RESPONSE TO REVIEWERS FOR "ALLELE-SPECIFIC BINDING AND EXPRESSION: A UNIFORM SURVEY OVER THE 1000-GENOMES-PROJECT INDIVIDUALS"

Response Letter

Reviewer #1

-- Ref1 – General positive comment --

Reviewer	This reviewer did not have formal comments to the authors		
Comment	as s/he found the revised paper to be satisfactory and		
	endorses publication.		
Author	We thank the reviewer for his/her thorough examination of our		
Response	manuscript and endorsing our paper for publication.		

Reviewer #2

-- Ref2.1 - General comment --

Reviewer	The authors did not adequately address my two major
Comment	concerns.
Author	We thank the reviewer for the thorough examination of our
Response	manuscript. We have provided additional analyses and responses.

-- Ref2.2 - mapping to the personal diploid genome --

Reviewer	My first comment was that mapping bias should be			
Comment	addressed. The authors replied by explaining that they			
	excluded reads that map to more than one location. This is			
	indeed a standard step in more alignment. Yet, the			
	challenge when looking for ASE is not standard. Different			
	alleles may have different mapping probabilities and this			
	must be taken into account. Failing to do so results in a			
	high number of falsely identified ASE.			
	I must admit that it is a bit concerning to me that the			
	authors interpreted my comment as a question regarding			
	their standard alignment approach. In my mind, it points			
	to a deep lack of familiarity with the ASE literature.			
Author	We agree with the reviewer that allelic mapping bias can be an			
Response	issue, and it has first been mentioned in Degner et al [1]. We are			
	aware of the allelic bias. We believe that it is accounted for, or at			
	least largely alleviated, by the construction of two parental			
	genomes. Here, we performed additional analyses to show that			
	allelic bias only affects a small proportion of our results. We			
	attribute this to our approach being already conservative, such as			
L $TN7$				
	1			

Deleted: We

Deleted: this Deleted: , demonstrating that Deleted: is

NOTESPAT

	filtering highly over-dispersed datasets and using the beta- binomial with an EDP of 5% or PNA sog and 10% for ChIP sog
	binomial with an FDR of 5% or RNA-seq and 10% for ChIP-seq datasets. The personal genome is also able to handle various
	mapping artefacts not easily handled by using only the reference
	genome. Particularly, with the ability to incorporate larger variants
	beyond single nucleotide variants (such as indels), the personal
	genome serves as a more representative genome as demonstrated by much better alignment of unique reads. Together,
	these conservative thresholds, filtering steps, the accommodation
	of larger variants and not using the reference genome are able to
	detect allele-specific SNVs with already a low number of false
	positives.
	Moreover, there is indeed still a discussion in the community on
	how to handle these issue. For example, while Kasowski et al [2]
	and Ding et al. [3] accounted for several other biases, both did not
	account for allelic bias, the former using personal genomes while
	the latter used the reference genome.
	[1] Degner et al. (2009) Bioinformatics. 25(24)
	[2] Kasowski, M. et al. (2013). Science. 342(6159):750-2
	[3] Ding, Z. et al. (2014). PLoS Genet. 10(11):e1004798
Excerpt From Revised Manuscript	

-- Ref2.3 - Over-dispersion -

[
Reviewer Comment	My second major concern was regarding the binomial test to identify ASE. The authors begin their response by citing other papers that used such a test. I am not sure what it the argument presented here, especially since the authors proceed by acknowledging over-dispersion in their data. So, yes, other paper got it wrong in the past, but this is hardly a reason to perpetuate this mistake.
	As for their revised approach, estimating a global over- dispersion parameter is not effective. Removing some loci because of 'too much' over-dispersion is ad hoc and was not justified. But more importantly, there are at least 3 published methods now to identify ASE using models that estimate site-specific over-dispersion, account for mapping bias, and report p values based on permutation. Why not use one of those published methods?
Author Response	While we thank the reviewer for his/her comment, the purpose of the references is not to make any claims on the 'correctness' of the methods, but to point to the broader reality that there is currently a diversity of methods in the field, where there is no firm consensus on the 'right' approach. The fact that these publications are recent and peer-reviewed at influential journals indicates the plurality of

Deleted: alleviates this type of allelic bias.

MULLEY

	the methods accepted by the community, each with their own	
	advantages and limitations. For example, van de Geijn et al. [1]	ormatted: Font: Not Italic
	presented a software that perform alignment to the human	
	reference genome, accounts for allelic bias and allele-specific	
	detection using the beta-binomial test to account for a global over-	
	dispersion. However, it is not able to take into account indels and	
	larger structural variants, which can be accommodated by the	
	construction of personal genomes. In particular, we have utilized	
	our approach in the 1000 Genomes Structural Variant group,	
	whose manuscript has recently been peer-reviewed and accepted	
	by Nature.	
	Our revised approach estimates over-dispersion at two levels. An	eleted: Also, our
	over-dispersion is estimated for each individual dataset to remove	
	entire datasets that are deemed too over-dispersed and might	
	result in higher number of false positives. After which, for each	
	sample (for RNA-seq and each sample and transcription factor,	eleted: individual (
	TF, for ChIP-seq experiments), we pool the datasets and estimate	
	the <u>global</u> over-dispersion (for each sample for RNA-seq and also	
	each sample and transcription factor for ChIP-seq) and apply this estimation to the beta-binomial test for each site in that individual	
	(or TF). <u>Hence</u> , in this manner, the estimation of the over-	
	dispersion can accommodate user-defined site-specific estimation	<u> </u>
	of over-dispersion if necessary. Our R code is provided on our	
	website for modifications and more customized analyses by the	
		$\mathcal{P}_{\mathcal{S}} \mathcal{S}_{\mathcal{S}}$
	user.	
	While the estimation of a global over-dispersion has also been	eleted: latter step have
	employed extensively in many recent software that detects allele-	eleted: also
	specific expression [1-5], we point out that our two-step serial	
	procedure is novel and homogenizes the pooling by removing	
	datasets that are too over-dispersed in the first place. The two-step	eleted: Perhaps we were not sufficiently clear, we
	procedure additionally facilitates our uniform processing of large	ave amended the manuscript to better reflect this.
	amounts of data and alleviates an ascertainment bias in which	
	more positives might originate from these highly over-dispersed	
	datasets if they are not removed.	
	Hence, we have retained our estimation and use of a global over-	
	dispersion for detecting allele-specific variants.	1 15
	[1] van de Geijn <i>et al.</i> (2015). <i>bioRxiv</i> . doi:	
	http://dx.doi.org/10.1101/011221	
	[2] Sun (20132). Biometrics. 68(1):1-11	
	[3] Mayba et al. (2014). Genome Biology. 15(8):405	$ > \pi n N $
	[4] Crowley et al. (2015). Nature Genetics. 47(4):353-60	
	5] Harvey et al. (2015). Bioinformatics. 31(8):1235-42	
Excerpt From		
		ABC I
		(V ere

Revised Manuscript

Reviewer #3

-- Ref3.1 - General positive comment --

Reviewer	The manuscript is much improved and the authors have	
Comment	sufficiently addressed the majority of my concerns. I have	
	the following minor comments:	
Author	We thank the reviewer for the thorough examination of the	
Response	manuscript and we are pleased that the reviewer finds our	
	improved manuscript satisfactory.	

-- Ref3.2 - Include additional references --

Reviewer Comment	1) Imprinting discussion should reference recent imprinting paper from GTEx. Lappalainen in Genome Research.	
	 Heritability analyses of ASE should reference Li, AJHG, 2014. 	
Author Response	We have included the references in the respective sections of the manuscript.	
Excerpt From Revised Manuscript	Please refer to the 'Discussion' section and also the 'Results' section under "ASB and ASE Inheritance analyses using CEU trio".	
	"It could also be a result of other epigenetic effects such as genomic imprinting where no variants are causal. ³⁵ ", where reference 35 is by the GTEx consortium and Baran <i>et al.</i> published in <i>Genome Research</i> .	
	"The CEU trio is a well-studied family and with multiple ChIP-seq studies performed on different TFs. Previous studies have also presented allele-specific inheritance. ^{10,15,21} ", where reference 21 is by Li <i>et al.</i> published in <i>American Journal of Human Genetics</i> .	