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Abstract. According to Fortunato and Barthélemy, modularity-based community detection algorithms
have a resolution threshold such that small communities in a large network are invisible. Here we generalize
their work and show that the q-state Potts community detection method introduced by Reichardt and
Bornholdt also has a resolution threshold. The model contains a parameter by which this threshold can be
tuned, but no a priori principle is known to select the proper value. Single global optimization criteria do
not seem capable for detecting all communities if their size distribution is broad.

PACS. 89.75.-k Complex systems – 89.75.Hc Networks and genealogical trees – 89.75.Fb Structures and
organization in complex systems – 89.65.-s Social and economic systems

1 Introduction

Networks are an efficient way to represent a variety of
complex systems, including technological, biological and
social systems [1,2]. Many networks have substructures
called communities, which are, loosely speaking, groups of
nodes that are densely interconnected but only sparsely
connected with the rest of the network [3–6]. Detecting
such communities is of interest, because they may provide
valuable information of the substructure and functionality
of the network, e.g., functional modules in metabolic net-
works, communities of individuals interacting with each
other, etc. This analysis can also be extended to more com-
plex properties, including networks of communities [7],
roles of nodes inside and between communities [6], and
the effect of communities on the dynamics of for example
information flow through the network [8].

A large number of algorithms have been developed for
detecting the communities, for reviews see [9,10]. A par-
ticularly popular method is based on the concept of mod-
ularity Q introduced by Newman and Girvan [11]:

Q =
∑

s

ess − a2
s, (1)

where ers is the fraction of links that fall between nodes
in communities r and s and as =

∑
r ers. Detecting com-

munities is equivalent to optimizing the modularity of
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the network, where optimization is computationally de-
manding, especially for large networks, but solvable with
various approximate methods [11–15]. Modularity opti-
mization has been shown to perform well for many test
networks [9,16].

Recently, Fortunato and Barthélemy showed that mod-
ularity optimization fails to find small communities in
large networks, indicating that it is favorable to com-
bine small communities into larger ones [17]. In a net-
work which has L links, there is a characteristic number
of links, such that communities with less than

√
L/2 links

are not visible. Earlier Reichardt and Bornholdt (RB) had
introduced a general framework for community detection,
which includes the modularity optimization as a special
case [18,19]. Starting from a q-state Potts Hamiltonian,
they show that community detection can be interpreted
as finding the ground state of an infinite-range spin-glass.
Potts spins are assigned to the nodes of the network and
the communities can be identified as clusters of aligned
spins in the ground state. The model is based on a com-
parison of the investigated network to a null model which
can be arbitrarily chosen. In addition, the method contains
a tunable parameter γ for detecting community structures
at different hierarchical levels. The Newman-Girvan mod-
ularity optimization method is a special case in this gen-
eral framework, where the null model is the configuration
model [20] and γ = 1. The question arrises whether the
more general RB spin-glass-based community detection
method is able to overcome the limitations of the modu-
larity optimization. Our paper addresses this question.
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We analyze the effect of γ on community detection and
consider how to design a network with optimal community
structure, study the resolution limit and its estimates by
using a general null model, and, finally, demonstrate the
consequences of our findings in certain example cases.

2 Optimal number of communities in the RB
model

For detecting the communities in a network, Reichardt
and Bornholdt proposed the following Hamiltonian:

H = −
∑

i�=j

(Aij − γpij) δ(σi, σj), (2)

where Aij denotes the adjacency matrix of the graph
with Aij = 1 if an edge is present and zero otherwise,
σi ∈ {1, 2, . . . , q} denotes the group index of node i, γ is
a parameter of the model, and pij denotes the link proba-
bility between nodes i and j according to the null model.
The null model reflects the connection probability between
nodes in a network having no apparent community struc-
ture. Possible choices for the null model are, for example,
pij = p and pij = 1

2Lkikj , where ki is the degree of node i
and L is the number of links in the network. The former
null model corresponds to the Erdös-Rényi network [21],
whereas the latter one is closely related to the configura-
tion model. The Hamiltonian (2) rewards existing links in-
side communities, but the reward is reduced if pij is large.
Furthermore, the penalty of a missing link inside a com-
munity is proportional to its probability. The modularity
Q of equation (1) is related to equation (2) as Q = −H/L,
provided that γ = 1 and pij = 1

2Lkikj .
In order to gain some insight to the model given by

equation (2), we consider two limits of γ. First, when
γ → 0 each link inside a community comes as a “sur-
prise”, while the missing links are not increasing the en-
ergy as they are not expected to exist. Thus, in the limit
γ = 0 the minimum energy is obtained when all nodes
are assigned into the same community, and the minimum
energy is H = −2L. Second, when γ � 1 communities
are broken into smaller pieces because the penalty from
missing links is large and all existing links are considered
to be extremely likely. When γ exceeds the inverse of the
minimum of non-zero pij :s, the terms Aij − γpij in (2)
become all negative, and the minimum energy is obtained
when each node is regarded as a separate community, re-
sulting in H = 0. This demonstrates that for small values
of γ, one can expect to find large community structures,
whereas for large values of γ only small community struc-
tures are found. The total amount of energy that can pos-
sibly be contributed by links and non-links is equal for
γ = 1, which can be regarded as a natural choice. Later
we show, however, that optimizing the energy with γ = 1
does not necessarily yield the obvious and most natural
community structure even in a simple test case.

Following the steps in [17], we next consider how to de-
sign a connected network with N nodes and L links such

that the energy (2) is minimized. In particular, we are in-
terested in the optimal number of communities as a func-
tion of L and γ. Therefore, we study a network which has
n̂ fully connected subgraphs (or cliques) of equal size, be-
ing interconnected with n̂ links and arranged in a ring-like
structure, see Figure 1A. This network has by construc-
tion n̂ communities, namely the cliques, i.e., the links in-
side the cliques are intra-community, while those connect-
ing them are inter-community links. The minimization of
(2) should reflect this structure providing the n̂ equal size
communities. Moreover, for such an obvious structure this
result should be robust against changing γ or even the null
model.

Equation (2) can be rewritten as

H = −
n∑

s=1

(
ls − γ[l]spij

)
, (3)

where ls is the number of links inside community s and
[l]spij

is the expected number of links in that community
given the link distribution pij and the current assignment
of nodes into communities [19]. In order to be compat-
ible with the calculations in [17], we choose first to use
pij = 1

2Lkikj , i.e., our reference system is the configura-
tion model. In this case, [l]spij

= 1
4LK2

s , where Ks is the
sum of degrees of nodes in community s. It is straightfor-
ward to show that equation (3) is minimized when each
community has L/n− 1 links. Then, the energy is

Hmin(n, γ, L) = −
(

L − n − γ
L

n

)
. (4)

The optimal number of communities, n∗, is obtained as the
zero of the derivative dHmin(n, γ, L)/dn. This yields n∗ =√

γL, which in turn gives back the result of [17] for γ = 1.
If the null model is pij = p, i.e., an Erdős-Rényi graph,
a similar calculation shows that the energy minimum is
obtained when each community has an equal number of
nodes. In this case, the optimal number of communities is
n∗ =

√
γLN/(N − 1).

Let us suppose that, given N and L, we have con-
structed a ring-like network as described above, having
more than

√
γL cliques. Previous analysis shows, coun-

terintuitively, that when each clique is considered as a
separate community the energy (3) is not minimized. In-
stead, it is better to relabel the communities so that small
communities are merged to form larger ones. On the other
hand, if the number of communities is much smaller than√

γL it might be advantageous to split large communi-
ties into smaller ones. Therefore, the original, well defined
communities are not necessarily found by optimizing the
quality function (3). In particular, small communities may
remain unresolved.

3 Resolution threshold with a general null
model

The previous section suggests that the most common null
models, pij = 1

2Lkikj and pij = p, lead to merging of small
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Fig. 1. (A) a ring-like network of n cliques joined by n links.
(B) Consecutive cliques can be merged to form larger com-
munities. The optimal configuration depends on the network
parameters and γ.

communities in large networks. In this section we investi-
gate the case of a general null model and the effect of γ
on the resolution. Hence, we consider a general undirected,
unweighted network having N nodes and L links. Let us
suppose that the nodes have somehow been assigned to
communities. We take two communities, labeled s and r,
each having ls and lr links inside and ls↔r links between
them. The question is, when should the communities be
merged? At first, the energy (3) reads as follows

E1 =
∑

t�=s,r

(−lt + γ[l]tpij
) + (−lr + γ[l]rpij

) + (−ls + γ[l]spij
)

(5)
whereas after combining the communities the energy is

E2 =
∑

t�=s,r

(−lt + γ[l]tpij
) +

[
−(lr + ls + ls↔r) + γ[l]s+r

pij

]
,

(6)
where [l]s+r

pij
is the expected number of links in the com-

bined community and ls↔r is the number of links between
the communities s and r. The communities should be com-
bined if

∆E = E2 − E1 = −ls↔r + γ
(
[l]s+r

pij
− [l]rpij

− [l]spij

)
< 0.

(7)
But [l]s+r

pij
−[l]rpij

−[l]spij
≡ [l]s↔r

pij
is the expected number of

links between the communities and equation (7) reduces
to

γ[l]s↔r
pij

< ls↔r. (8)

As the communities have ns and nr nodes each, the max-
imum number of links between the communities is nsnr.
In a large network, the average probability for connecting
two nodes has to be of the order of N−1, regardless of the
null model. Therefore, the expected number of links be-
tween the communities, [l]s↔r

pij
, is on average of the order of

nsnr/N . Using this estimate in equation (8) suggests that
even a single link between small communities may trigger
merging if the communities are small, i.e., ns, nr � N . In
particular, communities of approximately the same size
are merged if

ns ≈ nr �
√

Nls↔r/γ. (9)

Now, let us suppose the communities are loosely connected
to each other, that is, ls↔r ∼ 1. When this is applied
in equation (9), we obtain that it is beneficial to com-
bine communities smaller than ∼√

N/γ. This is the lower
limit for the community size that the method is able to de-
tect. Large values of γ decrease this resolution threshold,
but rather inefficiently. When the communities are more
densely interconnected, the resolution threshold increases.
In the extreme (unphysical) limit, when the communities
are connected with ls↔r ∼ L links, equation (9) indicates
that even communities whose size is comparable to the
whole network may remain unresolved. Similar results for
the resolution thresholds were obtained in reference [17]
for the case γ = 1, pij = kikj/2L: two tightly connected
communities may be merged if each has less than L/4
links, whereas the lower limit is

√
L/2 for communities

connected with a single link.
The community structure found by the RB model cor-

responds to the global minimum of (3). It should be noted
that the previous calculations do not prove that the par-
ticular communities s and r will be in the same commu-
nity for the global minimum. The calculations show, how-
ever, that the global minimum does not contain connected
communities smaller than the above mentioned size lim-
its, because by combining them a lower energy would be
achieved.

Equation (8) shows also that cliques are stable against
splitting for any reasonable γ. Suppose that a clique is
split into two parts each having ns and nr nodes. The
parts have the maximum number ls↔r = nsnr of con-
necting links. Substituting this and [l]s↔r

pij
∼ nsnr/N into

equation (8) shows that it is beneficial to split a clique
only when γ ∼ N . Such high value of γ does not, however,
make sense because it would lead to splitting the network
into individual nodes for the following reason. In this case
the average value of links from a node according to the
null model would exceed the maximum possible number
of links from a node, and the communities would be split
into individual nodes. We conclude that when γ � N
cliques and almost complete cliques are not split.

4 Examples

We illustrate the consequences of the above results in four
example cases. Let us first consider the simplest possi-
ble case of community detection [17]: the network consists
of a ring of complete cliques joined by single links, Fig-
ure 1A. There are n cliques and each clique has m nodes
and m(m − 1)/2 links. Figure 1B shows a case where r
consecutive cliques are merged to form a single commu-
nity. A straighforward calculation shows that in this case,
the energy is given by

Hn
r
(γ) = −n

(
m(m − 1)

2
+

r − 1
r

)
+ γ

rn

4L
m2(m − 1)2,

(10)
when pij = 1

2Lkikj . By joining cliques, we get a “bonus”
from the links joining the cliques, i.e., term (r − 1)/r,



44 The European Physical Journal B

0.5 1 1.5 2 2.5
−2.7

−2.65

−2.6

−2.55

−2.5

−2.45

−2.4

−2.35

−2.3

γ

E
ne

rg
y/

N

 

 

H
n

H
n/2

H
n/3

H
n/4

H
n/5

H
n/6

Fig. 2. Energy (10) as a function of γ for a system where
n = 60, m = 6 and r = 1, . . . , 6. The optimal configuration
depends on γ and the natural communities are found only when
γ > 1.875, cf. equation (11).

but in large communities the expected number of links
inside the communities is increasing faster than in small
communities. Thus, for small γ the merged cliques have
low energy, but as γ increases the energy is growing quite
fast as illustrated in Figure 2. The optimal configuration
found by optimizing equation (2) is the configuration that
has the lowest energy for the given values of n, m and γ.
Especially, it can be shown that the natural communities
are found only if

m(m − 1) + 2 >
n

γ
. (11)

When the link probability is pij = p, we obtain the same
result with a correction term of the order of (γm)−1.

Our second example is a random network, which has
often been used as a test network for community detection
algorithms [11]. The network consists of n communities
each having m nodes. Each node has on average 〈k〉 links
of which 〈kin〉 go to random nodes in the same group and
〈kout〉 = 〈k〉 − 〈kin〉 links lead randomly to nodes in other
communities. Let us now calculate when, on the average,
it is beneficial to merge two designed communities. We
obtain that the average number of observed links between
the communities is

〈ls↔r〉 =
m

n − 1
〈kout〉, (12)

where the averaging is done over all the realizations of the
network. Note that if m/(n − 1)〈kout〉 < 1 we have to set
〈ls↔r〉 = 1 because we are considering only communities
which are connected by at least one link. The null model
is again pij = 1

2Lkikj . According to the null model the

expected number of links between communities is

[l]s↔r
pij

=
1

2L
(m〈k〉)2 =

m〈k〉
n

, (13)

when averaged over the realizations of the network. Now
equations (8, 12) and (13) give that the communities are
merged if

γ <

{ 〈kout〉
〈k〉

n
n−1 for n < 1 + m〈kout〉

n
m〈k〉 for n > 1 + m〈kout〉. (14)

For typical values n = 4, m = 32, 〈k〉 = 16 and
〈kout〉 = 1 . . . 8 we find that γ = 1 should give the correct
communities. Thus, it is not surprising that community
detection based on modularity optimization (1) performs
well for this network. We point out that it is possible to
choose the parameters n, m, 〈k〉 and 〈kout〉 in such a way
that modularity optimization with γ = 1 does not give
the designed communities.

As a third example we note that the Potts Hamiltonian
(2) can be generalized to weighted networks by using a
weighted adjacency matrix Wij . A simple way to do this
is to define

Hw = −
∑

i�=j

(Wij − γwijpij)δ(σi, σj), (15)

where wij is the average link weight. In this way, strong
links inside communities lower the energy greatly, while
missing links are assumed to be of average weight. Using
weights does not, however, resolve the underlying problem
that in a large network even a single link easily exceeds
the expected weight between the communities.

Finally, in Figure 3 we demonstrate the effect of net-
work size on the resolution of the Potts method. Panel (a)
shows a network of four groups of 10 nodes. We have com-
pared the energies (3) for two community divisions using
γ = 1 and the configuration null model. E1 = 0 is the
energy for the case when all four groups are assigned to
a single community, whereas E4 = −100.2 is the energy
when the four groups are each assigned to a different com-
munity. In this case, E4 < E1, i.e. the groups are prop-
erly identified as communities. However, if the original
network of panel (a) is modified such that an additional
60-clique community is connected to it via a single link,
the situation is changed. All nodes of this new 60-clique
are assigned to a single community. Now, E′

1 = −271.17
is the energy when the original four groups are merged
into a Potts community, and E′

4 = −269.73 the energy
when they are assigned to separate communities. Hence
E′

1 < E′
4, i.e., the energy for merged groups is lower. This

is unphysical, since connecting the new clique via a single
link does not alter the original four-group topology.

5 Conclusions

In the light of the above considerations it is clear that
the problem of the resolution limit is not restricted to
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Fig. 3. An example of the effect of network size on the resolu-
tion of the Potts method. Symbols correspond to communities.
See text for details.

the Newman-Girvan method of modularity optimization.
Rather, it is a flaw which seems to be present in any com-
munity detection scheme based on global optimization of
intra- and extra-community links and on a comparison to
any null model. The limited resolution rises from the fact
that in a large network the expected number of links be-
tween two small sets of nodes is small and even a single link
between the sets is enough to merge them. The null model
uses the global probability of connecting nodes while the
small communities should be considered on a more local
level. We agree with the conclusion of reference [17] that
presently, in large networks, local community detection
methods like [6] seem to perform better from the point of
view of resolution. An alternative solution to this prob-
lem could be to iteratively change the parameter γ when
looking for smaller communities in a large network.

Our results indicate that when the community struc-
ture is not known beforehand, there is no simple way to
decide which γ gives the most relevant communities. More-
over, if the size distribution of the communities is broad,
like in collaboration networks [6] or school friendship net-
works [22], there is no single proper value of γ for the op-
timal resolution. The hierarchical structure can be exam-
ined to some extent by using several values of γ [19], but
this method may find too much hierarchy in the network
as it tends to artificially merge communities. Because of
this tendency, one should always carefully investigate the
structure of the found communities.

J.K. thanks Santo Fortunato for inspiring discussions at ISI,
Torino. This work was partially supported by OTKA K60456
and the Academy of Finland (Center of Excellence program
2006-2011).
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