genome sequencing technology are providing the sequenced human 

genomes and exomes of large numbers of individuals, thereby identifying regions under 

evolutionary pressure. Although signs of such pressures manifest throughout the genome, 

the mechanisms responsible are often unclear. Allostery serves as a plausible mechanism 

in many cases. We take a generalized approach to this problem by using protein 

conformational changes to identify potential allosteric residues in large numbers of 

proteins, and then evaluating their conservation using various measures and sources of 

data, including human genomes. These residues are conserved both among humans and 

across species, and they may sometimes aid in interpreting disease-associated mutations. 

We also introduce a user-friendly software tool for implementing this method. 
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INTRODUCTION 
The ability to sequence large numbers of human genomes is providing a much 

deeper view into protein evolution. When trying to understand the evolutionary pressures 

on a given protein, structural biologists now have at their disposal an unprecedented 

breadth of data regarding patterns of conservation, both across species and amongst 

humans. As such, there are greater opportunities to take a more integrated view of the 

context in which a protein and its residues function. This integrated view necessarily 

includes structural constraints such as residue packing, protein-protein interactions, and 

stability. However, deep sequencing is unearthing a class of conserved residues on which 

no obvious structural constraints appear to be acting. The missing link in understanding 

these regions may often be provided by considering the protein’s dynamic behavior and 

distinct functional states within an ensemble. 

The underlying energetic landscape responsible for the relative distributions of 

alternative conformations is dynamic in nature: allosteric signals or other external 

changes may reconfigure and reshape the landscape, thereby shifting the relative 

populations of states within an ensemble (1). Landscape theory thus provides the 

conceptual underpinnings necessary to describe how proteins change behavior and shape 

under changing conditions. A primary driving force behind the evolution of these 

landscapes is the need to efficiently regulate activity in response to changing cellular 

contexts, thereby making allostery and conformational change essential components of 

protein evolution. 

Given the importance of allosteric regulation, as well as the role of allostery in 

imparting efficient functionality, several methods have been devised for the identification 

of likely allosteric residues. Conservation itself has been used, either in the context of 

conserved residues (2), networks of co-evolving residues (3-8), or local conservation in 

structure (9). In related studies, both conservation and geometric-based searches for 

allosteric sites have been successfully applied to several systems (10). A number of 

methods employing support vector machines have also been described (11, 12). Normal 

modes analysis, coupled with ligands of varying size, have been used to examine the 
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extent to which bound ligands interfere with low-frequency motions, thereby identifying 

potentially important residues at the surface (2, 13, 14). 

The concept of ‘protein quakes’ has been introduced to explain local regions of 

proteins that are essential for conformation transitions (15). A protein may relieve the 

strain of a high-energy configuration by local structural changes. Such local changes 

often occur at the focal points of allosteric regulation, and these regions may be identified 

in a number of ways, including modified normal modes analysis (15) or time-resolved X-

ray scattering (16). 

Normal modes have also been used by the Bahar group to identify important 

subunits that act in a coherent manner for specific proteins (17, 18). Rodgers et al have 

applied normal modes to identify key residues in CRP/FNR transcription factors (19). 

Molecular dynamics (MD) and network analyses have been used to identify interior 

residues that may function as allosteric bottlenecks (20-24). In conjunction with NMR, 

Rivalta et al use MD and network analysis to identify important regions in imidazole 

glycerol phosphate synthase (25). 

Though having provided valuable insights, many of these approaches may be 

limited in terms of scale (the numbers of proteins which may feasibly be investigated), 

computational demands, or the class of residues to which the method is tailored (surface 

or interior). Using models of protein conformational change, we identify both surface and 

interior residues that may act as essential allosteric regions in a computationally tractable 

manner, thereby enabling high-throughput analysis. This framework directly incorporates 

information regarding protein structure and dynamics, and it is applied to proteins 

throughout the PDB (26) that exhibit conformational change. The relatively greater 

conservation of the residues identified (both across species and amongst humans) may 

help to elucidate many of the otherwise poorly understood regions in proteins. In a 

similar vein, several of our identified sites correspond to human disease loci for which no 

clear mechanism for pathogenesis had previously been proposed. Finally, our framework 

(termed STRESS, for STRucturally-identified ESSential residues) is made available 

through a tool to enable users to submit their own structures for analysis. 

 



! 6!

RESULTS 
Identifying Potential Allosteric Residues 

Allosteric residues at the surface generally play a regulatory role that is 

fundamentally distinct from that of allosteric residues within the protein interior. While 

surface residues may often constitute the sources or sinks of allosteric signals, interior 

residues act to transmit such signals. We use models of protein conformational change in 

an attempt to identify both classes of residues (Fig. 1). Throughout, we term these 

potential allosteric residues at the surface and interior “surface-critical” and “interior-

critical” residues, respectively. Critical residues are first identified in a set of 12 well-

studied canonical systems for which both the holo and apo states are available (Table S1 

and Fig. S1), and they are then identified on a large scale across hundreds of distinct 

proteins. 

 

Identifying Surface-Critical Residues 

Allosteric ligands often act by binding to surface cavities and modulating protein 

conformational dynamics. The surface-critical residues, some of which may act as latent 

ligand binding sites and active sites, are first identified by finding cavities using Monte 

Carlo simulations to probe the surface with a flexible ligand (Fig. 1A, top-left). The 

degree to which cavity occlusion by the ligand disrupts large-scale conformational 

change is used to assign a score to each cavity – sites at which ligand occlusion strongly 

interfere with conformational change earn high scores (Fig. 1A, top-right), whereas 

shallow pockets (Fig. 1A, bottom-left) or sites at which large-scale motions are largely 

unaffected (Fig. 1A, bottom-right) earn lower scores. Further details are provided in SI 

Methods. 

This approach is a modified version of the binding leverage framework 

introduced by Mitternacht and Berezovsky (14) (see SI Methods). The main 

modifications include the use of heavy atoms in the protein during the Monte Carlo 

search, in addition to an automated means of thresholding the list of ranked scores (see SI 

Methods). These modifications were implemented to provide a more selective set of sites. 
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Without them, an exceedingly large fraction of the protein surface would be captured 

(Fig. S2). We find that this modified approach results in an average of ~2 distinct sites 

per domain (Fig. 2A; see SI Methods for details on defining distinct sites). The 

distribution for distinct sites within entire complexes is given in Fig. 2B. 

Within the canonical set of 12 proteins, we positively identify an average of 60% 

of the sites known to be directly involved in ligand or substrate binding (see Tables S2 

and S3, Fig. S1, and supplementary note “Capturing Known Ligand-Binding Sites”). 

Some of the sites identified do not directly overlap with known binding regions, but we 

often find that these “false positives” nevertheless exhibit some degree of overlap with 

binding sites (Table S4). In addition, those surface-critical sites that do not match known 

binding sites may nevertheless correspond to latent allosteric regions: even if no known 

biological function is assigned to such regions, their occlusion may nevertheless disrupt 

large-scale motions. 

 

Dynamical Network Analysis to Identify Interior-Critical Residues 

The binding leverage framework described above is intended to capture hotspot 

regions at the protein surface, but the Monte Carlo search employed is a priori excluded 

from the protein interior. Allosteric residues often act within the protein interior by 

functioning as essential ‘bottlenecks’ within the communication pathways between distal 

regions. An allosteric signal transmitted from one region to another may conceivably take 

various alternative routes, but many of these routes can share a common set of residues. 

The removal of such a common set of residues can result in the loss of many or all of the 

available routes for allosteric signal transmission, thereby making these residues essential 

information flow bottlenecks. 

To identify bottlenecks, the protein is first modeled as a network, wherein 

residues represent nodes and edges represent contacts between residues (in much the 

same way that the protein is modeled as a network in constructing anisotropic network 

models, see below). In this regard, the problem of identifying interior-critical residues is 

reduced to a problem of identifying nodes that participate in network bottlenecks (see 

Fig. 1B and SI Methods for details). Briefly, the network edges are first weighted by the 

correlated motions of contacting residues: a strong correlation in the motion between 
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contacting residues implies that knowing how one residue moves better enables one to 

predict the motion of the other, thereby suggesting a strong information flow between the 

two residues. The weights are used to assign ‘effective distances’ between connecting 

nodes, with strong correlations resulting in shorter effective node-node distances. 

Using the motion-weighted network, “communities” of nodes are identified using 

the Girvan-Newman formalism (27). A community is a group of nodes such that each 

node within the community is highly inter-connected, but loosely connected to other 

nodes outside the community. Communities are thus densely inter-connected regions 

within proteins. As tangible examples, the community partitions and the resultant critical 

residues for the canonical set are given in Figs. S3 and S4. 

Finally, the betweenness of each edge is calculated. The betweenness of an edge 

is defined as the number of shortest paths between all pairs of residues that pass through 

that edge, with each path representing the sum of effective node-node distances assigned 

in the weighting scheme above. Those residues that are involved in the highest-

betweenness edges between pairs of interacting communities are identified as the 

interior-critical residues. These residues are essential for information flow between 

communities, as their removal would result in substantially longer paths between the 

residues of one community to those of another. 

 

Software Tool: STRESS (STRucturally-identified ESSential residues) 

The implementations for finding both surface- and interior-critical residues have 

been made available to the scientific community through a new software tool, STRESS, 

which may be accessed at stress.molmovdb.org (Fig. S5). Users may specify a PDB to be 

analyzed, and the output provided constitutes the set of identified critical residues. 

Obviating the need for long wait times, the algorithmic implementation of our 

software is highly efficient (Fig. S6). A typical protein of ~500 residues takes only about 

30 minutes on a 2.6GHz CPU. Running times are also minimized by using a scalable 

server architecture that runs on the Amazon cloud (Fig. S7). A light front-end server 

handles incoming user requests, and more powerful back-end servers, which perform the 

calculations, are automatically and dynamically scalable, thereby ensuring that they can 

handle varying levels of demand both efficiently and economically. 
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High-Throughput Identification of Alternative 
Conformations 

Pronounced conformational change is an essential assumption within our 

framework for identifying potential allosteric residues. We use a generalized approach to 

systematically identify instances of alternative conformations within the PDB. We first 

perform multiple structure alignments (MSAs) across sequence-identical proteins that are 

pre-filtered to ensure structural quality. We then use the resultant pairwise RMSD values 

to infer distinct conformational states (Figs. S8 and S9; see also SI Methods for details). 

The distributions of the resultant numbers of conformations for domains and 

chains are given in Figs. 2C and 2D, respectively, and an overview is given in Fig. 2E. 

Further summary statistics are provided in Fig. S10. We note that the alternative 

conformations identified arise in an extremely diverse set of biological contexts, 

including conformational transitions that accompany ligand binding, protein-protein or 

protein-nucleic acid interactions, post-translational modifications, changes in oxidation or 

oligomerization states, etc. (Fig. S11). The dataset of alternative conformations identified 

is provided as a resource in File S1 (see also Fig. S12). 

 

Evaluating Conservation of Critical Residues 
Using Various Metrics and Sources of Data  

The large number of dynamic proteins culled throughout the PDB, coupled with 

the high algorithmic efficiency of our critical residue search implementation, provide a 

means of evaluating general properties of these residues on a large scale. In particular, we 

measure their conservation, as evaluated both over long (inter-species) and short (intra-

human) evolutionary timescales. Using a variety of conservation metrics and sources of 

data, we find that both surface-critical (Figs. 3A-D) and interior-critical (Figs. 3E-H) are 

consistently more conserved than non-critical residues. We emphasize that the signatures 

of conservation identified not only provide a means of rationalizing many of the 

otherwise poorly understood regions of proteins, but they also reinforce the functional 

importance of the residues believed to be allosteric. 
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Conservation Across Species 

 When evaluating conservation across species, we find that both surface- and 

interior-critical residues tend to be significantly more conserved than non-critical residues 

with the same degree of burial (Figs. 3B and 3F, respectively). Surface-critical residue 

sets have a mean conservation score (i.e., ConSurf score, see SI Methods) of -0.131, 

whereas non-critical residue sets with the same degree of burial have a mean score of 

+0.059 (p < 2.2e-16; negative conservation scores designate stronger conservation). 

Interior-critical residues exhibit a similar trend: the mean conservation score for interior-

critical residues and non-critical residues with the same degree of burial is -0.179 and -

0.102, respectively (p=3.67e-11). 

 

Measures of Conservation Amongst Humans from Next-Generation Sequencing 

We may also use sequenced human genomes and exomes to investigate 

conservation, as many constraints may be human-specific and active in more recent 

evolutionary history. In this context, commonly used metrics for evaluating conservation 

include minor allele frequency (MAF) and derived allele frequency (DAF). Low MAF or 

DAF values are interpreted as signatures of deleteriousness, as purifying selection is 

prone to reduce the frequencies of harmful variants (see SI Methods). 

We find that 1000 Genomes (28) single-nucleotide variants (SNVs) that hit 

surface-critical residues tend to occur at lower DAF values (Fig. 3C). Though not 

significant, the significance improves when examining the shift in DAF distributions, as 

evaluated with a KS test (p=!0.159, Fig. S13A), and we point out the limited number of 

proteins (thirty-two) in which 1000 Genomes SNVs hit these critical sites (see SI 

Methods). Furthermore, the long tail extending to lower DAF values for surface-critical 

residues may suggest that only a subset of the residues in our prioritized binding sites is 

essential. However 1000 Genomes SNVs tend hit interior-critical residues with 

significantly lower DAF values than non-critical residues (Fig. 3G; see also Fig. S13B). 

 Given the relatively small number of proteins to be hit by 1000 Genomes SNVs, 

we also analyzed data provided by the Exome Aggregation Consortium (ExAC) (29). 

ExAC provides sequence data for many more individuals, and the ExAC sequencing 

itself is performed at much higher coverage. Thus, using MAF as a conservation metric, 
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we performed a similar analysis using this data. MAF distributions for surface- and non-

critical residues in the same set of proteins are given in Fig. 3D. Although the mean value 

of the MAF distribution for surface-critical residues is slightly higher than that of non-

critical residues, the median for surface-critical residues is substantially lower than that 

for non-critical residues, demonstrating that the majority of proteins are such that MAF 

values are lower in surface- than in non-critical residues. In addition, the overall shifts of 

these distributions also point to a trend of lower MAF values in surface-critical residues 

(Fig. S14A, KS test p=9.49e-2). 

Interior-critical residues exhibit significantly lower MAF values than do non-

critical residues in the same set of proteins. MAF distributions for interior- and non-

critical residues are given in Fig. 3H (see also Fig. S14B). 

 In addition to overall allele frequency distributions, one may also evaluate the 

fraction of rare alleles as a metric for measuring selective pressure. This fraction is 

defined as the ratio of the number of low-DAF or low-MAF (i.e., rare) non-synonymous 

SNVs to all non-synonymous SNVs in a given protein annotation (such as all surface-

critical residues of the protein, for example; see SI Methods). A higher fraction is 

interpreted as a proxy for greater conservation (30). Using variable DAF (MAF) cutoffs 

to define rarity for 1000 Genomes (ExAC) SNVs, both surface- and interior-critical 

residues are shown to harbor a higher fraction of rare alleles than do non-critical residues, 

further suggesting a greater degree of evolutionary constraint in critical residues (See 

Figs. S15 and S16 for 1000 Genomes and ExAC data, respectively). 

 

Comparisons Between Different Models of Protein Motions 

Conformational changes may be modeled using vectors connecting pairs of 

corresponding residues in crystal structures from alternative conformations (we term this 

approach “ACT”, for “absolute conformational transitions”). The crystal structures of 

such paired conformations may be obtained using the framework discussed above 

(further details in SI Methods). The protein motions may also be inferred from 

anisotropic network models (ANMs) (31). ANMs entail modeling interacting residues as 

nodes linked by flexible springs, in a manner similar to elastic network models (32, 33) 

or normal modes analysis (Fig. 1B). ANMs are not only simple and straightforward to 
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apply on a database scale, but unlike using alternative crystal structures, the motion 

vectors inferred may be generated using a single structure, and we thus use ANMs as our 

primary means of inferring motions. 

Using vectors from either ACTs or ANMs give the same general results in terms 

of the disparities in conservation between critical and non-critical residues. This method 

is thus general with respect to how motion vectors are defined (see Fig. S17 and 

Supplemental note “Modeling Protein Motions by Directly Using Displacement Vectors 

from Alternative Conformations” for further details). 

 

Critical Residues in the Context of Human Disease Variants 

Directly related to conservation is the concept of SNV deleteriousness: changes in 

amino acid composition at specific loci may be more or less likely to result in disease. 

SIFT (34) and PolyPhen (35) are two tools for predicting such effects, and we evaluated 

these predictions for critical and non-critical residues hit by SNVs in ExAC. SNVs hitting 

critical residues exhibit significantly higher PolyPhen scores relative to non-critical 

residues, suggesting the potentially higher disease susceptibility at critical residues (Fig. 

S18), though such significant disparities were not observed in SIFT scores (Fig. S19). 

Using HGMD (36) and ClinVar (37), we identify proteins with critical residues 

that coincide with disease-associated SNVs (Fig. 4A and File S2). Several critical 

residues coincide with known disease loci for which the mechanism of pathogenicity is 

otherwise unclear (File S3). The fibroblast growth factor receptor (FGFR) is a case-in-

point (Fig. 4). SNVs in FGFR have been linked to craniofacial defects. Dotted lines in 

Fig. 4B highlight poorly understood disease SNVs that coincide with critical residues. In 

addition, we identify Y328 as a surface-critical residue, which coincides with a disease-

associated SNV from HGDM, despite the lack of confident predictions of deleteriousness 

by several widely used tools for predicting disease-associated SNVs, including PolyPhen 

(35), SIFT (34), and SNPs&GO (38). Together, these results suggest that the 

incorporation of surface- and interior-critical residues introduces a valuable layer of 

annotation to the protein sequence, and may help to explain otherwise poorly understood 

disease-associated SNVs.  
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DISCUSSION & CONCLUSIONS 
The same principles of energy landscape theory that dictate protein folding are 

integral to how proteins explore different conformations once they adopt their folded 

states. These landscapes are shaped not only by the protein sequence itself, but also by 

extrinsic conditions. Such external factors often regulate protein activity by introducing 

allosteric-induced changes, which ultimately reflect changes in the shapes and population 

distributions of the energetic landscape. In this regard, allostery provides an ideal 

platform from which to study protein behavior in the context of their energetic 

landscapes. To investigate allosteric regulation, and to simultaneously add an extra layer 

of annotation in the context of conservation patterns, an integrated framework to identify 

potential allosteric residues is essential. We introduce a framework to select such 

residues, using knowledge of conformational change.  

When applied to many proteins with distinct conformational changes in the PDB, 

we investigate the conservation of potential allosteric residues in both inter-species and 

intra-human genomes contexts, and find that these residues tend to exhibit greater 

conservation in both cases. In addition, we identify several disease-associated variants for 

which plausible mechanisms had previously been unavailable, but for which allosteric 

mechanisms provide a plausible rationale. 

Unlike the characterization of many other structural features, such as secondary 

structure assignment, residue burial, protein-protein interaction interfaces, disorder, and 

even stability, allostery inherently manifests in the context of dynamic behavior. It is only 

by considering protein motions and changes in these motions can a fuller understanding 

of allosteric regulation be realized. As such, MD and NMR are some of the most 

common means of studying allostery and dynamic behavior. However, these methods 

have limitations when studying large and diverse protein datasets. MD is computationally 

expensive and impractical when studying large numbers of proteins. NMR structure 

determination is extremely labor-intensive and better suited to certain classes of 

structures or dynamics. In addition, NMR structures constitute a relatively small fraction 

of structures currently available. 
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There are several notable implications of our database-scale analysis. Relative to 

sequence data, allostery and dynamic behavior are far more difficult to evaluate on a 

large scale. The framework described here enables one to evaluate dynamic behavior in a 

systemized and efficient way across many proteins, while simultaneously capturing 

residues on both the surface and within the interior. That this pipeline can be applied in a 

high-throughput manner enables the investigation of system-wide phenomena, such as 

the roles of potential allosteric hotspots in protein-protein interaction networks. 

Knowledge of such sites across many proteins may also be used to identify the best 

proteins and protein regions for which drugs should be engineered, as well as instances in 

which specific sequence variants are likely to have the greatest impact. 

We emphasize that it is only by applying this framework over a database of many 

proteins can one search for significant disparities in conservation between sites believed 

to be important in allostery and the rest of the protein. Such general trends may not be 

apparent when studying a small number or specific classes of proteins. To our 

knowledge, this is the first study in which the conservation of potential allosteric sites has 

been measured across a large database of proteins. 

The ability to leverage our framework in a high-throughput manner also better 

enables one to match structural features with the high-throughput data generated through 

deep sequencing. Full human genomes and exomes are being sequenced at an increasing 

pace, thereby providing an unprecedented window into conservation patterns that can be 

human-specific or active over short evolutionary timescales. These patterns increasingly 

serve as detailed signatures of selective constraints which may not only be missing in 

cross-species comparisons, but are also sometimes difficult to rationalize using static 

representations of protein structures alone. 

We anticipate that, within the next decade, deep sequencing will enable structural 

biologists to study evolutionary conservation using sequenced human exomes just as 

routinely as cross-species alignments. Furthermore, intra-species metrics for conservation 

provide added value in that the confounding factors of cross-species comparisons are 

removed: different organisms evolve in different cellular and evolutionary contexts, and 

it can be difficult to decouple these different effects from one another. Cross-species 

metrics of protein conservation entail comparisons between proteins that may be very 
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different in structure and function. Sequence-variable regions across species may not be 

conserved, but nevertheless impart essential functionality. Intra-species comparisons, 

however, can often provide a more direct and sensitive evaluation of constraint. In 

addition, intra-species selective constraints are particularly relevant in the context of 

human disease. Finally, we anticipate that our newly developed software tool will prove 

to be of great value in enabling investigators to study allostery in diverse contexts. 

 

METHODS 
An overview of the framework for finding surface- and interior-critical residues is 

given in Figs. 1. Fig. S9 provides a schematic of our pipeline for identifying alternative 

conformations throughout the PDB. Cross-species conservation scores were analyzed in 

those PDBs for which full ConSurf files are available through the ConSurf server. 1000 

Genomes SNVs were taken from the Phase 3 release, and ExAC SNVs were downloaded 

in May 2015. Further details on all methods are provided in SI Methods. 
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FIGURE CAPTIONS 
Fig. 1.  Shown are schematic overviews of methods for finding surface- and interior-

critical residues. (A) A simulated ligand probes the protein surface in a series of Monte 

Carlo simulations (top-left). The cavities identified may be such that occlusion by the 

ligand strongly interferes with conformational change (top-right; such a site is likely to be 

identified as surface-critical, in red), or they may have little affect on conformational 

change, as in the case of shallow pockets (bottom-left) or pockets in which large-scale 

motions do not drastically affect pocket volume (bottom-right). (B) Interior-critical 

residues are identified by weighting residue-residue contacts (edges) on the basis of 

correlated motions, and then identifying communities within the weighted network. 

Residues involved in the highest-betweenness interactions between communities (in red) 

are selected as interior-critical residues. 

 

Fig. 2.  Summary statistics on database-wide analyses are shown. The distributions of the 

numbers of surface-critical sites per domain and per complex are given in (A) and (B), 

respectively. The distributions of the number conformations (i.e., “K”) for domains and 

chains are given in (C) and (D), respectively. Only proteins for which K exceeds 1 (for 

chains) are included in our dataset of multiple conformations. (E) Distinct proteins in our 

dataset within the context of high-quality X-ray structures in the PDB that we structurally 

aligned. A set of distinct proteins is such that no pair shares more than 90% sequence 

identity. 

 

Fig. 3.  Multiple metrics and datasets reveal that critical residues tend to be conserved. 

Surface- and interior-critical residues (red) in phosphofructokinase (PDB 3PFK) are 

given in (A) and (E), respectively. Distributions of cross-species conservation scores, 

1000 Genomes SNV DAF averages, and ExAC SNV MAF averages for surface- and 

non-critical residue sets are given in (B), (C), and (D), respectively. The same 

distributions corresponding to interior- and non-critical residue sets are given in (F), (G), 

and (H), respectively. In (C), means for surface- and non-critical sets are 9.10e-4 and 

8.34e-4, respectively (p=0.309); corresponding means in (D) are 4.09e-04 and 2.26e-04, 
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respectively (p=1.49e-3). In (G), means for interior- and non-critical sets are 2.82e-4 and 

3.12e-3, respectively (p=1.80e-05); corresponding means in (H) are 3.08e-05 and 3.27e-

04, respectively (p=7.98e-09). Statistics for panels (B) and (F) are given in the main text. 

N = 421, 32, 84, 517, 31, and 90 structures for panels B, C, D, F, G, and H, respectively. 

P-values are based on Wilcoxon-rank sum tests. See SI Methods for further details. 

 

Fig. 4.  Potential allosteric residues add a layer of annotation to structures in the context 

of disease-associated SNVs. The structure shown (A) is that of the fibroblast growth-

factor receptor (FGFR) in VMD Surf rendering, with HGMD SNVs shown in orange, 

bound to FGF2, in ribbon rendering (PDB 1IIL). (B) A linear representation of structural 

annotation for FGFR. Dotted lines highlight loci which correspond to HGMD sites that 

coincide with critical residues, but for which other annotations fail to coincide. Deeply-

buried residues are defined to be those that exhibit a relative solvent-exposed surface area 

of 5% or less, and binding site residues are defined as those for which at least one heavy 

atom falls within 4.5 Angstroms of any heavy atom in the binding partner (heparin-

binding growth factor 2). The loci of PTM sites were taken from UniProt (accession 

P21802). 
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