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1 Significance 
Privacy is one of the most important topics of debate in data science that stands at the corner of many different 
fields, including ethics, sociology, law, political science, and forensic science. Recently, genomics has 
emerged as one of the major foci of studies on privacy. This can mainly be attributed to the advancement of 
technologies for high throughput biomedical data acquisition that bring about a surge of datasets[1, 2]. Among 
these, high throughput molecular phenotype datasets, like functional genomic and metabolomic 
measurements, substantially grow the list of the quasi-identifiers (such as birth date, ZIP code, gender[3]) for 
participating individuals, which can be used by an adversary for re-identification of the identities. With the 
recent announcement of Precision Medicine Initiative[4], a large body of datasets are to be generated and 
shared among researchers[5]. The National Institutes of Health also released the plans to encourage public 
access to biomedical datasets from scientific studies [5–7]. Considering the fact that one does not need many 
identifiers to uniquely pinpoint an individual[3, 8, 9], these datasets have the potential to exacerbate the risk of 
privacy breach.  

Many consortia, like GTex[10], ENCODE[11], 1000 Genomes[12], and TCGA[13], are generating large amount 
of personalized biomedical datasets. Coupled with the generated data, sophisticated analysis methods are 
being developed to discover correlations between genotypes and phenotypes, some of which can contain 
sensitive information like disease status. Although these correlations are useful for discovering how genotypes 
and phenotypes interact, they could also be utilized by an adversary in a linking attack for matching the entries 
in genotype and phenotype datasets. For example, when a phenotype dataset is available, the adversary can 
utilize the genotype-phenotype correlations to statistically predict the genotypes, compare the predicted 
genotypes with the entries in another dataset that contains genotypes. For the entries that are correctly 
matching, he/she can reveal sensitive phenotypes of the individuals and characterize them. Even when the 
strength of each genotype-phenotype correlation is not high, the availability of a large number of genotype-
phenotype correlations increases the scale of linking. In fact, an adversary can perform correct linking with 
relatively small number of genotypes[14, 15]. 

Different aspects of privacy have been intensely studied. Recently, genomic privacy is receiving much attention 
as a result of the deluge of personalized genomics datasets that are being generated[16, 17]. With the 
increase in the number of large scale genotyping and phenotyping studies, the protection of privacy of 
participating individuals emerged as an important issue. Homer et al[18] proposed a statistical testing 
procedure that enables testing whether a genotyped individual is in a pool of samples, for which only the allele 
frequencies are known. Im et al[19] showed that, given the genotypes of a large set of markers for an 
individual, an attacker can reliably predict whether the individual participated to a QTL study or not. These 
attacks, which we refer to as “detection of a genome in a mixture”, are one type of attacks on privacy (Fig S6). 
There is yet another important attack where the attacker links two or more datasets to pinpoint individuals in 
datasets and reveal sensitive information. One well-known and illustrative example of these “linking attacks”, 
although not in a genomic context, is the linking attack that matched the entries in Netflix Prize Database and 
the Internet Movie Database (IMDB)[20]. For research purposes, Netflix released an anonymized dataset of 
movie ratings of thousands of viewers, which they thought was secure as the viewers’ names were removed. 
However, Narayanan et al[20] used IMDB database, a seemingly unrelated and very large database of movie 
viewers, linked the two databases, and revealed identities and personal information (movie history and 
choices) of many viewers in the Netflix database. The fact that Netflix and IMDB host millions of individuals in 
their databases renders the question of detection of an individual in these database irrelevant since any 
random individual is very likely to be in one or both of these databases but the focus of attacks turns to 
matching individuals in the databases. Consequently, as the databases grow, the attacks for detection of an 
individual in a database become unimportant and the linking attacks become more admissible in order to 
characterize individuals’ sensitive information. In the genomic privacy context, as the size and number of the 
genotype and phenotype datasets increase, possibility of potentially linkable datasets will increase, which may 
make scenarios similar to Netflix attacks a reality in genomic privacy. 
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2 Innovation 
There is currently a significant scarcity of tools that enable analysis and protection of genomic and phenotypic 
datasets. We will focus on characterizability of the individuals’ sensitive information in the context of linking 
attacks, where the adversary exploits the genotype-phenotype correlations to link different datasets and 
potentially reveal sensitive information. In general, the high dimensional phenotype datasets generated in 
genomic studies harbor a number of phenotypes that contain sensitive information, like disease status, and 
other phenotypes, while not sensitive, may have subtle correlations with genomic variant genotypes. We will 
perform large scale analysis of the potential genotypic information leakage that different QTL datasets can 
cause. We will build tools that enable reporting of objective measures for genotypic information leakage from 
phenotype datasets. These tools will enable generating uniform and systematic analysis of privacy risks 
imposed by releasing new phenotype, genotype, and QTL datasets. We will also evaluate how accurately the 
predicted genotypes can characterize an individual. We will study the different routes for linking the phenotype 
and genotype datasets.  

For generating a set of preliminary results that will be presented, we will use the expression quantitative trait 
loci (eQTL) and expression dataset s generated by the GEUVADIS project[21] and the genotype dataset from 
the 1000 Genomes Project. We will generalize the formalisms, however, to be applicable to any type of QTL, 
genotype, and phenotype datasets  
Specifically, Many quantitative phenotypes can be linked to genotypes using public quantitative trait loci (QTL) datasets. Some of the high dimensional genomic quantitative traits and corresponding QTLs are gene expression levels (eQTLs), protein levels (pQTLs[22, 23]), DNase hypersensitivity site signals (dsQTLs[24]), ribosome occupancy (rQTLs[25]), DNA methylation levels (meQTLs[26]), histone 
modification levels (haQTLs[27–29]), RNA splicing (sQTLs[30]), and also higher order traits like network modularity (modQTLs[31]). Other QTLs associated with single dimensional non-genomic phenotypes include body mass index[32], basal glucose levels[33], and serum cholesterol levels[22, 34]. 

3 Approach 
We will address the need for new computational approaches for analyzing sensitive information leakage within 
3 aims. In the first aim, we will develop statistical formalisms for quantification of the leakage of information that 
enables pinpointing of individuals in genotype and phenotype datasets with use of QTLs. In the second aim, 
we will focus on specific linking attacks and work on instantiations of the linking attacks using outliers in the 
phenotype datasets. In the third aim, we will focus on proposing file formats and methodologies that enable 
privacy preserving sharing and publishing of the phenotype datasets. Figure 1 shows how we will utilize the 
methodologies proposed in each aim can be combined for an integrated risk assessment for releasing QTL, 
phenotype, and genotype datasets. 

 

 
Figure 1: Generalized Risk Assessment Scenario for Genotype-Phenotype Datasets: The joint genotype and phenotype  
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3.1 AIM1: Development of a Statistical Formalism for Leakage from QTL Sets 
In this aim, we will develop a statistical framework for analysis and quantification of the information leakage 
that can be used for pinpointing and linking individuals in the phenotype and in the genotype datasets using 
QTL datasets. 

3.1.1 Overview of the Individual Characterization Scenario by Linking Attacks 
Figure 2 illustrates the general privacy breaching scenario 
that is considered. There are three datasets in the context 
of the breach. First dataset contains the phenotype 
information for a set of individuals. The phenotypes can 
include sensitive information such as disease status in 
addition to several molecular phenotypes such as gene 
expression levels. The second dataset contains the 
genotypes and the identities for another set of individuals.  
The third dataset contains correlations between one or 
more of the phenotypes in the phenotype dataset and the 

genotypes. In this dataset, each entry contains a 
phenotype, a variant, and the degree to which 
these values are correlated. We will focus on the 
gene expression datasets as the representative 
phenotype dataset. The abundance of gene 
expression-genotype correlation (eQTL) datasets 
makes these datasets most suitable for linking 
attacks.  

Figure 3 illustrates the eQTL, expression, and 
genotype datasets. The eQTL dataset is 
composed of a list of gene-variant pairs such that 
the gene expression levels and variant genotypes 
are significantly correlated. We will denote the 
number of eQTL entries with 𝑞. The eQTL (gene) 
expression levels and eQTL (variant) genotypes 
are stored in 𝑞×𝑛! and 𝑞×𝑛! matrices 𝑒 and 𝑣, 
respectively, where 𝑛! and 𝑛! denotes the 
number of individuals in gene expression dataset 

and individuals in genotype dataset.  The 𝑘!! row 
of 𝑒, 𝒆𝒌, contains the gene expression values for 

Figure	
  3:	
  The	
  representation	
  of	
  the	
  genotype	
  and	
  expression	
  datasets.	
  

Figure 2: Schematic Representation of a Linking Attack: The 
attacker links the phenotype and genotype datasets using the 
genotype predictions. In the predictions, the attacker utilizes 
the QTL datasets. The resulting attack generates the linked 
genotype (green), phenotype(orange), and sensitive 
phenotype (yellow) dataset. 
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𝑘!! eQTL entry and 𝑒!,! represents the expression of the 𝑘!! gene for 𝑗!! individual. Similarly, 𝑘!! row of 𝑣, 𝒗𝒌, 
contains the genotypes for 𝑘!! eQTL variant and 𝑣!,! represents the genotype (𝑣!,! ϵ {0,1,2}) of 𝑘 variant for 𝑗!! 
individual. The coding of the genotypes from homozygous or heterozygous genotype categories to the numeric 
values are done according to the correlation dataset.  We assume that the variant genotypes and gene 
expression levels for the 𝑘!! eQTL entry are distributed randomly over the samples in accordance with random 
variables (RVs) which we denote with 𝑉! and  𝐸!, respectively. We denote the correlation between the RVs 
with ρ(𝐸! ,𝑉!). In most of the eQTL studies, the value of the correlation is reported in terms of a gradient (or the 
regression coefficient) in addition to the significance of association (p-value) between genotypes and 
expression levels. The absolute value of ρ(𝐸! ,𝑉!) indicates the strength of association between the eQTL 
genotype and the eQTL expression level. The sign of ρ(𝐸! ,𝑉!) represents the direction of association, i.e., 
which homozygous genotype corresponds to higher expression levels. This forms the basis for correct 
predictability of the eQTL genotypes using eQTL expression levels: The homozygous genotypes associate with 
the extremes of the gene expression levels and the heterozygous genotypes associate with moderate levels of 
expression. The eQTL studies utilize linear models to identify the gene and variant pairs whose expressions 
and genotypes that are significantly correlated. Given this knowledge, the adversary aims at reversing this 
operation so as to predict genotypes for each individual, using the respective gene expression levels and the 
genotype-phenotype correlation. For general applicability of the analysis, we will assume that he/she utilizes a 
prediction model that estimates correctly the a posteriori distribution of the eQTL genotypes given the eQTL 
expression levels, i.e., 𝑝(𝑉!|𝐸!). This will enable us to perform quantifications independent of the prediction 
methodology utilized by the attacker.  

3.1.2 Quantification of Tradeoff between Correct Predictability of Genotypes and Leakage of 
Individual Characterizing Information  

We will study the tradeoff the correct predictability of genotypes and the number of individuals that can be 
characterized with the information leakage (Figure 4). In the context of the linking attack, the attacker aims to 
correctly characterize 𝑛! individuals in the expression dataset among 𝑛! individuals in the genotype dataset. In 
order to correctly characterize an individual, he/she should select a set of eQTLs that he/she believes he/she 
can predict correctly. Next, given the individual’s expression levels, the attacker should predict the genotypes 
for the selected eQTLs correctly such that the predicted set of genotypes are not shared by more than 1 
individual, i.e., the predicted genotypes can be matched to the correct individual. In other words, the joint 
frequency of the set of predicted genotypes for the selected eQTLs should be !

!!
. We can rephrase this 

condition as following in information theoretic terms: Given the genotypes of an individual, if the attacker can 
correctly predict a subset of genotypes that contain at least log!(𝑛!) bits of information, the individual is 
vulnerable to characterization of his/her phenotypes. Following this statement, we can quantify the leakage 
from a set of correctly predicted eQTL variant genotypes as the logarithm of their joint frequency. Assuming 
that the genotypes of different eQTLs are independent from each other, we can decompose the quantity of 
individual characterizing information that is leaked for a set of 𝑛 correctly predicted eQTL genotypes:  

 

𝐼𝐶𝐼 {𝑉! = 𝑔!,𝑉! = 𝑔!,… ,𝑉! = 𝑔!} = − log 𝑝 𝑉! = 𝑔!
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(1) 

where 𝑉! is the random variable that corresponds to the genotypes for the kth eQTL, 𝑔! is a specific genotype, 
and 𝑝 𝑉! = 𝑔!  denotes the genotype frequency of 𝑔! within the population, and ICI denotes the total individual 
characterizing information. Evaluating the above formula, ICI increases as the frequency of the variant’s 
genotype 𝑔! decreases. In other words, the more rare genotypes contribute higher to ICI compared to the 
more common ones. Thus, individual linking information can be interpreted as a quantification of how rare the 
predicted genotypes are. The attacker aims to predict as many eQTLs as possible such that ICI for the 
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predicted genotypes is at least log(𝑛!). ICI can also be interpreted as the number of rare SNP genotypes that 

an individual harbors. 

In order to maximize the amount of ICI, the attacker will aim at correctly predicting as many eQTL genotypes 
as possible. The (correct) predictability of the eQTL genotypes from expression levels, however, varies over 
the eQTL dataset as some of the eQTL genotypes are more highly correlated (i.e., more correctly predictable) 
with the expression levels compared to others, given in |ρ 𝐸! ,𝑉! |. Thus, the attacker will try to select the 
eQTLs whose genotypes are the most correctly predictable to maximize ICI leakage. Although ρ 𝐸! ,𝑉!  is a 
measure of predictability, it is computed differently in different studies. In addition, there is no easy way to 
combine these correlation values when we would like to estimate the joint predictability of multiple eQTL 
genotypes. In order to uniformly quantify the joint (correct) predictability of the eQTL genotypes using the 
expression levels, we use the exponential of entropy of the conditional genotype distribution given gene 
expression levels. Given the expression levels for  𝑗!! individual, we compute the predictability of the 𝑘!! eQTL 
genotypes as 

 

𝜋 𝑉!|𝐸! = 𝑒!,! = exp  (−1  × 𝐻(𝑉!|𝐸! = 𝑒!,!)

!"#$%&#'((  !"#$  !"  !!
!"#$%  !!!!!,!

)
!"#$%&'  !"#  !"#$%&'  !"  
!"#$!%#  !"#$%$&'&()

 

 

(2) 

where 𝜋 denotes the predictability of 𝑉! given the gene expression level 𝑒!,!. 𝜋 can be interpreted as the 
average probability (when sampling individuals from the population) that the attacker can correctly predict the 
eQTL genotype at the given expression level. In the above equation for 𝜋, the conditional entropy of the 
genotypes is a measure for the randomness that is left in genotype distribution when the expression level is 
known. In the case of high predictability, the conditional entropy is close to 0, and there is little randomness left 
in the genotype distribution. Taking the exponential of negative of the entropy converts the entropy to average 
probability of correct prediction of the genotype. In the most predictable case (conditional entropy close to 0), 𝜋 
is close to 1, indicating very high predictability. 

As a preliminary study to show how these measures can be used jointly, we considered each eQTL and 
evaluated the genotype predictability versus the characterizing information leakage. We use the gene 
expression data from the GEUVADIS project as a representative dataset for this computation. We computed, 
for each eQTL, average 𝜋 and average ICI over all the individuals (Figure 5). Most of the data points are 
spread along the diagonal, which indicate that there is a natural tradeoff between correct predictability and ICI 
leakage. The eQTL variants with high frequency major allele frequencies have high predictability and low ICI 
and vice versa for eQTL variants with lower major allele frequency (Fig 5, left). This is expected because the 
genotypes of the high frequency variants can be predicted, on average, easily (most individuals will harbor one 

Figure	
  4:The	
  tradeoff	
  between	
  correct	
  predictability	
  of	
  the	
  genotypes	
  and	
  number	
  of	
  individuals	
  that	
  
can	
  be	
  characterized.	
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dominant genotype) and consequently does not deliver much characterizing information. The genotypes for the 
eQTLs with smaller major frequency alleles, however, are harder to predict as they are mostly uniformly 
distributed among population. On the other hand, these eQTLs contain high ICI on average. The eQTLs with 
high correlation (Fig 5, right) deviate from the diagonal with high ICI and high predictability. In principle, the 
adversary will aim at identifying and using these highly informative eQTLs. 

 
Figure 5: The scatter plot of ICI leakage (x-axis) versus the predictability (y-axis) of SNP genotypes. Each dot represents a SNP. SNPs 

are colored as per major allele frequencies (left) and per absolute eQTL correlation (right). 

3.2 AIM2: Instantiating the Linking Attacks 
In this aim, we will study how an attacker can instantiate linking attacks using different techniques for linking 
the genotype and phenotype datasets. 

3.2.1 A General Framework for Analysis of Individual Characterization using Linking Attacks 
We first present a tentative 3 step framework for individual characterization in the context of linking attacks. 
Figure 6 summarizes the steps in the individual characterization for each individual. The input is the phenotype 
measurements for 𝑗!! individual. The aim of the attacker is to correctly link the disease state of the individual to 
the correct identity in the genotype dataset. In the first step, the attacker selects the QTLs, which will be used 
in linking 𝑗!! individual. The selection of QTLs can be based on different criteria. As described in the previous 
section, the most accessible criterion is selection based on the absolute gradient or the absolute strength of 
association between the phenotypes and genotypes. In the case of eQTLs, this is the reported correlation 
coefficient, |ρ 𝐸! ,𝑉! |. We will study different eQTL selection criteria and how they affect the linking accuracy. 
The second step is genotype prediction for the selected QTLs using a prediction model. We will use different 
models of genotype prediction with varying complexities and study how the linking accuracy changes when 
different models are utilized (Figure 9). The third and final step of a linking attack is comparison of the 
predicted genotypes to the genotypes of the 𝑛! individuals in genotype dataset to identify the individual that 
matches best to the predicted genotypes. In this step, the attacker links the predicted genotypes to the 
individual in the genotype dataset. We will study different linking methodologies that the adversaries can utilize. 

 

We will study the attacker can utilize a priori knowledge 
about the relation between gene expression levels and 
genotypes and build the joint genotype-expression 
distributions using models with varying complexities and 
parameters. Even though the genotype prediction with 
these models may not be very accurate, the attacker can 
utilize a large number of eQTLs to maximize the 
accuracy of linking. We will first focus on highly 
simplified models to evaluate the risk levels associated 
with simple models for genotype prediction. We will 

Figure	
  6:	
  3	
  steps	
  of	
  individual	
  characterization	
  with	
  linking	
  
attacks.	
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Figure	
  7:	
  Extremity	
  based	
  genotype	
  for	
  an	
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  joint	
  genotype	
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expression	
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  on	
  left.	
  Given	
  the	
  distribution	
  and	
  the	
  extremity,	
  

the	
  genotypes	
  are	
  assigned.	
  

assume the attacker exploits the knowledge that the eQTL genotypes and expression levels are correlated 
such that the allelic effects on expression are additive and extremes of the gene expression levels (highest and 
smallest expression levels) are observed with extremes of the genotypes (homozygous genotypes). Therefore, 
given the gradient of association, the attacker can estimate coarsely the joint distribution of the genotypes and 
expression levels. This idea is illustrated in Fig 7. Using an estimate of the joint distribution, the attacker can 
compute the a posteriori distribution of genotypes given gene expression levels. To quantify the extremeness 
of expression levels, we use a statistic we termed 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦. For the gene expression levels for 𝑘!! eQTL, 𝒆𝒌, 
𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 of the 𝑗!! individual’s expression level, 𝑒!,!, is defined as 

 
𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 𝑒!,! =

rank  of  𝑒!,!in  {𝑒!,!, 𝑒!,!,… , 𝑒!,!!}
𝑛!

− 0.5. 

 
(3) 

Extremity can be interpreted as a normalized rank, which is bounded between -0.5 and 0.5. Following from the 
above discussion, the adversary builds the posterior distribution for 𝑘!! eQTL genotypes as 

 𝑃 𝑉! = 0       𝐸! = 𝑒!,!) =
0  if  𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 𝑒!,! ×ρ 𝐸! ,𝑉! > 0    
1  otherwise                                                                                                

 (4) 

   
 𝑃 𝑉! = 2       𝐸! = 𝑒!,!) =

1  if  𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 𝑒!,! ×ρ 𝐸! ,𝑉! > 0    
0  otherwise                                                                                                

 (5) 

   
 𝑃 𝑉! = 1       𝐸! = 𝑒!,!) = 0. (6) 
 

From the a posteriori probabilities, when the sign of the extremity and the reported correlation are the same, 
the attacker assigns the genotype value 2, and otherwise, genotype value 0. Finally, the genotype value 1 is 
never assigned in this prediction method, i.e., the a posteriori probability is zero. This is expected since we are 
focusing on the extremes and heterozygous genotype is observed at medium levels of expression. The 
posterior distribution of genotypes in equations (4-6) can be derived from a simplified model of the genotype-

expression distribution that utilizes just one 
parameter.  

As a next set of preliminary evaluation of 
how effective the proposed approach is, we 
utilized extremity based genotype prediction 
in the 2nd step of the individual 
characterization framework (Fig 6) and 
evaluated the fraction of characterizable 
individuals in the GEUVADIS dataset. We 
utilized the correlation based eQTL selection 

in step 1, then extremity based genotype 
prediction in step 2. In order to demonstrate 
the utility of the 3-step analysis framework; 
we evaluated two different distance measures 

for linking the predicted genotypes to the individuals in genotype dataset in the 3rd step of the attack. First is 
based on comparison of the predicted genotypes to all the genotypes 
in genotype dataset. Second is based on comparison of the predicted 
genotypes to only the homozygous genotypes in the genotype 
dataset. The motivation for using this distance measure is that the 
extremity based genotype prediction never assigns heterozygous 
genotypes. Thus the heterozygous genotypes are excluded from 
distance computation.  
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Figure	
  8:	
  The	
  accuracy	
  of	
  extremity	
  based	
  
linking	
  attack	
  with	
  changing	
  eQTL	
  selection	
  

correlation	
  threshold. 

For each measure, the attacker links the predicted genotypes to the individual whose genotypes minimize the 
selected distance measure. Figure 8 left and right show the fraction of vulnerable individuals for both distance 
measures. More than 95% of the individuals are vulnerable for most of the parameter selections for both 
distance measures. The homozygous genotype matching distance measure has slightly higher linking 
accuracy. When the gender and/or population information is present as auxiliary information (red and green 
plots), the fraction of vulnerable individuals increases to 100% for most of the eQTL selections. These results 
show that linking attack with extremity based genotype prediction, although technically simple, can be 
extremely effective in characterizing individuals. We will focus on homozygous genotype matching based 
distance computation in the rest of the paper for simplicity of presentation. 

 

 

 

 

 

[[We’re at ~10pages – we think we could a para here on modellign the joint distribution]] 

We will extend the linking attack analysis on different QTL, phenotype, and genotype datasets. 

  

 

3.3 AIM3: Building Privacy Reducing File 
Formats 
3.3.1 Rationale 
In this section of the grant, we describe the 
development of a file format that protects privacy, and 
still maintains a high level of usability of genomic data. 
We will also describe a practical software 
implementation to simulate a privacy attack on a 
dataset and give a consenting subject a sense of how 
much information leaks in various presentations of a 
dataset.  
 
 
3.3.2 Previous experience in tool development and file 
formats for anonymizing sequence information 
The Gerstein lab has developed a number of tools and data 
formats to handle the increasingly large quantities for data 
generated by RNA-Seq experiments. For example, we have 

developed the Mapped Read Format (MRF), a compact data 
summary format for short, long and paired-end read 
alignments that enables the anonymization of confidential 

sequence information. We have developed RSEQtools, which is a suite of tools that use the MRF format for 
the analysis of RNA-Seq experiments. \cite{21134889}. These tools consist of a set of modules that perform 
common tasks such as calculating gene and exon expression values, generating signal tracks of mapped 
reads and segmenting that signal into actively transcribed regions. RSEQtools is implemented in C and the 
source code is available at http://rseqtools.gersteinlab.org/.  
 

Figure	
  9:	
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  Joint	
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Distribution	
  with	
  changing	
  Complexities	
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3.3.3 Previous experience in RNA-seq and ChIP-seq computational technology development and 
data analyses 

We have extensive experience in ChIP-seq and RNA-seq tool development and analysis \cite{19015660}. For 
ChIP-seq, notably, we developed two ChIP-seq peak calling tools: PeakSeq \cite{19122651} and MUSIC 
\cite{25292436}. PeakSeq is a widely used and highly cited tool for the identification of transcription factor (TF) 
binding sites. It is also one of the standard peak calling programs used by the ENCODE and modENCODE 
consortia for numerous ChIPSeq datasets \cite{22955616,	
  21177976}. MUSIC has just been recently 
introduced for the identification of enriched regions in ChIP-seq data, especially where the signals are broad 
and strict peaks are difficult to detect. 
 
For RNA-seq, we have developed MRF and RSEQtools, a suite of tools that enables anonymization of 
sequence information and quantification of annotated RNAs and identification of splice sites and gene models 
\cite{21134889}. In addition, we have developed IQseq, a computationally efficient method to quantify isoforms 
for alternatively spliced transcripts \cite{22238592}. Our Database of Annotated Regions with Tools (DART) 
package contains tools for identifying unannotated genomic regions enriched for transcription, as well as a 
framework for storing and querying this information \cite{17567993}. We developed incRNA, a method that 
uses known ncRNAs of various classes as a gold standard training set to predict and analyze novel ncRNAs 
\cite{21177971}. 
 
Furthermore, we continue to play a substantial role in large consortia. We have been heavily involved in the 
ENCODE consortium \cite{17568003}. For example, a recent ENCODE publication involved the processing 
and integration of all ENCODE and modENCODE RNA-seq and ChIP-seq data, involving 575 experiments and 
more than 65 billion reads from three organisms \cite{25164755}. The Gerstein lab is also the data integration 
hub in the exRNA consortium (http://exrna.org/) that is generating hundreds of RNA-seq and small RNA-seq 
samples. Other notable consortia for which we have been involved in pipeline construction and big data 
processing and analyses include the BrainSpan project (http://www.brainspan.org/), which collected RNA-seq 
data for 8-16 brain structures in each of 13 brain developmental stages \cite{24695229}, as well as the 
PsychENCODE project (http://psychencode.org/).  
 
3.3.4 Previous work on various social and practical aspects of privacy 
We also been an active voice in raising privacy concerns with regards to large-scale genomic datasets. 
Genomic information axiomatically uniquely and unerringly identifies its owner. Moreover, and perhaps more 
problematic, individuals represented in genomic datasets share much of their genomic information with their 
close relatives who likely have not consented to having their genomic data included in the dataset. The 
Gerstein Lab has suggested in a number of publications that a combination of technological, regulatory and 
policy changes might best serve to protect individuals described in this arguably unannonymizable data. The 
policy and regulatory changes ought to be designed to reflect changing norms where we, as a society, no 
longer dogmatically desire anonymity for every aspect of our lives, or at the minimum, have come to peace 
with the lack of privacy in the modern age. In acknowledging the changing realities, instead of regulating how 
to seek out data, we suggest that regulations ought to focus on how that data can be used to harm, for 
example, in limiting employment or insurance opportunities, thereby further reducing the need for anonymity of 
formerly sensitive data. Corresponding technological changes include considering both how data is stored as 
well as where that data should be stored. We have suggested, for example, using cloud based storage options 
to control and monitor access to data sets and limiting the ability and need to download data to inherently more 
insecure computers. We have also proposed creating "stub-datasets" that have the look and feel of the typical 
online data sets, but that would be freely available to all researchers. Holding no personal information, these 
data sets, while sharing many of the same statistical characteristics, with their larger cousins, would not 
present privacy concerns, and consequently, could be used to develop and profile code before deployment on 
real datasets.  
 
 
 
 
3.3 Approach 
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3.3.1 Practically Quantifying and Minimizing information Leakage in an RNA-seq file, using MRF & 
outlier removal  

In the first step, we will develop a software to efficiently measure 
the amount of information leakage in an RNA-seq dataset. This 
quantification of information leakage requires the knowledge of the 
number of accessible variants that can be obtained from a typical 
RNA-seq dataset. The ‘accessibility’ can be dependent on a 
number of factors, including: the type and the coverage of the RNA-
seq dataset, and the parameters when aligning the RNA-seq reads.  
 
For instance, poly-A RNA-seq data limits the variants to mostly 
found in the exome, while the total cell RNA-seq data can 
encompass variants from both the exome and non-coding genes. 
The coverage of the RNA-seq dataset will determine how reliable a 
variant call is. GEUVADIS data is mostly poly-A data, and we will 
use only variants with at least 10X coverage as a quality control. 
Using the software SHAPEIT2 \cite{24743097} and IMPUTE2 
\cite{22384356}, we can expand the accessible variant pool, by 
imputing variants and inferring their genotypes based on linkage 
disequilibrium (LD), which is their haplotypic association with the 
accessible variants. This expanded variant pool (accessible 
variants and those estimated from LD) will be used to quantify the 
information leakage of each RNA-seq dataset.  
 
For alignment, we will construct the diploid personal genomes of 
possibly all the individuals in GEUVADIS and then align RNA-seq 
reads to them using Bowtie2 \cite{22388286}. We have previously 
shown that reads from functional genomics assays such as ChIP-
seq and RNA-seq map better to the personal genomes than the 
reference genome \cite{21811232}. Better alignments will aid us by 
providing more reads for variant calling. 
 
The quantification will also enable the detection of actual variants 

(or the quantity of variants) that are the most disruptive and the 
most identifiable. These two pieces of information can be 
managed in two ways: (1) they can be systematically removed, or (2) they can serve to inform the pertinent 
individual(s) regarding the extent to which his identity will be compromised; these can be, for instance, 
conveyed in a consent form. In order to maintain the overall usability and public accessibility of the dataset, the 
original data and information will be stored in a Mapped Read Format (MRF), which we previously published as 
part of our RSEQtools \cite{21134889}. The MRF is a compact data file format for storing both short and long 
reads in functional genomics assays. It decouples sequence and alignment information, and stores only the 
latter, thereby anonymizing confidential sequence information. CRAM, a highly optimized and widely used data 
compression tool, is very similar to MRF, but specifically for BAM files \cite{21245279}. We will adapt both 
MRF and CRAM to current context, by decoupling actual genotype or variant information from their genomic 
coordinates and storing only the coordinate information. Ultimately, using the file format, we will generate an 
anonymized dataset that could possibly be more easily shared with less risk of privacy issues.  
 
In addition to GEUVADIS, we intend to apply our software to all major functional genomic datasets, such as 
GTex[10], ENCODE[11], and TCGA[13], and variant calling datasets such as the 1000 Genomes Project [12] 
and the Hapmap 3 project \cite{20811451}. 
 
The second step creates a simulation of a privacy attack on gene expression levels that are the most extreme, 
which can potentially be used to identify the variants associated with such extreme gene expression levels, i.e. 
the greatest outliers in the dataset.  For this, we will implement practically the ‘extremity’ attack described in 
Aim 2 and find the gene expression level that has the greatest predictability. Then, reads associated with these 

Figure 10. Flowchart of Aim 3 approach 
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outlier gene expression levels can either be removed or the read counts can be modified to the mean gene 
expression level in a variety of fashion.  
 
 
 
Our study focuses on the individual privacy breaches in the context of linking attacks, where an individual’s 
existence in two seemingly independent databases (e.g., phenotype and the genotype) can cause a privacy 
concern when an attacker links statistically the databases using the a priori information about correlation of 
different entries in the databases. The fact that the available molecular phenotypes are (i.e., gene expression 
levels) generally very high in dimension makes this attack much more probable. The obvious risk management 
strategy against these attacks is restricting access to the phenotype datasets. The statistical techniques like k-
anonymization and differential privacy can also be utilized. These, however, have associated drawbacks about 
loss of biological utility, and high computational complexity. Moreover, some studies also demonstrated that 
there are still risks associated with linkability of the anonymized data24,30,31,57. We believe new studies should 
address protection and risk management strategies for serving utility-maximized and privacy-aware high 
dimensional phenotype datasets.  

[[Pitfalls]]3.3.3 Investigating other sources of ‘extremities’ 
Here we’ve focused on variants & outlier expression levels but there might be other sources of identifying 
information in RNA-seq data. Here we will attempt to survey these and get a sense of hteir magnitude….  
 
Finally, we will look for other types of extremity-identifying information in gene expression datasets. These may 
be cryptic information that can be teased from gene expression datasets and exploited to identify individuals. 
For example, very rare splice transcript isoforms resulting in aberrant gene expression profiles or rare non-
coding gene expression in specific individuals can potentially be exploited. These are not as well-studied but 
are nonetheless worth exploring, especially to investigate the degree to which privacy can be compromised. 
 

 
Figure 11: Anonymization Strategy for protection of RNA-seq datasets. 
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