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ABSTRACT 
The rapidly growing volume of data being produced by next-generation sequencing 

initiatives is enabling more in-depth analyses of protein conservation than previously 

possible. Deep sequencing is uncovering disease loci and protein regions under strong 

selective constraint, despite the fact that, in many cases, we cannot find intuitive 

biophysical reasons for such constraint (such as the need to engage in protein-protein 

interactions or to achieve a close-packed hydrophobic core). Allosteric hotspots may 

often provide the missing explanatory link. Here, we use models of protein 

conformational change to identify such allosteric residues. In particular, we predict 

allosteric residues that can act as surface cavities or information flow bottlenecks, and we 

develop a software tool (stress.molmovdb.org) that enables users to perform this analysis 

on their own proteins of interest. While our tool is fundamentally 3D-structural in nature, 

it is still computationally fast and tractable. This allows us to run it across the entire 

Protein Data Bank and to evaluate large-scale properties of the predicted allosteric 

residues. We find that these tend to be significantly conserved over both long and short 

evolutionary time scales. Finally, we highlight specific examples in which allosteric 

residues can help explain previously poorly understood disease-associated variants. 
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SIGNIFICANCE STATEMENT 
Advances in genome sequencing technology are providing the sequenced human 

genomes and exomes of large numbers of individuals, thereby identifying regions under 

evolutionary pressure. Although signs of such pressures manifest throughout the genome, 

the mechanisms responsible are often unclear. Allostery serves as a plausible mechanism 

in many cases. We take a generalized approach to this problem by using protein 

conformational changes to identify potential allosteric residues in large numbers of 

proteins, and then evaluating their conservation using various measures and sources of 

data, including human genomes. These residues are conserved both among humans and 

across species, and they may sometimes aid in interpreting disease-associated mutations. 

We also introduce a user-friendly software tool for implementing this method. 
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INTRODUCTION 
The ability to sequence large numbers of human genomes is providing a much 

deeper view into protein evolution. When trying to understand the evolutionary pressures 

on a given protein, structural biologists now have at their disposal an unprecedented 

breadth of data regarding patterns of conservation, both across species and amongst 

humans. As such, there are greater opportunities to take a more integrated view of the 

context in which a protein and its residues function. This integrated view necessarily 

includes structural constraints such as residue packing, protein-protein interactions, and 

stability. However, deep sequencing is unearthing a class of conserved residues on which 

no obvious structural constraints appear to be acting. The missing link in understanding 

these regions may often be provided by considering the protein’s dynamic behavior and 

distinct functional states within an ensemble. 

The underlying energetic landscape responsible for the relative distributions of 

alternative conformations is dynamic in nature: allosteric signals or other external 

changes may reconfigure and reshape the landscape, thereby shifting the relative 

populations of states within an ensemble (1). Landscape theory thus provides the 

conceptual underpinnings necessary to describe how proteins change behavior and shape 

under changing conditions. A primary driving force behind the evolution of these 

landscapes is the need to efficiently regulate activity in response to changing cellular 

contexts, thereby making allostery and conformational change essential components of 

protein evolution. 

Given the importance of allosteric regulation, as well as the role of allostery in 

imparting efficient functionality, several methods have been devised for the identification 

of likely allosteric residues. Conservation itself has been used, either in the context of 

conserved residues (2), networks of co-evolving residues (3-8), or local conservation in 

structure (9). In related studies, both conservation and geometric-based searches for 

allosteric sites have been successfully applied to several systems (10). A number of 

methods employing support vector machines have also been described (11, 12). Normal 

modes analysis, coupled with ligands of varying size, have been used to examine the 
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extent to which bound ligands interfere with low-frequency motions, thereby identifying 

potentially important residues at the surface (2, 13, 14). 

The concept of ‘protein quakes’ has been introduced to explain local regions of 

proteins that are essential for conformation transitions (15). A protein may relieve the 

strain of a high-energy configuration by local structural changes. Such local changes 

often occur at the focal points of allosteric behavior, and these regions may be identified 

in a number of ways, including modified normal modes analysis (15) or time-resolved X-

ray scattering (16). 

Normal modes have also been used by the Bahar group to identify important 

subunits that act in a coherent manner for specific proteins (17, 18). Rodgers et al have 

applied normal modes to identify key residues in CRP/FNR transcription factors (19). 

Molecular dynamics (MD) and network analyses have been used to identify interior 

residues that may function as allosteric bottlenecks (20-24). In conjunction with NMR, 

Rivalta et al use MD and network analysis to identify important regions in imidazole 

glycerol phosphate synthase (25). 

Though having provided valuable insights, many of these approaches may be 

limited in terms of scale (the numbers of proteins which may feasibly be investigated), 

computational demands, or the class of residues to which the method is tailored (surface 

or interior). Using models of protein conformational change, we identify both surface and 

interior residues that may act as essential allosteric regions in a computationally tractable 

manner, thereby enabling high-throughput analysis. This framework directly incorporates 

information regarding protein structure and dynamics, and it is applied to proteins 

throughout the PDB (26) that exhibit conformational change. The relatively greater 

conservation of the residues identified (both across species and amongst humans) may 

help to elucidate many of the otherwise poorly understood regions in proteins. In a 

similar vein, several of our identified sites correspond to human disease loci for which no 

clear mechanism for pathogenesis had previously been proposed. Finally, our framework 

(termed STRESS, for STRucturally-identified ESSential residues) is made available 

through a tool to enable users to submit their own structures for analysis. 
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RESULTS 
Identifying Potential Allosteric Residues 

Allosteric residues at the surface generally play a regulatory role that is 

fundamentally distinct from that of allosteric residues within the protein interior. While 

surface residues may often constitute the sources or sinks of allosteric signals, interior 

residues act to transmit such signals. We use models of protein conformational change in 

an attempt to identify both classes of residues (Fig. 1). Throughout, we term these 

potential allosteric residues at the surface and interior “surface-critical” and “interior-

critical” residues, respectively. Critical residues are first identified in a set of 12 well-

studied canonical systems for which both the holo and apo states are available (Table S1 

and Fig. S1), and they are then identified on a large-scale across hundreds of distinct 

proteins. 

 

Identifying Surface-Critical Residues 

Allosteric ligands often act by binding to surface cavities and modulating protein 

conformational dynamics. The surface-critical residues, some of which may act as latent 

ligand binding sites and active sites, are first identified by finding cavities using Monte 

Carlo simulations to probe the surface with a flexible ligand (Fig. 1A, top-left). The 

degree to which cavity occlusion by the ligand disrupts large-scale conformational 

change is used to assign a score to each cavity – sites at which ligand occlusion strongly 

interferes with conformational change earn high scores (Fig. 1A, top-right), whereas 

shallow pockets (Fig. 1A, bottom-left) or sites at which large-scale motions are largely 

unaffected (Fig. 1A, bottom-right) earn lower scores. Further details are provided in SI 

Methods. 

This approach is a modified version of the binding leverage framework 

introduced by Mitternacht and Berezovsky (14) (see SI Methods). The main 

modifications include the use of heavy atoms in the protein during the Monte Carlo 

search, in addition to an automated means of thresholding the list of ranked scores (see SI 

Methods). These modifications were implemented to provide a more selective set of sites 
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(without them, an exceedingly large fraction of the protein surface would be captured; 

Fig. S2). We find that this modified approach results in an average of ~2 distinct sites per 

domain (Fig. 2A; see SI Methods for details on defining distinct sites). The distribution 

for distinct sites within entire complexes is given in Fig. 2B. 

Within the canonical set of 12 proteins, we positively identify an average of 60% 

of the sites known to be directly involved in ligand or substrate binding (see Tables S2 

and S3, Fig. S1, and supplementary note “Capturing Known Ligand-Binding Sites”). 

Some of the sites identified do not directly overlap with known binding regions, but we 

often find that these “false positives” nevertheless exhibit some degree of overlap with 

binding sites (Table S4). In addition, those surface-critical sites that do not match known 

binding sites may nevertheless correspond to latent allosteric regions: even if no known 

biological function is assigned to such regions, their occlusion may nevertheless disrupt 

large-scale motions. 

 

Dynamical Network Analysis to Identify Interior-Critical Residues 

The binding leverage framework described above is intended to capture hotspot 

regions at the protein surface, but the Monte Carlo search employed is a priori excluded 

from the protein interior. Allosteric residues often act within the protein interior by 

functioning as essential ‘bottlenecks’ within the communication pathways between distal 

regions. An allosteric signal transmitted from one region to another may conceivably take 

various alternative routes, but many of these routes can share a common set of residues. 

The removal of such a common set of residues can result in the loss of many or all of the 

available routes for allosteric signal transmission, thereby making these residues essential 

information flow bottlenecks. 

To identify bottlenecks, the protein is first modeled as a network, wherein 

residues represent nodes and edges represent contacts between residues (in much the 

same way that the protein is modeled as a network in constructing anisotropic network 

models, see below). In this regard, the problem of identifying interior-critical residues is 

reduced to a problem of identifying nodes that participate in network bottlenecks (see 

Fig. 1B and SI Methods for details). Briefly, the network edges are first weighted by the 

correlated motions of contacting residues: a strong correlation in the motion between 
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contacting residues implies that knowing how one residue moves better enables one to 

predict the motion of the other, thereby suggesting a strong information flow between the 

two residues. The weights are used to assign ‘effective distances’ between connecting 

nodes, with strong correlations resulting in shorter effective node-node distances. 

Using the motion-weighted network, “communities” of nodes are identified using 

the Girvan-Newman formalism (27). A community is a group of nodes such that each 

node within the community is highly inter-connected, but loosely connected to other 

nodes outside the community. Communities are thus densely inter-connected regions 

within proteins. As tangible examples, the community partitions and the resultant critical 

residues for the canonical set are given in Figs. S3 and S4. 

Finally, the betweenness of each edge is calculated. The betweenness of an edge 

is defined as the number of shortest paths between all pairs of residues that pass through 

that edge, with each path representing the sum of effective node-node distances assigned 

in the weighting scheme above. Those residues that are involved in the highest-

betweenness edges between pairs of interacting communities are identified as the 

interior-critical residues. These residues are essential for information flow between 

communities, as their removal would result in substantially longer paths between the 

residues of one community to those of another. 

 

Software Tool: STRESS (STRucturally-identified ESSential residues) 

The implementations for finding both surface- and interior-critical residues have 

been made available to the scientific community through a new software tool, STRESS, 

which may be accessed at stress.molmovdb.org (Fig. S5). Users may specify a PDB to be 

analyzed, and the output provided constitutes the set of identified critical residues. 

Obviating the need for long wait times, the algorithmic implementation of our 

software is highly efficient (Fig. S6). A typical protein of ~500 residues takes only about 

30 minutes on a 2.6GHz CPU. Running times are also minimized by using a scalable 

server architecture that runs on the Amazon cloud (Fig. S7). A light front-end server 

handles incoming user requests, and more powerful back-end servers, which perform the 

calculations, are automatically and dynamically scalable, thereby ensuring that they can 

handle varying levels of demand both efficiently and economically. 
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High-Throughput Identification of Alternative 
Conformations 

Pronounced conformational change is an essential assumption within our 

framework for identifying potential allosteric residues. We use a generalized approach to 

systematically identify instances of alternative conformations within the PDB. We first 

perform multiple structure alignments (MSAs) across sequence-identical proteins that are 

pre-filtered to ensure structural quality. We then use the resultant pairwise RMSD values 

to infer distinct conformational states (Figs. S8 and S9; see also SI Methods for details). 

The distributions of the resultant numbers of conformations for domains and 

chains are given in Figs. 2C and 2D, respectively, and an overview is given in Fig. 2E. 

Further summary statistics are provided in Fig. S10. We note that the alternative 

conformations identified arise in an extremely diverse set of biological contexts, 

including conformational transitions that accompany ligand binding, protein-protein or 

protein-nucleic acid interactions, post-translational modifications, changes in oxidation or 

oligomerization state, etc. (Fig. S11). The dataset of alternative conformations identified 

is provided as a resource in File S1 (see also Fig. S12). 

 

Evaluating Conservation of Critical Residues 
Using Various Metrics and Sources of Data  

The large number of dynamic proteins culled throughout the PDB, coupled with 

the high algorithmic efficiency of our critical residue search implementation, provide a 

means of evaluating general properties of these residues on a large scale. In particular, we 

measure their conservation, as evaluated both over long (inter-species) and short (intra-

human) evolutionary timescales. Using a variety of conservation metrics and sources of 

data, we find that both surface-critical (Figs. 3A-D) and interior-critical (Figs. 3E-H) are 

consistently more conserved than non-critical residues. We emphasize that the signatures 

of conservation identified not only provide a means of rationalizing many of the 

otherwise poorly understood regions of proteins, but they also reinforce the functional 

importance of the residues believed to be allosteric. 
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Conservation Across Species 

 When evaluating conservation across species, we find that both surface- and 

interior-critical residues tend to be significantly more conserved than non-critical residues 

with the same degree of burial (Figs. 3B and 3F, respectively). Surface-critical residue 

sets have a mean conservation score (i.e., ConSurf score, see SI Methods) of -0.131, 

whereas non-critical residue sets with the same degree of burial have a mean score of 

+0.059 (p < 2.2e-16; negative conservation scores designate stronger conservation). 

Interior-critical residues exhibit a similar trend: the mean conservation score for interior-

critical residues and non-critical residues with the same degree of burial is -0.179 and -

0.102, respectively (p=3.67e-11). 

 

Measures of Conservation Amongst Humans from Next-Generation Sequencing 

We may also use the large number of human genomes and exomes to investigate 

conservation, as many constraints may be human-specific and active in more recent 

evolutionary history. In this context, commonly used metrics for evaluating conservation 

include minor allele frequency (MAF) and derived allele frequency (DAF). Low MAF or 

DAF values are interpreted as signatures of deleteriousness, as purifying selection is 

prone to reduce the frequencies of harmful variants (see SI Methods). 

We find that 1000 Genomes (28) single-nucleotide variants (SNVs) that hit 

surface-critical residues tend to occur at lower DAF values (Fig. 3C). Though not 

significant, the significance improves when examining the shift in the DAF distribution, 

as evaluated with a KS test (p=!0.159, Fig. S13A), and we point out the limited number of 

proteins (thirty-two) in which 1000 Genomes SNVs hit these critical sites (see SI 

Methods). Furthermore, the long tail extending to lower DAF values for surface-critical 

residues may suggest that only a subset of the residues in our prioritized binding sites is 

essential. However 1000 Genomes SNVs tend hit interior-critical residues with 

significantly lower DAF values than non-critical residues (Fig. 3G; see also Fig. S13B). 

 Given the relatively small number of proteins to be hit by 1000 Genomes SNVs, 

we also analyzed data provided by the Exome Aggregation Consortium (Exome 

Aggregation Consortium (ExAC) (29)). ExAC provides sequence data for many more 

individuals, and the ExAC sequencing itself is performed at much higher coverage. Thus, 
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using MAF as a conservation metric, we performed a similar analysis using this data. 

MAF distributions for surface- and non-critical residues in the same set of proteins are 

given in Fig. 3D. Although the mean value of the MAF distribution for surface-critical 

residues is slightly higher than that of non-critical residues, the median for surface-

critical residues is substantially lower than that for non-critical residues, demonstrating 

that the majority of proteins are such that MAF values are lower in surface- than in non-

critical residues. In addition, the overall shifts of these distributions also point to a trend 

of lower MAF values in surface-critical residues (Fig. S14A, KS test p=9.49e-2). 

Interior-critical residues exhibit significantly lower MAF values than do MAF 

values for non-critical residues in the same set of proteins. MAF distributions for interior- 

and non-critical residues are given in Fig. 3H (see also Fig. S14B). 

 In addition to overall allele frequency distributions, one may also evaluate the 

fraction of rare alleles as a metric for measuring selective pressure. This fraction is 

defined as the ratio of the number of low-DAF or low-MAF (i.e., rare) non-synonymous 

SNVs to all non-synonymous SNVs in a given protein annotation (such as all surface-

critical residues of the protein, for example; see SI Methods). A higher fraction is 

interpreted as a proxy for greater conservation (30). Using variable DAF (MAF) cutoffs 

to define rarity for 1000 Genomes (ExAC) SNVs, both surface- and interior-critical 

residues are shown to harbor a higher fraction of rare alleles than do non-critical residues, 

further suggesting a greater degree of evolutionary constraint in critical residues (See 

Figs. S15 and S16 for 1000 Genomes and ExAC data, respectively). 

 

Comparisons Between Different Models of Protein Motions 

Conformational changes may be modeled using vectors connecting pairs of 

corresponding residues in crystal structures from alternative conformations (we term this 

approach “ACT”, for “absolute conformational transitions”). The crystal structures of 

such paired conformations may be obtained using the framework discussed above 

(further details in SI Methods). The protein motions may also be inferred from 

anisotropic network models (ANMs) (31). ANMs entail modeling interacting residues as 

nodes linked by flexible springs, in a manner similar to elastic network models (32, 33) 

or normal modes analysis (Fig. 1B) . ANMs are not only simple and straightforward to 
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apply on a database scale, but unlike using alternative crystal structures, the motion 

vectors inferred may be generated using a single structure, and we thus use ANMs as our 

primary means of inferring motions.  

Using vectors from either ACTs or ANMs give the same general results in terms 

of conservation. This method is thus general with respect to how motion vectors are 

defined (see Fig. S17 and Supplemental note “Modeling Protein Motions by Directly 

Using Displacement Vectors from Alternative Conformations” for further details). 

 

Critical Residues in the Context of Human Disease Variants 

Directly related to conservation is the concept of SNV deleteriousness: changes in 

amino acid composition at specific loci may be more or less likely to result in disease. 

SIFT (34) and PolyPhen (35) are two tools for predicting such effects, and we evaluated 

these predictions for critical and non-critical residues hit by SNVs in ExAC. SNVs hitting 

critical residues exhibit significantly higher PolyPhen scores relative to non-critical 

residues, suggesting the potentially higher disease susceptibility at critical residues (Fig. 

S18), though such significant disparities were not observed in SIFT scores (Fig. S19). 

Using HGMD (36) and ClinVar (37), we identify proteins with critical residues 

that coincide with disease-associated SNVs (Fig. 4A and File S2). Several critical 

residues coincide with known disease loci for which the mechanism of pathogenicity is 

otherwise unclear (File S3). The fibroblast growth factor receptor (FGFR) is a case-in-

point (Fig. 4). SNVs in FGFR have been linked to the formation of craniofacial defects. 

Dotted lines in Fig. 4B highlight poorly understood disease SNVs that coincide with 

critical residues. Notably, we identify Y328 as a surface-critical residue, which coincides 

with a disease-associated SNV from HGDM, despite the lack of confident predictions of 

deleteriousness by several widely used tools for evaluating variant pathogenicity (34, 35, 

38). Together, these results suggest that the incorporation of surface- and interior-critical 

residues introduces a valuable layer of annotation to the protein sequence, and may help 

to explain otherwise poorly understood disease-associated SNVs.  
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DISCUSSION & CONCLUSIONS 
The same principles of energy landscape theory that dictate protein folding are 

integral to how proteins explore different conformations once they adopt their folded 

states. These landscapes are shaped not only by the protein sequence itself, but also by 

extrinsic conditions. Such external factors often regulate protein activity by introducing 

allosteric-induced changes, which ultimately reflect changes in the shapes and population 

distributions of the energetic landscape. In this regard, allostery provides an ideal 

platform from which to study protein behavior in the context of their energetic 

landscapes. To investigate allosteric regulation, and to simultaneously add an extra layer 

of annotation in the context of its conservation patterns, an integrated framework to 

identify potential allosteric residues is essential. We introduce a framework to select such 

residues, using knowledge of conformational change.  

When applied to many proteins with distinct conformational changes in the PDB, 

we investigate the conservation of potential allosteric residues in both inter-species and 

intra-human genomes contexts, and find that these residues tend to exhibit greater 

conservation in both cases. In addition, we identify several disease-associated variants for 

which plausible mechanisms had previously been unavailable, but for which allosteric 

mechanisms provide a plausible rationale. 

Unlike the characterization of many other structural features, such as secondary 

structure assignment, residue burial, protein-protein interaction interfaces, disorder, and 

even stability, allostery inherently manifests in the context of dynamic behavior. It is only 

by considering protein motions and changes in these motions can a fuller understanding 

of allosteric regulation be realized. As such, MD and NMR are some of the most 

common means of studying allostery and dynamic behavior. However, these methods 

have limitations when studying large and diverse protein datasets. MD is computationally 

expensive and impractical when studying large numbers of proteins. NMR structure 

determination is extremely labor-intensive and better suited to certain classes of 

structures or dynamics. In addition, NMR structures constitute a relatively small fraction 

of structures currently available. 
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There are several notable implications of our database-scale analysis. Relative to 

sequence data, allostery and dynamic behavior are far more difficult to evaluate on a 

large scale. The framework described here enables one to evaluate dynamic behavior in a 

systemized and efficient way across many proteins, while simultaneously capturing 

residues on both the surface and within the interior. That this pipeline can be applied in a 

high-throughput manner enables the investigation of system-wide phenomena, such as 

the roles of potential allosteric hotspots in protein-protein interaction networks. 

Knowledge of such sites across many proteins may also be used to identify the best 

proteins and protein regions for which drugs should be engineered, as well as instances in 

which specific sequence variants are likely to have the greatest impact. 

We emphasize that it is only by applying this framework over a database of many 

proteins can one search for significant disparities in conservation between sites believed 

to be important in allostery and the rest of the protein. Such general trends may not be 

apparent when studying a small number of proteins or specific classes of proteins. To our 

knowledge, this is the first study in which the conservation of potential allosteric sites has 

been measured across a large database of proteins. 

The ability to leverage our framework in a high-throughput manner also better 

enables one to match structural features with the high-throughput data generated through 

deep sequencing. Full human genomes and exomes are being sequenced at an increasing 

pace, thereby providing an unprecedented window into conservation patterns which can 

be human-specific or active over short evolutionary timescales. These patterns 

increasingly serve as detailed signatures of selective constraints which may not only be 

missing in cross-species comparisons, but are also sometimes difficult to rationalize using 

static representations of protein structures alone. 

We anticipate that, within the next decade, deep sequencing will enable structural 

biologists to study evolutionary conservation using sequenced human exomes just as 

routinely as cross-species alignments. Furthermore, intra-species metrics for conservation 

provide added value in that the confounding factors of cross-species comparisons are 

removed: different organisms evolve in different cellular and evolutionary contexts, and 

it can be difficult to decouple these different effects from one another. Cross-species 

metrics of protein conservation entail comparisons between proteins that may be very 
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different in structure and function. Sequence-variable regions across species may not be 

conserved, but nevertheless impart essential functionality. Intra-species comparisons, 

however, can often provide a more direct and sensitive evaluation of constraint. In 

addition, intra-species selective constraints are particularly relevant in the context of 

human disease. Finally, we anticipate that our newly developed software tool will prove 

to be of great value in enabling investigators to study allostery in diverse contexts. 

 

METHODS 
An overview of the framework for finding surface- and interior-critical residues is 

given in Figs. 1A and 1B, respectively. Fig. S9 provides a schematic of our pipeline for 

identifying alternative conformations throughout the PDB. Cross-species conservation 

scores were analyzed in those PDBs for which full ConSurf files are available through the 

ConSurf server. 1000 Genomes SNVs were taken from the Phase 3 release, and ExAC 

SNVs were downloaded in May 2015. Further details on all methods are provided in SI 

Methods. 
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FIGURE CAPTIONS 
Fig. 1.  Shown are schematic overviews of methods for finding surface- and interior-

critical residues. (A) A simulated ligand probes the protein surface in a series of Monte 

Carlo simulations (top-left). The cavities identified may be such that occlusion by the 

ligand strongly interferes with conformational change (top-right; such a site is likely to be 

identified as surface-critical, in red), or they may have little affect on conformational 

change, as in the case of shallow pockets (bottom-left) or pockets in which large-scale 

motions do not drastically affect pocket volume (bottom-right). (B) Interior-critical 

residues are identified by weighting residue-residue contacts (edges) on the basis of 

correlated motions, and then identifying communities within the weighted network. 

Residues involved in the highest-betweenness interactions between communities (in red) 

are selected as interior-critical residues. 

 

Fig. 2.  Summary statistics on database-wide analyses are shown. The distributions of the 

numbers of surface-critical sites per domain and per complex are given in (A) and (B), 

respectively. The distributions of the number conformations (i.e., “K”) for domains and 

chains are given in (C) and (D), respectively. Only proteins for which K exceeds 1 (for 

chains) are included in our dataset of multiple conformations. (E) Distinct proteins in our 

dataset within the context of high-quality X-ray structures in the PDB that we structurally 

aligned. A set of distinct proteins is such that no pair shares more than 90% sequence 

identity. 

 

Fig. 3.  Multiple metrics and datasets reveal that critical residues tend to be conserved. 

Surface- and interior-critical residues (red) in phosphofructokinase (PDB 3PFK) are 

given in (A) and (E), respectively. Distributions of cross-species conservation scores, 

1000 Genomes SNV DAF averages, and ExAC SNV MAF averages for surface- and 

non-critical residue sets are given in (B), (C), and (D), respectively. The same 

distributions corresponding to interior- and non-critical residue sets are given in (F), (G), 

and (H), respectively. In (C), means for surface- and non-critical sets are 9.10e-4 and 

8.34e-4, respectively (p=0.309); corresponding means in (D) are 4.09e-04 and 2.26e-04, 
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respectively (p=1.49e-3). In (G), means for interior- and non-critical sets are 2.82e-4 and 

3.12e-3, respectively (p=1.80e-05); corresponding means in (H) are 3.08e-05 and 3.27e-

04, respectively (p=7.98e-09). Statistics for panels (B) and (F) are given in the main text. 

N = 421, 32, 84, 517, 31, and 90 structures for panels B, C, D, F, G, and H, respectively. 

P-values are based on Wilcoxon-rank sum tests. See SI Methods for further details. 

 

Fig. 4.  Potential allosteric residues add a layer of annotation to structures in the context 

of disease-associated SNVs. The structure shown (A) is that of the fibroblast growth-

factor receptor (FGFR) in VMD Surf rendering, with HGMD SNVs shown in orange, 

bound to FGF2, in ribbon rendering (PDB 1IIL). (B) Linear representation of structural 

annotation for FGFR. Dotted lines highlight loci that correspond to HGMD sites that 

coincide with critical residues, but for which other annotations fail to coincide. Deeply-

buried residues are defined to be those that exhibit a relative solvent-exposed surface area 

of 5% or less, and binding site residues are defined as those for which at least one heavy 

atom falls within 4.5 Angstroms of any heavy atom in the binding partner (heparin-

binding growth factor 2). The loci of PTM sites were taken from UniProt (accession 

P21802). 
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SI METHODS 
Identifying Potential Allosteric Residues 
Identifying Surface-Critical Residues 

All biological assembly files were downloaded from the Protein Data Bank (26). 

With the objective of identifying potential allosteric residues on the protein surface, we 

employed a modified version of the binding leverage method for identifying likely ligand 

binding sites (Fig. 1A), as described previously (14). Allosteric signals may be 

transmitted over large distances by a mechanism in which the allosteric ligand has a 

global affect on a protein’s functionally important motions. For instance, introducing a 

bulky ligand into the site of an open pocket may disrupt large-scale motions if those 

motions normally entail that the pocket become collapsed in the apo protein. Such a 

modulation of the global motions may affect activity within sites that are distant from the 

allosteric ligand-binding site. 

We refer the reader to the work by Mitternacht and Berezovsky for details 

regarding the binding leverage method, though a general overview of the approach 

follows (14). Many candidate allosteric sites are generated by simulations in which a 

simple flexible ligand (comprising of 4 “atoms” linked by bonds of fixed length 3.8 

Angstroms, but variable bond and dihedral angles) explores the protein’s surface through 

many Monte Carlo steps. The number of Monte Carlo simulations is set to 10 times the 

number of residues in the protein structure, and the number of MC steps per simulation is 

set to 10,000 times the size of the simulation box, as measured in Angstroms. The size of 

this simulation box is set to twice the maximum size of the PDB along any of the x, y or 

z-axes. Apo structures were used when probing protein surfaces for putative ligand 

binding sites in the canonical set of proteins. 

A simple square well potential (i.e., modeling hard-sphere interactions) is used to 

model the attractive and repulsive energy terms associated with the ligand’s interaction 

with the surface. In the unmodified implementation of the method, these energy terms 

depend only on the ligand atoms’ distance to alpha carbon atoms in the protein – other 

heavy atoms or biophysical properties are not considered.  
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Once these candidate sites are produced, normal modes analysis is applied to 

generate a model of the protein’s low-frequency motions. To generate these modes, we 

use the alpha carbon atoms in building the protein’s elastic networks. Using default 

parameters, we use the top 10 (lowest-frequency) available non-trivial modes generated 

using the Molecular Modeling Toolkit (MMTK) (39). Note that this exact same method 

for producing the modes was also used in the identification of interior-critical residues 

(below). 

Once the modes are produced, each of the candidate sites is then scored based on 

the degree to which deformations in the site couple to the low-frequency modes; that is, 

those sites which are heavily deformed as a result of the normal mode fluctuations (Fig. 

1A, top-right) receive a high score (termed the binding leverage for that site), whereas 

shallow sites with few interacting residues (Fig. 1A, bottom-left) or sites that undergo 

minimal change over the course of a mode fluctuation (Fig. 1A, bottom-right) receive a 

low binding leverage score. Strongly overlapping sites are merged, and the list is then 

ranked by binding leverage score. This generates a ranked list of N sites. Using 

knowledge of the experimentally determined binding sites (i.e., from holo structures), the 

processed list of ranked sites is then used to evaluate predictive performance (see below). 

Our approach and set of applications differ from those previously developed in 

several key ways. When running Monte Carlo simulations to probe the protein surface 

and generate candidate binding sites, we used all heavy atoms in the protein when 

evaluating a ligand’s affinity for each location. By including all heavy atoms (i.e., as 

oppose to using the protein’s alpha carbon atoms exclusively), our hope is to generate a 

more selective set of candidate sites. Indeed, the use of alpha carbon atoms alone leaves 

‘holes’ in the protein which do not actually exist in the context of the dense topology of 

side chain atoms. Thus, by including all heavy atoms, we hope to reduce the number of 

false positive candidate sites, as well as more realistically model ligand binding affinities 

in general. 

In the original binding leverage framework, an interaction between a ligand atom 

and an alpha carbon atom in the protein contributes -0.75 to the binding energy if the 

interaction distance is within the range of 5.5 to 8 Angstroms. Interaction distances 

greater than 8 Angstroms do not contribute to the binding energy, but distances in the 
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range of 5.0 to 5.5 are repulsive, and those between 4.5 to 5.0 Angstroms are strongly 

repulsive (distances below 4.5 Angstroms are not permitted). However, given the much 

higher density of atoms interacting with the ligand in our all-heavy atom model of each 

protein, it is necessary to accordingly change the energy parameters associated with the 

ligand’s binding affinity. In particular, we varied both the ranges of favorable and 

unfavorable interactions, as well as the attractive and repulsive energies themselves. That 

is, we varied both the square well’s width and depth when evaluating the ligand’s affinity 

for a given site. 

For well depths, we employed models using attractive potentials ranging from -

0.05 to -0.75, including all intermediate factors of 0.05. For well widths, we tried 

performing the ligand simulations using the cutoff distances originally used (attractive in 

the range of 5.5 to 8.0 Angstroms, repulsive in the range of 5.0 to 5.5, and strongly 

repulsive in the range of 4.5 to 5.0). However, these cutoffs, which were originally 

devised to model the ligand’s affinity to the alpha carbon atom skeleton alone, were 

observed to be inappropriate when including all heavy atoms. Thus, we also performed 

the simulations using a revised set of cutoffs, with attractive interactions in the range of 

3.5 to 4.5 Angstroms, repulsive interactions in the range of 3.0 to 3.5 Angstroms, and 

strongly repulsive interactions in the range of 2.5 to 3.0 Angstroms. 

In order to identify the optimal set of parameters for defining the potential 

function, we determined which combination of parameters best predicts the known 

binding sites in threonine synthase (1E5X), phosphoribosyltransferase (1XTT), tyrosine 

phosphatase (2HNP), arginine kinase (3JU5), and adenylate kinase (4AKE). Using this 

approach, an attractive term of -0.35 for ligand-protein atom interactions within the range 

of 3.5 to 4.5 Angstroms was determined to be the best overall. 

As discussed in the main text, without applying thresholding to the list of ranked 

surface sites that remain after running the binding leverage calculations, a very large 

number of sites occupy the protein surface (Fig. S2). Thus, it is necessary to process this 

list. To do so, we borrow from principles in energy gap theory (40). The calculations for 

establishing a threshold on the number of sites are as follows:  

For each of the N candidate binding sites in the pre-processed ranked list of sites, 

calculate ∂BL(j)/∆BL. Here, j is the j’th site to appear in the pre-processed ranked list 
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of sites, with this list of sites being ranked on the basis of each site’s binding leverage 

score. ∂BL(j) is defined as the difference in the binding leverage score of the jth site in 

the ranked list and the binding leverage score in the (j-1)th site. Because the list of sites is 

organized in descending order of binding leverage scores, ∂BL(j) ≥ 0. ∆BL is a constant 

that equals maxbinding_leverage_score - minbinding_leverage_score in the pre-processed ranked list of 

sites. ∆BL is thus the top binding leverage score that appears in this ranked list minus the 

bottom score. Qualitatively, a large value for ∂BL(j)/∆BL indicates that there is a large 

drop in binding leverage scores in going from site (j) to site (j-1) within the pre-processed 

ranked list. 

We then consider those sites with the highest ∂BL/∆BL values – specifically, we 

consider the top 5.5% of sites in terms of their ∂BL/∆BL values. Thus, we are 

considering site j if there is a very large gap in binding leverage scores between sites j 

and (j-1). The lowest-occurring site within this considered list of high ∂BL/∆BL values 

demarcates a threshold beyond which we reject all lower sites within the pre-processed 

ranked list, leaving only the processed ranked list of sites. 

We then go up from to bottom through the top of this processed ranked list of 

sites, and for each site, we determine the jaccard similarity with all sites above. If the 

jaccard similarity with any site above exceeds 0.7, then the lower site is removed from 

the processed ranked list. The final list obtained after performing these jaccard similarity 

filters is taken to represent the set of surface-critical sites on a structure. 

In counting the final number of truly distinct surface-critical sites for any given 

structure, we remove redundant sites within the set of surface-critical sites obtained in the 

process above, as some of the sites within this set may still exhibit considerable mutual 

overlap. A site i within the list of surface-critical sites is said to be redundant if it is 

assigned a redundancy_score that exceeds 0.4, where redundancy_score(i) = [residuessite_i!
�{�(set of residues in all accepted sites above site i in the ranked list of sites)}] / [# 

residues in site i]. If this redundancy score is less than 0.4, then site i is included in the 

list of accepted sites. If it exceeds 0.4, then the site overlaps with another site on the 

surface, and it is thus rejected from the set of accepted distinct sites. Finally, the total 

number of sites in the accepted set of sites is taken as the number of distinct sites for a 

structure. 
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Capturing Known Ligand-Binding Sites 

Known ligand-binding residues are those within 4.5 Angstroms of the ligand in 

the holo structure (Table S1). It has previously been shown that the sites in aspartate 

transcarbamoylase are especially difficult to identify (14); excluding this from this 

analysis results in finding an average of 65% of known biological ligand binding sites 

(Table S2). Note that these statistics are achieved by covering an average of 15% of 

proteins’ residues, even though more than 15% of the proteins’ residues are actually 

involved in ligand- or substrate-binding for most proteins (Table S3). 

 

Dynamical Network Analysis to Identify Interior-Critical Residues 

In our implementation of the Girvan-Newman framework (Fig. 1B), an edge 

between residues i and j is drawn if any heavy atom within residue i is located within 4.5 

Angstroms of any heavy atom within residue j, and we exclude the trivial cases of pairs 

of residues that are adjacent in sequence, which are not considered to be in contact.  

Network edges are then weighted on the basis of correlated motions of the 

interacting residues, with these motions provided by the same ANMs that had been used 

in the identification of surface-critical residues. We emphasize that, although ANMs are 

more coarse-grained that molecular dynamics, our use of ANMs is motivated by their 

much faster computational efficiency. This added efficiency is a required feature for our 

database-scale analysis. As an alternative to using ANMs, it is also possible to infer 

motion by simply using information regarding pairs of distinct conformations (see SI 

Methods subsection titled “Modeling Protein Motions by Directly Using Displacement 

Vectors from Alternative Conformations”, below). 

The edge weighting scheme is performed as follows: an “effective distance” dij 

for an edge between interacting residues i and j is set to dij = −log(∣Cij∣), where Cij 

designates the correlated motions between residue i and j: 

Cij  =  Covij  /  √(⟨ri
2⟩⟨rj

2⟩) 
where 

Covij  =  ⟨ri ! rj⟩ 
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Here, ri and rj designate the vectors associated with residues i and j (respectively) under a 

particular mode. The brackets in ⟨ri ! rj⟩ indicate that we are taking the mean value for 

the dot product ri ! rj over the 10 modes. 

An example may help to clarify this. If two interacting residues exhibit a high 

degree of correlated motion, then the motion of one may tell us about the motion of the 

other, suggesting a strong flow of energy or information between the two residues, 

resulting in a low value for dij: a strong correlation (or a strong anti-correlation) between 

nodes i and j result in a value for ∣Cij∣ that is close to 1. This gives a low value for dij 

(−log(∣Cij∣) ≈ 0). Thus, given a strong correlated motion, this effective distance dij 

between residues i and j is very short. This small dij means that any path involving this 

pair of residues is likewise shorter as a result, thereby more likely placing this pair of 

residues within a shortest path, and more likely rendering this pair a bottleneck pair. In 

sum, this edge-weighting scheme is such that a high correlation in motion results in a 

short effective distance, thereby more likely rendering this a bottleneck pair of residues.  

In the opposite scenario, for interacting residues with poor correlation values (Cij 

≈ 0), a large effective distance dij results, thereby making it more difficult for the pair of 

residues to lie within shortest paths or within the same community. 

Once all connections between interacting pairs of residues are appropriately 

weighted and the communities are assigned using the GN algorithm with these effective 

distances, a residue is deemed to be critical for allosteric signal transmission (i.e., an 

interior-critical residue) if it is involved in the highest-betweenness edge connecting two 

distinct communities. A given edge’s betweenness is taken to be the number of shortest 

paths involving that edge. Applying this method results in the community partitions and 

associated interior-critical residues highlighted in Figs. S3 and S4. 

 

Decomposing Proteins into Modules Using Different Algorithms 

Many algorithms have been devised to identify the community structure of 

networks. By this, we are referring to the problem of finding the optimal partitioning of a 

network into different “modules” (i.e., communties), such that each node within a module 

is highly connected to other nodes within the same module, and minimally conntected to 

other nodes in outside modules. In a comprehensive study comparing different algorithms 
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(41), an information theory-based approach (42), was shown to be one of the strongest. 

This method (termed “Infomap”) effectively reduces the network community detection 

problem to a problem in information compression: the prominent features of the network 

are extracted in this compression process, giving rise to distinct modules; further details 

are provided in (42).  

Perhaps surprisingly, even though both Infomap and GN achieve similar network 

modularity, Infomap (see (42)) produces at least twice the number of communities 

relative to that of GN when applied to protein structures, and it thus generates many more 

interior-critical residues (Table S5 and Fig. S20). Within the set of 12 canonical proteins, 

GN and Infomap generates an average of 12.0 and 36.8 communities, respectively. This 

corresponds to an average of 44.8 and 201.4 interior-critical residues when using GN and 

Infomap, respectively. Thus, given that GN produces a more selective set of residues for 

each protein, we use GN throughout our analyses. 

Although the critical residues identified by GN do not always correspond to those 

identified by Infomap, the mean fraction of GN-identified interior-critical residues that 

match Infomap-identified residues is 0.30 (the expected mean, based on a uniformly-

random distribution of critical residues throughout the protein, is 0.21, p-value=0.058), 

further justifying our decision to focus on GN). Furthermore, we observe that obvious 

structural communities are detected when applying both methods: a community generated 

by GN is often the same as that generated by Infomap, and in other cases, a community 

generated by GN is often composed of sub-communities generated by Infomap. 

As noted, the modularity from the network partitions generated by GN and 

Infomap are very similar. For the 12 canonical systems, the mean modularity for GN and 

Infomap is 0.73 and 0.68, respectively. Presumably, GN modularity values are 

consistently at least as high as those in Infomap because GN explicitly optimizes 

modularity in partitioning the network, whereas Infomap does not. 

 

STRESS (STRucturally-identified ESSential residues) 

Our server has been designed to be both user-friendly and highly efficient. We use 

local searching supported by hashing to perform a local search in each sampling step of 

the Monte Carlo simulations, which takes constant time. This approach brings down the 
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asymptotic computational complexity by an order of magnitude, relative to a simpler 

implementation without optimization (Fig. S6). The time complexity of the core 

computation, Monte Carlo sampling, is O(|T||S|), where T and S are simulation trials and 

steps for each trial, respectively. After carefully profiling and optimizing for speed (with 

optimizations introduced through changes in the workflow, data structures, numerical 

arithmetic, etc.), a typical case takes ~30 minutes on a E5-2660 v3 (2.60GHz) core. 

In terms of operation, our tool utilizes two types of servers: front-end servers that 

handle incoming HTTP requests and back-end servers that perform algorithmic 

calculations (Fig. S7). Communication between these two types of servers is handled by 

Amazon's Simple Queue Service. When our front-end servers receive a new request, they 

add the job to the queue and then return to requests immediately. Our back-end servers 

poll the queue for new jobs and run them when capacity is available. Amazon's Elastic 

Beanstalk offers several features that enable us to dynamically scale our web application. 

We use Auto Scaling to automatically adjust the number of back-end servers backing our 

application based on predefined conditions, such as the number of jobs in the queue and 

CPU utilization. Elastic Load Balancer automatically distributes incoming network 

traffic. This system ensures that we are able to handle varying levels of demand in a 

reliable and cost-effective manner. Since we may have multiple servers backing our tool 

simultaneously (some handling HTTP requests and some performing calculations, any of 

which may be terminated at any time by Auto Scaling), it is important that our servers are 

stateless. We thus store input and output files remotely in an S3 bucket, which is 

accessible to each server via RESTful conventions. The corresponding source code and 

README files are made available through Github (github.com/gersteinlab/STRESS). 

 

High-Throughput Identification of Alternative 
Conformations 

An overview of our pipeline is provided in Fig. S9. We perform MSAs for 

thousands of structures, with each alignment consisting of sequence-identical groups. 

Within each alignment, we cluster structures using RMSD to determine the distinct 
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conformational states. We then use information regarding protein motions to identify 

surface- and interior-critical residues. 

 

Database-Wide Multiple Structure Alignments 

 FASTA files of all SCOP domains were downloaded from the SCOP website 

(version 2.03) (43, 44). We first worked with domains to probe for intra-domain 

conformational changes, as better alignments are generally possible at the domain level. 

In order to better ensure that large structural differences between domains are a 

result of differing biological states (such as holo vs. apo, phosphorylated vs. 

unphosphorylated, etc.), and not an artifact of missing coordinates in X-ray crystal 

structures, the FASTA sequences used were those corresponding to the ATOM records of 

their respective PDBs. In total, this set comprises 162,517 FASTA sequences. 

BLASTClust (45) was used to organize these FASTA sequences into sequence-

similar groups at seven levels of sequence identity (100%, 95%, 90%, 70%, 50%, 40%, 

and 30%). Thus, for instance, running BLASTClust with a parameter value of 100 

provides a list of FASTA sequence groups such that each sequence within each group is 

100% sequence identical, and in general, running BLASTClust with any given parameter 

value provides sequence groups such that each member within a group shares at least that 

specified degree of sequence identity with any other member of the same group (see top 

of Fig. 1). Note that sequence identity values below 100% were only used to evaluate the 

pairwise RMSD distributions shown in Fig. S21. For all other analyses reported, all 

results are based on groups of structures that are 100% sequence identical. 

To ensure that the X-Ray structures used in our downstream analysis are of 

sufficiently high quality, we removed all of those domains corresponding to PDB files 

with resolution values poorer than 2.8, as well as any PDB files with R-Free values 

poorer than 0.28. The question of how to set these quality thresholds is an important 

consideration, and was guided here by a combination of the thresholds conventionally 

used in other studies which rely on large datasets of structures, as well as the 

consideration that many interesting allosteric-related conformational changes may 

correlate with physical properties that sometimes render very high resolution values 

difficult (such as localized disorder or order-disorder transitions). As a result of applying 
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these filters, 45,937 PDB IDs out of a total of 58,308 unique X-Ray structures (~79%) 

were kept for downstream analysis (as of December 2013). 

For each sequence-similar group at each of the seven levels of sequence identity, 

we performed multiple structure alignment (MSA) using only those domain structures 

that satisfy the criteria outlined above. Thus, the MSAs were generated only for those 

groups containing a minimum of two domains that pass the filtering criteria. The STAMP 

(46) and MultiSeq (47) plugins of VMD (48) were used to generate the MSAs. 

Heteroatoms were removed from each structure prior to performing the alignments. 

The quality of the resultant MSA for each sequence-similar group depends on the 

root structure used in the alignment. To obtain the optimal MSA for each group of N 

structures, we generated N MSAs, with each alignment using a different one of the N 

domains as the root. The best MSA (as measured by STAMP’s sc score) was taken as the 

MSA for that group. Note that, in order to aid in performing the MSAs, MultiSeq was 

used to generate sequence alignments for each group. 

Finally, for each of the N MSAs generated, MultiSeq was used calculate two 

measures of structural similarity between each pair of domains within a group: RMSD 

and QH. QH, an alternative metric to RMSD, quantifies the degree to which residue-

residue distances differ between two conformations, and is detailed in (49). For each 

group of sequence-similar domains, the final output of the structure alignment is a 

symmetric matrix representing all pairwise RMSD values (as well as a separate matrix 

representing all pairwise QH values) within that group. The matrices for all MSAs are 

then used as input to the K-means module. PDB-wide MSAs across sequence-similar 

groups reveal that, in agreement with expectation, average RMSD values increase at 

lower levels of sequence identity (Fig. S21). Grouping structures within a multiple-

structure alignment on the basis of RMSD did not change substantially when grouping 

structures using QH (Fig. S22). Thus, we use RMSD as a similarity metric throughout. 

 

Identifying Distinct Conformations within a Multiple Structure Alignment 

 For each MSA produced in the previous step (using only sets of sequences that 

are 100% sequence-identical), the corresponding matrix of pairwise RMSD values 

describes the degree and nature of structural heterogeneity among the crystal structures 
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for a particular structure. The objective is to use this data in order to identify the 

biologically distinct conformations represented by an ensemble of structures. For a 

particular structure, there may be many available crystal structures. In total, these 

structures may actually represent only a small number of distinct biological states and 

conformations. For instance, there may be several crystal structures in which the domain 

is bound to its cognate ligand, while the remaining structures are in the apo state.  

Our framework for identifying the number of distinct conformational states in an 

ensemble of structures relies on a modified version of the K-means clustering algorithm. 

This modified form of the algorithm is termed K-means clustering with the gap statistic, 

and it was introduced in (50). 

A priori, performing K-means clustering assumes prior knowledge of the number 

of clusters (i.e., “K”) to describe a dataset. The purpose of K-means clustering with the 

gap statistic is to identify the optimal number of clusters intrinsic to a complex or noisy 

set of data points (which lie in N-dimensional space). Given multiple resolved crystal 

structures for a given domain, this method estimates the number of conformational states 

represented in the ensemble of structures (with these states presumably occupying 

different wells within the energetic landscape), thereby identifying proteins which are 

likely to undergo conformational change as part of their functionality. 

As a first step toward clustering the structure ensemble represented by an RMSD 

matrix, it is necessary to convert this RMSD matrix (which explicitly represents only the 

relationships between distinct structures) into a form in which each structure is given its 

own set of coordinates. This step is necessary because the K-means algorithm acts 

directly on individual data points, rather than the distances between such points. Thus, we 

use multidimensional scaling to convert an N-by-N matrix (which provides all RMSD 

values between each pair of domains within a group of N structures) into a set of N 

distinct points, with each point representing a domain in (N-1)-dimensional space (see 

below). The values of the N-1 coordinates assigned to each of these N points are such 

that the Euclidean distance between each pair of points are the same as the RMSD values 

in the original matrix.  

For an intuition into why N points must be mapped to (N-1)-dimensional space, 

consider an MSA between two structures. The RMSD between these two structures can 
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be used to map the two structures to one-dimensional space, such that the distance 

between the points is the RMSD value. Similarly, an MSA of 3 domains may be mapped 

to 2-dimensional space in such a way that the pairwise distances are preserved; 4 domains 

may be mapped to 3-dimensional space, etc. The output of this multidimensional scaling 

is used as input to the K-means clustering with the gap statistic.  

We refer the reader to the work by Tibshirani et al for details governing how we 

perform K-means clustering with the gap statistic, as well as more details on the 

theoretical justifications of this approach (50). However, an overview of the general 

intuition behind the formalism is provided here.  

For the purpose of demonstration, assume that the data takes the form of 60 data 

points, with each point represented in 2D space. These are represented by the blue points 

in Fig. S23. Of course, our observed data in the case of MSAs may lie in N-dimensional 

space, in which case all Euclidean distances are just as easily calculated.! 
1) Start by assuming that the input data can be represented with K clusters. 

Perform Lloyd's algorithm (i.e., standard K-means clustering) on the dataset in order to 

assign each point to one of K clusters. Then, for each cluster k (which contains data 

points in the set Ck) measure Dk, which describes the ‘density’ of points within cluster k: 

 

     
 
2) Calculate an overall normalized score W to describe how well-clustered the 

resultant system has become when assigning all 60 data points to the K clusters (nk 

denotes the number of points in cluster k):  

 

        
 
3) Given our observed data, how well does this number of assigned clusters K 

actually represent the ‘true’ number of clusters represented by the data, relative to a null 

model without any apparent clustering? To address this question, produce a null 

distribution of 60 randomly-distributed data points that lack any clear clustering (grey 
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points in Fig. S23) such that the randomly-placed points lie within the same bounding 

box of the observed data (blue points). 

4) Repeat step (3) M times, and each time a random null distribution is produced, 

calculate Wnull(K) for each distribution (assuming K clusters), just as W is calculated for 

the observed data. Then calculate the meanM{log(Wnull(K))} for these M null distributions. 

Intuitively, the value meanM{log(Wnull(K))} measures how well random systems (with the 

same number of data points and within the same variable ranges as the observed data) can 

be described by K clusters. The M log(Wnull(K)) values produced by the null models have a 

standard deviation that is ultimately converted to sk (see (50) for details): 

      
5) Calculate the gap statistic δ(K), given K clusters – this is a measure of how 

well our observed data may be described by K clusters relative to null models containing 

the same number of points and within the same variable ranges (i.e., within the same 

bounding box). Intuitively, a high value for this statistic signifies that our data is well-

described using K clusters, relative to the assignment of K clusters in a randomized null 

distribution. Assuming K clusters, the gap statistic is given as:  

   
δ(K)  =  meanM{log(Wnull(K))} – log(W) 

 
 6) Obtain successive values δ(K+1), δ(K+2), δ(K+3), etc. This is done simply by 

incrementing the value for K and repeating the steps (1) through (5) above. Note that the 

optimal value of K (Koptimal, which is 3 in our demonstration case) is taken to be the first 

(i.e., lowest) K such that δ(K) >= δ(K+1) – sk+1: 

 

Koptimal = {K| δ(K) >= δ(K+1) – sk+1} 

 

Once the optimal K-value was determined for each MSA, we confirmed that these 

values accurately reflect the number of clusters by manually studying several randomly-

selected MSAs, as well as several MSAs corresponding of proteins known to constitute 

distinct conformations. We also examined several negative controls, such as CAP, an 

allosteric protein that does not undergo conformational change (19).  
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In manually annotating the alignments, we identified a vast array well-studied 

canonical allosteric domains and proteins. There may be many factors driving 

conformational change, and those cases for which the change is induced by the binding to 

a simple ligand (i.e., a simple consideration of apo or holo states) constitute only a very 

small subset of the conformational shifts observed in the PDB (Fig. S11). The gap 

statistic performed well in discriminating crystal structures that constitute such a diverse 

set, and this method has been validated using both domains and protein chains. 

RMSD values were used to generate dendrograms for each of the selected MSAs. 

The dendrograms are constructed using the hierarchical clustering algorithm built into R, 

hclust (51), with UPGMA (mean values) used as the chosen agglomeration method 

(52). 

Each domain is assigned to its respective cluster using the assigned optimal K-

values as input to Lloyd’s algorithm. For each sequence group, we perform 1000 K-

means clustering simulations on the MDS coordinates, and take the most common 

partition generated in these simulations to assign each structure to its respective cluster.  

We then select a representative structure from each of the assigned clusters. The 

representative member for each cluster is the member with the lowest Euclidean distance 

to the cluster mean, using the coordinates obtained by multidimensional scaling (see 

description above). These cluster representatives are then taken as the distinct 

conformations for this protein, and are used for the binding leverage calculations and 

networks analyses (below). 

 

Modeling Protein Motions by Directly Using Displacement Vectors from 

Alternative Conformations 

As discussed, conformational changes may be modeled using vectors connecting 

pairs of corresponding residues in crystal structures of alternative conformations (termed 

“ACT”, for “absolute conformational transitions”). This more direct model of 

conformational change is especially straightforward to apply to single-chain proteins; 

applying this method on a database scale to multi-chain complexes introduces 

confounding factors related to chain-chain correspondence between such complexes 

when each complex has multiple copies of a given chain. 



! 36!

When we use ACT to apply the modified binding leverage framework for these 

proteins, we observe that our surface-critical residues are significantly more conserved 

than are non-critical residues (Fig. S17, left), and the same trend is observed when this is 

applied in our dynamical network analysis for identifying interior-critical residues (Fig. 

S17, right). There are too few human single-chain proteins to perform a reliable analysis 

in which conservation is evaluated using 1000 Genomes or ExAC data – for instance, 

only 9 (16) structures are such that 1000 Genomes (ExAC) SNVs overlap with interior-

critical residues. 

 

Evaluating Conservation of Critical Residues 
Using Various Metrics and Sources of Data  
Conservation Across Species 

All cross-species conservation scores represent the ConSurf scores, as 

downloaded from the ConSurf Server (53-56), in which scores for each protein chain are 

normalized to 0. Low (i.e., negative) ConSurf scores represent a stronger degree of 

conservation, and high (i.e., positive) scores designate weaker conservation. We perform 

cross-species conservation analysis on those proteins for which ConSurf files are 

available from the ConSurf server, and all ConSurf scores were calculated using default 

parameters, listed here: 
 Homolog search algorithm: CSI-BLAST 
 Number of iterations: 3 
 E-value cutoff: 0.0001 
 Proteins database: UniRef-90 
 Maximum homologs to collect: 150 
 Maximal %ID between sequences: 95 
 Minimal %ID for homologs: 35 
 Alignment method: MAFT-L-INS-i 
 Calculation method: Baysian 
 Calculation method: JTT 
 

Each individual point within the cross-species conservation plots (e.g., Figs. 3B 

and 3F, and Fig. S17) represents data from one protein: the value of the point for any 

given protein represents the mean conservation score for all residues within one of two 

classes: the set of N critical residues within a protein structure (surface or interior) or a 

randomly-selected set of N non-critical residues (with the same “degree”, see below) 
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within the same structure. The randomly selected non-critical set of residues was chosen 

in a way such that, for each critical residue with degree k (k being the number of non-

adjacent residues with which the critical residue is in contact, see below), a randomly 

selected non-critical residue with the same degree k was included in the set. The 

distributions of non-critical residues shown are very much representative of the 

distributions observed when re-building the random set many times. 

Note that the degree (i.e., k) of residue j is defined as the number of residues 

which interact with residue j, where residues adjacent to residue j in sequence are not 

considered, and an interaction is defined whenever any heavy atom in an interacting 

residue is within 4.5 Angstroms of any heavy atom in residue j. We use degree as a 

measure of residue burial for several reasons. This metric for burial is consistent with our 

networks-based analysis for identifying interior-critical residues, as well as our use of 

residue-residue contacts in building networks for producing the ANMs. In addition, 

degree is also an attractive metric because it is discrete in nature, thereby allowing us to 

generate null distributions of non-critical residues with the exact same degree 

distribution. 

 

Measures of Conservation Amongst Humans from Next-Generation Sequencing 

All SNVs hitting protein-coding regions that result in amino acids changes (i.e., 

nonsynonymous SNVs) were collected from the phase 3 release of The 1000 Genomes 

Project (28). VCF files containing the annotated variants were generated using VAT (57). 

For nonsynonymous SNVs, the VCF files included the residue ID of the affected residue, 

as well as additional information (such as the corresponding allele frequency, the 

ancestral allele, and the residue type). To map the 1000 Genomes SNVs on to protein 

structures, FASTA files corresponding to the translated chain(s) of the respective 

transcript ID(s) were obtained using BioMart (58). FASTA files for each of the PDB 

structures associated with these transcript IDs (the PDB ID-transcript ID correspondence 

was also obtained using BioMart) were generated based on the ATOM records of the 

PDB files. For each given protein chain, BLAST was used to align the FASTA file 

obtained from BioMart with that generated from the PDB structure. The residue-residue 

correspondence obtained from these alignments was then used in order to map each SNV 



! 38!

to specific residues within the PDB. As a quality assurance mechanism, we confirmed 

that the residue type reported in the VCF file matched that specified in the PDB file. 

 ExAC SNVs were downloaded from the ExAC Browser (Beta), as hosted at the 

Broad Institute (29). SNVs were mapped to all PDBs following the same protocol as that 

used to map 1000G SNVs, and only non-synonymous SNVs in ExAC were analyzed. 

When evaluating SNVs from the ExAC dataset, minor allele frequencies (MAF) were 

used instead of DAF values. The ancestral allele is not provided in the ExAC dataset – 

thus, analysis is performed for MAF rather than DAF. However, we note that little 

difference was observed when using AF or DAF values with 1000 Genomes data, and we 

believe that the results with MAF values would generally be the same to those with DAF 

values. We also highlight the attractive feature of recapitulating the general conservation 

trends observed using a separate matric. 

When analyzing both 1000 Genomes and ExAC data, we consider only those 

structures in which at least one critical and one non-critical residue are hit by a non-

synonymous SNV. This enables a more direct comparison between critical and non-

critical residues, as comparisons between two different proteins would rely on the 

assumption of equal degrees of selection between such proteins. 

Each individual point within the intra-human conservation plots (e.g., Figs. 3C, 

3D, 3G, and 3H) represents data from one protein: the value of the point for any given 

protein represents the mean score (DAF or MAF, for 1000 Genomes or ExAC SNVs, 

respectively) for all critical (red bars) or non-critical (blue bars) residues to be hit by 

SNVs. 

The fraction of rare SNVs to hit a particular protein “annotation” (described 

below) is defined to be the ratio of the number of rare non-synonymous SNVs in that 

annotation to the total number of non-synonymous SNVs to hit that annotation. An 

annotation for a given protein is simply the set of residues within a particular category, 

such as the set of all surface-critical residues (or alternatively the set of all interior-critical 

residues, or the set of non-critical residues). We define the term “rare” to mean that a 

1000 Genomes SNV has a DAF value below a certain threshold – for instance, variable 

thresholds ranging from DAF = 0.05% to 0.50% are evaluated in Fig. S15. An SNV in 
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ExAC is defined to be rare if it has a MAF value below a certain threshold – variable 

thresholds ranging from MAF = 0.05% to 0.50% are evaluated in Fig. S16.  

If a particular annotation, such as the set of surface-critical residues, has a rare 

SNV, then this rarity may potentially be a consequence of purifying selection acting to 

remove a deleterious SNV from the population pool (thereby making it rare). Such an 

annotation may thus be sensitive to sequence changes, and would thus be conserved. If 

there is a high concentration (i.e., fraction) of such rare SNVs within the annotation, it 

provides further confidence to the claim that the annotation is conserved. Thus, a high 

fraction of rare SNVs is used as a signature for stronger conservation. Supporting this 

intuition, previous studies have observed that conserved genomic regions within the 

human population harbor a higher fraction of rare SNVs (28, 30, 59). 
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Fig. S1: Canonical proteins with surface-critical and known ligand-binding sites 
Each left image shows sites that are scored highly (i.e., surface-critical residues, in red), and each 
right image shows the residues (yellow) that actually come into contact of known ligands, based 
on the corresponding holo structure (Supp. Table 1). 
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Phosphoribosyltransferase (PDB ID 1xtt) 
 
 

 
Asp Transcarbamoylase (PDB ID 3d7s) 
 
 

 
cAMP-dependent Kinase (PDB ID 1j3h) 
 
 

 
Fig. S2: Number of surface-critical sites per complex without thresholding  
Complexes are taken from the the PDB biological assembly files. Shown is the distribution of the 
number of sites per complex. Without applying thresholds to the list of ranked surface-critical 
sites, the protein is often covered with an excess of identified critical sites. 
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Fig. S3: Community partitioning for canonical systems 
Different network communities are colored differently, and communities were identified using 
the dynamical network-based analysis with the GN formalism discussed in the main text and SI 
Methods. Residues shown as spheres are interior-critical residues, and they are colored based on 
community membership, and black lines connecting pairs of critical residues represent the 
highest-betweenness edges between the corresponding communities. 
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Fig. S4: Interior-critical residues highlighted in canonical systems 
Shown above are the same proteins shown in Fig. S3, but with interior-critical residues 
highlighted in red spheres. 
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Fig. S5: Home page of the STRESS server (stress.molmovdb.org) 
The server enables users to either provide PDB IDs or to upload their own PDB files for proteins 
of interest. Users may opt to identify surface-critical residues, interior-critical residues, or both. 
 
 
 
 
 
 

 
 
Fig. S6: Running times and optimization in the search of surface-critical residues 
(A) Running times are shown for systems of various sizes. Shown in red are the running times 
without optimizing for speed. Performing local searching supported with hashing and 
implementing additional algorithmic optimizations for computational efficiency reduce running 
times considerably (in green), relative to a more naïve approach without optimization (in red). (B) 
The same data is represented as a log-log plot. The slopes of these two approaches demonstrate 
that our algorithm reduces the computational complexity by an order of magnitude.  Our speed-
optimized algorithm scales at O(n1.3), where n is the number of residues. 
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Fig. S7: Architecture of the STRESS server 
A thin front-end server handles incoming user requests, and more powerful back-end servers 
perform the heavier algorithmic calculations. The back-end servers are dynamically scalable, 
making them capable of handling wide fluctuations in user demand. Amazon’s Simple Queue 
Service is used to coordinate between user requests at the front end and the back-end compute 
nodes: when the front-end server receives a request, it adds the job to the queue, and back-end 
servers pull that job from the queue when ready. Source code is available through Github 
(github.com/gersteinlab/STRESS). 
 

 
Fig. S8: Energy landscapes to describe distributions of different conformations 
Energy landscape theory may be used to describe the relative populations of alternative biological 
states and conformations  (for instance, active/inactive, or holo/apo). In the apo state, the 
landscape may take the form of the red curve, resulting in most proteins favoring the 
conformation shown in red. Once binding to ligand, the landscape becomes reconfigured to take 
the shape in the cyan curve, thereby shifting the distribution of conformations to that shown in 
cyan. One may use multiple structure alignments for domains or proteins to identify these distinct 
biological states in a database of structures. The schematized dendrogram represents the 
partitioning of these structures by a metric such as RMSD. The example shown is a  multiple 
structure alignment of adenylate kinase. SCOP IDs of the apo domains: d4akea1 and d4akeb1; 
those of the holo domains: d3hpqb1, d3hpqa1, d2eckb1, d2ecka1, d1akeb1, and d1akea1. 
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Fig. S9: Pipeline for identifying distinct conformations and critical residues 
Top to bottom: BLASTClust is applied to the sequences corresponding to a filtered set of 
structures, thereby providing a large number of sequence-identical sets of proteins (i.e., “sequence 
groups”). For each sequence-identical group, a multiple structure alignment is performed using 
STAMP. The example shown here is adenylate kinase; details are provided in Fig. S8. Using the 
pairwise RMSD values in this structure alignment, the structures are clustered using the UPGMA 
algorithm, and K-means with the gap statistic (δ) is performed to identify the number of distinct 
conformations. The plot at left identifies 2 as the optimal value for K: the solid line represents 
δ(K) values at each value of K, and the dotted line represents δ(K+1) – sk+1 for each value of K 
(see SI Methods for details). The structures that exhibit multiple clusters (i.e., those with K > 1) 
are then taken to exhibit multiple conformations. Finally, surface-critical (bottom-left) and 
interior-critical (bottom-right) residues are identified on those proteins determined to exist as 
multiple conformations. 
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A) 

 
 
 
B) 

 
 
 
Fig. S10: Distributions of the number of chains and domains in the dataset of alternative 
conformations 
Each structure the dataset of alternative conformations is taken from the first biological assembly 
file of the corresponding PDB. The structures in this database vary considerably in terms of size. 
Shown in panel (A) is the histogram representing the distribution for the number of chains in 
these biological assemblies, and shown in (B) is the corresponding distribution for the number of 
SCOP domains. 
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Fig. S12: A single annotated entry from our database of alternative conformations 
The clustering for the protein adenosylcobinamide kinase is shown. Two distinct conformations 
are represented in the ensemble of structures. The measure kf designates the fraction of times that 
the optimal value of K (here, K=2) was obtained out of 1000 simulations in which the algorithm 
(K-means with the gap statistic) obtained this particular value of K. The high kf value (0.969) 
signifies that these structures are very well clustered into two groups. n designates the number of 
distinct structures (PDB chains in this case) in the multiple structure alignment. pf designates the 
fraction of times (out of 1000 simulations of running Lloyd’s algorithm, the standard K-means 
algorithm) that this particular set of structure-group assignments were assigned. In this this 
example, for all 1000 simulations, 1C9K_C and 1C9K_A were clustered in one group, and 
1CBU_A, 1CBU_B, 1CBU_C clustered together. Within each cluster (the two clusters shown as 
two red boxes), the chain preceding the “::” tag designates the cluster representative (i.e., the 
structure closest to the Euclidean centroid of the cluster). The last field gives the RMSD values 
between cluster representatives. See the header information within Supp. File 1 for further details. 
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A) Cumulative distribution functions for mean DAF values of surface-critical and non-critical 
residues (p-val = 0.159, KS test) 
 
 

 
B) Cumulative distribution functions for mean DAF values of interior-critical and non-critical 
residues (p-val = 1.79e-4, KS test) 
 
Fig. S13: Potential shifts in DAF distributions (in 1000 Genomes) using two-sample 
Kolmogorov-Smirnov tests 
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A) Cumulative distribution functions for mean minor allele frequencies of surface-critical and 
non-critical residues (p-val = 9.49e-2, KS test) 
 
 
 

 
B) Cumulative distribution functions for mean minor allele frequencies of interior-critical and 
non-critical residues (p-val = 1.75e-4, KS test) 
 
Fig. S14: Potential shifts in mean minor allele frequency distributions (in ExAC) using two-
sample Kolmogorov-Smirnov tests 
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Fig. S15: Measuring relative conservation by the fraction of rare (low-DAF) variants using 
1000 Genomes data 
Protein regions with high fractions of rare variants are believed to be more sensitive to sequence 
variants than are other regions (thereby explaining why such variants occur infrequently in the 
population). Here, a rarely occurring SNV within the human population is defined to be one with 
a DAF less than or equal to the rarity thresholds  given on the y-axis. We consider all structures 
such that at least one critical and at least one non-critical residue are hit by a 1000 Genomes non-
synonymous SNV. Distributions in which the critical residues are defined to be the surface-
critical (A) and interior-critical (B) residues are shown. For varying thresholds to define rarity, 
there are more structures in which the fraction of rare variants is higher in critical residues than in 
non-critical residues. Cases in which the fraction is equal in both categories are not shown. (A) 
represents data from 31 structures, and (B) represents data from 32 structures. 
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Fig. S16: Measuring relative conservation by the fraction of rare (low-MAF) variants using 
ExAC data 
Protein regions with high fractions of rare variants are believed to be more sensitive to sequence 
variants than are other regions (thereby explaining why such variants occur infrequently in the 
population). Here, a rarely occurring SNV within the human population is defined to be one with 
a MAF less than or equal to the rarity thresholds  given on the y-axis. We consider all structures 
such that at least one critical and at least one non-critical residue are hit by a non-synonymous 
SNV in the ExAC dataset. Distributions in which the critical residues are defined to be the 
surface-critical (A) and interior-critical (B) residues are shown. For varying thresholds to define 
rarity, there are more structures in which the fraction of rare variants is higher in critical residues 
than in non-critical residues. Cases in which the fraction is equal in both categories are not 
shown. (A) represents data from 90 structures, and (B) represents data from 84 structures. 
 
 
 



!
!

 

 
Fig. S17: Modeling protein conformational change through a direct use of crystal structures 
from alternative conformations using absolute conformational transitions (ACT) 
Left: Distributions (155 structures) of the mean conservation scores on surface-critical (red) and 
non-critical residues with the same degree of burial (blue). Right: Distributions (159 structures) of 
the mean conservation scores for interior-critical (red) and non-critical residues with the same 
degree of burial (blue). Mean values are given in parentheses. Results for single-chain proteins 
are shown, and p-values were calculated using a Wilcoxon rank sum test. 
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Fig. S18: Mean PolyPhen scores for critical- and non-critical residues, as identified by 
ExAC   
Left: Distributions (64 structures) of mean PolyPhen values on surface-critical residues (red) and 
non-critical residues (blue). Right: Distributions (70 structures) of mean PolyPhen values on 
interior-critical residues (red) and non-critical residues (blue). Overall mean values and p-values 
are given below plots. Note that higher PolyPhen scores denote more damaging variants. 
 

 
Fig. S19: Mean SIFT scores for critical- and non-critical residues, as identified by ExAC 
Left: Distributions (63 structures) of mean SIFT values on surface-critical residues (red) and non-
critical residues (blue). Right: Distributions (65 structures) of mean SIFT values on interior-
critical residues (red) and non-critical residues (blue). Overall mean values and p-values are given 
below plots. Note that lower SIFT scores denote more damaging variants. 
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Fig. S20: Network modularization by GN and Infomap 
Different colors correspond to different communities. Network modularization by the GN (left) 
and Infomap (right) algorithms are shown for the crystal structure of glutamyl-tRNA synthetase 
complexed with tRNA(Glu) and glutamol-AMP (PDB 1N78). 
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Fig. S21: Probability distributions of pairwise-RMSD by sequence identity 
Distributions for average pairwise RMSD values across domains within all multiple structure 
alignments at varying levels of sequence identity. 
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Fig. S22: Representative clustering of domains based on RMSD and QH: RMSD generally 
matches the clustering obtained when using QH 
Shown are the dendrograms for domains in adenylate kinase (A), arginine kinase (B), calcyclin 
(C), and catabolite activator protein (D) 
A) 

 
 
B) 
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Fig. S23: Intuition behind the k-means algorithm with the gap statistic 
The objective is to identify the ideal number of clusters to describe the observed data of 60 points 
(in blue). This entails defining how well-clustered our observed data appears (given an assigned 
number of clusters, K) relative to a null model consisting of a randomly distributed set of 60 
points (grey) that fall within the same variable ranges as the observed data. Further details are 
provided by Tibshirani et al, 2001. 
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A) 

 
 
 
B) 
 

 
 

 
Fig. S24: Quantifying the number of distinct surface-critical sites 
(A) The distribution of the number of surface-critical sites per PDB chain; (B) The density of 
surface-critical residues with respect to the total number of residues in the biological assembly 
(here referred to as a “complex”, though in some cases, the biological assembly may in fact be a 
single chain). 
 
 
 
 
 
 
 
 
 



!
!

 
 
Fig. S25: Growth rate of deposited PDB structures, and the concomitant growth rate in the 
number of folds (as defined by CATH and SCOP) 
The growing appreciation for dynamic behavior and the importance of conformational 
heterogeneity is being facilitated by a growing redundancy within the PDB. Such redundancy is 
represented, for instance, when the same protein is structurally resolved under different 
conditions, potentially resulting in alternative conformations. 
 
 
 

 
Fig. S26: Trends in data generation point to growing opportunities for leveraging sequence 
variants to study structure (and vice versa) 
The volume of sequenced exomes is outpacing that of structures, while solved structures have 
become more complex in nature. Red: Average number of chains per PDB (considering the 
biological assembly PDB files for the top 10% of PDBs for a each year). Green: Cumulative 
number of X-Ray structures deposited in the PDB. Blue: Cumulative number of exomes stored in 
the NCBI Sequence Read Archive (SRA). All data were downloaded in May 2015. 
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Table S1: Set of 12 canonical proteins, organized by state (apo or holo) 
Ligands are given in parentheses (those in bold text designate the ligand used to define residues 
involved in canonical ligand-binding interactions). 
 
 
 

 
Table S2: Identifying known ligand-binding sites 
The 2nd column designates the fraction of residues that constitute surface-critical residues, and the 
3rd column represents, for each structure, the fraction of known ligand-binding sites that strongly 
overlap with surface-critical sites. 
 
 
 

 
Table S3: Do surface-critical sites occupy an exceedingly large fraction of the protein? 
For most proteins in the canonical set, the fraction of the protein occupied by surface-critical 
residues roughly matches the fraction of residues known to be directly involved in ligand binding. 
For most proteins (blue), the fraction of critical-surface residue is actually lower than that of 
known ligand-binding residues. 
 

HOLO$ APO$
1ake%(AP5)% 4ake%
3cep%(G3P,$IDM,$PLP)% 1bks%(PLP)%
1hor%(AGP,%PO4,%[&%16G%in%pdb%1HOT])% 1cd5%
2c2b%(SAM,%[&%LLP%in%pdb%2c2g])% 1e5x%
1gz3%(ATP,$FUM,$OXL)% 1e@%(MAK)%
1atp%(ATP)% 1j3h%
1hwz%(GLU,%GTP,$NDP%[&%ADP%in%PDB%1NQT])% 1nr7%
1xtu%(CTP,$U5P)% 1xN%(ACY,%U5P)%
1aax%(BPM%[&%892%in%PDB%1T49])% 2hnp%
7at1%(ATP,%MAL,%PCT%[&%CTP%in%PDB%1RAC],%[&%
PAL%in%PDB%1D09])% 3d7s%
3ju6%(ANP,%ARG)% 3ju5%
6p@%(PGA%[&%F6P$+$ADP$in%PDB%4PFK])% 3p@%(PO4)%
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Table S4: Capturing known-ligand binding sites at varying thresholds 
Here, n designates the number of residues within a surface-critical site that overlap with known 
ligand-binding residues. For the calculations reported above and in the main text, this value is 
taken to be n=6 (because each surface-critical site typically has 10 residues, and never has more 
than 10 residues, this criterion enforces that a majority of surface-critical residues within a given 
site overlap with known ligand-binding residues in order to be counted as a site match). However, 
as this threshold is relaxed to lower n, the fraction of captured known ligand-binding sites 
improves rapidly, suggesting that surface-critical sites generally lie close to known ligand binding 
sites in many cases. 
 
 
 
 

 
 
Table S5: Comparing the two network module identification algorithms GN & Infomap 
Though both GN (values to the left of “|” symbols throughout the table) and Infomap (values to 
the right) decompose networks to give similar modularity, the number of communities, and hence 
the number of critical residues connecting communities, is substantially larger when decomposing 
networks using Infomap than using GN. 
 


