1000 Genomes Phase3 SV Analyses (Group Meeting Report)

Yan Zhang

Gerstein Lab

The 1000 Genomes Project SV Group & Analysis Group 9/24/2015

- Background
- Functional Impact of Various SVs
- Personal Diploid Genome and Effects on SVs
- SV Formation Mechanism Annotation
- Loss-of-function Annotation
- SVs and Disease Associated IncRNAs

- Background
- Functional Impact of Various SVs
- Personal Diploid Genome and Effects on SVs
- SV Formation Mechanism Annotation
- Loss-of-function Annotation
- SVs and Disease Associated IncRNAs

Human Genetic Variations

• Single nucleotide variants (SNVs)

• Short insertions and deletions (Indels)

Structural variations (SVs)

- Sequence variations of at least 50bp in size

[1] Weischenfeldt J, et al. Nat Rev Genet, 2013.

[2] 1000GP Phase3 SV paper. Submitted to Nature, 2015.

A Typical Genome

- A typical genome differs from the reference genome at <u>4.09 –</u> <u>5.02 million sites</u>.
- The typical genome contains <u>2,100 2,500 SVs</u>, covering <u>~20</u> <u>million bases</u>.
- A typical genome contains <u>149 182 sites</u> with protein truncating variants, <u>10 – 12 thousand sites</u> with peptide sequence altering variants, and <u>459 – 565 thousand variant</u> <u>sites</u> overlapping regulatory regions.

Structural Variations (SVs)

• SVs make up the majority of varying nucleotides among humans.

- More base pairs are altered as a result of SVs, than of single-nucleotide variations.
 - On the haploid reference assembly, a median of 8.9 Mbp are affected by SVs, while 3.6 Mbp affected by SNPs.

[1] Weischenfeldt J, et al. Nat Rev Genet, 2013.

[2] 1000GP Phase3 SV paper. Submitted to Nature, 2015.

Objective of 1000GP SV Analysis

- Discover and genotype major classes of SVs
- Enable integration of these SVs into phased reference panel for population and genetic studies

Summary Statistics of 1000GP SV Phase3

- 68,818 SVs
- 2,504 unrelated individuals
- 26 populations
- 37,250 SVs with resolved breakpoints

[2] 1000GP Phase3 SV paper. Submitted to Nature, 2015.[3] 1000GP Consortium. Submitted to Nature, 2015.

8

Distribution of Different SVs in Normal Human Populations

Total ~70K SVs from over 2,500 normal individuals (the 1000 Genomes Project)

Distribution of Different SVs Stratified by Allele Frequency

- Background
- Functional Impact of Various SVs
- Personal Diploid Genome and Effects on SVs
- SV Formation Mechanism Annotation
- Loss-of-function Annotation
- SVs and Disease Associated IncRNAs

- Background
- Functional Impact of Various SVs
- Personal Diploid Genome and Effects on SVs
- SV Formation Mechanism Annotation
- Loss-of-function Annotation
- SVs and Disease Associated IncRNAs

Enrichment Overlap Analysis

- Measure overlap between SVs and genomic elements
- Test statistical significance of the overlap

Measure of Overlap between SVs and Genomic Elements

Partial overlap statistic:

Count the number of genomic elements that have at least 1 bp overlap with SVs.

Permutation Tests

- Permutation scheme
 - Randomly shuffle SV locations while maintaining the local structure
 - Same number of SVs, same length distribution
 - Shuffled SVs still locate on the same chromosome
 - Hg19 gap removed
 - Log2 fold change and empirical p-values
- Datasets
 - 8 types of SVs from the 1000 Genomes Project
 - 20 types of genomic elements from GENCODE, ENCODE, and other literature

DEL overlap with genomic elements (partial overlap)

DEL overlap with genomic elements (partial overlap)

Genomic elements

SNVs overlap with genomic elements (partial overlap)

Conclusion

- Important biologically functional genomic elements are depleted with DELs.
- CDS regions under strong purifying selection are most depleted.
- This conclusion applies to other SV types; but less significant than DELs.
- We observed similar trend for SNVs binned by allele frequency.

- Background
- Functional Impact of Various SVs
- Personal Diploid Genome and Effects on SVs
- SV Formation Mechanism Annotation
- Loss-of-function Annotation
- SVs and Disease Associated IncRNAs

- Background
- Functional Impact of Various SVs
- Personal Diploid Genome and Effects on SVs
- SV Formation Mechanism Annotation
- Loss-of-function Annotation
- SVs and Disease Associated IncRNAs

Personal Diploid Genome and Effects on SVs

Jieming Chen, in collaboration with Oliver Stegle

Personal Genome Construction

 AlleleDB uses AlleleSeq pipeline that constructs a personal genome for allele-specific analyses

[4] Rozowsky J, et al. Mol Syst Biol, 2011. http://alleleseq.gersteinlab.org/

Jieming Chen, in collaboration with Oliver Stegle

- Background
- Functional Impact of Various SVs
- Personal Diploid Genome and Effects on SVs
- SV Formation Mechanism Annotation
- Loss-of-function Annotation
- SVs and Disease Associated IncRNAs

- Background
- Functional Impact of Various SVs
- Personal Diploid Genome and Effects on SVs
- SV Formation Mechanism Annotation
- Loss-of-function Annotation
- SVs and Disease Associated IncRNAs

BreakSeq Annotation

Remarks: There are 79 STEI_NAH events, i.e. 79 events were changed from NAHR to STEI based on our new criteria in the enhanced BreakSeq. Extended annotations from BreakSeq such as NAHR_EXT, STEI_NAH, etc are grouped into their corresponding mechanisms in the above.

Hugo Lam

Formation Mechanism Comparison

Remarks: For comparison purpose, extended annotations from BreakSeq such as NAHR_EXT, STEI_NAH, etc are not included in the above mechanisms.

Hugo Lam

Repeat-mediated NAHR Events

NAHR Events

Hugo Lam

- Background
- Functional Impact of Various SVs
- Personal Diploid Genome and Effects on SVs
- SV Formation Mechanism Annotation
- Loss-of-function Annotation
- SVs and Disease Associated IncRNAs

- Background
- Functional Impact of Various SVs
- Personal Diploid Genome and Effects on SVs
- SV Formation Mechanism Annotation
- Loss-of-function Annotation
- SVs and Disease Associated IncRNAs

Impact of Genetic Variability: Loss-of-function

- Truncating nonsense SNPs
- Splice-disrupting SNPs
- Frameshift-causing indels
- Disrupting structural variants

Prevalence of Loss-of-function Variants in Healthy Individuals

- Previous LoFs are considered as having high probability of being deleterious
- Surprisingly, ~ 100 LoF variants per genome, 20 genes are completely inactivated

Yao Fu, Suganthi Balasubramanian

Medium Autosomal Variant Sites Per Genome

	AFR		AMR		E/	AS	EL	JR	SAS	
Samples	66	51	347		50	04	50)3	489	
Mean Coverage	8.	.2	7.6		7.	.7	7.	4	8.0	
	Var. Sites	Singletons	Var. Sites	Singletons	Var. Sites	Singletons	Var. Sites	Singletons	Var. Sites	Singletons
SNPs	4.31M	14.5k	3.64M	12.0k	3.55M	14.8k	3.53M	11.4k	3.60M	14.4k
Indels	625k	-	557k	-	546k	-	546k	-	556k	-
Large Deletions	1.1k	5	949	5	940	7	939	5	947	5
CNVs	170	1	153	1	158	1	157	1	165	1
MEI (Alu)	1.03k	0	845	0	899	1	919	0	889	0
MEI (LINE1)	138	0	118	0	130	0	123	0	123	0
MEI (SVA)	52	0	44	0	56	0	53	0	44	0
MEI (MT)	5	0	5	0	4	0	4	0	4	0
Inversions	12	0	9	0	10	0	9	0	11	0
NonSynon	12.26	120	10.46	121	10.26	144	10.26	116	10.26	144
Synon	12.2K	139	10.4K	67	10.2K	70	10.2K	110	10.5K	144 70
Synon	15.6K	70 7224	1 72NA	6 1 2 k	1 COM	79	11.2K	59	1 72M	70 7.20k
	2.00101	7.55K	20.04	126	1.00101	7.39K	20.04	120	20.76	1.20K
Dromotor	102k	108	50.0K	222	91 Ck	109	50.0K	129	50.7K	100
Promoter		430	64.5K	100	61.0K	425	02.2K	190	64.0K	430
Insulator	70.9K	248 1.22k	205k	199	57.7K	252	57.7K	1.024	205k	243 1.21k
	027	1.52K	295K	1.05K	203K	1.54K	200K	1.02K	295K	1.51K
1605	927	4	759	3	740	4	749	3	705	3
Filtered LoF	182	4	152	3	153	4	149	3	151	3
HGMD-DM	20	0	18	0	16	1	18	2	16	0
GWAS	2.00k	0	2.07k	0	1.99k	0	2.08k	0	2.06k	0
ClinVar	28	0	30	1	24	0	29	1	27	1

Stop-gain (median derived allele counts)

Yao Fu, Suganthi Balasubramanian

- Background
- Functional Impact of Various SVs
- Personal Diploid Genome and Effects on SVs
- SV Formation Mechanism Annotation
- Loss-of-function Annotation
- SVs and Disease Associated IncRNAs

- Background
- Functional Impact of Various SVs
- Personal Diploid Genome and Effects on SVs
- SV Formation Mechanism Annotation
- Loss-of-function Annotation
- SVs and Disease Associated IncRNAs

Motivation

 It has been reported that deletion/CNV of IncRNA can be associated with a lethal lung development diseases.

Genome Res. 2013 Jan;23(1):23-33. doi: 10.1101/gr.141887.112. Epub 2012 Oct 3.

Small noncoding differentially methylated copy-number variants, including IncRNA genes, cause a lethal lung developmental disorder.

<u>Szafranski P</u>¹, <u>Dharmadhikari AV</u>, <u>Brosens E, Gurha P</u>, <u>Kolodziejska KE</u>, <u>Zhishuo O</u>, <u>Dittwald P</u>, <u>Majewski T</u>, <u>Mohan</u> <u>KN, Chen B</u>, <u>Person RE</u>, <u>Tibboel D</u>, <u>de Klein A</u>, <u>Pinner J</u>, <u>Chopra M</u>, <u>Malcolm G</u>, <u>Peters G</u>, <u>Arbuckle S</u>, <u>Guiang SF 3rd</u>, <u>Hustead VA</u>, <u>Jessurun J</u>, <u>Hirsch R</u>, <u>Witte DP</u>, <u>Maystadt I</u>, <u>Sebire N</u>, <u>Fisher R</u>, <u>Langston C</u>, <u>Sen P</u>, <u>Stankiewicz P</u>.

• We look at functional impact of SVs (including CNVs) on known disease associated IncRNAs.

Three datasets

- **SVs**: 1000G phase 3 SV set.
- **"Conserved" IncRNAs**: A high-quality strict set of human IncRNAs (5413 transcripts) from Nitsche et al. 2015.

RNA. 2015 May;21(5):801-12. doi: 10.1261/rna.046342.114. Epub 2015 Mar 23.

Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved.

Nitsche A¹, Rose D², Fasold M³, Reiche K⁴, Stadler PF⁵.

A little bit of detail:

GENCODE v14 (GRCh37) + a series of filters

- Remove transcripts that overlap with protein-coding sequences or pseudogenes in sense or antisense by at least one of GENCODE, ENSEMBL, UCSC, or RefSeq.
- Remove transcripts with putative coding regions.
- Remove unspliced entries
- Other cutoffs of PhyloCSF, possible ORF length, etc.

Three datasets

• **Disease associated lncRNAs**: The latest experimentally supported lncRNA-disease association data from LncRNADisease database (as of 4/27/2015).

Nucleic Acids Res. 2013 Jan;41(Database issue):D983-6. doi: 10.1093/nar/gks1099. Epub 2012 Nov 21.

LncRNADisease: a database for long-non-coding RNA-associated diseases.

Chen G¹, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G, Cui Q.

Database summary from Chen et al. 2013:

Figure 1. Statistics and distributions of diseases (A) and dysfunction types (B) of lncRNAs in the LncRNADisease database.

Analysis

Result summary

• 44 unique SVs overlap with strict human disease associated IncRNAs.

DEL	DUP	mCNV	ALU	LINE1
30	4	1	7	2

• Example 1: The SV with the most (7) IncRNA entries

			SV Inform	nation		IncRNA information							
Chr	Start (0-based)	End	Туре	Frequency	ID	Chr	Start (0-based)	End	Strand	Symbol	Associated disease	Dysfunction type	
chr11	65182225	65192548	DEL	0.0002	UW_VH_9761	chr11	65190268	65192232	+	NEAT-1	AIDS	expression	
chr11	65182225	65192548	DEL	0.0002	UW_VH_9761	chr11	65190268	65192232	+	NEAT-1	amyotrophic lateral sclerosis	regulation	
chr11	65182225	65192548	DEL	0.0002	UW_VH_9761	chr11	65190268	65192232	+	NEAT-1	frontotemporal lobar degeneration	Interaction	
chr11	65182225	65192548	DEL	0.0002	UW_VH_9761	chr11	65190268	65192232	+	NEAT-1	Huntington's disease	expression	
chr11	65182225	65192548	DEL	0.0002	UW_VH_9761	chr11	65190268	65192232	+	NEAT-1	Intrauterine Growth Restriction	expression	
chr11	65182225	65192548	DEL	0.0002	UW_VH_9761	chr11	65190268	65192232	+	NEAT-1	TDP-43-associated pathological state	expression	
chr11	65182225	65192548	DEL	0.0002	UW_VH_9761	chr11	65190268	65192232	+	NEAT-1	oral squamous cell carcinoma	expression	

Result summary

- 135 unique disease associated lncRNA entries overlap with SVs.
- Example 2: The IncRNA overlap with the most SVs

SV Information						IncRNA information							
Chr	Start (0-based)	End	Туре	Frequency	ID	Chr	Start (0-based)	End	Strand	Symbol	Associated disease	Dysfunction type	
chr2	8170890	8182766	DEL	0.000599	BI_GS_CNV_2_8170891_8182766	chr2	8147900	8418214	-	LINC00299	Intellectual and developmental disability	mutation	
chr2	8210077	8210517	DEL	0.0002	DEL_pindel_2551	chr2	8147900	8418214	-	LINC00299	Intellectual and developmental disability	mutation	
chr2	8265735	8267776	DEL	0.000399	BI_GS_DEL1_B3_P0259_12	chr2	8147900	8418214	-	LINC00299	Intellectual and developmental disability	mutation	
chr2	8359006	8360475	DEL	0.0002	UW_VH_14482	chr2	8147900	8418214	-	LINC00299	Intellectual and developmental disability	mutation	
chr2	8383265	8383514	ALU	0.0002	ALU_umary_ALU_988	chr2	8147900	8418214	-	LINC00299	Intellectual and developmental disability	mutation	
chr2	8391683	8393675	DEL	0.000599	BI_GS_DEL1_B5_P0259_533	chr2	8147900	8418214	-	LINC00299	Intellectual and developmental disability	mutation	
chr2	8170890	8182766	DEL	0.000599	BI_GS_CNV_2_8170891_8182766	chr2	8147900	8464760	-	LINC00299	Intellectual and developmental disability	mutation	
chr2	8210077	8210517	DEL	0.0002	DEL_pindel_2551	chr2	8147900	8464760	-	LINC00299	Intellectual and developmental disability	mutation	
chr2	8265735	8267776	DEL	0.000399	BI_GS_DEL1_B3_P0259_12	chr2	8147900	8464760	-	LINC00299	Intellectual and developmental disability	mutation	
chr2	8359006	8360475	DEL	0.0002	UW_VH_14482	chr2	8147900	8464760	-	LINC00299	Intellectual and developmental disability	mutation	
chr2	8383265	8383514	ALU	0.0002	ALU_umary_ALU_988	chr2	8147900	8464760	-	LINC00299	Intellectual and developmental disability	mutation	
chr2	8391683	8393675	DEL	0.000599	BI_GS_DEL1_B5_P0259_533	chr2	8147900	8464760	-	LINC00299	Intellectual and developmental disability	mutation	
chr2	8426073	8426304	ALU	0.000399	ALU_umary_ALU_989	chr2	8147900	8464760	-	LINC00299	Intellectual and developmental disability	mutation	

Acknowledgements

Gerstein Lab @ Yale

Mark Gerstein Alexej Abyzov (Mayo Clinic) Jieming Chen Hugo Lam (Bina) Yao Fu Jing Zhang Xinmeng J. Mu Suganthi Balasubramanian Baikang Pei And other members

P2-VAR

The 1000 Genomes Project

1000GP SV Group P.H. Sudmant*, T. Rausch*, E.J. Gardner*, R.E. Handsaker*, A. Abyzov*, J. Huddleston*, Y. Zhang*, K. Ye^{*}, G. Jun, M.H. Fritz, M.K. Konkel, A. Malhotra, A.M. Stütz, X. Shi, F.P. Casale, F. Hormozdiari, G. Dayama, K. Chen, M. Malig, M.J.P. Chaisson, K.Walter, S. Meiers, S. Kashin, E. Garrison, C. Alkan, D. Antaki, T. Bae, P. Chines, J. Chen, Z. Chong, E. Dal, L. Ding, S. Emery, X. Fan, M. Guiral, F. Kahveci, J.M. Kidd, H.Y.K. Lam, S. McCarthy, R.A. Gibbs, G. Marth, A. Menelaou, X.J. Mu, D.M. Muzny, B. Nelson, A. Noor, N.F. Parrish, A. Quitadamo, B. Raeder, E. Schadt, A. Schlattl, A. Shabalin, A. Untergasser, E. Lameijer, J.A. Walker, M.Wang, F. Yu, C. Zhang, J. Zhang, W. Zhou, T. Zichner, J. Sebat, M.A. Batzer, S.A. McCarroll, The 1000 Genomes Project Consortium, R.E. Mills, M.B. Gerstein, A. Bashir, O. Stegle, S.E. Devine, C. Lee, E.E. Eichler, J.O. Korbel.

1000GP Functional Interpretation Group