Abstract
Privacy is receiving much attention with the unprecedented increase in the breadth and depth of biomedical datasets, particularly personal genomics datasets. Moreover, considering the legislative plans for encouraging public data sharing in biomedical research fields, privacy will be the key consideration in designing data sharing mechanisms. Most studies on genomic privacy are focused on protection of variants in personal genomes. Molecular phenotype datasets, however, can also contain substantial amount of sensitive information. Although there is no explicit genotypic information in them, subtle genotype-phenotype correlations can be used to statistically link the phenotype and genotype datasets. The links can then be used to characterize individuals by identifying their sensitive phenotypes and breaching privacy. We will study the methodologies for analysis of sensitive information leakage from phenotype datasets. We will focus on the RNA-seq datasets and the associated sources of sensitive information leakage. These leakages are mediated by the expression quantitative trait loci. The attacker can utilize the expression datasets and the eQTL datasets and predict genotypes for a large set of variant loci and the predicted genotypes can be used to statistically link genotype and the phenotype datasets. Each linkage can potentially characterize sensitive information of individuals and cause privacy concerns. We will approach the privacy analysis under 3 aims. We will first aim at proposing statistical metrics that can be used for quantification of the sensitive information leakage from phenotype datasets. These quantifications can be used to evaluate the risks of privacy breaches. In the second aim, we will focus systematical analysis of how linking attacks can be instantiated and analyzed. We will study how one can generalize linking attacks that enables the privacy researchers study the risks associated with these attacks more systematically. We will then evaluate different models of genotype prediction and assess how these can be used in linking attacks. We will focus, specifically, on the outlier gene expression levels and evaluate how the outliers can be used for genotype prediction and in the linking attacks. In the third aim, we will develop tools that implement the quantification, risk estimation, and risk management methodologies and integrate these in a coherent software suite for a comprehensive privacy analysis, which enables protecting RNA-seq datasets at different levels of summarizations of the datasets, e.g., reads, gene and transcript  quantifications. We will aim at increasing the number of software tools for genomic privacy analysis. We will study different algorithmic approaches to tackle with the high computational complexity of anonymization techniques in the literature. In addition, we will develop methods for ensuring the biological utility of the phenotype datasets while the phenotypic datasets are anonymized. We will also study sources of extremities other than gene expression levels, e.g. splicing and non-coding transcription, which can be used for individual characterization and identification. These sources of information will be studied in the context of risk quantification and management strategies presented in the previous aims. We will finally use the tools to quantify the sensitive information in the publicly available datasets from large sequencing projects, for example ENCODE, 1000 Genomes, TCGA, GEUVADIS, and GTex. 

Narrative
We plan to study genomic privacy with a focus on quantification and management of risks related to releasing RNA-seq datasets. We will study linking attacks where the individual’s privacy can be compromised by linking of genotype and gene expression datasets, mediated by use of expression quantitative trait loci for genotype prediction. We will develop statistical methodolodies and related software tools for anonymization of gene expression datasets.
Specific Aims
The genomic characterization of thousands if not millions of individuals promises to be useful for medical research. Large-scale mining of these data will allow us to genetically characterize disease states and susceptibility in detail. However, for a given individual, genomic variants can be exceptionally revealing in terms of physical information, ancestry and identity; thus, they are traditionally considered private information. Moreover, the fact that these variants are often shared with non-sequenced family members makes true consent for data release often problematic. Thus, we have the dilemma between the patient desire for privacy and the need for large-scale sharing.
	A related type of information to DNA sequencing results from functional genomic experiments, such as RNA-Seq, Methyl-Seq and ChIP-Seq. These experiments probe quantitative endophenotypes such as gene expression levels. Often the value of the data in these experiments lies not the DNA variants of the individual sequenced but in general characteristics of the endophenotype (eg gene expression in a cancerous cell vs a non-cancerous one). However, because these data are derived from sequencing experiments, they potentially contain variants. Sometimes these variants are directly in the reads themselves. Other times they are present in subtle QTL correlations. 
The most prominent of these functional genomic experiments is RNA-seq, which we will focus on here. With the ability to characterize many different cellular and disease states one expects the amount of RNA-seq data will rival that of direct DNA sequencing data.  We propose to show that with a large enough number of available eQTL correlations, a substantial amount of private information can be gleaned from RNA-seq experiments. It will be of value to make even a portion of an RNA-seq dataset publicly shareable. Thus, we propose developing easy-to-use software that will determine the fraction of a gene expression dataset that can be shared publicly without compromising an individual's privacy. Furthermore, by quantitatively characterizing the amount of information leakage in an RNA-seq set, we can convey more explicitly to an individual what they are consenting to, in terms of the release of this information. Specifically, we have 3 aims. 

(1) As our first goal, we will develop an information-theoretic formalism to calculate the amount of information leakage from a gene expression set that is publicly available. This formalism will calculate the amount of characterizing information in a set of predicted genotypes (intuitively the number of rare SNPs predicted). It will describe the predictability of a particular eQTLs for determining genotype. This generalizes the notion of correlation, conventionally used to describe eQTLs. 

(2) In the second aim, we will demonstrate how one can instantiate this the mathematical formalism from Aim 1 to create a practical ‘linking attack’. This is an attack where one matches an RNA-seq data associated with a particular phenotype (eg an individual having cancer) with a hidden set of genotypes using publically available eQTLs, thereby potentially revealing sensitive individual-specific information. That is, if you get someone’s genotype data you can show that they have cancer by linking against a second set of gene expression data that they have released. The structure of this attack is very similar to that of the publicized breach of privacy in the Netflix data. We then show that this attack is particularly easy using “outlier” gene-expression levels. 

(3) For the third aim, we will develop software to simulate an attack for a particular RNA-seq set, specifically on the outliers of the data, and implement our mathematical formalism to characterize the amount of information leakage in gene expression and other quantitative QTL datasets. We will show how straightforward the attack is using publicly available gene expression datasets and characterize the potential information leakage in these sets. Then, we intend to demonstrate how the information leakage can be reduced by a variety of simple file format manipulations – in particular, abstracting extreme gene expression levels that have the most identifiable information. Here, we build on our previous work in developing a simple file format for gene expression analyses, which removes a lot of privacy-problematic variants, to package the cleaned RNA-seq data set. 

1. Significance
Privacy is one of the most important topics of debate in data science that stands at the corner of many different fields, including ethics, sociology, law, political science, and forensic science. Recently, genomics has emerged as one of the major foci of studies on privacy. This can mainly be attributed to the advancement of technologies for high throughput biomedical data acquisition that bring about a surge of datasets[1, 2]. Among these, high throughput molecular phenotype datasets, like functional genomic and metabolomic measurements, substantially grow the list of the quasi-identifiers (such as birth date, ZIP code, gender[3]) for participating individuals, which can be used by an adversary for re-identification of the identities. With the recent announcement of Precision Medicine Initiative[4], a large body of datasets are to be generated and shared among researchers[5]. The National Institutes of Health also released the plans to encourage public access to biomedical datasets from scientific studies [5–7]. Considering the fact that one does not need many identifiers to uniquely pinpoint an individual[3, 8, 9], these datasets have the potential to exacerbate the risk of privacy breach. 
Many consortia, like GTex[10], ENCODE[11], 1000 Genomes[12], and TCGA[13], are generating large amount of personalized biomedical datasets. Coupled with the generated data, sophisticated analysis methods are being developed to discover correlations between genotypes and phenotypes, some of which can contain sensitive information like disease status. Although these correlations are useful for discovering how genotypes and phenotypes interact, they could also be utilized by an adversary in a linking attack for matching the entries in genotype and phenotype datasets. For example, when a phenotype dataset is available, the adversary can utilize the genotype-phenotype correlations to statistically predict the genotypes, compare the predicted genotypes with the entries in another dataset that contains genotypes. For the entries that are correctly matching, he/she can reveal sensitive phenotypes of the individuals and characterize them. Even when the strength of each genotype-phenotype correlation is not high, the availability of a large number of genotype-phenotype correlations increases the scale of linking. In fact, an adversary can perform correct linking with relatively small number of genotypes[14, 15].
Different aspects of privacy have been intensely studied. Recently, genomic privacy is receiving much attention as a result of the deluge of personalized genomics datasets that are being generated[16, 17]. With the increase in the number of large scale genotyping and phenotyping studies, the protection of privacy of participating individuals has emerged as an important issue. Homer et al[18] proposed a statistical testing procedure that enables testing whether a genotyped individual is in a pool of samples, for which only the allele frequencies are known. Im et al[19] showed that, given the genotypes of a large set of markers for an individual, an attacker can reliably predict whether the individual participated to a QTL study or not. These attacks, which we refer to as “detection of a genome in a mixture”, are one type of attacks on privacy (Fig S6). There is yet another important attack where the attacker links two or more datasets to pinpoint individuals in datasets and reveal sensitive information. One well-known and illustrative example of these “linking attacks”, although not in a genomic context, is the linking attack that matched the entries in Netflix Prize Database and the Internet Movie Database (IMDB)[20]. For research purposes, Netflix released an anonymized dataset of movie ratings of thousands of viewers, which they thought was secure as the viewers’ names were removed. However, Narayanan et al[20] used IMDB database, a seemingly unrelated and very large database of movie viewers, linked the two databases, and revealed identities and personal information (movie history and choices) of many viewers in the Netflix database. The fact that Netflix and IMDB host millions of individuals in their databases renders the question of detection of an individual in these database irrelevant since any random individual is very likely to be in one or both of these databases but the focus of attacks turns to matching individuals in the databases. Consequently, as the databases grow, the attacks for detection of an individual in a database become unimportant and the linking attacks become more admissible in order to characterize individuals’ sensitive information. In the genomic privacy context, as the size and number of the genotype and phenotype datasets increase, possibility of potentially linkable datasets will increase, which may make scenarios similar to Netflix attacks a reality in genomic privacy.
1. Innovation
There is currently a significant scarcity of tools that enable analysis and protection of genomic and phenotypic datasets. We will focus on characterizability of the individuals’ sensitive information in the context of linking attacks, where the adversary exploits the genotype-phenotype correlations to link different datasets and potentially reveal sensitive information. In general, the high dimensional phenotype datasets generated in genomic studies harbor a number of phenotypes that contain sensitive information, like disease status, and other phenotypes, while not sensitive, may have subtle correlations with genomic variant genotypes. We will perform large scale analysis of the potential genotypic information leakage that different QTL datasets can cause. We will build tools that enable reporting of objective measures for genotypic information leakage from phenotype datasets. These tools will enable generating uniform and systematic analysis of privacy risks imposed by releasing new phenotype, genotype, and QTL datasets. We will also evaluate how accurately the predicted genotypes can characterize an individual. We will study the different routes for linking the phenotype and genotype datasets. 
For generating a set of initial results that will be presented, we will use the expression quantitative trait loci (eQTL) and expression dataset s generated by the GEUVADIS project[21] and the genotype dataset from the 1000 Genomes Project. We will generalize the formalisms, however, to be applicable to any type of QTL, genotype, and phenotype datasets 
Specifically, Many quantitative phenotypes can be linked to genotypes using public quantitative trait loci (QTL) datasets. Some of the high dimensional genomic quantitative traits and corresponding QTLs are gene expression levels (eQTLs), protein levels (pQTLs[22, 23]), DNase hypersensitivity site signals (dsQTLs[24]), ribosome occupancy (rQTLs[25]), DNA methylation levels (meQTLs[26]), histone modification levels (haQTLs[27–29]), RNA splicing (sQTLs[30]), and also higher order traits like network modularity (modQTLs[31]). Other QTLs associated with single dimensional non-genomic phenotypes include body mass index[32], basal glucose levels[33], and serum cholesterol levels[22, 34].
1. Approach
[image: fig1]We will address the need for new computational approaches for analyzing sensitive information leakage within 3 aims. In the first aim, we will develop statistical formalisms for quantification of the leakage of information that enables pinpointing of individuals in genotype and phenotype datasets with use of QTLs. In the second aim, we will focus on specific linking attacks and work on instantiations of the linking attacks using outliers in the phenotype datasets. In the third aim, we will focus on proposing file formats and methodologies that enable privacy preserving sharing and publishing of the phenotype datasets. Figure 1 shows how the methodologies proposed in each aim can be combined for an integrated risk assessment for releasing QTL, phenotype, and genotype datasets.Figure 1: Generalized Risk Assessment Scenario for Genotype-Phenotype Datasets


2. AIM1: Development of a Statistical Formalism for Leakage from QTL Sets
In this aim, we will develop a statistical framework for analysis and quantification of the information leakage that can be used for pinpointing and linking individuals in the phenotype and in the genotype datasets using QTL datasets.


0. Overview of the Individual Characterization Scenario by Linking Attacks
[image: fig2]Figure 2 illustrates the general privacy breaching scenario that is considered. There are three datasets in the context of the breach. First dataset contains the phenotype information for a set of individuals. The phenotypes can include sensitive information such as disease status in addition to several molecular phenotypes such as gene expression levels. The second dataset contains the genotypes and the identities for another set of individuals.  The third dataset contains correlations between one or more of the phenotypes in the phenotype dataset and the genotypes. In this dataset, each entry contains a phenotype, a variant, and the degree to which these values are correlated. We will focus on the gene expression datasets as the representative phenotype dataset. The abundance of gene expression-genotype correlation (eQTL) datasets makes these datasets most suitable for linking attacks. 
Figure 3 illustrates the eQTL, expression, and genotype datasets. The eQTL dataset is composed of a list of gene-variant pairs such that the gene expression levels and variant genotypes are significantly correlated. We will denote the number of eQTL entries with . The eQTL (gene) expression levels and eQTL (variant) genotypes are stored in  and  matrices  and , respectively, where  and  denotes the number of individuals in gene expression dataset and individuals in genotype dataset.  The  row of , , contains the gene expression values for  eQTL entry and  represents the expression of the  gene for  individual. Similarly,  row of , , contains the genotypes for  eQTL variant and  represents the genotype ( ϵ {0,1,2}) of  variant for  individual. The coding of the genotypes from homozygous or [image: fig3]heterozygous genotype categories to the numeric values are done according to the correlation dataset.  We assume that the variant genotypes and gene expression levels for the  eQTL entry are distributed randomly over the samples in accordance with random variables (RVs) which we denote with  and  , respectively. We denote the correlation between the RVs with . In most of the eQTL studies, the value of the correlation is reported in terms of a gradient (or the regression coefficient) in addition to the significance of association (p-value) between genotypes and expression levels. The absolute value of  indicates the strength of association between the eQTL genotype and the eQTL expression level. The sign of  represents the direction of association, i.e., which homozygous genotype corresponds to higher expression levels. This forms the basis for correct predictability of the eQTL genotypes using eQTL expression levels: The homozygous genotypes associate with the extremes of the gene expression levels and the heterozygous genotypes associate with moderate levels of expression. The eQTL studies utilize linear models to identify the gene and variant pairs whose expressions and genotypes that are significantly correlated. Given this knowledge, the adversary aims at reversing this operation so as to predict genotypes for each individual, using the respective gene expression levels and the genotype-phenotype correlation. For general applicability of the analysis, we will assume that he/she utilizes a prediction model that estimates correctly the a posteriori distribution of the eQTL genotypes given the eQTL expression levels, i.e., . This will enable us to perform quantifications independent of the prediction methodology utilized by the attacker. Figure 2: Schematic Representation of a Linking Attack: The attacker links the phenotype and genotype datasets using the genotype predictions. In the predictions, the attacker utilizes the QTL datasets. The resulting attack generates the linked genotype (green), phenotype(orange), and sensitive phenotype (yellow) dataset.
Figure 3: The representation of the genotype and expression datasets.

0. Quantification of Tradeoff between Correct Predictability of Genotypes and Leakage of Individual Characterizing Information 
We will study the tradeoff the correct predictability of genotypes and the number of individuals that can be characterized with the information leakage (Figure 4). In the context of the linking attack, the attacker aims to correctly characterize  individuals in the expression dataset among  individuals in the genotype dataset. In order to correctly characterize an individual, he/she should select a set of eQTLs that he/she believes he/she can predict correctly. Next, given the individual’s expression levels, the attacker should predict the genotypes for the selected eQTLs correctly such that the predicted set of genotypes are not shared by more than 1 individual, i.e., the predicted genotypes can be matched to the correct individual. In other words, the joint frequency of the set of predicted genotypes for the selected eQTLs should be . We can rephrase this condition as following in information theoretic terms: Given the genotypes of an individual, if the attacker can correctly predict a subset of genotypes that contain at least  bits of information, the individual is vulnerable to characterization of his/her phenotypes. Following this statement, we can quantify the leakage from a set of correctly predicted eQTL variant genotypes as the logarithm of their joint frequency. Assuming that the genotypes of different eQTLs are independent from each other, we can decompose the quantity of individual characterizing information that is leaked for a set of  correctly predicted eQTL genotypes: 
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[image: fig4-2-01]where  is the random variable that corresponds to the genotypes for the kth eQTL,  is a specific genotype, and  denotes the genotype frequency of  within the population, and ICI denotes the total individual characterizing information. Evaluating the above formula, ICI increases as the frequency of the variant’s genotype  decreases. In other words, the more rare genotypes contribute higher to ICI compared to the more common ones. Thus, individual linking information can be interpreted as a quantification of how rare the predicted genotypes are. The attacker aims to predict as many eQTLs as possible such that ICI for the predicted genotypes is at least . ICI can also be interpreted as the number of rare SNP genotypes that an individual harbors.Figure 4:The tradeoff between correct predictability of the genotypes and number of individuals that can be characterized.

In order to maximize the amount of ICI, the attacker will aim at correctly predicting as many eQTL genotypes as possible. The (correct) predictability of the eQTL genotypes from expression levels, however, varies over the eQTL dataset as some of the eQTL genotypes are more highly correlated (i.e., more correctly predictable) with the expression levels compared to others, given in . Thus, the attacker will try to select the eQTLs whose genotypes are the most correctly predictable to maximize ICI leakage. Although  is a measure of predictability, it is computed differently in different studies. In addition, there is no easy way to combine these correlation values when we would like to estimate the joint predictability of multiple eQTL genotypes. In order to uniformly quantify the joint (correct) predictability of the eQTL genotypes using the expression levels, we use the exponential of entropy of the conditional genotype distribution given gene expression levels. Given the expression levels for   individual, we compute the predictability of the  eQTL genotypes as
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where  denotes the predictability of  given the gene expression level .  can be interpreted as the average probability (when sampling individuals from the population) that the attacker can correctly predict the eQTL genotype at the given expression level. In the above equation for , the conditional entropy of the genotypes is a measure for the randomness that is left in genotype distribution when the expression level is known. In the case of high predictability, the conditional entropy is close to 0, and there is little randomness left in the genotype distribution. Taking the exponential of negative of the entropy converts the entropy to average probability of correct prediction of the genotype. In the most predictable case (conditional entropy close to 0),  is close to 1, indicating very high predictability.
As an initial study to show how these measures can be used jointly, we considered each eQTL and evaluated the genotype predictability versus the characterizing information leakage. We use the gene expression data from the GEUVADIS project as a representative dataset for this computation. We computed, for each eQTL, average  and average ICI over all the individuals (Figure 5). Most of the data points are spread along the diagonal, which indicate that there is a natural tradeoff between correct predictability and ICI leakage. The eQTL variants with high frequency major allele frequencies have high predictability and low ICI and vice versa for eQTL variants with lower major allele frequency (Fig 5, left). This is expected because the genotypes of the high frequency variants can be predicted, on average, easily (most individuals will harbor one dominant genotype) and consequently does not deliver much characterizing information. The genotypes for the eQTLs with smaller major frequency alleles, however, are harder to predict as they are mostly uniformly distributed among population. On the other hand, these eQTLs contain high ICI on average. The eQTLs with high correlation (Fig 5, right) deviate from the diagonal with high ICI and high predictability. In principle, the adversary will aim at identifying and using these highly informative eQTLs.
[image: fig5]
2. AIM2: Instantiating the Linking Attacks
In this aim, we will study how an attacker can instantiate linking attacks using different techniques for linking the genotype and phenotype datasets.
1. A General Framework for Analysis of Individual Characterization using Linking AttacksFigure 5: The scatter plot of ICI leakage (x-axis) versus the predictability (y-axis) of SNP genotypes. Each dot represents a SNP. SNPs are colored as per major allele frequencies (left) and per absolute eQTL correlation (right).

[image: fig6]We first present a tentative 3 step framework for individual characterization in the context of linking attacks. Figure 6 summarizes the steps in the individual characterization for each individual. The input is the phenotype measurements for  individual. The aim of the attacker is to correctly link the disease state of the individual to the correct identity in the genotype dataset. In the first step, the attacker selects the QTLs, which will be used in linking  individual. The selection of QTLs can be based on different criteria. As described in the previous section, the most accessible criterion is selection based on the absolute gradient or the absolute strength of association between the phenotypes and genotypes. In the case of eQTLs, this is the reported correlation coefficient, . We will study different eQTL selection criteria and how they affect the linking accuracy. The second step is genotype prediction for the selected QTLs using a prediction model. We will use different models of genotype prediction with varying complexities and study how the linking accuracy changes when different models are utilized (Figure 9). The third and final step of a linking attack is comparison of the predicted genotypes to the genotypes of the  individuals in genotype dataset to identify the individual that matches best to the predicted genotypes. In this step, the attacker links the predicted genotypes to the individual in the genotype dataset. We will study different linking methodologies that the adversaries can utilize.Figure 6: 3 steps of individual characterization with linking attacks.

1. Modeling Genotype-Expression Distribution for Genotype Prediction
In the second step of a linking attack, the attacker performs genotype predictions. The genotype predictions are used, as an intermediate information, as input to the 3rd step (Fig 3), where linking is performed. The main aim of attacker is to maximize the linking accuracy (not the genotype prediction accuracy), which depends jointly on the genotype prediction accuracy and the accuracy of the genotype matching in the 3rd step. Other than the accuracy of linking, another important consideration, for risk management purposes, is the amount of auxiliary input data (like training data for prediction model) that the genotype prediction takes. The prediction methods that require high amount of auxiliary data would decrease the applicability of the linking attack as the attacker would need to gather extra information before performing the attack. On the other hand, the prediction methods that require little or no auxiliary data makes the linking attack much more realistic and prevalent. We will, therefore study complexities of genotype prediction methods and evaluate how these translate into assessing the accuracy and applicability of the linking attack. We will study different simplifications of genotype prediction, and illustrate different levels of complexity for genotype prediction. 
We will study several models of the genotype-phenotype distribution, which can be used in genotype prediction. Figure 9a shows the joint genotype-expression distribution for an eQTL. Figure 9b shows the modeling of the joint distribution using 3 conditional distributions of expression levels at each genotype. First, the means and variances of the distributions are assumed independent. Assuming that mean and variance are sufficient statistics for the conditional distributions (e.g., normally distributed), the joint distributions can be modeled when the 6 parameters (3 means and 3 variances) are trained. We will study different approaches for training the model, e.g. unsupervised methods like Expectation Maximization. This would, however, increase the required auxiliary data and decrease the applicability of the linking attack. Figure 9c shows a simplification of the model by assuming the variances of the conditional expression distributions are same for each genotype. This decreases the number of parameters to be trained to 4 (3 means and 1 variance). Figure 9d shows an equally complex model with 4 parameters where the conditional distributions are uniform at non-overlapping ranges of expression for each genotype. This model requires 4 parameters to be trained corresponding to the expression range limits. Figure S9e shows the final simplification of the genotype prediction, which requires only one parameter to be trained. In this model, the prediction only assigns uniform probability for homozygous genotypes when expression levels higher or lower than  and assigns 0 conditional probability to the heterozygous genotypes, which brings up an important point: This simplified model is exactly the distribution that is utilized in the extremity based genotype prediction. In the extremity based prediction, we estimate  simply as the mid-point of the range of gene expression levels within the expression dataset (Equations 3 and 4-6).
1. Instatiation of Linking Attacks using Extremity based Genotype Prediction
We will study the attacker can utilize a priori knowledge about the relation between gene expression levels and genotypes and build the joint genotype-expression distributions using models with varying complexities and parameters. Even though the genotype prediction with these models may not be very accurate, the attacker can utilize a large number of eQTLs to maximize the accuracy of linking. We will first focus on highly simplified models to evaluate the risk levels associated with simple models for genotype prediction. We will assume the attacker exploits the knowledge that the eQTL genotypes and expression levels are correlated such that the allelic effects on expression are additive and extremes of the gene expression levels (highest and smallest expression levels) are observed with extremes of the genotypes (homozygous genotypes). Therefore, given the gradient of association, the attacker can estimate coarsely the joint distribution of the genotypes and expression levels. This idea is illustrated in Fig 7. Using an estimate of the joint distribution, the attacker can compute the a posteriori distribution of genotypes given gene expression levels. To quantify the extremeness of expression levels, we will use a statistic we termed , which we will briefly introduce here. For the gene expression levels for  eQTL, ,  of the  individual’s expression level, , is defined as
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Extremity can be interpreted as a normalized rank, which is bounded between -0.5 and 0.5. Following from the above discussion, the adversary builds the posterior distribution for  eQTL genotypes as
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[image: fig7]From the a posteriori probabilities, when the sign of the extremity and the reported correlation are the same, the attacker assigns the genotype value 2, and otherwise, genotype value 0. Finally, the genotype value 1 is never assigned in this prediction method, i.e., the a posteriori probability is zero. This is expected since we are focusing on the extremes and heterozygous genotype is observed at medium levels of expression. The posterior distribution of genotypes in equations (4-6) can be derived from a simplified model of the genotype-expression distribution that utilizes just one parameter. 
[image: fig8-single_panel]As a next set of initial evaluation of how effective the proposed approach is, we utilized extremity based genotype prediction in the 2nd step of the individual characterization framework (Fig 6) and evaluated the fraction of characterizable individuals in the GEUVADIS dataset. We utilized the correlation based eQTL selection in step 1, then extremity based genotype prediction in step 2. In order to demonstrate the utility of the 3-step analysis framework; we evaluated two different distance measures for linking the predicted genotypes to the individuals in genotype dataset in the 3rd step of the attack. First is based on comparison of the predicted genotypes to all the genotypes in genotype dataset. Second is based on comparison of the predicted genotypes to only the homozygous genotypes in the genotype dataset. The motivation for using this distance measure is that the extremity based genotype prediction never assigns heterozygous genotypes. Thus the heterozygous genotypes are excluded from distance computation. Figure 7: Extremity based genotype for an eQTL. The joint genotype versus expression distribution is shown on left. Given the distribution and the extremity, the genotypes are assigned.

For each measure, the attacker links the predicted genotypes to the individual whose genotypes minimize the selected distance measure. Figure 8 left and right show the fraction of vulnerable individuals for both distance measures. More than 95% of the individuals are vulnerable for most of the parameter selections for both distance measures. The homozygous genotype matching distance measure has slightly higher linking accuracy. When the gender and/or population information is present as auxiliary information (red and green plots), the fraction of vulnerable individuals increases to 100% for most of the eQTL selections. These results show that linking attack with extremity based genotype prediction, although technically simple, can be extremely effective in characterizing individuals. We will focus on homozygous genotype matching based distance computation in the rest of the paper for simplicity of presentation. We will extend the linking attack analysis on different QTL, phenotype, and genotype datasets. Figure 8: The accuracy of extremity based linking attack with changing eQTL selection correlation threshold.

2. AIM3: Building Privacy Reducing File Formats
2.  Rationale
In this section, we will describe a practical software implementation to simulate a privacy attack on a dataset and give a consenting subject a sense of how much information leaks in various presentations of a dataset. We will also describe the development of a file format that protects privacy, and still maintains a high level of usability of genomic data. 

2. [image: fig9]  Previous experience in tool development and file formats for anonymizing sequence information
We have developed a number of tools and data formats to handle the increasingly large quantities for data generated by RNA-Seq experiments. For example, we have developed the Mapped Read Format (MRF), a compact data summary format for short, long and paired-end read alignments that enables the anonymization of confidential sequence information. We have developed RSEQtools, which is a suite of tools that use the MRF format for the analysis of RNA-Seq experiments [35]. These tools consist of a set of modules that perform common tasks such as calculating gene and exon expression values, generating signal tracks of mapped reads and segmenting that signal into actively transcribed regions. RSEQtools is implemented in C and the source code is available at http://rseqtools.gersteinlab.org/. 

2. Previous experience in RNA-seq and ChIP-seq computational technology development and data analyses
We have extensive experience RNA-seq tool development and analysis[36]. For RNA-seq, we have developed MRF and RSEQtools, a suite of tools that enables anonymization of sequence information and quantification of annotated RNAs and identification of splice sites and gene models [35]. In addition, we have developed IQseq, a computationally efficient method to quantify isoforms for alternatively spliced transcripts [37]. Our Database of Annotated Regions with Tools (DART) package contains tools for identifying unannotated genomic regions enriched for transcription, as well as a framework for storing and querying this information[38]. We developed incRNA, a method that uses known ncRNAs of various classes as a gold standard training set to predict and analyze novel ncRNAs [39]. We have also worked on characterizing the sources of transcription in the genome. A large fraction of the transcription comes from genomic regions not associated with standard annotations, representing ‘non-canonical transcription’. We also have extensive experience in characterizing the functions of genes and non-coding elements via expression data through clustering and network analyses. A group of genes in a co-expression cluster have often been demonstrated to be responsible for a common function. While there are well known algorithms for expression clustering such as hierarchical clustering, spectral clustering and K-means, we developed several novel methods. We developed a spectral biclustering method for co-clustering genes and conditions. More recently, we developed a new clustering framework, OrthoClust, for simultaneously clustering network data across different contexts[40]. OrthoClust is able to identify conserved and specific components across different networks. We also have extensive experience in tool development for ChIP-Seq datasets [11, 41–43]. Figure 9: Different Models of Joint Genotype-Expression Distribution with changing Complexities


Furthermore, we continue to play a substantial role in large consortia. We have been heavily involved in the ENCODE consortium[44] For example, a recent ENCODE publication involved the processing and integration of all ENCODE and modENCODE RNA-seq and ChIP-seq data, involving 575 experiments and more than 65 billion reads from three organisms [45]. The Gerstein lab is also the data integration hub in the exRNA consortium (http://exrna.org/) that is generating hundreds of RNA-seq and small RNA-seq samples. Other notable consortia for which we have been involved in pipeline construction and big data processing and analyses include the BrainSpan project (http://www.brainspan.org/), which collected RNA-seq data for 8-16 brain structures in each of 13 brain developmental stages[46], as well as the PsychENCODE project (http://psychencode.org/). 

Nonsense-mediated mRNA decay (NMD) is a cellular RNA surveillance system that recognizes transcripts with premature termination codons and degrades them. We discovered large numbers of natural alternative splice forms that appear to be targets for NMD, and we have seen that this is a mode of gene regulation. All conserved members of the SR family of splice regulators have an unproductive alternative mRNA isoform targeted for NMD[47]. Strikingly, the splice pattern for each is conserved in mouse and always associated with an ultraconserved or highly-conserved region of perfect identity between human and mouse. Remarkably, this seems to have evolved independently in every one of the genes, suggesting that this is a natural mode of regulation.  We have used RNA-Seq to explore the pervasiveness of NMD in numerous species and to understand its behavior, finding that 20% of expressed human genes make isoforms targeted for degradation. We are now detailing the evolution of this gene-expression regulation mechanism, having initially discovered that the oldest known alternative splicing is for regulation, targeting transcripts for degradation[48].  
We have collaborated with many groups on RNA regulation analyses, and our studies have involved the development of new methodologies for RNA-Seq analysis and highly customized applications of existing tools.  Within the modENCODE consortium, studied comparative transcriptomes[45].   We discovered a conserved RNA regulatory map between fly and humans[49].  This study used early Illumina data, in which we developed methods to identify biases in Illumina RNA-Seq protocols due to random hexamer priming[50].  We also developed a tool, JuncBASE (Junction-Based Analysis of Splice Events), which remains one of the most reliable means of interpreting RNA-Seq data[50].  We collaborated applying our methods to the transcriptome of Drosophila over the course of development, including creating a definitive set of fly isoforms, expanding those reliably known dramatically.  We also found conservation of splicing regulatory elements between fly and human[51].  Using knockdowns of 56 RNA binding proteins, we discovered the repertoire of targets for alternative splicing in the fly[52].  Of particular note, we found unexpected relationships between the developmental program expression of orthologous genes in development of fly and worm: there is a very significant correspondence in genes expressed, which the fly repeats over the course of development but worm expresses this program only once[53].  This work has informed comparative regulatory analyses[54].
2. Previous work on various social and practical aspects of privacy
We also have been active in raising privacy concerns with regards to large-scale genomic datasets. Genomic information axiomatically uniquely and unerringly identifies its owner. Moreover, and perhaps more problematic, individuals represented in genomic datasets share much of their genomic information with their close relatives who likely have not consented to having their genomic data included in the dataset. The We have suggested in a number of publications that a combination of technological, regulatory and policy changes might best serve to protect individuals described in this arguably unannonymizable data. The policy and regulatory changes ought to be designed to reflect changing norms where we, as a society, no longer dogmatically desire anonymity for every aspect of our lives, or at the minimum, have come to peace with the lack of privacy in the modern age. In acknowledging the changing realities, instead of regulating how to seek out data, we suggest that regulations ought to focus on how that data can be used to harm, for example, in limiting employment or insurance opportunities, thereby further reducing the need for anonymity of formerly sensitive data. Corresponding technological changes include considering both how data is stored as well as where that data should be stored. We have suggested, for example, using cloud based storage options to control and monitor access to data sets and limiting the ability and need to download data to inherently more insecure computers. We have also proposed creating "stub-datasets" that have the look and feel of the typical online data sets, but that would be freely available to all researchers. Holding no personal information, these data sets, while sharing many of the same statistical characteristics, with their larger cousins, would not present privacy concerns, and consequently, could be used to develop and profile code before deployment on real datasets. 

2.  Approach

3. Building a pipeline for privacy risk management of biological datasets 
Our study focuses on the individual privacy breaches in the context of linking attacks, where an individual’s existence in two seemingly independent datasets (e.g., phenotype and the genotype) can cause a privacy concern when an attacker links statistically the datasets using the a priori information about correlation of different entries in the datasets. The fact that the available molecular phenotypes are (i.e., gene expression levels) generally very high in dimension makes this attack much more probable. 
The obvious risk management strategy against these attacks is restricting access to the phenotype datasets, via the use of statistical techniques like k-anonymization and differential privacy. These, however, have associated drawbacks about loss of biological utility, and high computational complexity. Moreover, some studies also demonstrated that there are still risks associated with linkability of the anonymized data[55–58]. Hence, we will create a pipeline and implement our protection and risk management strategy for serving utility-maximized and privacy-aware high dimensional phenotype datasets. The aim is to balance the efficiency and effectiveness of the data encryption anonymization process with the usability of the biological dataset post-encryption. Our pipeline will allow versatility such that privacy and usability can be tuned depending on the user. Briefly, we first quantify the amount of information leakage in a dataset, and then using this information, we encrypt anaonymize the dataset in a data format based on the amount of privacy required by the user and yet preserving its utility.
[[add something like this…. The key point is that much of the utility of an RNA seek data sets can be had without dealing with the variants we aim to allow this utility by removing many of the variants from the file. ]]
3. Quantify Information Leakage 
In the first step, we will measure the amount of information leakage in an RNA-seq dataset. This quantification of information leakage requires the knowledge of all accessible variants that can be obtained from a typical RNA-seq dataset. The set of accessible variants is dataset-dependent, deriving from a number of factors, including: (1) the type and (2) coverage of the RNA-seq dataset, and (3) the alignment parameters of the RNA-seq reads. For instance, gEUVADIS data is mostly poly-A RNA-seq data, hence they are limited to variants mostly found in the exome, while the ENCODE total cell RNA-seq data can encompass variants from both the exome and non-coding genes. The coverage of the RNA-seq dataset will also determine how reliable a variant call is. We will use only variants with at least a read depth of 10 as a quality control. For alignment, we will construct the diploid personal genomes of all the individuals in gEUVADIS, using a software we developed previously [59] and then align RNA-seq reads to them using Bowtie2[60]. We have previously shown that reads from functional genomics assays such as ChIP-seq and RNA-seq map better to the personal genomes than the reference genome[59]. Better alignments will aid us by providing more reads for variant calling. 

Subsequently, we will expand the accessible variant pool, by imputing variants and inferring their genotypes based on their haplotypic association, or linkage disequilibrium (LD), with the accessible variants. Imputation will be performed using IMPUTE2[61] and the LD haplotype reference panel from SHAPEIT2 [62]. This expanded variant pool (accessible and imputed variants) will be used to quantify the information leakage of each RNA-seq dataset. 

3. Minimize information leakage and allow public usability of data via data encryption by MRF and CRAM
The quantification will allow us to detect the actual variants (or the quantity of variants) that are the most disruptive and the most identifiable (the ‘outliers’). These two pieces of information can be managed in two ways in order to minimize information leakage and yet still allow the dataset to be available publicly. (1) The outliers can be systematically removed, and the rest of the dataset preserved, and (2) it can serve to inform the pertinent individual(s) regarding the extent to which his identity will be compromised; these can be, for instance, more conveniently conveyed in a consent form. The definition of outliers is dependent on the threshold set for information leakage, thus it is highly tunable and user-dependent, e.g. there can be no outliers (the entire dataset is preserved) or the entire dataset is made up of outliers (none of the data is preserved). In order to maintain the overall usability and public accessibility of the dataset, the original data and information will be stored in a Mapped Read Format (MRF), which we previously published as part of our RSEQtools (Fig 10) [35]. The MRF is a compact data file format for storing both short and long reads in functional genomics assays. It decouples sequence and alignment information, and stores only the latter, thereby anonymizing confidential sequence information. CRAM, a highly optimized and widely used data compression tool, is very similar to MRF, but was created specifically for BAM files[63]. We will adapt both MRF and CRAM to current [image: mrf format]context, by decoupling actual genotype or variant information from their genomic coordinates and storing only the coordinate information. Ultimately, using the file format, we will generate an anonymized dataset that could possibly be more easily shared with less risk of privacy issues. Figure 10: Anonymization Strategy for protection of RNA sequencing read datasets.


3.     Simulation of ‘outlier’ attack
The last step in the pipeline creates a simulation of a privacy attack on gene expression levels that are the most extreme, as described in Aim 2. Such an extremity, or ‘outlier’, has the greatest predictability and can potentially be used to identify its associated variants (and individuals), i.e. the greatest outliers in the dataset. Then, reads associated with these outlier gene expression levels can either be removed or the read counts can be modified to the mean gene expression level in a variety of fashions.

In addition to gEUVADIS, we intend to apply our software to all major functional genomic datasets, such as GTex[10], ENCODE[11], and TCGA[13], and variant calling datasets such as the 1000 Genomes Project [12] and the Hapmap 3 project [64]. Some examples are provided in Table 1. In doing such a large-scale calculation we aim to see the distribution of leakage over a variety of RNA-seq data sets.

	
	Publication
	Citation

	ENCODE
	ENCODE Project Consortium, Nature, 2012
	[11]

	Montgomery et al
	Montgomery et al., Nature (2010)
	[65]

	Pickrell et al
	Pickrell et al., Nature (2010)
	[30]

	Kilpinen et al
	Kilpinen et al., Science (2013)
	[28]

	Kasowski et al
	Kasowski et al., Science (2013)
	[29]

	Toung et al
	Toung et al., Genome Res (2011)
	[66]

	Wang et al
	Wang et al., Cell Rep (2014)
	[67]

	Li et al. 
	Li et al., Science (2011)
	[68]



Table 1. Some examples of large-scale RNA-seq datasets with individuals from variant datasets 1000 Genomes Project 
and Hapmap 3
3. Investigating other sources of ‘extremities’
We will also extend the analysis of how much privacy compromising information there is in different types of information sources that can be extracted from an RNA-seq dataset. Specifically, we will evaluate the sources of extremities that can serve as quasi-identifiers to characterize an individual. We will study quantification of information leakage in these sources, how one can design linking attacks using these information sources, and finally how risks associated with these attacks can be managed by different data anonymization techniques. We will also build software tools that implement the quantification approaches and risk management strategies.

For studying the sources of characterizing information, we will first focus on RNA splicing events and evaluate how diverse RNA splicing measurements are among different populations and how these can be used as quasi-identifiers that can be used to identify and characterize individuals. We will also study the splice QTLs (sQTLs), which can be used to predict genotypes from quantification of the splicing events and be used in linking attacks. We will also use our expertise on non-canonical transcription and utilize the sources of characterizing information that can be extracted from non-canonical transcription measured by RNA-seq signal tracks. For example, individual specific deletions and duplications can be inferred with high confidence by evaluating the read depth signal profile of RNA-seq datasets. We will utilize statistical signal processing algorithms to process, such as the CNVnator algorithm that we developed [[ref]], and and segment RNA-seq signal tracks and extract individual characterizing information from non-canonical transcription.

3. Risk Management Strategies for Phenotype Datasets
After quantification of the privacy leakage levels, we will evaluate several risk management strategies to control the leakage of sensitive information in the context of linking attacks.As explained earlier, the privacy leakage is caused by an individual’s existence in two seemingly independent databases (e.g., phenotype and the genotype). An attacker can statistically links the databases using the a priori information about correlation of different entries in the databases. The fact that the available molecular phenotypes are (i.e., gene expression levels) generally very high in dimension makes this attack much more probable. The obvious risk management strategy against these attacks is restricting access to the phenotype datasets. The statistical techniques like k-anonymization and differential privacy can also be utilized. These, however, have associated drawbacks about loss of biological utility, and high computational complexity. Moreover, some studies also demonstrated that there are still risks associated with linkability of the anonymized data[55–58]. We believe new studies should address protection and risk management strategies for serving utility-maximized and privacy-aware high dimensional phenotype datasets. 
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