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ABSTRACT 

Gene expression is controlled by combinatorial effects of gene regulatory factors from different biologi-

cal subsystems driving specific regulatory functions such as general transcription factors, cellular 

growth factors and microRNAs. A subsystem’s gene expression may be controlled by its internal regu-

latory factors, exclusively, or by other external subsystems, or by both. It is thus useful to distinguish the 

degree to which a subsystem is regulated internally or externally; e.g., how external regulatory factors 

affect the expression of conserved genes during evolution.  

     We developed a computational method, DREISS for dynamics of gene expression driven by external 

and internal regulatory modules based on state space model to help dissect the effects of different 

regulatory subsystems on gene expression (https://github.com/gersteinlab/Dreiss). Given a subsystem, 

the “state” and “control” in the model refer to its own (internal) and another subsystem’s (external) gene 

expression levels. The state at a time is determined by the state and control at previous time. DREISS 

uses the dimensionality reduction to combat the limited time samples, and identifies the canonical tem-

poral expression trajectories (e.g., degradation, growth, oscillation) representing the regulatory effects 

from various subsystems.  

    To illustrate DRIESS, we applied it to the time-series gene expression datasets of C. elegans and D. 

melanogaster during their embryonic development, to demonstrate its capabilities for studying the regu-

latory effects of evolutionary conserved vs. divergent transcription factors across distant species. We 

analyzed the expression dynamics of the conserved, orthologous genes (orthologs), seeing the degree 

to which these can be accounted for by orthologous (internal) versus species-specific (external) tran-

scription factors (TFs). We found that between the two species, the orthologs canonical expression tra-

jectories driven by orthologous TFs are more similar to each other than those driven by species-specific 
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ones. This is particularly true for genes with evolutionarily ancient functions (e.g. the ribosome), in con-

trast to those with more recently evolved functions (e.g., cell-cell communication). This implies that de-

spite striking morphological differences, some fundamental embryonic-developmental processes are 

still tightly under the control of an ancient regulatory system for the similar canonical trajectories of 

worm-fly orthologs driven by the orthologous TFs. 

1 INTRODUCTION  
Gene regulatory networks (GRNs) systematically control the gene expression dynamics. These networks 

are highly modular, and consist of various sub-networks. Each sub-network contains a number of regula-

tory factors representing a subsystem that drives specific gene regulatory functions [1,2]. The subsys-

tems interact with one another, and work together to carry out the entire gene regulatory function. For 

example, the gene expression in embryogenesis is controlled by the combinatorial effects of various reg-

ulatory subsystems composed of complex evolutionary regulatory networks [3]. These regulatory sub-

systems drive very diverse developmental programs, from the highly conserved (e.g. DNA replication) 

to the species-specific (e.g. body segmentation). As such the orthologous genes that are evolutionary 

conserved genes across species can therefore be regulated by both orthologous and species-specific tran-

scription factors (TFs) [4]. The orthologous TFs form an “internal” regulatory network, while the spe-

cies-specific TFs form an “external” one. Unfortunately, existing experimental gene expression data 

cannot decouple the expression components that are driven by the different subsystems. Thus, computa-

tional methods are required to assess the contribution from each factor or subsystem from the gene ex-

pression data. In this study, we propose a novel computational method, DREISS - dynamics of gene ex-

pression driven by external and internal regulatory networks based on state space model. Using 

DREISS, we are able to identify temporal gene expression dynamic patterns for evolutionarily con-

served genes during embryonic development, as driven by conserved and species-specific regulatory 

subsystems. These results advance our current understanding of GRNs during evolution, as well as the 

differentiation during development. 

 

Developmental GRNs control gene expression during the developmental processes. These particular 

GRNs have evolved, making it difficult to understand their regulatory mechanisms at the system level. 

Hence, one typically compares developmental gene expression across species to infer biological activi-

ties of developmental GRNs. For example, embryogenesis provides a platform to study the evolution of 
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gene expression between different species. Recent work has showed that significant biological insight 

can be gained by cross-species comparisons of the expression profiles during embryogenesis for worms 

[5], flies [6], frogs [7] and several other vertebrates [8]. It was found that the orthologous genes have 

minimal temporal expression divergence during the phylotypic stage, a middle phase during the embry-

onic development across species within the same phylum. These patterns are often characterized as 

“hourglass” [9]. In addition, the conserved hourglass patterns were observed even within a single species 

while comparing the developmental gene expression data across distant species, such as worm and fly 

[10]; i.e., the expression divergence among evolutionarily conserved genes become minimal during the 

phylotypic stage in both worm and fly. However, much less is known about how the orthologous genes 

in each species eventually contribute to their species-specific phenotypes due to the lack of appropriate 

computational approaches. Thus, we aim to use DREISS to discover the components of the orthologous 

gene expression during embryonic development driven by species-specific transcription factors.  

 

The state-space model has been widely used in engineering [11], and also in biology for the analysis of 

gene expression dynamics [12-14]. It models the dynamical system output as a function of both the cur-

rent internal system state and the external input signal. A commonly used example in engineering is the 

vehicle cruise control system where the system output and state is the vehicle’s speed. Based on the road 

conditions, the cruise control requires various fuel amounts in order to keep the desired speed level. In 

biology, we can look at the transcription factors and microRNAs as internal and respectively external 

regulatory factors of the protein-coding genes expression (See more internal-external examples in Sup-

plemental Table 1). Similarly, the state-space model can be applied for studying the expression of 

orthologous genes at different developmental stages using information regarding their expression (inter-

nal) and species-specific regulatory factors (external) at the current known developmental stage. Unlike 

earlier studies that calculate the expression correlation between individual genes, the state-space model 

predicts the temporal causal relationships at the system level; i.e., the state at a time is determined by the 

state and external input at the previous time. The earlier work applied the state-space model to study the 

gene expression dynamics focusing on small-scale systems, and did not explore the analytic dynamic 

characteristics of the inferred state-space models. The complex and large-scale biological datasets, espe-

cially temporal gene expression data, are very noisy, and high dimensional (i.e., the number of genes is 

much greater than the number of time samples), thereby preventing an accurate estimation of the state-

space model’s parameters. The dimensionality reduction techniques have thus been used to project high-
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dimensional genes to low-dimensional meta-genes (i.e., the selected features representing de-noised and 

systematic expression patterns [1,15,16]) as well as the principal dynamic patterns for those meta-genes 

[17,18]. Using DREISS, we are able to apply the dimensionality reduction to the gene expression data, 

and develop an effective state-space model for their meta-genes, and then identify a group of canonical 

temporal expression trajectories representing the dynamic patterns driven by the effective conserved and 

species-specific meta-gene regulatory networks according to the model’s analytic characteristics. These 

dynamic patterns reveal temporal gene expression components that are controlled by conserved or spe-

cies-specific GRNs. 

 

DREISS is a general-purpose tool and can be used to study the gene regulatory effects from any differ-

ent subsystems for a given group of genes. As an illustration, we applied DREISS to the gene expression 

data during embryonic development for two model organisms, worm (Caenorhabditis elegans) and fly 

(Drosophila melanogaster). In both species, we were able to identify the expression patterns of worm-

fly orthologs driven by the conserved regulatory network consisting of the worm-fly TFs (i.e., the con-

served regulatory subsystems between two species), as well as the worm/fly-specific regulatory network 

consisting of non-orthologous TFs (i.e., the species-specific regulatory subsystem). Our results reveal 

that, in addition to executing conserved developmental functions between worm and fly, their ortholo-

gous genes are also regulated by species-specific TFs to involve in species-specific developmental pro-

cesses. In summary, DRIESS provides a framework to analyze both distantly and closely related species 

allowing for a better understanding of the gene regulatory mechanisms during development.  

2 METHODS 

DREISS consists of five major steps as detailed in Figure 1:  

Step A: DREISS models temporal gene expression dynamics using state-space models in control theory. 

In this step, we need to define the internal and external groups of genes and input their time-series gene 

expression data that we are interested to study. We assume that the time-series gene expression data fits 

a state-space module. In the state-space model, the “state” refers to the expressions for a large group of 

genes of interest, such as the worm-fly orthologous genes investigated here. The “control” refers to any 

other group of genes that contribute to gene expressions of the “state”, such as the species-specific TFs 

contributed to control orthologous gene expression.  
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Step B: Due to the limited number of temporal samples in gene expression experiments, we do not have 

enough data to accurately estimate the parameters of the state-space models that capture interactions 

among hundreds of genes. Therefore, DREISS projects high-dimensional gene expression space to low-

er-dimensional meta-gene expression spaces using dimensionality reduction techniques.  

Step C: DREISS then derives the effective state-space models for meta-genes so that model parameters 

can be estimated.  

Step D: DREISS then identifies the meta-gene expression dynamic patterns; i.e., canonical temporal ex-

pression trajectories driven by “state” (internal) and by “control” (external) based on the analytic solu-

tions of the estimated models.  

Step E: Finally, DREISS calculates the coefficients of genes for the dynamic patterns of linear trans-

formations between genes and meta-genes. DREISS also allows us to compare the dynamic expression 

patterns of multiple datasets with samples taken at different times. We describe each DREISS step in 

detail as follows. 

2.1 State-space models for temporal gene expression dynamics 

A gene regulatory network is made up of various subsystems [1,2]. These subsystems work together to 

execute the regulatory functions. Given a group of N1 genes in a subsystem, their gene expression levels 

(X) are not only controlled by internal interactions among X, but also affected by the regulatory factors 

from other subsystems outside X (external regulations denoted here by the U group). For example, we 

consider the worm-fly orthologous genes as the X group. The worm-fly orthologous TFs from the X 

group are the internal regulatory factors, and non-orthologous TFs such as worm- or fly- specific TFs 

are the external regulatory factors to the X group, namely Group U. Both the internal and external regu-

latory factors control gene expressions in dynamic ways (i.e., their regulatory signals at the current time 

will affect gene expressions at subsequent times). Thus, the regulatory mechanisms for the gene expres-

sions form a control system. In this study, we used a state-space model (defined by linear first-order dif-

ference equations, Figure 2A) to formulate temporal gene expression dynamics for the gene group X 

(comprising N1 genes) with external regulation parameters from the gene group U (comprising N2 genes) 

at time points 1, 2, … , T as follows: 

Xt+1 = AXt +BUt     (1) 

, where the vector Xt ∈ℜN1×1  , the “state”, includes N1 gene expression levels at time t in group X, and 

the vector Ut ∈ℜN2×1  , the “input or control”, includes N2 gene expression levels at time t in group U. 
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The system matrix A ∈ℜN1×N1  captures internal causal interactions among genes in X (i.e., the ith, jth el-

ement of A, Aij describes the contribution from the jth gene expression at time t to the ith gene expression 

at the next time t+1), which instantiates a gene regulatory network. The control matrix B ∈ℜN1×N2  cap-

tures external causal regulations from the genes in U to genes in X (i.e., the ith, jth element of B, Bij de-

scribes the contribution from the jth gene expression in U at time t to the ith gene expression in X at the 

next time t+1). ℜ represents the real number domain. According to the state space model (1), the gene 

expression dynamics in X is determined by the system matrix A and the control matrix B.  

2.2 Dimensionality reduction from genes to meta-genes 

The temporal gene expression experiments normally have limited time samples (for example, there may 

only be a dozen time points), which are far less than the time samples needed to estimate the large ma-

trices A and B when X and U are composed of hundreds or thousands of genes. Thus, we project high 

dimensional temporal gene expressions to much lower dimensional meta-gene expression levels using a 

dimensionality reduction technique (Figure 2B). Those meta-gene expression levels should capture orig-

inal gene expression patterns, such as the ones having the greatest degree of co-variation. We calculate 

the meta-gene expression levels as follows: 

𝑋! =𝑊!
∗𝑋!;𝑈! =𝑊!

∗𝑈! (2) 

, where !Xt ∈ℜM1×1 , the “meta-gene state” at time t, includes M1 (<< N1 and <T) meta-gene expression 

levels; i.e., the first M1 elements of the tth row of the matrix whose columns are right-singular vectors of 

the matrix X1X2...XT[ ]  in group X by the singular value decomposition (SVD) [19]; the vector 

!Ut ∈ℜM2×1  , the “meta-gene input or control” at time t, includes M2 (<< N2 and <T) meta-gene expres-

sion levels; i.e., the first M2 elements of the tth row of the matrix whose columns are right-singular vec-

tors from SVD of the matrix U1U2...UT[ ]  in group U; WX ∈ℜN1×M1 is the linear projection matrix of 

SVD from M1 meta-gene expression space to N1 gene expression space in X, WU ∈ℜN2×M2  is the linear 

projection matrix of SVD from M2 meta-gene expression space to N2 gene expression space in U, and 

(.)* is a pseudo-inverse operation; i.e., W*W=I, where I is the identity matrix.  

2.3 Estimation of effective state-space model for meta-gene expression dynamics 

Next, we obtain the effective state-space model for meta-genes using linear projections WX and WU be-

tween genes and meta-genes as follows (Figure 2C). By replacing (1) using (2), we obtain that 
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WX
!Xt+1 = AWX

!Xt +BWU
!Ut     (3) 

, and by multiplying the pseudo-inverse of WX, WX
* ∈ℜM1×N1  s.t. WX

*WX = I  where I is an identity matrix, 

at both sides of (3), 
!Xt+1 =WX

*AWX
!A

"#$ %$
!Xt +WX

*BWU
!B

"#$ %$
!Ut ⇒ !Xt+1 = !A !Xt + !B !Ut     (4) 

, where the effective meta-gene system matrix !A =WX
*AWX ∈ℜM1×M1  captures internal causal interac-

tions among meta-genes in X (i.e., the ith, jth element of !A  ( !Aij ) describes the contribution from the jth 

meta-gene expression at time t to ith meta-gene expression at time t+1), and the effective control matrix 
!B =WX

*BWU ∈ℜM1×M2  captures external causal regulations from meta-genes in U to meta-genes in X 

(i.e., the ith, jth element of !B , !Bij describes the contribution from the jth meta-gene expression in U at 

time t to ith meta-gene expression in X at time t+1). Equation (4) describes the effective state space mod-

el for the meta-genes in X, whose expression dynamics is determined by !A and !B . Because the meta-

gene dimension, M1 (M2) is less than T, and much less than N1 (N2), we can estimate !A and !B  as follows. 

 
We rewrite Equation (4) as a matrix product on the right side: 

!Xt+1 = !A !Xt + !B !Ut = !A !B!
"#

$
%&

!Xt

!Ut

!

"

#
#

$

%

&
&

.                           (5) 

By applying Equation (5) to time points, 2,3, … , T, we then obtain that 

!X2 !X3 " !XT

!

"
#

$

%
&

Ζ
! "#### $####

= !A !B!
"#

$
%&

!X1 !X2 " !XT−1

!U1
!U2 " !UT−1

"

#

$
$
$
$

%

&

'
'
'
'

ϒ
! "##### $#####

           (6) 

, where Ζ ∈ℜM1×(T−1)   and  ϒ ∈ℜ(M1+M2 )×(T−1) . 

The effective internal system matrix !A  and external control matrix !B can be estimated by: 

!A !B!
"#

$
%&
= Ζϒ*

                    (7) 
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, where ϒ* ∈ℜ(T−1)×(M1+M2 )  is the pseudo-inverse of ϒ ; i.e.

ϒϒ* = I,  with M1 < N1,M2 < N2,M1 +M2 < T, t =1, 2,...,T.  

2.4 Identification of internally and externally driven principal dynamic expression 

patterns of meta-genes (canonical temporal expression trajectories) 

The analytic solution to a general first-order linear matrix difference equation [20], Yt+1=CYt is  

Yt=CtY0=(PDP-1) t Y0=PDtP-1Y0=PDtS, where the columns of the matrix P are eigenvectors of C, the di-

agonal elements of the diagonal matrix D are eigenvalues of C such that CP=PD, and the vector S= P-

1Y0. Then, if we rewrite Yt by a linear combination of the time exponential of eigenvalues of C, we have 

that 𝑌! = 𝑃𝐷!𝑆 = 𝛼!!𝑠!𝑃! = 𝛼!!𝐾!
!!
!!!

!!
!!! , where mc is the total number of eigenvalues of C, αi is the 

ith eigenvalue of C, si is the ith element of S, Pi is the ith eigenvector of C (i.e., the ith column of P), and 

Ki=siPi is the coefficient vector of Yt over the tth time exponential of αi. 

 

From Equation (4), the internally driven components of meta-gene states at two adjacent time points 

have 𝑋!!!!"# = 𝐴𝑋!!"# ∈ ℜ!!×!. According to the above analytic solution, the components of meta-gene 

expressions in X driven by effective internal regulations are linear combinations of M1 dynamic patterns 

determined by the eigenvalues of the effective system matrix !A  as follows: 

𝑋!!"# = 𝜆!!𝐾!
!!
!!! ; i.e., the internally driven component of ith meta-gene’s expression across all time 

points,  𝑋!!"#(𝑖) 𝑋!!"#(𝑖) … 𝑋!!"#(𝑖) = 𝐾! 𝑖 𝜆!! 𝜆!! … 𝜆!!

!!"  !"#"

!!
!!!                (8) 

, where 𝜆!  and 𝐾! ∈ ℂ!!×! are the pth eigenvalue of 𝐴  and its coefficient vector from the analytic solu-

tion, which determines the pth dynamic pattern driven by effective internal regulations, defined as the pth 

internal principal dynamic pattern (iPDP) = 𝜆!!   𝜆!! …   𝜆!! , in which 𝜆!!  represents the tth power of 𝜆!, 

and V(i) represents ith element of the vector V. ℂ represents the complex number domain, and “(i)” repre-

sents the ith element of vector. If an eigenvalue λ is complex when 𝐴  is asymmetric, then its conjugate 𝜆 

is also an eigenvalue, so we sum its iPDP and its conjugate eigenvalue, 𝜆’s iPDP, as a unified iPDP with 

real elements equal to 𝜆!!+𝜆!!   𝜆!!+𝜆!! …   𝜆!!+𝜆!! .  

 

Similarly, the components of meta-gene expressions in X driven by effective external regulations from U, 

i.e., 𝑋!!!!"# = 𝐵𝑋!!"# ∈ ℜ!!×! (externally driven components of meta-gene states at two adjacent time 
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points) are linear combinations of M2 dynamic patterns determined by the eigenvalues of the effective 

system matrix !B  as follows: 

𝑋!!"# = 𝜎!!𝐿!
!!
!!! ; i.e., the externally driven component of ith meta-gene’s expression across all time 

points,  𝑋!!"#(𝑖) 𝑋!!"#(𝑖) … 𝑋!!"#(𝑖) = 𝐿! 𝑖 𝜎!! 𝜎!! … 𝜎!!

!!"  !"#"

!!
!!!                (9) 

, where 𝜎!   and 𝐿! ∈ ℂ!!×! are the qth eigenvalue of 𝐵 and its coefficient vector, which determines qth 

dynamic pattern driven by effective external regulations, defined as qth external principal dynamic pat-

tern (ePDP) = 𝜎!!  𝜎!!…   𝜎!!  , in which 𝜎!! represents the tth power of 𝜎!, and V(i) represents ith element 

of the vector V. If an eigenvalue 𝜎 is complex, then its conjugate 𝜎 is also an eigenvalue, so we sum its 

ePDP and its conjugate eigenvalue, 𝜎’s ePDP, as a unified ePDP with real elements equal to 

𝜎!!+𝜎!!  𝜎!!+𝜎!!…   𝜎!!+𝜎!! . 

 

Both the internal and external principal dynamic patterns (PDPs) represent the canonical temporal ex-

pression trajectories, which can be either increasing, or damped oscillation and so on depending on 

PDP’s eigenvalues (Table 1). 

 

Table 1. Classification of canonical temporal expression trajectories for PDP eigenvalue types 
PDP  

eigenvalue 

Real Complex (radius) 

>1 =1 <1 & >0 <0 & > -1 = -1 <-1 >1 =1 <1 

Canonical 

temporal 

expression 

trajectory 

(initial) 

Increas

creas-

ing (I) 

 
 

Flat 

(F) 

De-

creasing 

(D) 

 

Vibrating 

early (VE) 

 

Vibrat-

ing (V) 

 

Vibrating 

late (VL) 

 

Under-

damped 

oscillation 

(UO) 

 

Oscillation 

(O) 

 

Damped 

oscillation 

(DO) 

 

 

2.5 Identification of gene coefficients of principal expression dynamic patterns 

Because genes and meta-genes have linear relationships in terms of their expression levels as described 

in Equation (2), the components of gene expression levels in X driven by internal regulations,  𝑋!!"# ∈

ℜ!!×! can be also expressed as linear combinations of M1 iPDPs: 
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𝑋!!"# =𝑊!𝑋!!"# = 𝜆!! 𝑊!𝐾!
!!

!!
!!! = 𝜆!! 𝐶!

!!
!!!  ; i.e., 

 the internally driven component of ith gene’s expression across all time points,  

𝑋!!"#(𝑖) 𝑋!!"#(𝑖) … 𝑋!!"#(𝑖) = 𝐶! 𝑖 𝜆!! 𝜆!! … 𝜆!!

!!"  !"#"

!!
!!!                (10) 

, where 𝐶! =𝑊!𝐾! ∈ ℂ!!×! represents the gene coefficient vector for pth iPDP. Similarly, the gene ex-

pression components driven by external regulations from U, 𝑋!!"# ∈ ℜ!!×! can be also expressed as lin-

ear combinations of M2 ePDPs: 

𝑋!!"# =𝑊!𝑋!!"# = 𝜎!!𝑊!𝐿!
!!

!!
!!! = 𝜎!!𝐷!

!!
!!!  ; i.e., 

the externally driven component of ith gene’s expression across all time points,  

𝑋!!"#(𝑖) 𝑋!!"#(𝑖) … 𝑋!!"#(𝑖) = 𝐷! 𝑖 𝜎!! 𝜎!! … 𝜎!!

!!"  !"#"

!!
!!!                (11) 

, where 𝐷! =𝑊!𝐿! ∈ ℂ!!×!  represents the gene coefficient vector for qth ePDP. 

3 RESULTS 
Gene expression data during embryogenesis provide important information about the dynamics of ge-

nomic functions throughout the developmental process, from the conserved functions such as DNA rep-

lication to the species-specific functions such as body segmentations, but hardly reveal any data regard-

ing the evolutionary gene regulatory subsystems that drive those developmental functions [3]. Thus, in 

order to understand the relationships between those subsystems and their driving genomic functions, we 

apply DREISS to worm and fly gene expression datasets during embryogenesis in modENCODE and we 

are able to identify various developmental genomic functions of worm-fly orthologous gene pairs driven 

by two different evolutionary regulatory subsystems, conserved (worm-fly orthologous TFs) and non-

conserved (worm/fly specific TFs). As model organisms for developmental biology, both worm and fly 

have been used previously to study embryogenesis.  

3.1 Applications to worm and fly embryonic developmental data in modENCODE: 

orthologous genes, transcription factors and gene expression datasets 

DREISS enables us to compare expression dynamic patterns between two or more temporal gene ex-

pression datasets even though they have different numbers of samples, as well as differences in the times 
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at which those samples were collected. For example, we can apply DREISS to two different datasets of 

the same group of genes, and identify both the common (similar) and the specific (different) dynamic 

patterns driven by internal regulations captured by the eigenvalues of the effective system matrices be-

tween the two datasets. 

 

In this paper, we apply DREISS to 3,153 one-to-one orthologous genes between worm (Caenorhabditis 

elegans) and fly (Drosophila melanogaster) as Group X to study their expression dynamics during em-

bryonic development [10]. We refer to species-specific TFs as external regulations; i.e., Group U. We 

found that worm-fly orthologs have similar internal dynamic patterns, which may be mainly driven by 

conserved TFs, but have very different external dynamic patterns driven by species-specific TFs be-

tween worm and fly embryonic developmental stages. The data is summarized as follows.  

 

We define Group X as 3,153 one-to-one orthologous genes between worm and fly during embryonic de-

velopment, and Group U as all the species-specific TFs (509 worm-specific TFs, 442 fly-specific TFs) 

[21,22]. We used their temporal gene expression levels (as measured by the RPKM values in RNA-seq) 

during embryonic development from the modENCODE project [10]. The worm embryonic development 

dataset includes T=25 time stages at 0, 0.5, 1, 1.5, … , 12 hours, and the fly dataset includes T=12 time 

stages at 0, 2, 4, … , 22 hours, but t=1,2,..,25 for worm and t=1,2,…,12 for fly are used in this paper, 

representing the relative time points for the entire embryonic development processes. Because M1+ 

M2<T in Equation (7), we choose M1= M2=5 meta-genes for fly (T=12), and find that five meta-genes of 

Group X and five meta-genes of Group U capture ~98% of the co-variation of orthologous gene expres-

sions and fly-specific TF gene expressions, respectively. In order to compare worm and fly, we also 

choose M1=M2=5 meta-genes for worm, which capture ~98% of the co-variation of orthologous gene 

expressions and worm-specific TF gene expressions. 

3.2 Meta-genes of worm-fly orthologous genes have similar internal, yet different 

external principal dynamic patterns during embryonic development 

We find that the meta-gene canonical temporal expression trajectories driven by conserved regulatory 

networks (i.e., internal principal dynamic patterns, iPDPs) include four major patterns in both the worm 

and fly embryonic developmental process by order of eigenvalues: 1) a late highly varied pattern; 2) an 

early fast decaying pattern; 3) a slowly increasing pattern; and 4) an oscillating pattern (Figure 3A); i.e., 
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the pattern of canonical trajectories (VL, D, I, O) in Table 1. In contrast to the observed iPDP similari-

ties, we find that worm and fly have very different external principal dynamic patterns (ePDPs) (Figure 

3B); i.e., the canonical temporal expression trajectories driven by species-specific TFs. The meta-gene 

canonical temporal expression trajectories driven by the worm-specific regulatory network; i.e., worm 

ePDPs, include a varied pattern at late embryonic development stage, a varied pattern that occurs early 

during the embryonic development, a fast increasing and then unvarying pattern, a decaying pattern, and 

an increasing pattern late during the embryonic development. The fly ePDPs, however, have two fast 

decaying patterns early during the embryonic development, a fast increasing pattern at a later stage dur-

ing the embryonic development, and a highly increasing oscillation pattern.  In addition, we checked the 

sensitivity of iPDP/ePDPs to small perturbations to internal/external regulatory networks by the leave-

one-out method; i.e., we removed one gene in the internal/external group, ran DREISS, and obtained the 

ordered iPDP/ePDP eigenvalues for the remaining genes. We repeated the leave-one-out method for all 

genes, and finally found the ranges in which iPDP/ePDP eigenvalues vary shown as error bars in Figure 

S1. We can see that the iPDP eigenvalues vary less than ePDP ones for both worm and fly, which im-

plies that the principal dynamic patterns of worm-fly orthologous genes driven by their conserved regu-

latory network are more robust to small changes than ones driven by their species-specific regulatory 

networks. 

 

The above results suggest that the conserved regulatory networks from orthologous meta-genes between 

worm and fly have similar effects to orthologous meta-genes, given their similar iPDPs (i.e., both have 

four patterns, as described above). The species-specific regulatory networks from species-specific meta-

genes (i.e., worm-specific or fly specific TFs) have effects that differ from the orthologous meta-genes 

for their different ePDPs. 

3.3 Orthologous genes have correlated coefficients between worm and fly for their 

matched internal principal dynamic patterns 

In both worm and fly, we observe the similar four types of internally driven canonical temporal expres-

sion trajectories; i.e., internal principal dynamic patterns (iPDPs). Thus, we are interested in seeing how 

individual orthologous genes relate to those dynamic patterns. We find that the worm-fly orthologous 

genes have correlated coefficients over each of the four iPDPs. Based on Equation (10), we can obtain 

the coefficients of orthologous genes for each iPDP. We find that their coefficients are significantly cor-
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related between worm and fly iPDPs with a similar pattern (See patterns in Table 1): r=0.33 (p<2.2e-16) 

for the highly varied pattern at late embryonic development stages, r=0.66 (p<2.2e-16) for the fast de-

caying pattern at early embryonic development stages, r=0.67 (p<2.2e-16) for the slowly increasing pat-

tern during embryonic development, and r=0.73 (p<2.2e-16) for the oscillation pattern during embryonic 

development (Figure 4), where r represents Spearman correlation of iPDP coefficients of orthologous 

genes between worm and fly. This implies that, not only do the orthologous meta-genes have similar in-

ternal (conserved) regulatory effects (i.e., similar iPDPs), but the worm-fly orthologous genes also have 

similar internally-driven expression dynamics as resulted from their significantly correlated coefficients 

for iPDPs. The ePDPs between worm and fly generally do not show a high degree of matching similari-

ty, but if we flip worm ePDP No. 3, and compare with fly ePDPs No. 4 and No. 5, all three of them are 

roughly representing the fast decaying patterns. We find that orthologous gene correlation coefficients 

between the ePDP patterns are very small (Spearman correlation r=0.12 of the orthologous gene coeffi-

cients of worm ePDP No.3 and fly ePDP No. 4, and r=0.18 of worm ePDP No. 3 vs. fly ePDP No. 5). 

3.4 Ribosomal genes have significantly larger coefficients for the internal than ex-

ternal principal dynamic patterns, but signaling genes exhibit the opposite 

trend 

The ribosome produces proteins, which is an ancient process and conserved across worm and fly, organ-

isms separated by almost a billion years of evolution. The ribosomal genes are highly expressed during 

embryogenesis, since intensive cell division and migration require a large amount of proteins to be syn-

thesized. We collected 195 ribosome-related genes based on the GO annotations. We compared the 

iPDP and ePDP coefficients of ribosomal genes, and found that the iPDP coefficients are significantly 

larger than ePDP ones in both worm (KS-test p<0.001) and fly (KS-test p<2.2e-16) as shown in Figure 

5A. This means that the ribosomal gene expression is significantly more influenced by the conserved 

regulatory network than by the species-specific regulatory network, which is consistent with ribosomal 

genes having conserved functions during embryonic development.  

 

The orthologous genes related to signal transduction for cell-cell communication (a significantly more 

recent evolutionary adaptation relative to the ribosome) exhibit the opposite trend. We found that 320 

signaling genes from GO annotations have significantly larger ePDP coefficients than iPDP ones in both 

worm (KS-test p<7e-4) and fly (KS-test p<6e-4), as shown in Figure 5B. This result implies that the sig-
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naling gene expression is significantly more driven by the species-specific regulatory network than by 

the conserved regulatory network, which is consistent with the signaling genes being commonly associ-

ated with species-specific functions, such as body plan establishment and cell differentiation.  

3.5 DNA replication and Proteasome machinery are enriched in orthologous genes 

with high coefficients for the dynamic patterns with fast growing canonical tra-

jectories 

We next turn to the biological meaning of individual canonical temporal expression trajectory for iPDPs 

and ePDPs. For the fast-decaying pattern (2nd iPDP), we find that the DNA replication is significantly 

enriched in Top 300 (~10%) orthologous genes that have the most negative coefficients for this pattern, 

in both worm (p<1.6e-8) and fly (p<4.5e-6). The GO enrichment analysis was performed using DAVID 

[23]. The very negative coefficients for the fast decaying pattern mean high positive coefficients for a 

fast-growing pattern (vertically flipped 2nd iPDP), showing a drastic increase at the beginning of embry-

ogenesis, then remain flat during the late embryogenesis (red curves in Figure 6). Most of the cell divi-

sion of embryogenesis in both worm and fly happens approximately within the first 300 minutes. Then, 

the cell elongation and migration start to dominate the development [24,25]. The mRNA abundance of 

the genes involved in DNA replication may change accordingly. This is well reflected by the second 

iPDP. Interestingly, the original expression patterns of those top orthologous genes actually do not have 

fast-growing patterns (black curves in Figure 6), probably because of the combined effects of both con-

served and species-specific GRN. Maternal mRNAs, which are pre-loaded before fertilization, may also 

mask the fast growing pattern of DNA replication genes. This pattern could only be observed after we 

separated the effect of two types of TFs using DREISS. In addtion, we did not find any enrichment of 

DNA replication in top genes of other iPDPs and ePDPs (p>0.05). Therefore, the iPDP patterns identi-

fied by our method reveal elementary cellular process of both species (i.e. DNA replication), which 

should mainly be controlled by the conserved regulatory network.  

 

Besides a fast growing pattern driven by conserved TFs, we also identified a fast growing pattern driven 

by non-conserved TFs for the two species. The Top 300 orthologous genes (~10%) with fast-growing 

worm and fly ePDPs (i.e., driven by species-specific regulatory networks) shared 36 orthologous genes. 

10 of them encode proteins in the proteasome complex (p<1.2e-9). Protein degradation is not only a key 

process in apoptosis, but also throughout the entire course of development [26,27]. For example, elimi-
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nating proteins that are no longer needed is a vital process during embryo development; e.g., the mater-

nal proteins need to be cleaned as the embryogenesis proceeds). Previous reports also showed that dif-

ferent species usually have different maternal mRNA in the oocyte, which indicates that species-specific 

strategies might be utilized to regulate the protein degradation process [28]. In this study, after separat-

ing the effect of conserved and non-conserved regulatory networks, we observed that the protein degra-

dation is significantly enriched in the genes majorly driven by species-specific TFs. 

 

Besides the 36 shared genes in the fast-growing pattern driven by species-specific TFs, we also noted a 

couple of interesting observations. Among the Top 300 worm orthologous genes with fast-growing 

ePDPs, genes involved in calcium ion binding (p<2e-6), GTP binding (p<7e-3) and neuron differentia-

tion (p<0.05) are over-represented, suggesting that they are activated in the early stage of embryogenesis 

by worm-specific TFs. This observation indicates the GRN of these genes have evolved after the specia-

tion. Proteins involved in calcium ion binding or GTP binding usually play a role in cell signal transduc-

tion [29]. In fact, the genes involved in Wnt signaling and MAPK signaling exhibits a two-fold change.  

 

In contrast, the Top 300 fly genes with a fast-growing ePDP show no enrichment in signaling transduc-

tion or cell differentiation. Instead, functions associated with respiration, such as oxidative phosphoryla-

tion, are enriched (p<5e-10). The enrichment of energy generation in the Top 300 fly genes with a fast-

growing ePDP is probably indicative of the large energy requirement during fly embryogenesis [30], 

which did not provide the evolutionary conservation of this energy-related gene regulation. Our result 

reveals that the fly genes associated with respiration are more up-regulated by fly-specific TFs relative 

to conserved TFs, and that this up-regulation evolved after the separation of worm and fly. In addition, 

the lack of signaling enrichment might be due to the different sampling time points. It is well-known that 

the Wnt signaling in worms starts as early as at the 4-cell stage, when one cell receives the signal and 

starts differentiation [31]. The time-series worm transcriptome data used in our study may have the reso-

lution to detect those processes. However, since each of the first 10 cell cycles takes less than 10 

minutes in the fly embryo [32], the 2 hour time interval in fly data may not have the resolution to capture 

the early regulatory events, such as Wnt signaling. 

4 DISCUSSION 
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In this paper, we presented a novel computational method, DREISS, which decomposes time-series ex-

pression data of a group of genes into the components driven by the regulatory network inside the group 

(internal regulatory subsystem), and the components driven by the external regulatory network consist-

ing of regulators outside the group (external regulatory subsystem). DREISS is a general-purpose tool 

that can be used to study the gene regulatory effects of any interested biological subsystems such as pro-

tein-coding transcription factors, micro-RNAs, epigenetic factors and so on. As an illustration, we ap-

plied DREISS to the time-series gene expression datasets for worm and fly embryonic developments 

from the modENCODE project [10], and compared the worm-fly orthologous gene expression dynamic 

patterns driven by the conserved regulatory network (i.e., regulation effects from orthologous TFs), with 

the patterns driven by the species-specific regulatory networks (i.e., regulation effects from worm or fly 

specific TFs). We found that the conserved TFs drive similar genomic functions, but non-conserved TFs 

drive species-specific functions of orthologous genes between worm and fly, implying that, in addition 

to having ancient conserved functions, orthologous genes have been regulated by evolutionarily younger 

GRNs to execute species-specific functions during the evolution. This work can be easily extended to 

study the regulatory effects from orthologous TFs and species-specific TFs to species-specific genes. 

For example, one can find the expression dynamic patterns of worm/fly specific genes driven by specific 

TFs, and identify the genes with strong patterns associated with worm/fly specific functions, such as 

body formations. To the best of our knowledge, DREISS is the first method to reveal how the evolution 

of GRNs affects gene expression during embryogenesis. 

 

We emphasize that DREISS is a general-purpose method (a free downloadable R tool available from 

github.com/gersteinlab/dreiss). Users can define the internal group (X) and external group (U) according 

to their interests. For example, if users want to identify the protein-coding expression patterns driven by 

miRNAs, they can define miRNAs as an external group and protein-coding genes as an internal group. 

Additionally, DREISS can be applied to more than two datasets, such as comparing worm, fly and hu-

man embryonic stem cell developmental data, and finding their conserved and specific developmental 

expression patterns. The expression patterns driven by human-specific regulatory factors will potentially 

help us understand human-specific developmental processes along with the associated human genes.  

 

Due to the limited time samples in gene expression datasets, DREISS uses the simple linear state space 

model (i.e. the first order linear invariant difference equation) to model the temporal gene expression 
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dynamics, and identify principal temporal dynamic patterns. This model assumes that the gene regulato-

ry networks controlling temporal gene expression dynamics does not change across the entire biological 

process such as (A, B) in Equation (1). Thus, based on the analytic analysis, the principal dynamic pat-

terns (PDPs) must follow a small set of canonical temporal trajectories (Table 1). With the rapidly in-

creasing gene expression data, we can extend DREISS to more advanced models such as switched and 

hybrid system models, non-linear models [33], which will allow us to study the gene regulatory net-

works are time varying, and potentially find the more temporal gene expression patterns capturing the 

more complex gene regulatory activities.  

FIGURE CAPTIONS 
Figure 1 DREISS workflow. 1: DREISS models temporal gene expression dynamics using state-space models in 

control theory. The “state” refers to the expressions for a large group of genes of interest, such as the worm-fly 

orthologous genes investigated here. The “control” refers to any other group of genes that contribute to gene ex-

pressions of the “state”, such as the species-specific TF studied here. 2: it then projects high-dimensional gene 

expression space to lower-dimensional meta-gene expression spaces using dimensionality reduction techniques.  

3: it derives the effective state-space models for meta-genes so that model parameters can be estimated. 4: it then 

identifies the meta-gene expression dynamic patterns; i.e., canonical temporal expression trajectories driven by 

“state” (internal) and by “control” (external) based on the analytic solutions to estimated models. 5: it finally cal-

culates the coefficients of genes for the dynamic patterns of linear transformations between genes and meta-genes.  

 

Figure 2 State space model for genes and the effective model for meta-genes. A) linear state space model for a 

given subsystem’s gene expression; i.e., linear first-order difference equations in Equation (2), is used to formu-

late temporal gene expression dynamics for a given subsystem, the gene group X (comprising N1 genes) with ex-

ternal regulations from the gene group U (comprising N2 genes) at time points 1, 2, … , T. The vector  

, the “state”, includes N1 gene expression levels at time t in group X, and the vector  , the “input or 

control”, includes N2 gene expression levels at time t in group U. The system matrix  captures internal 

causal interactions among genes in X (i.e., the ith, jth element of A, Aij describes the contribution from the jth gene 

expression at time t to the ith gene expression at the next time t+1). The control matrix  captures ex-

ternal causal regulations from the genes in U to genes in X (i.e., the ith, jth element of B, Bij describes the contribu-

tion from the jth gene expression in U at time t to the ith gene expression in X at the next time t+1). B) Meta-gene 

expression levels. The meta-gene expression levels are obtained by 𝑋! = 𝑊!
∗𝑋!;𝑈! = 𝑊!

∗𝑈!, where , 

Xt ∈ℜN1×1

Ut ∈ℜN2×1

A ∈ℜN1×N1

B ∈ℜN1×N2

!Xt ∈ℜM1×1
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the “meta-gene state”, includes M1 (<< N1 and <T) meta-gene expression levels; i.e., the first M1 elements of the tth 

row of the matrix whose columns are right-singular vectors of the matrix  in group X by the singular 

value decomposition (SVD) [19]; the vector  , the “meta-gene input or control”, includes M2 (<< N2 

and <T) meta-gene expression levels (i.e., the first M2 elements of the tth row of the matrix whose columns are 

right-singular vectors of the matrix SVD of matrix  at time t in group U; is the linear 

projection matrix of SVD from M1 meta-gene expression space to N1 gene expression space in X,  is 

the linear projection matrix of SVD from M2 meta-gene expression space to N2 gene expression space in U), and 

(.)* is a pseudo-inverse operation; i.e., W*W=I, where I is the identity matrix. C) Effective state space model for 

meta-genes. The effective state-space model for meta-genes, Equation (4) is obtained by using linear projections 

WX and WU between genes and meta-genes from Equations (1-3). The effective meta-gene system matrix 

 captures internal causal interactions among meta-genes in X (i.e., the ith, jth element of  

( ) describes the contribution from the jth meta-gene expression at time t to ith meta-gene expression at next time 

t+1), and the effective control matrix  captures external causal regulations from meta-

genes in U to meta-genes in X (i.e., the ith, jth element of , describes the contribution from the jth meta-gene 

expression in U at time t to ith meta-gene expression in X at next time t+1). Equation (4) describes the effective 

state space model for the meta-genes in X, whose expression dynamics are determined by and . Because the 

meta-gene dimension, M1 (M2) is less than T, and much less than N1 (N2), we can estimate and  as follows. 

 

Figure 3 Principal dynamic patterns of orthologous genes between worm and fly during embryonic devel-

opment. A) Metagenes of orthologous genes have similar internal driven principal dynamic patterns. Meta-gene 

canonical temporal expression trajectories driven by conserved regulatory networks (i.e., internal principal dy-

namic patterns, iPDPs) include four major patterns in both worm and fly embryonic development: 1) a highly var-

ied pattern late  (iPDP with the real eigenvalue No. 1); 2) a fast decaying pattern early (iPDP with the real eigen-

value No. 2); 3) a slowly increasing pattern (iPDP with the real eigenvalue No. 3); and 4) an oscillating pattern 

(iPDP with the complex eigenvalue). B) Metagenes of orthologous genes have different external driven principal 

dynamic patterns. Worm and fly have very different external principal dynamic patterns (ePDPs); i.e., the canoni-

cal temporal expression trajectories driven by species-specific TFs. The meta-gene dynamic patterns driven by the 

worm-specific regulatory network; i.e., worm ePDPs consist of a varied pattern at late embryonic development 

(real eigenvalue No. 1), a varied pattern at early embryonic development (real eigenvalue No. 2), a fast increasing 

and then unvarying pattern (real eigenvalue No. 3), a decaying pattern (real eigenvalue No. 4), and an increasing 

X1X2...XT[ ]

!Ut ∈ℜM2×1

U1U2...UT[ ] WX ∈ℜN1×M1

WU ∈ℜN2×M2

!A =WX
*AWX ∈ℜM1×M1 !A

!Aij

!B =WX
*BWU ∈ℜM1×M2

!B !Bij

!A !B
!A !B

Daifeng Wang� 8/27/15 10:39 AM
Deleted: the values of 
Daifeng Wang� 8/27/15 10:39 AM
Deleted: from



  

19	  

pattern at late embryonic development (real eigenvalue No. 5). The fly ePDPs, however, have two fast decaying 

patterns at early embryonic development (real eigenvalue No. 1 and 2), a fast increasing pattern at late embryonic 

development (real eigenvalue No. 3), and a highly increasing oscillation pattern (complex eigenvalue). 

 

Figure 4 Orthologous genes have correlated coefficients between worm and fly for their matched internal 

principal dynamic patterns. The worm-fly orthologous genes have correlated coefficients over each of four 

iPDPs. Their coefficients are significantly correlated between worm and fly iPDPs with a similar pattern: r=0.33 

(p<2.2e-16) for the highly varied pattern at late embryonic development, r=0.66 (p<2.2e-16) for the fast decaying 

pattern at early embryonic development, r=0.67 (p<2.2e-16) for the slowly increasing pattern during embryonic 

development, and r=0.73 (p<2.2e-16) for the oscillation pattern during embryonic development.  

 

Figure 5 Ribosomal genes have significantly larger coefficients for internal than external principal dynamic 

patterns, but signaling genes exhibit the opposite trend. A) The iPDP and ePDP coefficients of ribosomal 

genes are compared: the iPDP coefficients are significantly larger than ePDP ones in both worm (KS-test 

p<0.001) and fly (KS-test p<2.2e-16); B) The iPDP and ePDP coefficients of signaling genes (cell-cell communi-

cation) are compared: they have significantly larger ePDP coefficients than iPDP ones in both worm (KS-test 

p<7e-4) and fly (KS-test p<6e-4). 

 

Figure 6 DNA replication is enriched in orthologous genes with high coefficients for the dynamic patterns 

with fast growing canonical trajectories. For the fast-decaying pattern (2nd iPDP), we found that the DNA rep-

lication is significantly enriched in Top 300 (~10%) orthologous genes that have the most negative coefficients 

for this pattern, in both worm (p<1.6e-8) and fly (p<4.5e-6). The very negative coefficients for the fast decaying 

pattern means high positive coefficients for a fast-growing pattern, showing a drastic increase at the beginning of 

embryogenesis, then remain flat during the late embryogenesis (red curves). The original expression patterns of 

those top orthologous genes actually do not have fast-growing patterns (black curves). 

 

Figure S1 Principal dynamic patterns and their eigenvalues. A) internal principal dynamic patterns (PDPs); B) 

external PDPs of orthologs during worm and fly embryonic development. Barplots show the eigenvalues of PDPs. 

The error bar for each eigenvalue tells the its variation range. We left one gene out, and calculated eigenvalues for 

the remaining genes thus obtaining the eigenvalue variations. The curves show the canonical temporal expression 

trajectories of PDPs. 

 

REFERENCES 



 

20	  

1. Kim PM, Tidor B (2003) Subsystem identification through dimensionality reduction of large-scale gene expression data. Genome Res 
13: 1706-1718. 

2. Vilar JM (2006) Modularizing gene regulation. Mol Syst Biol 2: 2006 0016. 
3. Peter IS, Davidson EH (2011) Evolution of gene regulatory networks controlling body plan development. Cell 144: 970-985. 
4. Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8: 93-103. 
5. Levin M, Hashimshony T, Wagner F, Yanai I (2012) Developmental milestones punctuate gene expression in the Caenorhabditis 

embryo. Dev Cell 22: 1101-1108. 
6. Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL, et al. (2010) Gene expression divergence recapitulates the 

developmental hourglass model. Nature 468: 811-814. 
7. Yanai I, Peshkin L, Jorgensen P, Kirschner MW (2011) Mapping gene expression in two Xenopus species: evolutionary constraints and 

developmental flexibility. Dev Cell 20: 483-496. 
8. Irie N, Kuratani S (2011) Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat Commun 

2: 248. 
9. Casci T (2011) Development: Hourglass theory gets molecular approval. Nat Rev Genet 12: 76. 
10. Gerstein MB, Rozowsky J, Yan KK, Wang D, Cheng C, et al. (2014) Comparative analysis of the transcriptome across distant species. 

Nature 512: 445-448. 
11. Brogan WL (1991) Modern control theory. Englewood Cliffs, N.J.: Prentice Hall. xviii, 653 p. p. 
12. Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, et al. (2004) Modeling T-cell activation using gene expression profiling and 

state-space models. Bioinformatics 20: 1361-1372. 
13. Bansal M, Della Gatta G, di Bernardo D (2006) Inference of gene regulatory networks and compound mode of action from time course 

gene expression profiles. Bioinformatics 22: 815-822. 
14. Huang S, Ingber DE (2006) A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory 

networks. Breast Dis 26: 27-54. 
15. Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23: 2507-2517. 
16. Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, et al. (1998) The transcriptional program of sporulation in budding yeast. Science 

282: 699-705. 
17. Wang D, Arapostathis A, Wilke CO, Markey MK (2012) Principal-oscillation-pattern analysis of gene expression. PLoS One 7: 

e28805. 
18. Wang D, Markey MK, Wilke CO, Arapostathis A (2012) Eigen-genomic system dynamic-pattern analysis (ESDA): modeling mRNA 

degradation and self-regulation. IEEE/ACM Trans Comput Biol Bioinform 9: 430-437. 
19. Golub GH, Van Loan CF (1996) Matrix computations. Baltimore: Johns Hopkins University Press. xxvii, 694 p. p. 
20. Cull P, Flahive ME, Robson RO (2005) Difference equations : from rabbits to chaos. New York: Springer. xiii, 392 p. p. 
21. Reece-Hoyes JS, Deplancke B, Shingles J, Grove CA, Hope IA, et al. (2005) A compendium of Caenorhabditis elegans regulatory 

transcription factors: a resource for mapping transcription regulatory networks. Genome Biol 6: R110. 
22. Shazman S, Lee H, Socol Y, Mann RS, Honig B (2014) OnTheFly: a database of Drosophila melanogaster transcription factors and 

their binding sites. Nucleic Acids Res 42: D167-171. 
23. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics 

resources. Nat Protoc 4: 44-57. 
24. Bate M, Martinez Arias A (1993) The Development of Drosophila melanogaster. Plainview, N.Y.: Cold Spring Harbor Laboratory 

Press. 
25. Baugh LR, Hill AA, Slonim DK, Brown EL, Hunter CP (2003) Composition and dynamics of the Caenorhabditis elegans early 

embryonic transcriptome. Development 130: 889-900. 
26. DeRenzo C, Seydoux G (2004) A clean start: degradation of maternal proteins at the oocyte-to-embryo transition. Trends Cell Biol 14: 

420-426. 
27. Du Z, He F, Yu Z, Bowerman B, Bao Z (2015) E3 ubiquitin ligases promote progression of differentiation during C. elegans 

embryogenesis. Dev Biol 398: 267-279. 
28. Shen-Orr SS, Pilpel Y, Hunter CP (2010) Composition and regulation of maternal and zygotic transcriptomes reflects species-specific 

reproductive mode. Genome Biol 11: R58. 
29. Aspenstrom P (2004) Integration of signalling pathways regulated by small GTPases and calcium. Biochim Biophys Acta 1742: 51-58. 
30. Tennessen JM, Bertagnolli NM, Evans J, Sieber MH, Cox J, et al. (2014) Coordinated metabolic transitions during Drosophila 

embryogenesis and the onset of aerobic glycolysis. G3 (Bethesda) 4: 839-850. 
31. Sawa H, Korswagen HC (2013) Wnt signaling in C. elegans. WormBook: 1-30. 
32. Gilbert SF (2000) Developmental biology. Sunderland, Mass.: Sinauer Associates. xviii, 749 p. p. 
33. Schaft AJvd, Schumacher JM (2000) An introduction to hybrid dynamical systems. London ; New York: Springer. xi, 174 p. p. 

Daifeng Wang� 8/27/15 10:39 AM
Deleted: Reece-Hoyes JS, Deplancke B, 
Shingles J, Grove CA, Hope IA, et al. 
(2005) A compendium of Caenorhabditis 
elegans regulatory transcription factors: a 
resource for mapping transcription 
regulatory networks. Genome Biol 6: R110

Daifeng Wang� 8/27/15 10:39 AM
Deleted: 20.

Daifeng Wang� 8/27/15 10:39 AM
Deleted: 21

Daifeng Wang� 8/27/15 10:39 AM
Deleted: 22

Daifeng Wang� 8/27/15 10:39 AM
Deleted: 23

Daifeng Wang� 8/27/15 10:39 AM
Deleted: 24

Daifeng Wang� 8/27/15 10:39 AM
Deleted: 25

Daifeng Wang� 8/27/15 10:39 AM
Deleted: 26

Daifeng Wang� 8/27/15 10:39 AM
Deleted: 27

Daifeng Wang� 8/27/15 10:39 AM
Deleted: 28

Daifeng Wang� 8/27/15 10:39 AM
Deleted: 29

Daifeng Wang� 8/27/15 10:39 AM
Deleted: 30

Daifeng Wang� 8/27/15 10:39 AM
Deleted: 31



  

21	  

 
 


