
Significance 
Privacy is one of the most important topics of debate in data science that stands at the corner of many 

different fields, including ethics, sociology, law, political science, and forensic science. Recently, 

genomics has emerged as one of the major foci of studies on privacy. This can mainly be attributed to 

the advancement of technologies for high throughput biomedical data acquisition that bring about a 

surge of datasets[1, 2]. Among these, high throughput molecular phenotype datasets, like functional 

genomic and metabolomic measurements, substantially grow the list of the quasi-identifiers (such as 

birth date, ZIP code, gender[3]) for participating individuals, which can be used by an adversary for re-

identification of the identities. With the recent announcement of Precision Medicine Initiative[4], a large 

body of datasets are to be generated and shared among researchers[5]. The National Institutes of 

Health also released the plans to encourage public access to biomedical datasets from scientific studies 

[5–7]. Considering the fact that one does not need many identifiers to uniquely pinpoint an individual[3, 

8, 9], these datasets have the potential to exacerbate the risk of privacy breach.  

Many consortia, like GTex[10], ENCODE[11], 1000 Genomes[12], and TCGA[13], are generating large 

amount of personalized biomedical datasets. Coupled with the generated data, sophisticated analysis 

methods are being developed to discover correlations between genotypes and phenotypes, some of 

which can contain sensitive information like disease status. Although these correlations are useful for 

discovering how genotypes and phenotypes interact, they could also be utilized by an adversary in a 

linking attack for matching the entries in genotype and phenotype datasets. For example, when a 

phenotype dataset is available, the adversary can utilize the genotype-phenotype correlations to 

statistically predict the genotypes, compare the predicted genotypes with the entries in another dataset 

that contains genotypes. For the entries that are correctly matching, he/she can reveal sensitive 

phenotypes of the individuals and characterize them. Even when the strength of each genotype-

phenotype correlation is not high, the availability of a large number of genotype-phenotype correlations 

increases the scale of linking. In fact, an adversary can perform correct linking with relatively small 

number of genotypes[14, 15]. 

Different aspects of privacy have been intensely studied. Recently, genomic privacy is receiving much 

attention as a result of the deluge of personalized genomics datasets that are being generated[16, 17]. 

With the increase in the number of large scale genotyping and phenotyping studies, the protection of 

privacy of participating individuals emerged as an important issue. Homer et al[18] proposed a statistical 

testing procedure that enables testing whether a genotyped individual is in a pool of samples, for which 

only the allele frequencies are known. Im et al[19] showed that, given the genotypes of a large set of 

markers for an individual, an attacker can reliably predict whether the individual participated to a QTL 

study or not. These attacks, which we refer to as “detection of a genome in a mixture”, are one type of 

attacks on privacy (Fig S6). There is yet another important attack where the attacker links two or more 

datasets to pinpoint individuals in datasets and reveal sensitive information. One well-known and 

illustrative example of these “linking attacks”, although not in a genomic context, is the linking attack 

that matched the entries in Netflix Prize Database and the Internet Movie Database (IMDB)[20]. For 

research purposes, Netflix released an anonymized dataset of movie ratings of thousands of viewers, 

which they thought was secure as the viewers’ names were removed. However, Narayanan et al[20] 

used IMDB database, a seemingly unrelated and very large database of movie viewers, linked the two 

databases, and revealed identities and personal information (movie history and choices) of many 



viewers in the Netflix database. The fact that Netflix and IMDB host millions of individuals in their 

databases renders the question of detection of an individual in these database irrelevant since any 

random individual is very likely to be in one or both of these databases but the focus of attacks turns to 

matching individuals in the databases. Consequently, as the databases grow, the attacks for detection of 

an individual in a database become unimportant and the linking attacks become more admissible in 

order to characterize individuals’ sensitive information. In the genomic privacy context, as the size and 

number of the genotype and phenotype datasets increase, possibility of potentially linkable datasets will 

increase, which may make scenarios similar to Netflix attacks a reality in genomic privacy (Fig S6, Section 

S2). 

Innovation 
We focus on characterizability of the individuals’ sensitive information in the context of linking attacks, 

where the adversary exploits the genotype-phenotype correlations to link different datasets and 

potentially reveal sensitive information. In general, the high dimensional phenotype datasets generated 

in genomic studies harbor a number of phenotypes that contain sensitive information, like disease 

status, and other phenotypes, while not sensitive, may have subtle correlations with genomic variant 

genotypes. Many quantitative phenotypes can be linked to genotypes using public quantitative trait loci 

(QTL) datasets. Some of the high dimensional genomic quantitative traits and corresponding QTLs are 

gene expression levels (eQTLs), protein levels (pQTLs[21, 22]), DNase hypersensitivity site signals 

(dsQTLs[23]), ribosome occupancy (rQTLs[24]), DNA methylation levels (meQTLs[25]), histone 

modification levels (haQTLs[26–28]), RNA splicing (sQTLs[29]), and also higher order traits like network 

modularity (modQTLs[30]). Other QTLs associated with single dimensional non-genomic phenotypes 

include body mass index[31], basal glucose levels[32], and serum cholesterol levels[21, 33]. Each QTL 

can potentially cause a small amount of genotypic information leakage. As these QTLs are often 

identified and reported at genomic scale, when an adversary utilizes a large number of QTLs in the 

attack, he/she can accurately link the sensitive phenotypes to the genotype dataset. Since genotypes 

can almost perfectly identify an individual, this linking attack can potentially cause a breach of privacy 

for the individuals who participated in the studies. For generating a set of preliminary results, we will 

use the expression dataset from the GEUVADIS project[34] and the genotype dataset from the 1000 

Genomes Project. We will generalize the formalisms, however, to be applicable to any type of QTL, 

genotype, and phenotype datasets. We will plan to apply the developed formalisms on the datasets 

generated by the large scale genotyping and phenotyping projects like GTex, TCGA, HAPMAP, ICGC, 

ENCODE, and others.  

We will address the need for new computational approaches for analyzing sensitive information leakage 

within 3 aims. In the first aim, we will develop statistical formalisms for quantification of the leakage of 

information that enables pinpointing of individuals in genotype and phenotype datasets with use of 

QTLs. In the second aim, we will focus on specific linking attacks and work on instantiations of the linking 

attacks using outliers in the phenotype datasets. In the third aim, we will focus on proposing file formats 

and methodologies that enable privacy preserving sharing and publishing of the phenotype datasets. 

Figure 1 shows how we will utilize the methodologies proposed in each aim can be combined for an 

integrated risk assessment for releasing QTL, phenotype, and genotype datasets. 

 



 

 

  

Figure 1: Generalized Risk Assessment Scenario for Genotype-Phenotype Datasets: The joint genotype and phenotype  



 

Figure 2:Schematic Representation of a Linking Attack: The attacker links the phenotype and genotype datasets using the 
genotype predictions. In the predictions, the attacker utilizes the QTL datasets. The resulting attack generates the linked 

genotype (green), phenotype(orange), and sensitive phenotype (yellow) dataset. 



AIM1: Development of a Statistical Formalism for Leakage from QTL Sets 
In this aim, we will develop a statistical framework for analysis and quantification of the information 

leakage that can be used for pinpointing and linking individuals in the phenotype and in the genotype 

datasets using QTL datasets. 

 

Figure 3: The representation of the genotype and expression datasets. 

Overview of the Individual Characterization Scenario by Linking Attacks 
Figure 2 illustrates the general privacy breaching scenario that is considered. There are three datasets in 

the context of the breach. First dataset contains the phenotype information for a set of individuals. The 

phenotypes can include sensitive information such as disease status in addition to several molecular 

phenotypes such as gene expression levels. The second dataset contains the genotypes and the 

identities for another set of individuals.  The third dataset contains correlations between one or more of 

the phenotypes in the phenotype dataset and the genotypes. In this dataset, each entry contains a 

phenotype, a variant, and the degree to which these values are correlated. We will focus on the gene 

expression datasets as the representative phenotype dataset. The abundance of gene expression-

genotype correlation (eQTL) datasets makes these datasets most suitable for linking attacks.  

Figure 3 illustrates the eQTL, expression, and genotype datasets. The eQTL dataset is composed of a list 

of gene-variant pairs such that the gene expression levels and variant genotypes are significantly 

correlated. We will denote the number of eQTL entries with 𝑞. The eQTL (gene) expression levels and 

eQTL (variant) genotypes are stored in 𝑞 × 𝑛𝑒 and 𝑞 × 𝑛𝑣 matrices 𝑒 and 𝑣, respectively, where 𝑛𝑒 and 



𝑛𝑣 denotes the number of individuals in gene expression dataset and individuals in genotype dataset.  

The 𝑘𝑡ℎ row of 𝑒, 𝒆𝒌, contains the gene expression values for 𝑘𝑡ℎ eQTL entry and 𝑒𝑘,𝑗 represents the 

expression of the 𝑘𝑡ℎ gene for 𝑗𝑡ℎ individual. Similarly, 𝑘𝑡ℎ row of 𝑣, 𝒗𝒌, contains the genotypes for 𝑘𝑡ℎ 

eQTL variant and 𝑣𝑘,𝑗 represents the genotype (𝑣𝑘,𝑗 ϵ {0,1,2}) of 𝑘 variant for 𝑗𝑡ℎ individual. The coding 

of the genotypes from homozygous or heterozygous genotype categories to the numeric values are 

done according to the correlation dataset.  We assume that the variant genotypes and gene expression 

levels for the 𝑘𝑡ℎ eQTL entry are distributed randomly over the samples in accordance with random 

variables (RVs) which we denote with 𝑉𝑘 and  𝐸𝑘, respectively. We denote the correlation between the 

RVs with ρ(𝐸𝑘 , 𝑉𝑘). In most of the eQTL studies, the value of the correlation is reported in terms of a 

gradient (or the regression coefficient) in addition to the significance of association (p-value) between 

genotypes and expression levels. The absolute value of ρ(𝐸𝑘 , 𝑉𝑘) indicates the strength of association 

between the eQTL genotype and the eQTL expression level. The sign of ρ(𝐸𝑘 , 𝑉𝑘) represents the 

direction of association, i.e., which homozygous genotype corresponds to higher expression levels. This 

forms the basis for correct predictability of the eQTL genotypes using eQTL expression levels: The 

homozygous genotypes associate with the extremes of the gene expression levels and the heterozygous 

genotypes associate with moderate levels of expression. The eQTL studies utilize linear models to 

identify the gene and variant pairs whose expressions and genotypes that are significantly correlated. 

Given this knowledge, the adversary aims at reversing this operation so as to predict genotypes for each 

individual, using the respective gene expression levels and the genotype-phenotype correlation. For 

general applicability of the analysis, we will assume that he/she utilizes a prediction model that 

estimates correctly the a posteriori distribution of the eQTL genotypes given the eQTL expression levels, 

i.e., 𝑝(𝑉𝑘|𝐸𝑘). This will enable us to perform quantifications independent of the prediction methodology 

utilized by the attacker.  

Quantification of Tradeoff between Correct Predictability of Genotypes and Leakage of 

Individual Characterizing Information  
We will study the tradeoff the correct predictability of genotypes and the number of individuals that can 

be characterized with the information leakage (Figure 4). In the context of the linking attack, the 

attacker aims to correctly characterize 𝑛𝑒 individuals in the expression dataset among 𝑛𝑣 individuals in 

the genotype dataset. In order to correctly characterize an individual, he/she should select a set of 

eQTLs that he/she believes he/she can predict correctly. Next, given the individual’s expression levels, 

the attacker should predict the genotypes for the selected eQTLs correctly such that the predicted set of 

genotypes are not shared by more than 1 individual, i.e., the predicted genotypes can be matched to the 

correct individual. In other words, the joint frequency of the set of predicted genotypes for the selected 

eQTLs should be 
1

𝑛𝑣
. We can rephrase this condition as following in information theoretic terms: Given 

the genotypes of an individual, if the attacker can correctly predict a subset of genotypes that contain at 

least log2(𝑛𝑣) bits of information, the individual is vulnerable to characterization of his/her phenotypes. 

Following this statement, we can quantify the leakage from a set of correctly predicted eQTL variant 

genotypes as the logarithm of their joint frequency. Assuming that the genotypes of different eQTLs are 

independent from each other, we can decompose the quantity of individual characterizing information 

that is leaked for a set of 𝑛 correctly predicted eQTL genotypes:  



 

𝐼𝐶𝐼({𝑉1 = 𝑔1, 𝑉2 = 𝑔2, … , 𝑉𝑛 = 𝑔𝑛}) = ∑ −log(𝑝(𝑉𝑘 = 𝑔𝑘))⏟            
Convert the genotype 

frequency to number of bits
that can be used to characterize

individual

𝑛

𝑘=1

⏞                    

Sum individual characterizing 
information from all variants

 

 

(1) 

where 𝑉𝑘 is the random variable that corresponds to the genotypes for the kth eQTL, 𝑔𝑘 is a specific 

genotype, and 𝑝(𝑉𝑘 = 𝑔𝑘) denotes the genotype frequency of 𝑔𝑘 within the population, and ICI denotes 

the total individual characterizing information. Evaluating the above formula, ICI increases as the 

frequency of the variant’s genotype 𝑔𝑘 decreases. In other words, the more rare genotypes contribute 

higher to ICI compared to the more common ones. Thus, individual linking information can be 

interpreted as a quantification of how rare the predicted genotypes are. The attacker aims to predict as 

many eQTLs as possible such that ICI for the predicted genotypes is at least log(𝑛𝑣). ICI can also be 

interpreted as the number of rare SNP genotypes that an individual harbors. 

In order to maximize the amount of ICI, the attacker will aim at correctly predicting as many eQTL 

genotypes as possible. The (correct) predictability of the eQTL genotypes from expression levels, 

however, varies over the eQTL dataset as some of the eQTL genotypes are more highly correlated (i.e., 

more correctly predictable) with the expression levels compared to others, given in |ρ(𝐸𝑘 , 𝑉𝑘)|. Thus, 

the attacker will try to select the eQTLs whose genotypes are the most correctly predictable to maximize 

ICI leakage. Although ρ(𝐸𝑘 , 𝑉𝑘) is a measure of predictability, it is computed differently in different 

studies. In addition, there is no easy way to combine these correlation values when we would like to 

estimate the joint predictability of multiple eQTL genotypes. In order to uniformly quantify the joint 

(correct) predictability of the eQTL genotypes using the expression levels, we use the exponential of 

entropy of the conditional genotype distribution given gene expression levels. Given the expression 

levels for  𝑗𝑡ℎ individual, we compute the predictability of the 𝑘𝑡ℎ eQTL genotypes as 

 

𝜋(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗) = exp (−1 × 𝐻(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗)⏞          

Randomness left in 𝑉𝑘
given 𝐸𝑘=𝑒𝑘,𝑗

)⏟                    
Convert the entropy to 
average probability

 

 

(2) 

where 𝜋 denotes the predictability of 𝑉𝑘 given the gene expression level 𝑒𝑘,𝑗. 𝜋 can be interpreted as 

the average probability (when sampling individuals from the population) that the attacker can correctly 

predict the eQTL genotype at the given expression level. In the above equation for 𝜋, the conditional 

entropy of the genotypes is a measure for the randomness that is left in genotype distribution when the 

expression level is known. In the case of high predictability, the conditional entropy is close to 0, and 

there is little randomness left in the genotype distribution. Taking the exponential of negative of the 

entropy converts the entropy to average probability of correct prediction of the genotype. In the most 

predictable case (conditional entropy close to 0), 𝜋 is close to 1, indicating very high predictability. 

As a preliminary study to show how these measures can be used jointly, we considered each eQTL and 

evaluated the genotype predictability versus the characterizing information leakage. We use the gene 

expression data from the GEUVADIS project as a representative dataset for this computation. We 



computed, for each eQTL, average 𝜋 and average ICI over all the individuals (Figure 5). Most of the data 

points are spread along the diagonal, which indicate that there is a natural tradeoff between correct 

predictability and ICI leakage. The eQTL variants with high frequency major allele frequencies have high 

predictability and low ICI and vice versa for eQTL variants with lower major allele frequency (Fig 5, left). 

This is expected because the genotypes of the high frequency variants can be predicted, on average, 

easily (most individuals will harbor one dominant genotype) and consequently does not deliver much 

characterizing information. The genotypes for the eQTLs with smaller major frequency alleles, however, 

are harder to predict as they are mostly uniformly distributed among population. On the other hand, 

these eQTLs contain high ICI on average. The eQTLs with high correlation (Fig 5, right) deviate from the 

diagonal with high ICI and high predictability. In principle, the adversary will aim at identifying and using 

these highly informative eQTLs. 

 

Figure 4: The tradeoff between correct predictability of the genotypes and number of individuals that can be characterized. 

 

 

Figure 5: The scatter plot of ICI leakage (x-axis) versus the predictability (y-axis) of SNP genotypes. Each dot represents a SNP. 
SNPs are colored as per major allele frequencies (left) and per absolute eQTL correlation (right). 



AIM2: Instantiating the Linking Attacks 
In this aim, we will study how an attacker can instantiate linking attacks using different techniques for 

linking the genotype and phenotype datasets. 

A General Framework for Analysis of Individual Characterization using Linking Attacks 
We first present a tentative 3 step framework for individual characterization in the context of linking 

attacks. Figure 6 summarizes the steps in the individual characterization for each individual. The input is 

the phenotype measurements for 𝑗𝑡ℎ individual. The aim of the attacker is to correctly link the disease 

state of the individual to the correct identity in the genotype dataset. In the first step, the attacker 

selects the QTLs, which will be used in linking 𝑗𝑡ℎ individual. The selection of QTLs can be based on 

different criteria. As described in the previous section, the most accessible criterion is selection based on 

the absolute gradient or the absolute strength of association between the phenotypes and genotypes. In 

the case of eQTLs, this is the reported correlation coefficient, |ρ(𝐸𝑘 , 𝑉𝑘)|. We will study different eQTL 

selection criteria and how they affect the linking accuracy. The second step is genotype prediction for 

the selected QTLs using a prediction model. We will use different models of genotype prediction with 

varying complexities and study how the linking accuracy changes when different models are utilized 

(Figure 9). The third and final step of a linking attack is comparison of the predicted genotypes to the 

genotypes of the 𝑛𝑣 individuals in genotype dataset to identify the individual that matches best to the 

predicted genotypes. In this step, the attacker links the predicted genotypes to the individual in the 

genotype dataset. We will study different linking methodologies that the adversaries can utilize. 

We will study the attacker can utilize a priori knowledge about the relation between gene expression 

levels and genotypes and build the joint genotype-expression distributions using models with varying 

complexities and parameters. Even though the genotype prediction with these models may not be very 

accurate, the attacker can utilize a large number of eQTLs to maximize the accuracy of linking. We will 

first focus on highly simplified models to evaluate the risk levels associated with simple models for 

genotype prediction. We will assume the attacker exploits the knowledge that the eQTL genotypes and 

expression levels are correlated such that the allelic effects on expression are additive and extremes of 

the gene expression levels (highest and smallest expression levels) are observed with extremes of the 

genotypes (homozygous genotypes). Therefore, given the gradient of association, the attacker can 

estimate coarsely the joint distribution of the genotypes and expression levels. This idea is illustrated in 

Fig 5a. Using an estimate of the joint distribution, the attacker can compute the a posteriori distribution 

of genotypes given gene expression levels. To quantify the extremeness of expression levels, we use a 

statistic we termed 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦. For the gene expression levels for 𝑘𝑡ℎ eQTL, 𝒆𝒌, 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 of the 𝑗𝑡ℎ 

individual’s expression level, 𝑒𝑘,𝑗, is defined as 

 
𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦(𝑒𝑘,𝑗) =

rank of 𝑒𝑘,𝑗in {𝑒𝑘,1, 𝑒𝑘,2, … , 𝑒𝑘,𝑛𝑒}

𝑛𝑒
− 0.5. 

 

(3) 

Extremity can be interpreted as a normalized rank, which is bounded between -0.5 and 0.5.  

Following from the above discussion, the adversary builds the posterior distribution for 𝑘𝑡ℎ eQTL 

genotypes as 

 
𝑃(𝑉𝑘 = 0  | 𝐸𝑘 = 𝑒𝑘,𝑗) = {

0 if 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦(𝑒𝑘,𝑗) × ρ(𝐸𝑘 , 𝑉𝑘) > 0  

1 otherwise                                                
 

(4) 



   
 

𝑃(𝑉𝑘 = 2  | 𝐸𝑘 = 𝑒𝑘,𝑗) = {
1 if 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦(𝑒𝑘,𝑗) × ρ(𝐸𝑘 , 𝑉𝑘) > 0  

0 otherwise                                                
 

(5) 

   
 𝑃(𝑉𝑘 = 1  | 𝐸𝑘 = 𝑒𝑘,𝑗) = 0. (6) 

 

From the a posteriori probabilities, when the sign of the extremity and the reported correlation are the 

same, the attacker assigns the genotype value 2, and otherwise, genotype value 0. Finally, the genotype 

value 1 is never assigned in this prediction method, i.e., the a posteriori probability is zero. This is 

expected since we are focusing on the extremes and heterozygous genotype is observed at medium 

levels of expression. The posterior distribution of genotypes in equations (4-6) can be derived from a 

simplified model of the genotype-expression distribution that utilizes just one parameter.  

As a next set of preliminary evaluation of how effective the proposed approach is, we utilized extremity 

based genotype prediction in the 2nd step of the individual characterization framework (Fig 7) and 

evaluated the fraction of characterizable individuals in the GEUVADIS dataset. We utilized the 

correlation based eQTL selection in step 1, then extremity based genotype prediction in step 2. In order 

to demonstrate the utility of the 3-step analysis framework; we evaluated two different distance 

measures for linking the predicted genotypes to the individuals in genotype dataset in the 3rd step of the 

attack. First is based on comparison of the predicted genotypes to all the genotypes in genotype 

dataset. Second is based on comparison of the predicted genotypes to only the homozygous genotypes 

in the genotype dataset. The motivation for using this distance measure is that the extremity based 

genotype prediction never assigns heterozygous genotypes. Thus the heterozygous genotypes are 

excluded from distance computation. 

For each measure, the attacker links the predicted genotypes to the individual whose genotypes 

minimize the selected distance measure. Figure 8 left and right show the fraction of vulnerable 

individuals for both distance measures. More than 95% of the individuals are vulnerable for most of the 

parameter selections for both distance measures. The homozygous genotype matching distance 

measure has slightly higher linking accuracy. When the gender and/or population information is present 

as auxiliary information (red and green plots), the fraction of vulnerable individuals increases to 100% 

for most of the eQTL selections. These results show that linking attack with extremity based genotype 

prediction, although technically simple, can be extremely effective in characterizing individuals. We will 

focus on homozygous genotype matching based distance computation in the rest of the paper for 

simplicity of presentation. 

We will extend the linking attack analysis on different QTL, phenotype, and genotype datasets. 



 

Figure 6: 3 steps of individual characterization with linking attacks. 

 

Figure 7: Extremity based genotype for an eQTL. The joint genotype versus expression distribution is shown on left. Given the 
distribution and the extremity, the genotypes are assigned. 



 

Figure 8: The accuracy of extremity based linking attack with changing eQTL selection correlation threshold. 

 

Figure 9: Different Models of Joint Genotype-Expression Distribution with changing Complexities 



AIM3: Building Privacy Reducing File Formats 
 

 

REFERENCES 

1. Sboner A, Mu X, Greenbaum D, Auerbach RK, Gerstein MB: The real cost of sequencing: higher than 
you think! Genome Biology 2011:125. 

2. Rodriguez LL, Brooks LD, Greenberg JH, Green ED: The Complexities of Genomic Identifi ability. 
Science (80- ) 2013, 339(January):275–276. 

3. Sweeney L, Abu A, Winn J: Identifying Participants in the Personal Genome Project by Name. SSRN 
Electron J 2013:1–4. 

4. infographic-printable.pdf [http://www.nih.gov/precisionmedicine/infographic-printable.pdf] 

5. Collins FS: A New Initiative on Precision Medicine. N Engl J Med 2015, 372:793–795. 

6. Plan for Increasing Access to Scientific Publications - NIH-Public-Access-Plan.pdf 
[https://grants.nih.gov/grants/NIH-Public-Access-Plan.pdf] 

7. GENOMIC DATA SHARING (GDS) Home [http://gds.nih.gov/index.html] 

8. Sweeney L: Uniqueness of Simple Demographics in the U.S. Population, LIDAP-WP4. 2000. 

9. Golle P: Revisiting the uniqueness of simple demographics in the US population. In Proceedings of 
the 5th ACM workshop on Privacy in electronic society; 2006:77–80. 

10. Consortium TG: The Genotype-Tissue Expression (GTEx) project. Nat Genet 2013, 45:580–5. 

11. Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M: An integrated encyclopedia of 
DNA elements in the human genome. Nature 2012, 489:57–74. 

12. The 1000 Genomes Project Consortium: An integrated map of genetic variation. Nature 2012, 
135:0–9. 

13. Collins FS: The Cancer Genome Atlas ( TCGA ). Online 2007:1–17. 

14. Pakstis AJ, Speed WC, Fang R, Hyland FCL, Furtado MR, Kidd JR, Kidd KK: SNPs for a universal 
individual identification panel. Hum Genet 2010, 127:315–324. 

15. Wei YL, Li CX, Jia J, Hu L, Liu Y: Forensic Identification Using a Multiplex Assay of 47 SNPs. J Forensic 
Sci 2012, 57:1448–1456. 



16. Church G, Heeney C, Hawkins N, De Vries J, Boddington P, Kaye J, Bobrow M, Weir B: Public access 
to genome-wide data: Five views on balancing research with privacy and protection. PLoS Genetics 
2009. 

17. Lunshof JE, Chadwick R, Vorhaus DB, Church GM: From genetic privacy to open consent. Nat Rev 
Genet 2008, 9:406–411. 

18. Homer N, Szelinger S, Redman M, Duggan D, Tembe W, Muehling J, Pearson J V., Stephan DA, Nelson 
SF, Craig DW: Resolving individuals contributing trace amounts of DNA to highly complex mixtures 
using high-density SNP genotyping microarrays. PLoS Genet 2008, 4. 

19. Im HK, Gamazon ER, Nicolae DL, Cox NJ: On sharing quantitative trait GWAS results in an era of 
multiple-omics data and the limits of genomic privacy. Am J Hum Genet 2012, 90:591–598. 

20. Narayanan A, Shmatikov V: Robust de-anonymization of large sparse datasets. In Proceedings - IEEE 
Symposium on Security and Privacy; 2008:111–125. 

21. Holdt LM, von Delft A, Nicolaou A, Baumann S, Kostrzewa M, Thiery J, Teupser D: Quantitative trait 
loci mapping of the mouse plasma proteome (pQTL). Genetics 2013, 193:601–608. 

22. Stark AL, Hause RJ, Gorsic LK, Antao NN, Wong SS, Chung SH, Gill DF, Im HK, Myers JL, White KP, 
Jones RB, Dolan ME: Protein Quantitative Trait Loci Identify Novel Candidates Modulating Cellular 
Response to Chemotherapy. PLoS Genet 2014, 10. 

23. Degner JF, Pai AA, Pique-Regi R, Veyrieras J-B, Gaffney DJ, Pickrell JK, De Leon S, Michelini K, 
Lewellen N, Crawford GE, Stephens M, Gilad Y, Pritchard JK: DNase I sensitivity QTLs are a major 
determinant of human expression variation. Nature 2012:390–394. 

24. Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, Gilad Y: Impact of regulatory variation 
from RNA to protein. Science (80- ) 2014, 347:664–667. 

25. Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y, Pritchard JK: DNA 
methylation patterns associate with genetic and gene expression variation in HapMap cell lines. 
Genome Biol 2011, 12:R10. 

26. McVicker G, van de Geijn B, Degner JF, Cain CE, Banovich NE, Raj A, Lewellen N, Myrthil M, Gilad Y, 
Pritchard JK: Identification of genetic variants that affect histone modifications in human cells. Sci 
(New York, NY) 2013, 342:747–749. 

27. Kilpinen H, Waszak SM, Gschwind AR, Raghav SK, Witwicki RM, Orioli A, Migliavacca E, Wiederkehr 
M, Gutierrez-Arcelus M, Panousis NI, Yurovsky A, Lappalainen T, Romano-Palumbo L, Planchon A, Bielser 
D, Bryois J, Padioleau I, Udin G, Thurnheer S, Hacker D, Core LJ, Lis JT, Hernandez N, Reymond A, 
Deplancke B, Dermitzakis ET: Coordinated effects of sequence variation on DNA binding, chromatin 
structure, and transcription. Science 2013, 342:744–7. 

28. Kasowski M, Kyriazopoulou-Panagiotopoulou S, Grubert F, Zaugg JB, Kundaje A, Liu Y, Boyle AP, 
Zhang QC, Zakharia F, Spacek D V, Li J, Xie D, Olarerin-George A, Steinmetz LM, Hogenesch JB, Kellis M, 



Batzoglou S, Snyder M: Extensive variation in chromatin states across humans. Science (New York, NY) 
2013:750–752. 

29. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras J-B, Stephens M, Gilad 
Y, Pritchard JK: Understanding mechanisms underlying human gene expression variation with RNA 
sequencing. Nature 2010, 464:768–772. 

30. Ardlie KG, Deluca DS, Segre A V., Sullivan TJ, Young TR, Gelfand ET, Trowbridge CA, Maller JB, 
Tukiainen T, Lek M, Ward LD, Kheradpour P, Iriarte B, Meng Y, Palmer CD, Esko T, Winckler W, 
Hirschhorn JN, Kellis M, MacArthur DG, Getz G, Shabalin AA, Li G, Zhou Y-H, Nobel AB, Rusyn I, Wright 
FA, Lappalainen T, Ferreira PG, Ongen H, et al.: The Genotype-Tissue Expression (GTEx) pilot analysis: 
Multitissue gene regulation in humans. Science (80- ) 2015, 348:648–660. 

31. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, Allen HL, Lindgren CM, Luan 
J, Mägi R, Randall JC, Vedantam S, Winkler TW, Qi L, Workalemahu T, Heid IM, Steinthorsdottir V, 
Stringham HM, Weedon MN, Wheeler E, Wood AR, Ferreira T, Weyant RJ, Segrè A V, Estrada K, Liang L, 
Nemesh J, Park J-H, Gustafsson S, Kilpeläinen TO, et al.: Association analyses of 249,796 individuals 
reveal 18 new loci associated with body mass index. Nat Genet 2010, 42:937–948. 

32. Cheverud JM, Ehrich TH, Hrbek T, Kenney JP, Pletscher LS, Semenkovich CF: Quantitative trait loci 
for obesity- and diabetes-related traits and their dietary responses to high-fat feeding in LGXSM 
recombinant inbred mouse strains. Diabetes 2004, 53:3328–3336. 

33. Beekman M, Heijmans BT, Martin NG, Whitfield JB, Pedersen NL, DeFaire U, Snieder H, Lakenberg N, 
Suchiman HED, de Knijff P, Frants RR, van Ommen GJB, Kluft C, Vogler GP, Boomsma DI, Slagboom PE: 
Evidence for a QTL on chromosome 19 influencing LDL cholesterol levels in the general population. Eur 
J Hum Genet 2003, 11:845–850. 

34. Lappalainen T, Sammeth M, Friedländer MR, ’t Hoen PAC, Monlong J, Rivas MA, Gonzàlez-Porta M, 
Kurbatova N, Griebel T, Ferreira PG, Barann M, Wieland T, Greger L, van Iterson M, Almlöf J, Ribeca P, 
Pulyakhina I, Esser D, Giger T, Tikhonov A, Sultan M, Bertier G, MacArthur DG, Lek M, Lizano E, 
Buermans HPJ, Padioleau I, Schwarzmayr T, Karlberg O, Ongen H, et al.: Transcriptome and genome 
sequencing uncovers functional variation in humans. Nature 2013, 501:506–11. 

35. Shabalin AA: Matrix eQTL: Ultra fast eQTL analysis via large matrix operations. Bioinformatics 2012, 
28:1353–1358. 

36. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, 
Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavaré S, Deloukas P, Hurles ME, Dermitzakis ET: Relative 
impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007, 
315:848–853. 

37. The International HapMap 3 Consortium: Integrating common and rare genetic variation in diverse 
human populations. Nature 2010, 467:52–8.  

 


