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-- Ref1: Introduction –-- 

Reviewer 

Comment 

A. Harmanci and Gerstein demonstrate a three step 

procedure of how to initiate an attack on group privacy, 

through the seemingly innocuous use of aggregate datasets 

- those focusing on the quantification of expression 

quantitative trait loci (eQTL). At risk from the Harmanci-

Gerstein Attack on Individual Privacy is the suspect's  

participation in any number of massive studies on obesity, 

body mass index, cholesterol, or even other hypothetical 

eQTL datasets that without fail (as shown in figure 

 1) contain HIV status as a covariate. While Harmanci-

Gerstein Attack on Individual Privacy method does not 

immediately reveal whether the individual being targeted 

by Harmanci and Gerstein attack is indeed overweight and 

in need of a dietary intervention - or secretly harboring 

their high cholesterol numbers from a loved one. As  

hypothesized in this article, the fact that they have 

participated in biomedical research studies funded could 

lead to any number of negative consequences, 

including psychological trauma and taunts from peers for 

participation in a study published in a low impact 

journal. Most importantly, the perpetuator of the  

Harmanci-Gerstein attack would know that just beyond the 

dbGap chasm of click-through's, institutional monitoring, 

progress reports, more progress reports, and IRB's  

assuring that dbGap is absolved of privacy breaches' - 

well lies the suspect's genetic blue print - their 

individual level data. Harmanci and Gerstein advocate for  

changes the ways laws are made as an important step - 

specifically, adding risks estimates of leakage within 

future legislative decision making as a first step, which  

this paper helps to provide insight into. 

Author 
Response 

We thank the reviewer for providing detailed insight into our 
manuscript. We addressed the reviewer’s comments below.  

Excerpt From 

Revised Manuscript  
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-- Ref1: The reviewer suspects that the authors are unaware that 
very similar work was published in 2012 -- 

Reviewer 

Comment 

The reviewer suspects that the authors are unaware that 

very similar work was published in 2012 with a fair amount 

of discussion and attention showing the core  

principles of this work on eQTL under what the reviewer 

considers a more broadly applicable mathematical 

framework. While the author's focus on using extremes or  

outliers as information sources has some unique aspects, 

the innovative work was in the original work by Im, Cox 

and colleagues in the American Journal of Human  

Genetics. Indeed it was a complete surprise at that time 

to those who read and went to meetings where this work was 

presented. I am sure the authors of this paper  

are in no doubt aware that Dr. Cox leads one of the 

largest NIH funded efforts putting forth eQTL data. Thus 

its reassuring to see that her team prospectively put  

for the careful analytical consideration of risk for the 

community to vet at that time in 2012. 

Author 
Response 

We thank the reviewer for pointing us to the Im et al 2012 study, 
which is an important study relating to Genomic Privacy which we 
should have cited in our manuscript. We have carefully reviewed 
the Im et al paper in detail. Interestingly, the reviewer views the 
scenario that is presented in Im et al study as the only way that the 
QTLs can be used to breach privacy and views the study as the 
de-facto standard on the problems of privacy breaches that uses 
genotype-phenotype correlations as a way to breach privacy. We 
believe there are major conceptual and technical differences in Im  
et al study and our study, which we list below. 
 
In the Im et al study, the authors address “detection of a genome 
in a mixture” in the setting of QTL GWAS studies. It should be 
noted, however, that we have cited Homer et al 2008 study, which 
is one of the earlier “detection of a genome in a mixture” studies. 
In Im et al paper, when the attacker gains access to the allelic 
dosages (from genotyping arrays  or DNA sequencing) at a large 
number of SNP sites for an individual and the regression 
coefficients of the SNP genotypes to certain phenotypes, the 
attacker can statistically identify whether the individual has 
participated in the original GWAS study or not. The output is a 
yes/no answer for indicating whether the individual has attended 
the study or not. 
 
We are, however, studying a different problem with a different 
setup: We are undertaking the “Linking Attack” problem. In this 
attack, the attacker aims at characterizing the individuals by linking 
the genotype and phenotype datasets to pinpoint and match the 
individuals in these datasets. In our setting, as described in 
Figure 1 (And new Figure S6), we assume that the attacker gets Deleted: S5



access to 2 databases where first contains (de-identified) 
measurements of a large number of phenotypes and second 
database contains genotypes and individual identities. The 
attacker aims at linking the first dataset to the second dataset, 
where the attacker uses one or more of the phenotypes in the first 
dataset and the phenotype-genotype correlations between the one 
or more of the phenotypes in the first dataset and the genotypes in 
second dataset. This way, the attacker can link the rows in the first 
dataset to the second dataset. Each correct linking of rows in the 
datasets, links of all the phenotype information (from 1st database) 
to the identity in the 2nd database, even the ones that were not 
used in linking.  
 
In this attack, the attacker can either aim at characterizing a 
specific individual that he is interested in (for example, a sperm 
donor), in the phenotype (or genotype) dataset or simply try to 
characterize as many individuals as possible. To quantify the risks 
associated with both of these scenarios, the accuracy and size 
estimation is the main focus of our study. Importantly, this scenario 
has been considered, for example, in Schadt et al 2012 study, in 
addition to others in privacy literature, which are mainly outside 
genomic privacy literature. Im et al do not address the issue of 
“linking”, which is the 3rd step in the individual characterization.  
 
This final point is important for the following reason: Let’s consider 
that our study is redundant in comparison to Im et al’s study. This 
would suggest that an attacker could utilize Im et al attack to 
perform a linking attack. However, if an attacker tried to perform 
the linking attack as per Im et al study, the input and outputs of the 
method does not support a linking attack: The attacker could 
certainly utilize Im et al’s attack to each individual in the genotype 
dataset using the regression coefficients (assuming there are 
enough regression coefficients) and determine whether they are in 
the phenotype dataset or not. After this, however, there is no 
machinery that is presented in Im et al study to link each individual 
in genotype dataset to an individual in the phenotype dataset. 
Therefore, we believe the linking attacks that we are focusing on 
are out of the scope of Im et al’s study.  
 
As we generate and gather larger and more inclusive genotype-
phenotype databases, the linking attacks will become more 
relevant to privacy in comparison to the detection of a genome in 
a mixture attacks, as many people will most definitely be in one or 
more of these databases (One example: In 2014, 4.5 million 
patient records from 206 hospitals in 29 states were stolen from 
the databases of the health company named Community Health 
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Systems). Consider following situation, which should clarify the 
differences even better: An attacker gets access to a genotype 
dataset of 100,000 individuals and he/she most definitely knows 
that the individuals in his/her phenotype dataset are already in this 
genotype dataset; i.e., there is no need to predict participation. The 
logical question in this scenario that the attacker would ask is: Can 
I link these people in the phenotype dataset to the people in the 
genotype dataset? He/she would perform this using our 
manuscript’s main focus, the linking attack. Im et al attack is not 
useful to the attacker at all as the participation is already known.  
Along these lines, a famous linking attack, where the attackers 
aimed at matching individuals in two different datasets, is the 
“Netflix Attack”, where sensitive personal information of many 
individuals1 were identified in a linking attack that linked IMDB and 
Netflix databases (See following responses for more details). As 
we generate larger and larger datasets (23andMe recently 
announced that it genotyped 1 millionth customer2), these datasets 
will get compromised and be leaked. Before this happens, it is 
necessary to actively evaluate how effective linking attacks can be 
performed against the individuals who participated in these 
datasets so that we can quantify the risks.  
 
An important technical difference between the two approaches is 
that the statistical test in Im et al 2012 exploits the phenotype to 
genotype correlations of the specific phenotype and genotype 
datasets, and not the actual biological correlation (following is from 
Im et al paper): 

 
On the other hand, in our study, we assume that the attacker 
utilizes a third party dataset that contains the significant 
phenotype-genotype correlations, which is utilized for linking. To 
clarify this, we added new validation experiments where we identify 
the eQTLs in a one sample set and test the linking accuracy in 
another sample set and show that the accuracy is still high. In our 
study, the information leakage happens through this “biological 
channel” (using genotype predictions via inversion of genotype-to-
phenotype correlations), unlike the Im et al study, where the 
leakage happens through a “statistical channel”, where the set of 
regression coefficients for the specific QTL study is the main 
source of leakage. 
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One other technical difference is that Im et al perform classification 
of class membership (Participated/Not participated) using a 
statistical test that uses a statistic defined as following: 

 
This statistic is genotype based, i.e. it uses genotypic information 
to compute the proposed phenotype statistic (the authors utilize 
the allelic dosages generated by the DNA genotyping arrays). The 
authors propose two additional statistics, which are also genotype 
based. On the other hand, our methodology is based on phenotype 
information; where we use the phenotypes to first perform 
genotype prediction, then use the predicted genotypes for linking. 
The extremity statistic, for example, is based on the phenotypic 
information. In this sense, two methods use different sources of 
information and the leakage happens in opposite directions. 
 
Another important technical difference is that the class 
membership classification in Im et al attack works well (in terms of 
power, See Section name “Power of the Method” in 2012 paper) 
when M>>n>>1, where M is the number of SNPs to be used in the 
classification and n is the number of individuals. Authors use 
M/n=300 in their experimental validations for each phenotype. 
Translating this to our test scenario, M/n=300 means, for 
GEUVADIS dataset where n=421, that one requires 126,300 
expression-genotype regression coefficients for each gene. 
From the available files, the largest M for any gene goes upto at 
most several thousands of regression coefficients, where most of 
the correlations are against variants that are in linkage 
disequilibrium (i.e. regression coefficients are not independent), 
which do not give much information. Moreover, the attacker also 
needs to ensure M>>n*>>1; which indicates that the same criteria 
has to be satisfied with respect to the reference population. 
Considering the attacker uses 1000 Genomes as reference, i.e., 
n*=1092, the required number of regression coefficients are even 
much higher (It is worth mentioning also that, in the case of 
simulated dataset experiments, we used n=100,211 in Section 
2.4). Although for some eQTL studies all gene to all SNP pairwise 
correlations are made publicly available, they are, to our 
knowledge, not available in GEUVADIS project. These issues 
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render the Im et al attack almost non-applicable on the GEUVADIS 
dataset.  
 
On the contrary, we evaluate our method’s performance using one 
marker per phenotype, i.e., one gene-one SNP, and using much 
less number of QTLs in the individual characterization, which 
highlights the applicability of the linking attack.  
 
We believe that above points clarify our study’s differences from 
the Im et al study and other “detection of a genome in a mixture” 
studies, too. We believe this confusion is caused on our part as we 
may not have clarified well the attack setting. These differences 
should also be kept in mind for later as they shape and outline the 
differences in terms of the risk assessment and management that 
we delve in more detail in the following comments. 
 
We have added a citation to Im et al paper in the background 
section and made updates to the Introduction and Methods section 
to ensure that our manuscript is clearer. We have updated Figure 
1 to emphasize linking aspect and added Figures S6 and S7 to 
make linking attack scenario and differences with detection of a 
genome in a mixture attack scenario clearer. 

Excerpt From 

Revised Manuscript Background Section: 

Different aspects of privacy have been intensely studied. Recently, 

genomic privacy is receiving much attention as a result of the deluge of 

personalized genomics datasets that are being generated16,17. With the 

increase in the number of large scale genotyping and phenotyping 

studies, the protection of privacy of participating individuals emerged as 

an important issue. Homer et al18 proposed a statistical testing procedure 

that enables testing whether a genotyped individual is in a pool of 

samples, for which only the allele frequencies are known. Im et al19 

showed that, given the genotypes of a large set of markers for an 

individual, an attacker can reliably predict whether the individual 

participated to a QTL study or not. These attacks, which we refer to as 

“detection of a genome in a mixture”, are one type of attacks on privacy 

(Fig S6). There is yet another important attack where the attacker links 

two or more datasets to pinpoint individuals in datasets and reveal 

sensitive information. One well-known example of these “linking 

attacks”, although not in a genomic context, is the linking attack that 

matched the entries in Netflix Prize Database and the Internet Movie 

Database20. As the size and number of the genotype and phenotype 

datasets increase, the possibility of linking seemingly different datasets 

escalates20. When a large number of individuals take part in one or more 

of these databases, the risks associated with linking attacks will become 

more significant (Fig S6, Section S2). 
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Supplementary Material Section 2: Comparison of 
“Detection of a Genome in a Mixture” and “Linking 
Attacks” in Genomic Privacy 

Privacy has a multifaceted nature which can be breached under many 

different scenarios. The methods that assess and manage the risks, 

however, are scarce and are in need of development. Along this, our 

study aims at building analysis frameworks that will develop 

“measurable method for addressing privacy risk in information systems” 

(http://www.nist.gov/itl/201506_privacy_framework.cfm). In genomic 

privacy, the initial focus is to protect the identities of the individuals 

who attend genetic databases. The initial studies on privacy, therefore, 

focused on the statistical methods to predict whether a certain individual 

with known genotypes attended a study or not. We refer to this scenario 

as “detection of a genome in a mixture”. These are illustrated in Fig 

S6b. The attacker gets access to a genotype dataset (green). The attacker 

acquires also the statistics for the study in which he/she is to evaluate 

the participation of the individuals. The statistics can be simply the 

regression coefficients in a QTL study6, or the allele frequencies7 in a 

large scale genotyping study. He/she also needs a reference population 

on which the allele frequencies are known. These datasets are fed into a 

statistical testing procedure to decide whether the individuals in the 

genotype dataset have attended the study or not. Among all the 

scenarios, these attacks will breach privacy when an individual would 

like to hide their participation in a study. Although this holds true for 

many of the datasets, it is not relevant when the individual’s 

participation is almost certainly true or known. For example, if DNA 

genotyping becomes a routine operation in hospitals in near future, it 

will be most likely that an individual has participated in the genotyping 

dataset in their hospital of choice. The privacy concern will then be 

whether an attacker can pinpoint the individual among all other people 

within the large genotype database. The linking attacks become much 

more relevant at this point: If the attacker gets access to the genotype 

database, and can link it to another database with this individual’s 

phenotypes, he/she can reveal sensitive information (like disease status, 

address, sensitive phenotypes) by the linked entries in the databases. 

 

 

-- Ref1: The review views the incremental advancements over 
the 2012 paper do not support the far-reaching conclusions that 
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the work by Harmanci and Gerstein for changing legistlative 
decision making process in a way that the Im et al paper did not.  

– -- 

Reviewer 

Comment 

Again, a major aspect of this 2012 work was indeed privacy 

risk via eQTL, and indeed at that time it was a major 

shock to myself and other colleagues how powerful  

eQTL data really can be. In comparison of the two papers, 

the 2012 seems focused on a broader problem building from 

eQTL in line with Nature Methods as premier  

journal to publish methodological firsts. The review views 

the incremental advancements over the 2012 paper do not 

support the far-reaching conclusions that the  

work by Harmanci and Gerstein for changing legistlative 

decision making process in a way that the Im et al paper 

did not. I remain more impressed to see how Cox  

and colleagues in 2012 provider a broader framework and a 

bit stunned that p-values and odds ratios from enough SNPs 

limit absolute privacy. This generalizable  

framework intuitively makes sense - when asking one 

question about a person's membership in a cohort can we 

use thousands and thousands of correlated measurements  

to infer correctly the answer. The privacy risk management 

issue covered elsewhere then is towards what is the 

probability of this impacting a specific person's  

privacy. 

Author 
Response 

The reviewer finds our study’s contributions not very impressive 
compared to Im et al study. As we outlined above, our study 
addresses a different aspect of genomic privacy compared to Im 
et al study.  
 
Our study’s main aim is to first bring into public view the potential 
risks behind releasing seemingly unrelated phenotyping and 
genotyping datasets. The linking attacks underpin these risks. We 
concentrate on quantification of the leakage in these attacks and 
show how extremity based genotype prediction can be utilized to 
perform an effective linking attack. Extremity is a fairly central 
theme in privacy analysis: Any time an individual is outlier in any 
feature, they can be distinguished easily from other individuals. 
Although fairly simple to implement, our results demonstrate the 
usage of extremity in the context of genotype prediction and linking 
attacks. In this sense, our results point to how easy it may be to 
accurately link individuals in phenotype datasets to those in 
genotype datasets with very small amount of information, which we 
think is a result at least as striking as the Im et al study. 
 
The reviewer puts forward Im et al and the “detection of genome in 
a mixture” as a meaningful and generalizable framework. We 
believe, for the reasons we explained above, the Im et al attacks 
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(and “detection of a genome in a mixture” attacks) are not 
applicable to the scenario that we are presenting.  
 
[[3 step framework, extremity based attack’s generalized 
modeling]] 
 
Although we agree with the reviewer that a meaningful risk 
management should be defined in studies on privacy, we believe 
that the Linking Attacks should be analyzed through a different risk 
management procedure than the detection attacks. In the 
detection in a mixture attacks, the risk stems from detectability of 
participation of an individual within a cohort. As we discussed in 
the previous responses, this is inherently a different scenario (both 
conceptually and technically) than the linking attack scenario. In a 
linking attack, the risks stem from the fact that an individual in a 
phenotype dataset can be pinpointed, using the predictable 
genotypes as quasi-identifiers, within a genotype dataset. Using 
the linkage, the adversary can link the information in other datasets 
to this dataset. The risks, as we presented in Sections 2.2, 2.3, and 
2.4, are quantified in terms of linkability of the individuals, i.e., 
accuracy of linking and characterizing information leakage. 
 
In regards to Reviewer’s comments on changing legislative 
decision making process: It is widely accepted that the risk 
assessment and management methods are scarce and are in need 
of development. In parallel with the recently recognized needs to 
develop and build “measurable method for addressing privacy risk 
in information systems” 
(http://www.nist.gov/itl/201506_privacy_framework.cfm), our aim 
is to build analysis frameworks for the specific case of linking 
attacks. These frameworks help objectively quantify the risks 
associated with genotype-phenotype data publishing/serving. The 
suggestions in our study (and many others before our study) 
should be used more extensively while data sharing mechanisms 
are designed. For this, we also made our tools available. 
 
We have added a section on discussion about risk management 
and analysis in the Supplementary Material that combines all the 
analysis that we presented throughout our manuscript. 

Excerpt From 

Revised Manuscript Supplementary Material Section 2: Comparison of 
“Detection of a Genome in a Mixture” and “Linking 
Attacks” in Genomic Privacy 

Privacy has a multifaceted nature which can be breached under many 

different scenarios. The methods that assess and manage the risks, 

however, are scarce and are in need of development. Along this, our 
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study aims at building analysis frameworks that will develop 

“measurable method for addressing privacy risk in information systems” 

(http://www.nist.gov/itl/201506_privacy_framework.cfm).   

… 

These also point to the differences in the risks incurred by linking 

attacks and “detection of a genome in a mixture attack” and how these 

risks should be managed in different contexts. The main risk in 

detection attacks is founded on the detectability of participation of an 

individual in a dataset. Since the risks are incurred by the same datasets, 

they can be managed by evaluating which individuals can be targeted to 

detection attacks and restricting access to these individuals’ genotype 

and phenotype data.  In linking attacks, the risks are founded on the 

linkability of an individual in a phenotype dataset to other datasets. 

Specifically, the risks are based on the fact that the linked datasets 

reveal sensitive information about the individual. The fact that these 

datasets are independently published/served will grossly complicate the 

risk management for linking attacks. The most secure risk management 

is restricting access to the genotype and phenotype datasets, or the QTL 

datasets. Another risk management strategy that can be useful data 

publishing is k-anonymization utilizing data perturbation techniques1. In 

these techniques, the phenotype data is anonymized in a way such that 

no combination of quasi-identifiers (i.e., predicted genotypes) are shared 

among less than k individuals. This is ensured by different techniques 

such as data censoring or noise addition. k can be chosen as a tradeoff 

between utility versus the risk of a privacy breach. Higher k implies a 

stronger anonymization of the data at the expense of lower utility of the 

data.  

Supplemantary Material Section 5: A Basic Risk 
Assessment Procedure for Genotype-Phenotype 
Datasets 

Figure S8 illustrates a risk assessment procedure that puts together 

different parts of our study. The analysis of tradeoff between ICI 

leakage and predictability (Section 2.2, top path in Fig S8) can be 

utilized for evaluating the risks associated with releasing QTL datasets. 

For a newly identified set of QTLs, the data releasers can compute the 

average information leakage and the corresponding levels of 

predictability to estimate the number of individuals that are potentially 

vulnerable at different levels of predictability. The predictabilities can 

be estimated using the conditional entropies in the QTL detection 

datasets, and the ICI leakage can be estimated using the genotype 

frequencies from the population panels. Secondly, the risks associated 

with releasing matching genotype and phenotype datasets can be 

evaluated using the 3-step linking attack frameworks. For this, the 

vulnerable individuals are identified. Finally a risk assessment can be 

performed to ensure that the vulnerable individuals are protected. 

Deleted: ¶

http://www.nist.gov/itl/201506_privacy_framework.cfm


 

 

-- Ref1: the paper doesn't consider a hallmark of risk 
management of also considering the probability of a 

'meaningful' privacy breach –-- 

Reviewer 

Comment 

This brings the second major critique of the paper, that 

the paper doesn't consider a hallmark of risk management 

of also considering the probability of a 'meaningful' 

 privacy breach to an individual and damages incurred 

under proper analysis of risk management. The paper brings 

up the legislature goals, and thus that lack of  

utilization of standard approaches for managing and 

quantifying risk management is a fair area of critique and 

a deficiency. Of course, a major premise of legislative  

privacy is the impact or damage to an individual by a 

privacy breach. The question can be framed: "What is the 

probability that a person with information they wished  

to remain protected from other individuals is compromised, 

and what is the tort damages if so? " The authors frame 

privacy risk through an anecdotal example that seems 

unfounded in individual privacy - in contrary to the 

example the authors used, privacy risk is not only about 

speculating that a person exists who wants to expose as  

many people as possible, as is hypothesized in this paper. 

Pragmatically, it's more probable that a person would 

search for a specific person, such as a child of a  

sperm-donor father. 

Author 
Response 

We understand that the reviewer finds our scenario anecdotal and 
unrealistic. We agree that the attack scenarios should provide a 
reasonable argument showing a real risk on individual privacy. We, 
however, do not agree with the reviewer’s view that our scenario, 
privacy breach via linking attacks, is not well-founded in individual 
privacy. Firstly, Schadt et al’s 2012 study (Cited in the Background 
Section) takes on the linking attacks in a scenario that is practically 
the same as ours.  
 
Apart from this, linking attacks have a very rich literature in the field 
of privacy research. One very well-known example is Latanya 
Sweeney’s8 demonstration of a linking which characterized the 
governor of Massachusetts, in addition to many other individuals, 
by linking the voter registration list to the Group Insurance 
Commission’s publicly released de-identified records using shared 
columns in these databases. Latanya Sweeney also demonstrated 
that the identities of several personal genome project (PGP) 
participants can be re-identified by linking the PGP database to the 
voters list in a similar fashion as above9.  
 
In addition, another well-known example was the demonstration of 
the linking attack on the Netflix records and Internet Movie 

Deleted: 1 demonstration of a linking which 
characterized the governor of Massachusetts, in 
addition to many other individuals, by linking the voter 
registration list to the Group Insurance Commission’s 
publicly released de-identified records using shared 
common columns in these databases. Latanya 
Sweeney also demonstrated the identities of several 
personal genome project participants can be re-
identified by linking the PGP database to the voters list 
in a similar fashion as above.

Deleted: and internet movie database



Database records (IMDB). Netflix was sued by many people over 
the privacy concerns that stem from the linking attack performed 
by Narayanan et al1 who linked the IMDB records and Netflix Prize 
competition database (seemingly unrelated databases of a very 
large number of individuals) to reveal identities of Netflix users, in 
addition to sensitive information about them. The story can be 
found here: 
https://en.wikipedia.org/wiki/Netflix_Prize#Privacy_concerns 
 
To relate this further to our study; any movie enjoying person can 
be expected to be in one of these datasets, which renders the 
prediction of participation problem (Im et al study) somewhat 
useless. Actually, Netflix is enormously popular and includes 
millions of individuals in their databases. There is a very good 
chance that any person in a group of intellectual individuals that 
we randomly pick will be in one of these databases. The question 
that an attacker would be asking is: Can I characterize these 
people are and reveal what their preferences are? 
 
In addition, the literature on linking attacks (and on any privacy 
aware data publishing/serving mechanism, for that matter) 
consider any type of sensitive information leakage will lead to a 
privacy breach and must be protected. Formalisms that try to limit 
the leakage are: k-anonymization and differential privacy, l-
diversity, t-closeness, etc. Following this, we would like to argue 
that the risk management (via anonymization) that these 
formalisms provide do not conform with the reviewer’s view of a 
reasonable risk of privacy breach. In these studies, for example k-
anonymization, any individual that can be characterized/identified 
is considered a serious risk, and thus must be protected, without 
regard to whether they would like to be protected. A dataset is k-
anonymous when all the individuals that satisfy k-anonymity 
condition, not just a selected set of individuals. In other words, 
characterization of even one individual is as serious a risk as 
characterization of many (any person who is not a sperm donor still 
has the right to stay private). A more concrete example for this is, 
the homogeneity based linking attack10, which underpins the 
motivation for l-diversity based data anonymization, targets a 
rather small fraction of individuals in a given dataset, yet no one 
argues about the reality or validity of the privacy concerns it 
creates. 
 
In our study, we are showing that the linking attacks can target and 
characterize a large fraction of the individuals (supported by the 
PPV analysis), which indicates that the linking attack has realistic 

Deleted: 2

https://en.wikipedia.org/wiki/Netflix_Prize#Privacy_concerns


levels of associated risk and can target an individual with high 
probability. 
 
We have added a discussion in the Supplementary Material that 
summarizes the above points and also updated to manuscript to 
incorporate the changes. 

Excerpt From 

Revised Manuscript Supplemantary Material Section 2: Comparison of 
“Detection of a Genome in a Mixture” and “Linking 
Attacks” in Genomic Privacy 

One famous example of these attacks (although not in a genomic 

context) is Latanya Sweeney’s8 demonstration of a linking which 

characterized the governor of Massachusetts, in addition to many other 

individuals, by linking the voter registration list to the Group Insurance 

Commission’s publicly released de-identified records using shared 

common columns in these databases. Sweeney also demonstrated that 

the identities of several personal genome project (PGP) participants can 

be re-identified by linking the PGP database to the voters list in a 

similar fashion as above9. Another well-known example was the 

demonstration of the linking attack on the Netflix and Internet Movie 

Database Records (IMDB). Netflix was sued by many people over the 

privacy concerns that stem from the linking attack demonstrated by 

Narayanan et al1 who linked the IMDB records and Netflix Prize 

competition database (seemingly unrelated databases of a very large 

number of individuals) to reveal identities of Netflix users, in addition 

to sensitive information about them. As it can be seen, the genomic 

linking attacks are almost orthogonal (or independent) to the detection 

of a genome in a mixture attacks since the attacker most certainly knows 

that the individuals at hand are in the genotype dataset that he/she is 

trying to link to. 

  

These also point to the differences in the risks incurred by linking 

attacks and “detection of a genome in a mixture attack” and how these 

risks should be managed in different contexts. The main risk in 

detection attacks is founded on the detectability of participation of an 

individual in a dataset. Since the risks are incurred by the same datasets, 

they can be managed by evaluating which individuals can be targeted to 

detection attacks and restricting access to these individuals’ genotype 

and phenotype data.  In linking attacks, the risks are founded on the 

linkability of an individual in a phenotype dataset to other datasets. 

Specifically, the risks are based on the fact that the linked datasets 

reveal sensitive information about the individual. The fact that these 

datasets are independently published/served will grossly complicate the 

risk management for linking attacks. The most secure risk management 

is restricting access to the genotype and phenotype datasets, or the QTL 

datasets. Another risk management strategy that can be useful data 
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publishing is k-anonymization utilizing data perturbation techniques1. In 

these techniques, the phenotype data is anonymized in a way such that 

no combination of quasi-identifiers (i.e., predicted genotypes) are shared 

among less than k individuals. This is ensured by different techniques 

such as data censoring or noise addition. k can be chosen as a tradeoff 

between utility versus the risk of a privacy breach. Higher k implies a 

stronger anonymization of the data at the expense of lower utility of the 

data.  

 

 

-- Ref1: Thus the reviewer provides a specific suggestion that is 
to frame improvements of their methods in comparison to the 

proposed methods as either PPV or AUC. – -- 

Reviewer 

Comment 

As such, and as has been generally modeled in other 

frameworks, the focus should be on positive predictive 

value. Given a person is trying to keep information 

private that would be damaging ( legislative tort is 

framed in damages both punitive and otherwise as such as 

HiV stat), what is the probability that a person would 

correctly identify something about their privacy. Thus 

this metric considers - well most people don't participate 

in studies and that too many false positives makes an 

approach unreliable at detecting a rare event. It also 

reflects that a privacy breach for a random person 

visually obese would not be meaningful for many people who 

have pride in participating in a biomedical study. Thus 

the reviewer provides a specific suggestion that is to 

frame improvements of their methods in comparison to the 

proposed methods as either PPV or AUC, given the overall 

prevalence of people participating in eQTL databases that 

could expose potentially damaging information. The review  

concern is that they rare 'outlier information' would 

lower the prevalence and thus not increase diagnostic 

accuracy. 

Author 
Response 

We understand that the reviewer’s suggestion about comparison 
of our proposed method in terms of positive predictive value.  
 
We have made two changes to the manuscript to address these 
concerns. First, in order evaluate the risks that are incurred by the 
extremity based attack, we evaluated the positive predictive value 
of the linkings. For this, we propose the first distance gap, 𝑑1,2, 

which the attacker can compute for each linking to estimate 
reliabilities of the linkings. The attacker can use this measure to 
sort the linkings and evaluate whether to use the linkings or not. 
We have included sensitivity versus PPV plots (Figs 5, 6) for the 
different linking scenarios. It can be seen that when the attacker 
utilizes this measure, among all the test scenarios, more than 50% 
of the linkings (sensitivity) can be performed with PPV greater than 
95%. In some cases the sensitivity goes up to 80% or more while 
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PPV is greater than 95%. These results show that our method does 
not link only the obvious outlier individuals but a much larger 
fraction. 
 
Among the methods that are mentioned, the most relevant to our 
method is Schadt et al 2012’s methodology, which performs a 
linking attack using a supervised model training for genotype 
prediction. This method takes as input a training and testing 
dataset, trains the genotype prediction model, then identifies the 
best linking for each individual in the testing set. It does not 
compute PPV of the linkings so we compared the linking 
accuracies of our method and Schadt et al method. In order to 
compare the linking accuracies of the two methods, we first divided 
the samples into 3 sets, where first set is used for training Schadt 
et al method, second set is used to discover eQTLs and third set 
is used to test the linking accuracies. We identified the eQTLs and 
selected the top 1000 eQTLs to be used in linking. We then 
performed linking using each method. The results can be seen in 
Table S2, which show that both methods perform very similarly and 
identify very high fraction of individuals. These show that the 
extremity based linking can characterize individuals very similarly 
in terms of linking accuracy as the approach proposed by Schadt. 
 
It should be noted that Schadt et al’s method requires, in addition 
to the list of eQTLs, a training dataset to build a model for genotype 
prediction, while our method requires only the list of eQTLs to be 
used in linking. In order to make a comparison of accuracy versus 
input size, we evaluated how the accuracy of Schadt et al method 
changes with changing training data size. For this, we evaluated 
the linking accuracy of Schadt et al with changing training data 
size. The results are tabulated in Table S2. These show that the 
accuracy of Schadt et al’s method decreases as the training data 
size decreases and requires at least 30 data points (15 expression 
and genotype values) per eQTL to train the model robustly and 
accurately. Thus, our method requires roughly 30 times less data 
(only 1 parameter per eQTL is necessary), which illustrates the 
difference in terms of the required input size to each method. This 
also reflects the applicability of each method by an attacker: 
Extremity based linking requires much less information and thus is 
much easier to implement compared to Schadt et al’s 
methodology. 
 
In simpler terms, our method can bring a very high and comparable 
linking accuracy as the Schadt et al’s method, while requiring much 
less input information. 
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We also want to emphasize that the results of a comparison of 
privacy breaching methods should be treated with caution. Our aim 
is to evaluate whether using extremity based genotype prediction 
approach decreases the linking accuracy of the attacker 
significantly compared to the attack by Schadt et al. Since all the 
attacks represent a different routes to a privacy breach, the data 
publishing/sharing mechanisms must consider and protect against 
all of these attacks, rather than considering just the “best” one.  

Excerpt From 

Revised Manuscript Section 4.6: First Distance Gap Statistic For 
Reliability Estimation of Each Linking 

Following the previous section, the attacker computes, for each 

individual, the distance to all the genotypes in genotype dataset, then 

identifies the individual with smallest distance. Let 𝑑𝑗,(1) and 𝑑𝑗,(2) 

denote the minimum and second minimum genotype distances (among 

𝑑𝐻(�̃�∙,𝒋, 𝒗∙,𝒂) for all a) for 𝑗𝑡ℎ individual. We propose using the 

difference between these distances as a measure of reliability of linking. 

For this, the attacker computes following difference: 

 𝑑2,1(𝑗) = 𝑑𝑗,(2) − 𝑑𝑗,(1) 

 

(23) 

First distance gap can be computed without the knowledge of the true 

genotypes, and is immediately accessible by the attacker with no need 

for auxiliary information. The basic motivation for this statistic comes 

from the observation that the first distance gap for correctly linked 

individuals are much higher compared to the incorrectly linked 

individuals (See Figure S5). 

Section 2.4: Individual Characterization using 
Extremity based Genotype Prediction 

We evaluated whether the attacker can estimate the reliability of the 

linkings. This may potentially increase the effectiveness of the linking 

and increase the risk associated with linking attacks because the attacker 

can estimate reliability of the linkings and choose the ones that are more 

likely to be correct. This increases the risk associated with the linking 

attacks because although he/she may not have a high overall accuracy of 

linkings, the high ranking linkings may be much higher in accuracy. We 

observed that the measure we termed, first distance gap, denoted by 

𝑑2−1 (See Methods Section 4.6), serves as a good reliability estimate for 

each linking. For a given linking, 𝑑2−1 is the difference between the 

genotype distances of the 1st closest and 2nd closest individuals to the 

predicted genotypes. When the linking is incorrect, we observed that 

𝑑2−1 is very likely to be smaller than the distance difference when the 

linking is correct.  

To evaluate this measure further, we computed the positive predictive 

value (PPV) versus sensitivity of the linkings of individuals in the 
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testing set with changing 𝑑2−1 threshold. For this, we first computed  

𝑑2−1 for each linking, then filtered the linkings that did not satisfy the 

threshold. Then we computed PPV and sensitivity of the linkings (See 

Methods Section 4.9), which is plotted in Fig 6b. It can be seen that the 

PPV of linkings can get very high at the same time with high sensitivity. 

For example, the attacker can link around 79% of the individuals at a 

PPV higher than 95%. The random sorting of the linkings, on the other 

hand, have significantly lower PPV (cyan in the plots) at the same 

sensitivity levels. These results suggest that the attacker can increase the 

potential risk (accuracy of linkings) of the attack by focusing on a 

slightly smaller set of linkings with high reliability.  

 

Supplementary Material Section 3: Comparison of 
Extremity based Linking Attack Accuracy with 
Linking Attack in Schadt et al 

It is worth comparing the accuracies of extremity attack and the attack 

proposed in Schadt et al11. This attack takes as input a training set 

comprising the expression and genotype dataset and the list of eQTLs. 

Using the training set and eQTLs, it trains a genotype prediction model, 

which is then used for in the linking attack. On the other hand, extremity 

attack takes only the list of eQTLs. In order to compare the linking 

accuracies, we first divided the GEUVADIS dataset into 3 sets: First set 

is used for identifying eQTLs (85 individuals). Second set is used for 

training Schadt et al method (85 individuals) and the final set is used 

(174 individuals) for performing the linking attack and comparing the 

accuracies. We utilized the 1000 top eQTLs identified on the training 

dataset, as used in Schadt et al study11. Extremity based linking takes as 

input the eQTLs and the testing expression dataset. Schadt et al method 

takes as input the training set (expression and genotypes) and the testing 

expression dataset. The linking accuracies are shown in Table S2. It can 

be seen that both methods perform with very high accuracy. These 

results show that our approach performs comparably at high accuracy as 

the approach proposed by Schadt et al.  

As the amount of data that is required is not the same while testing two 

methods, we also compared the amount of input that each method 

requires to gain the reported linking accuracies. Our method takes, for 

each eQTL only 1 parameter, which is the correlation coefficient. 

Schadt et al method, on the other hand, takes as input a training dataset 

(expressions and genotypes) to build the prediction model. We changed 

the training data size and evaluated the linking accuracy (Results in 

Table S2). It can be seen when the training data size is at 30 data points 

per eQTL, the accuracy of Schadt et al is almost comparable to 

extremity based attack. This result illustrates the difference in the 

required data size for both methods. Extremity attack requires 20 to 30 
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times less data compared to Schadt et al method, which highlight the 

practical applicability of the extremity attack on a dataset. 

 

 

 

-- Ref1: the reviewer profusely thanks the authors for putting 
forth a paper that breaks the monotony of boring and dry 

introductions/discussions –-- 

Reviewer 

Comment 

Finally, the reviewer profusely thanks the authors for 

putting forth a paper that breaks the monotony of boring 

and dry introductions/discussions, for one that  

confidently suggests the legislature should carefully 

utilize this framework for their deliberation to protect 

our privacy. Enjoying both the tone of the discussion  

and introduction, I was only disappointed to see no 

references to the NSA, Edward Snow, or Jennifer Lawrence 

woven into sections on privacy breaches. The reviewer  

suspects the authors were unaware of prior similar work 

and similarly appreciates a periodically 'tongue and 

cheek' and playful review critique. 

Author 
Response 

We thank the reviewer for constructive suggestions, which we 
believe made our manuscript much more complete. After 
consideration, we did not find the suggested individuals to be 
sufficiently related to biomedical data privacy. 

Excerpt From 

Revised Manuscript  

 

-- Ref2: Introduction –-- 

Reviewer 

Comment 

In this article, Harmanci and Gerstein investigated an 

intriguing question regarding genomic privacy: given a 

person 's phenotype (specifically eQTL), whether an  

intruder can stake advantages of known genotype-phenotype 

correlations existing in the public domain and reversely 

predict the genotype of the person. The authors  

showed that ... 

 

 

As stated by the authors, this work can be considered as 

an extension of an earlier work by Schadt and colleagues 

(Nat Gen 2012), in which they showed that given a  

set of high-quality mRNA expression data of a given tissue 

for a human cohort (and SNPs) as training data, one can 

predict the genotypes of another independent cohort  

with high accuracy. One of the major innovations of this 

work in comparison with the earlier work is that they 

showed that, inclusion of additional phenotypic data  

(gender and ethnicity) gives the intruder more power in 

predicting genotypes. The second breakthrough of this work 

is that, instead of using Bayesian probabilistic  



approach, the authors showed that the potential privacy 

intruder can use the extreme outliers existed in the 

phenotypic data as a guidance to identify the  

corresponding individual. 

Author 
Response 

We thank the reviewer for constructive assessment of our 
manuscript. We address the comments below. 
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Revised Manuscript  

 

-- Ref2: I think the work itself is interesting, however the 
presentation can be further clarified in places. –-- 

Reviewer 

Comment 

I think the work itself is interesting, however the 

presentation can be further clarified in places. For 

starters, the equations in the manuscript need to be 

numbered so that it helps the readers (and reviewers) to 

reference the mathematical work (there are no page numbers 

either). The foundation of the "extremity" is described in  

Section 2.4, I am a little surprised that the authors did 

not provide any reference in this part, has the concept of 

Extreme Statistic not ever described in other  

field? I would like to see more elaboration and motivation 

on this part. Is the "extremity statistic" just a 

transformation of rank correlation? Also please clarify  

why genotype value 1 is never assigned to 1. 

Author 
Response 

We agree with the reviewer’s rightful concern that the 
mathematical work should be clearly labeled, which may otherwise 
make it harder to follow. We added numbers to all the equations 
and also added page numbers. These should make it much easier 
to follow and refer to the mathematical work in the manuscript. 
 
Extremity statistic is very much related to normalized rank, which 
we referred to in the manuscript. The genotype prediction by 
extremity statistic utilizes the fact that the extremes of gene 
expression levels associate with the extremes of the genotypes, 
i.e., homozygous genotypes. The attacker uses this to build a 
simplified estimate of the posterior distribution of genotypes given 
expression levels and utilizes this for genotype prediction (Method 
Section 4.8). The genotype prediction for each SNP (given the 
expression levels) can also be conceptually interpreted as 
performing a rank correlation between the homozygous genotypes 
and the gene expression levels and selecting the genotypes that 
maximize the correlation. 
 
We understand that the reviewer finds extremity based genotype 
prediction not well motivated. In fact, using extreme phenotypes of 
an individual is a general route to a privacy breach. This is 
because, any outlier phenotype of a person is an identifying feature 
that can be used by an attacker to characterize/identify the person. 
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In our study, we focus on the extremities of phenotypes to infer 
genotypes then link to the genotype datasets. The extremity based 
prediction exploits the outliers; i.e, the outliers in the expression 
levels are associated with the outliers in the genotypes, i.e., the 
homozygous genotypes. Finally, to address reviewer’s last 
question: The heterozygous genotypes, do not co-incide with the 
extremes of the expression levels, i.e., they co-incide with the 
medium expression levels. Thus, we do not assign the 
heterozygous genotype in the genotype prediction. Finally, in the 
linking step, we utilize only the homozygous genotypes in the 
matching, since we predict only those. 
 
Alternatively, the extremity based genotype prediction can be 
interpreted as a prediction method that uses a simplified model to 
represent the joint genotype-phenotype distribution (Methods 
Section 4.8). We then use the joint distribution to generate the 
posterior probabilities of genotypes presented in Equation (4-6), 
which are then used in genotype prediction. We believe this 
connects conceptually the MAP prediction based attacks and 
extremity based attacks and makes the motivation of extremity 
attack clearer and more concrete. 
 
We clarified the explanation of genotype prediction by extremity 
attack in the Results Section and also added a section in 
Supplementary data including extended discussion. We updated 
the Section 2.4. We also added Figure S9 and Methods Section 
4.8 that discusses different simplifications of the genotype 
prediction models and connects them to extremity based attack.  

Excerpt From 

Revised Manuscript Section 2.4: Individual Characterization using 
Extremity based Genotype Prediction 

Extremity can be interpreted as a normalized rank, which is bounded 

between -0.5 and 0.5. Figure S4a shows the median absolute extremity 

distribution of all the gene expression levels among the individuals. The 

average median extremity is uniformly distributed among individuals. 

Figure S4b shows the median number of genes with minimum 

extremity. Almost half of the genes in each individual have higher than 

0.3 extremity in the population. Also, around 1000 genes have higher 

than 0.45 absolute extremity. In other words, each individual harbors 

substantial number of genes whose expressions are at the extremes 

within the population. These can potentially serve as quasi-identifiers. It 

is worth noting, however, that not all of these extreme genes are 

associated with eQTLs. 

 

… 
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As yet another way of interpretation, the genotype prediction can be 

interpreted as a rank correlation between the genotypes and expression 

levels and choosing the homozygous genotypes that maximize the 

absolute values of the rank correlation. Thus, this process can be 

generalized as a rank correlation based prediction.  

Section 4.8: On Modeling of Genotype-Phenotype 
Distribution for Genotype Prediction in Linking 
Attacks 

In the second step of the linking attack, the genotype predictions are 

performed. The genotype predictions are used, as an intermediate 

information, as input to the step 3 in Fig 3, where linking is performed. 

The main aim of attacker is to maximize the linking accuracy (not the 

genotype prediction accuracy), which depends jointly on the genotype 

prediction accuracy and the accuracy of the genotype matching in the 3rd 

step. Other than the accuracy of linking, another important 

consideration, for risk management purposes, is the amount of auxiliary 

input data (like training data for prediction model) that the genotype 

prediction takes. The prediction methods that require high amount of 

auxiliary data would decrease the applicability of the linking attack as 

the attacker would need to gather extra information before performing 

the attack. On the other hand, the prediction methods that require little 

or no auxiliary data makes the linking attack much more realistic and 

prevalent. It is therefore useful, in the risk management strategies, to 

study complexities of genotype prediction methods and evaluate how 

these translate into assessing the accuracy and applicability of the 

linking attack. We study different simplifications of genotype 

prediction, and illustrate different levels of complexity for genotype 

prediction. 

As we presented in Section 2.3, we assume that the attacker estimates 

the posterior distribution of genotypes and utilizes the maximum a 

posteriori estimate of the genotype as the general prediction method. 

For this, attacker must first model the joint genotype-phenotype 

distribution and then build the posterior genotype distribution. Figure 

S9a shows the joint genotype-expression distribution for an eQTL. 

Figure S9b shows the modeling of the joint distribution using 3 

conditional distributions of expression levels at each genotype. First, the 

means and variances of the distributions are assumed independent. 

Assuming that mean and variance are sufficient statistics for the 

conditional distributions (e.g., normally distributed), the joint 

distributions can be modeled when the 6 parameters (3 means and 3 

variances) are trained. The training can be performed using 

unsupervised methods like expectation maximization or can be 

performed using training data. This would, however, increase the 

required auxiliary data and decrease the applicability of the linking 

attack. Figure S9c shows a simplification of the model by assuming the 



variances of the conditional expression distributions are same for each 

genotype. This decreases the number of parameters to be trained to 4 (3 

means and 1 variance). Figure S9d shows an equally complex model 

with 4 parameters where the conditional distributions are uniform at 

non-overlapping ranges of expression for each genotype. This model 

requires 4 parameters to be trained corresponding to the expression 

range limits. Figure S9e shows the final simplification of the genotype 

prediction, which requires only one parameter to be trained. In this 

model, the prediction only assigns uniform probability for homozygous 

genotypes when expression levels higher or lower than 𝑒𝑚𝑖𝑑 and assigns 

0 conditional probability to the heterozygous genotypes, which brings 

up an important point: This simplified model is exactly the distribution 

that is utilized in the extremity based genotype prediction. In the 

extremity based prediction, we estimate 𝑒𝑚𝑖𝑑 simply as the mid-point of 

the range of gene expression levels within the expression dataset 

(Equations 3 and 4-6). 

Supplementary Section 1: Motivation on Extremity 
Attack: Outlier Attacks in Privacy 

Extremity is a central concept in privacy. This is because the individuals 

who are outliers in certain characteristics are statistically more 

distinguishable than other samples, which makes them more prone to be 

targeted by the privacy breaching attacks. A simple example follows: “If 

a person is driving a very expensive vehicle, it can be deduced with high 

certainty that he/she is wealthy”. It is worth noting that the reverse is not 

always true; i.e., a wealthy person can also drive a mid-range priced 

vehicle. Thus the extremity of the vehicle price enables us to estimate 

very roughly the economical status of a person. In formalisms like k-

anonymization8, the aim is to protect published datasets by imposing 

statistical indistinguishability of the rare and extreme features using 

different methods like censoring, swapping, adding noise. In our study, 

the attacker uses extremity to evaluate the outlierness of the individuals’ 

phenotypes, then he/she predicts the genotypes and then distinguish 

them from other individuals. Since the extremity is simple to estimate 

from the data, the extremity based attack can be implemented easily, 

which makes it fairly applicable and realistic in most situations. 

In our study, we focus on the extremities of phenotypes, expression 

levels, to infer genotypes then link to the genotype datasets. The 

extremity based prediction exploits the outliers; i.e, the outliers in the 

expression levels are associated with the outliers in the genotypes, i.e., 

the homozygous genotypes. The heterozygous genotypes, do not co-

incide with the extremes of the expression levels, i.e., they co-incide 

with the medium expression levels. Thus, we do not assign the 

heterozygous genotype in the genotype prediction. Although predicting 

only homozygous genotypes decreases the genotype prediction 

accuracy, the main goal is linking the individuals correctly. Thus, in the 
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linking step, we utilize only the homozygous genotypes to compute the 

distances and perform matching. 

 

-- Ref2:  some concrete examples would be very helpful to 
demonstrate the power of the approach described by the 

authors –-- 

Reviewer 

Comment 

Also, I think some concrete examples would be very helpful 

to demonstrate the power of the approach described by the 

authors, i.e. identities of individuals that  

would not have been discovered if only gene expression 

data was used or if extremity approach was not used. 

Author 
Response 

We added Figure S6 to illustrate a specific example of the linking 
attack by the extremity based genotype prediction. The example 
first illustrates the specific details of the extremity based linking 
attack by showing how the extremities translate to the predicted 
genotypes. It also shows how the extremities in gene expression 
levels can help the attacker can distinguish between two 
individuals, while the third individual does not get resolved 
correctly because there are not enough extreme identifiers to 
pinpoint that individual. We believe this figure helps illustrate better 
the idea that phenotypic extremity can lead to privacy breaches in 
linking attacks. We also added references to the figure in the main 
text and Supplementary Material. 

Excerpt From 

Revised Manuscript Supplementary Material Section 6: An Example of 
Linking by Phenotype Extremity 

Figure S7 shows an example of a linking attack that utilizes phenotype 

extremity. The basic idea is to use the extreme phenotypes (the gene 

expression levels) to estimate the genotypes then match them to the 

genotype dataset and reveal the disease status. In the example, we are 

focusing on 3 individuals; Bob, Alice, and John in the genotype dataset. 

The attacker makes use of 6 genes and variants in this attack. The gene 

expression levels are represented in terms of their extremity levels and 

some are shown as not extreme for illustrative purposes. The extreme 

ones are used in genotype prediction using the eQTL dataset for 6 

genes. Given the predicted genotypes (note that some are predicted 

wrongly), Bob and John are correctly linked to their entries in the 

expression dataset and their disease status are revealed as positive. In 

this prediction, the 3 out of 4 predicted genotypes are the same for Bob 

and John (rs6052708, rs12479581, rs6077023). The 4th predicted 

genotype (rs7274244) enables pinpointing the exact entries for Bob and 

John. For Alice, however, there are two entries that are equally 

matching to the correctly predicted genotypes. The attacker, thus, 

cannot characterize the disease status for Alice. 
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-- Ref3: Introduction –-- 

Reviewer 

Comment 

Genomic privacy is an increasingly important direction of 

research. One of the aspects of work on genomic privacy 

has focused on ways to breach privacy by linking  

different kinds of data. This paper presents an attack 

that can be used to link a phenotype (in their specific 

case, gene expression) to a genotype and possibly to  

other identifying information. The study presents 

simulations to show the feasibility of this attack. 

 

The authors consider the following setup: an attacker has 

access to an individual genotype (this could be part of a 

larger dataset), a dataset of individual-level  

gene expression (but no genotypes) and a list of variants 

that are known to affect expression of specific genes. The 

attack consists of predicting the genotypes at  

the list of expression SNPs corresponding to the the gene 

expression data and then testing if the target individual 

genotype matches any of the predicted genotypes.  

They consider two variants. In the first (2.3), the 

attacker needs a prediction model to predict genotypes 

from expression. This, in turn, implies that the attacker  

would need access to data where individuals have genotypes 

as well as gene expression. In the second (2.4), termed 

Extremity-based genotype prediction, the attacker  

only has access to the correlation between genotype and 

gene expression. The authors show that for both variants, 

a large fraction of individuals (>=95%) are  

vulnerable as assessed by simulation experiments on the 

GEUVADIS dataset. 

Author 
Response 

We thank the reviewer for careful  

Excerpt From 

Revised Manuscript  

 

-- Ref3: The authors need to do a better job of clarifying their 
contribution and motivating the reason why variant 2 is realistic. 

–-- 

Reviewer 

Comment 

1. Variant 1 of the attack is very similar to the attack 

described in Schadt et al. (Nature Genetics 2012) which 

the authors cite. The only difference is that here the 

authors explore the number of eQTLs to use while Schadt 

uses 1000 top cis eQTLs. Variant 2 is novel as it relaxes 

the requirement that the attacker has access to joint 

 genotype-gene expression data to learn the prediction 

model. The authors need to do a better job of clarifying 

their contribution and motivating the reason why  

variant 2 is realistic. 

Author 
Response 

We agree that we may have not clearly stated our contributions. 
We are listing them below for clarification: 
 



In Section 2.2, we are proposing quantification metrics that 
measure the tradeoff between predictability of the genotypes and 
the information leakage in the predicted genotypes. These metrics 
that we proposed can be utilized for evaluating the extent of 
leakage and the corresponding risk (predictability) of individual 
characterization while new phenotype-genotype correlation 
datasets are being released.  
 
Attack Variant 1 (Section 2.3) is a generalized analysis of the 
linking attack, where the attacker knows perfectly the joint 
expression-genotype distribution. Although this seems similar to 
Schadt et al study, we utilize a non-parametric histogram based 
model for genotype prediction. In Schadt et al, the authors utilize a 
Gaussian approximation for genotype predictions. This enables a 
more generalized analysis of the linking attacks in the 3-step 
analysis framework that we proposed. 
 
Attack Variant 2 (Section 2.4) is the extremity attack. This attack is 
an instantiation of the 3-step decomposition, and also illustration 
of that a simplified approach can reach very high linking accuracy. 
As explained by the reviewer, we are investigating whether the 
attacker can just use a measure of “outlierness” in the gene 
expression levels for genotype prediction. We then evaluate under 
different situations the viability of this novel attack. 
 
We understand that the motivation for extremity attack may not be 
well-stated in our manuscript. Extremity is a fairly central concept 
in privacy. This is because the individuals who are outliers in 
certain characteristics are statistically more distinguishable than 
other samples, which makes them more prone to be targeted by 
the privacy breaching attacks. For example, in k-anonymization, 
one aims to protect published datasets by imposing statistical 
indistinguishability of the rare and extreme features using different 
methods (e.g. censoring, swapping data, adding noise). In our 
study, the attacker uses extremity to evaluate the outlierness of the 
individuals’ phenotypes, predicting genotypes, and distinguishing 
them from other individuals. Since the extremity is simple to 
estimate from the data, which can be combined with the proposed 
genotype estimation procedure, the extremity based attack can be 
implemented easily. This makes it fairly applicable and realistic in 
most situations. 
 
We added a motivation for the extremity attack in the 
Supplemantary Material Section 1. In order to motivate the 
extremity based attack and connect Section 2.4 to previous 
sections, we also added Section 4.8, where we discuss that the 
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extremity based prediction utilizes a simplified model for building 
an estimate of the joint genotype-expression distribution and builds 
the posterior distribution of genotypes based on this distribution. 
Figure S9 is added to illustrate the relation between different 
approaches for estimating the joint expression-genotype 
distribution. 

Excerpt From 

Revised Manuscript Section 2.4: Individual Characterization using 
Extremity based Genotype Prediction 

Extremity can be interpreted as a normalized rank, which is bounded 

between -0.5 and 0.5. Figure S4a shows the median absolute extremity 

distribution of all the gene expression levels among the individuals. The 

average median extremity is uniformly distributed among individuals. 

Figure S4b shows the median number of genes with minimum 

extremity. Almost half of the genes in each individual have higher than 

0.3 extremity in the population. Also, around 1000 genes have higher 

than 0.45 absolute extremity. In other words, each individual harbors 

substantial number of genes whose expressions are at the extremes 

within the population. These can potentially serve as quasi-identifiers. It 

is worth noting, however, that not all of these extreme genes are 

associated with eQTLs. 

Section 4.8: On Modeling of Genotype-Phenotype 
Distribution for Genotype Prediction in Linking 
Attacks 

In the second step of the linking attack, the genotype predictions are 

performed. The genotype predictions are used, as an intermediate 

information, as input to the step 3 in Fig 3, where linking is performed. 

The main aim of attacker is to maximize the linking accuracy (not the 

genotype prediction accuracy), which depends jointly on the genotype 

prediction accuracy and the accuracy of the genotype matching in the 3rd 

step. Other than the accuracy of linking, another important 

consideration, for risk management purposes, is the amount of auxiliary 

input data (like training data for prediction model) that the genotype 

prediction takes. The prediction methods that require high amount of 

auxiliary data would decrease the accessibility of the linking attack as 

the attacker would need to gather extra information before performing 

the attack. On the other hand, the prediction methods that require little 

or no auxiliary data makes the linking attack much more realistic and 

prevalent. It is therefore useful, in the risk management strategies, to 

study complexities of genotype prediction methods and evaluate how 

these translate into assessing the accuracy and applicability of the 

linking attack. We study different simplifications of genotype 

prediction, and illustrate different levels of complexity for genotype 

prediction. 



As we presented in Section 2.3, we assume that the attacker estimates 

the posterior distribution of genotypes and utilizes the maximum a 

posteriori estimate of the genotype as the general prediction method. 

For this, attacker must first model the joint genotype-phenotype 

distribution and then build the posterior genotype distribution. Figure 

S9a shows the joint genotype-expression distribution for an eQTL. 

Figure S9b shows the modeling of the joint distribution using 3 

conditional distributions of expression levels at each genotype. First, the 

means and variances of the distributions are assumed independent. 

Assuming that mean and variance are sufficient statistics for the 

conditional distributions (e.g., normally distributed), the joint 

distributions can be modeled when the 6 parameters (3 means and 3 

variances) are trained. The training can be performed using 

unsupervised methods like expectation maximization or can be 

performed using training data. This would, however, increase the 

required auxiliary data and decrease the applicability of the linking 

attack. Figure S9c shows a simplification of the model by assuming the 

variances of the conditional expression distributions are same for each 

genotype. This decreases the number of parameters to be trained to 4 (3 

means and 1 variance). Figure S9d shows an equally complex model 

with 4 parameters where the conditional distributions are uniform at 

non-overlapping ranges of expression for each genotype. This model 

requires 4 parameters to be trained corresponding to the expression 

range limits. Figure S9e shows the final simplification of the genotype 

prediction, which requires only one parameter to be trained. In this 

model, the prediction only assigns uniform probability for homozygous 

genotypes when expression levels higher or lower than 𝑒𝑚𝑖𝑑 and assigns 

0 conditional probability to the heterozygous genotypes, which brings 

up an important point: This simplified model is exactly the distribution 

that is utilized in the extremity based genotype prediction. In the 

extremity based prediction, we estimate 𝑒𝑚𝑖𝑑 simply as the mid-point of 

the range of gene expression levels within the expression dataset 

(Equations 3 and 4-6).  

Supplementary Material Section 1: Motivation on 
Extremity Attack: Outlier Attacks in Privacy 

Extremity is a central concept in privacy. This is because the individuals 

who are outliers in certain characteristics are statistically more 

distinguishable than other samples, which makes them more prone to be 

targeted by the privacy breaching attacks. A simple example follows: “If 

a person is driving a very expensive vehicle, it can be deduced with high 

certainty that he/she is wealthy”. It is worth noting that the reverse is not 

always true; i.e., a wealthy person can also drive a mid-range priced 

vehicle. Thus the extremity of the vehicle price enables us to estimate 

very roughly the economical status of a person. In formalisms like k-

anonymization8, the aim is to protect published datasets by imposing 
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statistical indistinguishability of the rare and extreme features using 

different methods like censoring, swapping, adding noise. In our study, 

the attacker uses extremity to evaluate the outlierness of the individuals’ 

phenotypes, then he/she predicts the genotypes and distinguishes them 

from other individuals. Since the extremity is simple to estimate from 

the data, the extremity based attack can be implemented easily, which 

makes it fairly applicable and realistic in most situations. 

 

-- Ref3: The experimental validation needs to be improved.–-- 

Reviewer 

Comment 

a. The experimental validation needs to be improved. The 

authors tested their attacks on the GEUVADIS dataset. 

However this setting would produce optimistic results  

as the model was learned and the tested was done on the 

same data. It would be more appropriate to split the data 

into a training and test set where the training set  

is used to pick eQTLs and the test set is used for 

identification. 

Author 
Response 

We agree with the reviewer that matching of eQTLs and testing 
dataset can create a bias. To address this issue, we have divided 
the GEUVADIS samples randomly in two sets (210, 211 
individuals, respectively). One of the sets is used for identifying the 
eQTLs, using Matrix eQTL. The generated set of eQTLs are used 
in the second set for computing the characterization accuracy. This 
result is shown in Figure 6a. It can be seen that the 
characterization accuracy is slightly lower than the matching 
test/training sets but still very high.  
 
We have updated the Results Section 2.4 of the manuscript to 
include these results. 

Excerpt From 

Revised Manuscript Section 2.4: Individual Characterization using 
Extremity based Genotype Prediction 

The previous results show that extremity based linking attacks are 

highly effective when the eQTLs are identified and linking attack is 

performed using the same expression and genotype datasets. In order to 

assess the accuracy when the eQTLs are computed and tested on 

different datasets, we divided the dataset into a training and a testing 

dataset. The training dataset, of 210 individuals, is used to discover the 

eQTLs, using Matrix eQTL12 method (See Methods Section for details). 

The testing dataset, of 211 individuals, is utilized for assessing the 

accuracy of linking. Figure 6a shows the linking accuracy for 

individuals in testing dataset. The accuracy is very high, around 95%, 

which suggests that extremity based linking attacks are potentially 

effective when the datasets where eQTLs are identified do not match the 

data being tested. This is an important aspect of genotype prediction 
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based linking attacks, as they exploit the generalizability of the 

correlations between phenotypes and genotypes. 

 

-- Ref3: there are a number of biases that can reduce accuracy. -- 

Reviewer 

Comment 

b.In addition, there are a number of biases that can 

reduce accuracy. For example, if gene expression in the 

training and test sets were measured in different tissues, 

 platforms, populations. The manuscript currently does not 

address complications that are likely to arise in 

practice. I would have liked to see such a discussion as  

well as empirical results that document the effects of 

these biases. 

Author 
Response 

We agree with the reviewer that different biases can be introduced 
when the eQTLs are computed using datasets from different 
sources and technologies. To evaluate this, we focused on the 
population stratification, specified by the 1000 Genomes Project. 
We divided the samples into 5 populations. For each population, 
we identified the population specific eQTLs (using Matrix eQTL) 
then tested the matching accuracy on the expression values of 
other populations. Results are shown in Table S1a. We observed 
that for the 4 European populations (TSI, GBR, CEU, and FIN), the 
linking accuracies are generally very high (>95%), when the eQTL 
training population is different from testing population. When the 
eQTLs are trained on the African population, the accuracies drop 
significantly. This result can be attributed to the fact that the 
different genetic backgrounds can change the eQTL compositions 
in different populations, which decrease the power of extremity 
based genotype prediction, and decrease the individual matching 
accuracy. When the eQTL identification and testing data 
populations are close, however, the matching accuracy is 
significantly higher. 
 
We also studied how the accuracy gets affected when eQTLs are 
identified in different tissues than the tested samples. For this, we 
used the eQTL database of GTex Project. We downloaded the 
eQTLs identified in 6 different tissues. We performed the matching 
against the genotypes of all the individuals in GEUVADIS dataset. 
The results are shown in Table S1b. It can be seen that the linking 
accuracy is still fairly high (>80% for all tissues except Skeleton 
eQTLs). As expected, we observed the highest accuracy for Whole 
Blood eQTLs. The decreased accuracy (compared to the matching 
tissues) can be attributed in part to the data processing and 
handling differences between the studies. These results show that 
the linking accuracy can still be fairly high when the eQTLs are 
identified in tissues that are not matching the tissues in which 
expression levels are measured. 
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We have updated the Results Section to include these results. 

Excerpt From 

Revised Manuscript Results Section 2.4: Individual Characterization 
using Extremity based Genotype Prediction 

We also studied how the linking accuracy changes when the training 

and testing datasets are measured in different populations. For this, we 

used the 1000 Genomes Project sample information and divided the 

GEUVADIS samples into 5 populations. Then we used each 

population’s samples to discover the population specific eQTLs, then 

used the other populations to test the linking accuracy. Table S1a shows 

the accuracies in each case. It can be seen that when the eQTLs are 

disovered in European populations (CEU, GBR, TSI, FIN), the linking 

accuracies are very high (higher than 95%). When the eQTLs are 

discovered in YRI (African) population, the linking accuracies are 

smaller in European populations. Similarly, when eQTLs are discovered 

on European populations, the linking accuracy in YRI sample is 

relatively smaller. These results illustrate that extremity attack can still 

be effective when eQTLs are identified in populations that are 

genetically close to the population(s) of testing sample and decrease 

when the discovery and testing populations are diversified. We next 

studied scenario where the eQTLs are identified in tissues that are 

different from the tissues on which the expression data is generated. For 

this, we used the eQTLs that are identified by GTex Project41. We 

downloaded the eQTLs for 6 tissues and performed the linking attack on 

the whole GEUVADIS samples as test samples. The results are shown 

in Table S1b. The accuracy is highest for Whole Blood eQTLs, which is 

88%. This is expected since the expression levels in GEUVADIS 

project are measured in blood cell lines. The accuracy is smallest for 

Muscle Skeletal eQTLs, which is 76%. It is worth noting that the 

decrease in the accuracies stem also from the differences in data 

handling and processing between GEUVADIS and GTex projects. 

 

 

-- Ref3: It would also be interesting to understand how these 
attacks scale with data set size.–-- 

Reviewer 

Comment 

c. It would also be interesting to understand how these 

attacks scale with data set size. For example, how 

feasible is this attack within a dataset of 100,000  

genotypes that are now being generated. Another 

interesting question is whether the method can 

discriminate close relatives that are likely to be present 

in large datasets. 

Author 
Response 

We agree that these are important points for illustrating the general 
applicability of the extremity attack. To evaluate how the matching 
genotype sample size affects the accuracy, we simulated 100,000 
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individuals using the 1000 Genomes genotype frequencies for the 
eQTL SNPs. The eQTLs are identified from the training set of 210 
individuals. The 100k simulated individual genotypes are then 
merged with the 211 testing sample set to generate the 100,211 
individual sample set. We then used the expression levels (from 
GEUVADIS dataset) for the test sample and performed the 
extremity based attack on this larger dataset to check the 
characterizability of individuals in testing set. We observed that the 
matching accuracy is very high, around 96% (Figure 7a). This 
result indicates that extremity attack can potentially be effective in 
very large sample sizes. 
 
In order to evaluate how the existence of close relatives affect 
linking  accuracy, we focused on the genotype and expression data 
for 30 CEU trios (father, mother, child) in the HAPMAP project. We 
identified the eQTLs using all the individuals and then performed 
extremity based linking attack. Although the linking accuracy is 
very high, we wanted to evaluate how the close relatives were 
scored in the linkings. Thus, we computed the ranks of close 
relatives (child-mother, child-father linkings) in the linking process 
(excluding self ranks) and compared those to the ranks of 
randomly selected individuals in the dataset. The distribution of 
ranks are plotted in Fig. 8. It can be seen that the rank distribution 
of the close relatives is significantly shifted towards smaller ranks; 
which indicates that the linking assigns smaller ranks to the close 
relatives.  
 
This result has a significant consequence: Even when the 
individual that the attacker aiming to link is not in the genotype 
dataset, the attacker may still be able to link him/her to a close 
relatives that may be in the dataset, which would identify the family 
of the individual and cause a privacy concern.  
 
We updated the Results Section with the above results. 

Excerpt From 

Revised Manuscript Results Section 2.4: Individual Characterization 
using Extremity based Genotype Prediction 

An important practical question is how well the linking accuracy 

changes with increasing genotype data size. In order to evaluate this, we 

simulated the genotypes of the eQTLs (discovered in the training set) 

for 100,000 individuals. The 100,000 simulated individuals are then 

merged with the testing dataset of 211 individuals to build the large 

testing dataset. We then performed the extremity attack using the 

expression levels of the testing dataset and linked them to the merged 

testing dataset of size 100,211 individuals. The linking accuracy is 

plotted in Fig 7a with changing eQTL selection criteria. The linking 
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accuracy is very high (Around 96%). This result suggests that the 

extremity attack can be extended to a large testing sample set. Figure 7b 

shows the sensitivity versus PPV (with changing first gap distance) for 

the eQTLs for which the overall linking accuracy is 70% (Yellow 

dashed lines on Fig. 7b). It can be seen that the attacker can link around 

55% of the individuals with PPV higher than 95%. Only the remaining 

15% are predicted with accuracy lower than 95%. 

 

… 

 

We also studied whether having close relatives in the genotype dataset 

affects the accuracy. To test this, we used the expression and genotype 

data from 30 CEU trios (mother-father-child) from available from 

HAPMAP project14,15. We first identified the eQTLs from the 90 

individuals and performed linking over the same individuals. We then 

computed the average rank of the (non-self) close relatives in each 

linking. For example, when the tested individual is a father or mother, 

we computed the rank of the individual child and if the tested individual 

is a child, we computed the rank of his/her mother and father. We also 

selected, for each tested individual, a random individual and computed 

his/her rank in the linking. The distribution of the ranks are shown in 

Fig 8. It can be seen that the ranks of the related individuals are 

significantly shifted to smaller values compared to random individuals. 

This result shows that the close relatives can get linked to each other. 

This result indicates that the individuals that are close relatives may 

potentially be confused with each other. While the correct person may 

not get characterized, the attacker can still reveal sensitive information 

about the individual’s family, which might extend the reach of privacy 

breach and cause privacy concerns for the family. 

 

-- Ref3: For a realistic attack, the attacker would need some 
threshold on the distance function to decide if a test individual 

is linked to a given predicted genotype. How should this 
threshold be chosen ?–-- 

Reviewer 

Comment 

d. The authors declare an individual to be vulnerable if 

pred_j = j. This is only a first step in documenting its 

utility. For a realistic attack, the attacker would  

need some threshold on the distance function to decide if 

a test individual is linked to a given predicted genotype. 

How should this threshold be chosen ? Does it  

give adequate power at a low false positive rate i.e. very 

few unrelated individuals fall below the threshold while 

the correct individual does ? 

Author 
Response 

The reviewer raises an important point. If the attacker can find a 
way to measure the reliability of the matchings he/she performed, 
he/she can focus on those individuals for which the linking has high 
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reliability and increase his/her chance of a breach at the cost of a 
decrease in the sensitivity of matching. For this, the attacker also 
has to use only the information that is available to him/her, i.e., 
he/she cannot use the correct genotypes. 
 
We found that, for each linking, “genotype distance difference 
between best and second best matching individuals” (first distance 
gap) serves as a good measure, that the attacker can compute for 
each linking, to estimate the accuracy of the linkings. (See 
Methods Section, Figure S5) This measure stems from the 
observation that when the linking is incorrect, sorted distances at 
top are much closer to each other compared to the ones when the 
linking is correct.  
 
In order to evaluate this measure’s effectiveness, we evaluated the 
matchings when the whole eQTL list from training sample is 
considered. Among the 86% that is correctly identified, we are 
evaluating whether the ranking with respect to distance difference 
places the correct matchings to the top. We computed the distance 
difference for all the matchings that the attacker does, and sorted 
the matchings with respect to the difference. Finally, we computed 
the positive predictive value and the sensitivity over increasing 
distance difference cutoff values, which is plotted in Fig. 6b. 
Compared to random rankings of the matchings (which uniformly 
have 86% PPV), this sorting provides much higher PPV. In 
addition, upto 79% of the individuals can be linked correctly with 
more than 95% PPV. These results illustrate that the attacker can 
rank the matchings using the proposed first distance gap 

difference and select the ones that have high genotype distance to 
focus the attack on highly reliable linkings.  
 
We updated the Methods Section to introduce first distance gap 
measure in detail and updated the Results Section 2.4 with the 
above results. 

Excerpt From 

Revised Manuscript Results Section 2.4: Individual Characterization 
using Extremity based Genotype Prediction 

We evaluated whether the attacker can estimate the reliability of the 

linkings. This may potentially increase the effectiveness of the linking 

and increase the risk associated with linking attacks because the attacker 

can estimate reliability of the linkings and choose the ones that are more 

likely to be correct. This increases the risk associated with the linking 

attacks because although he/she may not have a high overall accuracy of 

linkings, the high ranking linkings may be much higher in accuracy. We 

observed that the measure we termed, first distance gap, denoted by 

𝑑2−1 (See Methods), serves as a good reliability estimate for each 



linking. For a given linking, 𝑑2−1 is the difference between the genotype 

distances of the 1st closest and 2nd closest individuals to the predicted 

genotypes. When the linking is incorrect, we observed that 𝑑2−1 is very 

likely to be smaller than the distance difference when the linking is 

correct.  

To evaluate this measure further, we computed the positive predictive 

value (PPV) versus sensitivity of the linkings of individuals in the 

testing set with changing 𝑑2−1 threshold. For this, we first computed  

𝑑2−1 for each linking, then filtered the linkings that did not satisfy the 

threshold. Then we computed PPV and sensitivity of the linkings (See 

Methods), which is plotted in Fig 6b. It can be seen that the PPV of 

linkings can get very high at the same time with high sensitivity. For 

example, the attacker can link around 79% of the individuals at a PPV 

higher than 95%. The random sorting of the linkings, on the other hand, 

have significantly lower PPV (cyan in the plots) at the same sensitivity 

levels. These results suggest that the attacker can increase the potential 

risk (accuracy of linkings) of the attack by focusing on a slightly smaller 

set of linkings with high reliability.  

 

Methods Section 4.6: First Distance Gap Statistic 
For Linking Reliability Estimation 

Following the previous section, the attacker computes, for each 

individual, the distance to all the genotypes in genotype dataset, then 

identifies the individual with smallest distance. Let 𝑑𝑗,(1) and 𝑑𝑗,(2) 

denote the minimum and second minimum genotype distances (among 

𝑑𝐻(�̃�∙,𝒋, 𝒗∙,𝒂) for all a) for jth individual. We propose using the 

difference between these distances as a measure of reliability of linking. 

For this, the attacker computes following difference: 

 𝑑1,2 = 𝑑𝑗,(2) − 𝑑𝑗,(1) 

 

(23) 

First distance gap can be computed without the knowledge of the true 

genotypes, and is immediately accessible by the attacker with no need 

for auxiliary information. The basic motivation for this statistic comes 

from the observation that the first distance gap for correctly linked 

individuals are much higher compared to the incorrectly linked 

individuals. 

 

 

-- Ref3: The presentation could be clarified to highlight the main 
contributions. –-- 

Reviewer 

Comment 

3. The presentation could be clarified to highlight the 

main contributions. 



a. For example, it is unclear how section 2.2 relates to 

the rest of the paper. While it is interesting to see the 

relationship between predictability and leakage,  

this result does not seem to be used later. The choice of 

eQTLs is done simply using the correlation. 

b. Similarly, I would have liked to see a better 

motivation of extremity-based prediction (which I consider 

to be the most interesting part of the paper) and a better  

experimental validation. 

Author 
Response 

We agree with the reviewer’s concern. As we explained above, we 
have made updates the results Section 2.2 to clarify how Section 
2.2 relates to the other sections. In summary, the quantification 
methodology that is presented in Section 2.2 evaluates, for a given 
list of eQTLs, how much information leakage is expected at 
different levels of predictability. This way, the data releasing 
mechanisms can quantify the risks associated with releasing the 
QTL datasets. The following sections 2.3 and 2.4 focus on how the 
genotype-phenotype linkages can be made. We have added 
Supplementary Figure S8 that illustrates how the different sections 
in the manuscript can be utilized in general in a risk assessment 
procedure. In addition, we added Figures S5, S6, and S7 that serve 
to clarify several general aspects of how the scenario that we are 
presenting, the technical details of linking attack, and also a 
specific example of how extremity of phenotypes are utilized in a 
linking attack.  
 
We also included a number of experimental validations in the 
Results Section. We believe these updates clarify how different 
Sections fit with each other in the manuscript and concretize the 
experimental validations. 

Excerpt From 

Revised Manuscript Section 2.2: Quantification of Tradeoff between 
Correct Predictability of Genotypes and Leakage of 
Individual Characterizing Information 

The presented quantification procedure can be utilized for evaluating the 

risk of information leakage while releasing QTL datasets. For example, 

the QTLs to be released can be assessed in terms of the characterizing 

information leakage versus the predictability so as to estimate the size 

and risk of a linking attack (Fig S8) that would be mediated by these 

QTLs. 

Supplementary Material Section 1: Motivation on 
Extremity Attack: Outlier Attacks in Privacy 

Extremity is a central concept in privacy. This is because the individuals 

who are outliers in certain characteristics are statistically more 

distinguishable than other samples, which makes them more prone to be 

targeted by the privacy breaching attacks. A simple example follows: “If 
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a person is driving a very expensive vehicle, it can be deduced with high 

certainty that he/she is wealthy”. It is worth noting that the reverse is not 

always true; i.e., a wealthy person can also drive a mid-range priced 

vehicle. Thus the extremity of the vehicle price enables us to estimate 

very roughly the economical status of a person. In formalisms like k-

anonymization1, the aim is to protect published datasets by imposing 

statistical indistinguishability of the rare and extreme features using 

different methods like censoring, swapping, adding noise. In our study, 

the attacker uses extremity to evaluate the outlierness of the individuals’ 

phenotypes, then he/she predicts the genotypes and distinguishes them 

from other individuals. Since the extremity is simple to estimate from 

the data, the extremity based attack can be implemented easily, which 

makes it fairly applicable and realistic in most situations. 

Supplementary Material Section 5: A Basic Risk 
Assessment Procedure for Genotype-Phenotype 
and QTL Datasets 

Figure S8 illustrates a risk assessment procedure that puts together 

different parts of our study. The analysis of tradeoff between ICI 

leakage and predictability (Section 2.2, top path in Fig S8) can be 

utilized for evaluating the risks associated with releasing QTL datasets. 

For a newly identified set of QTLs, the data releasers can compute the 

average information leakage and the corresponding levels of 

predictability to estimate the number of individuals that are potentially 

vulnerable at different levels of predictability. The predictabilities can 

be estimated using the conditional entropies in the QTL detection 

datasets, and the ICI leakage can be estimated using the genotype 

frequencies from the population panels. Secondly, the risks associated 

with releasing matching genotype and phenotype datasets can be 

evaluated using the 3-step linking attack frameworks. For this, the 

vulnerable individuals are identified. Finally a risk assessment can be 

performed to ensure that the vulnerable individuals are protected. 

 

 

-- Ref3: Typos –-- 

Reviewer 

Comment 

Typos: 

Page 2: "GTex project hosts a sizable set of eQTL dataset" 

Page 4: "the all the predicted genotypes" 

Author 
Response 

We sincerely thank the reviewer for very careful reading of our 
manuscript. We have fixed the typos pointed out by the reviewer. 

Excerpt From 

Revised Manuscript Page 4: 

… For example, GTex Project hosts a sizable set of eQTL dataset from 

multiple studies where the users can view in detail how the genotypes 

and expression levels are associated 13,16… 
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Page 5: 

… Thus, each time he/she predicts a new genotype, he/she will 

encounter a tradeoff between the number of genotypes that can be 

predicted correctly versus the cumulative correctness of all the predicted 

genotypes… 

 

 

-- Ref4: Remarks to the Author –-- 

Reviewer 

Comment 

The authors present a rigorous and important analysis of 

how predictive are genotype-phenotype correlations, using 

an expression quantitative trait loci (eQTL)  

dataset as an example. Their method predicts genotypes 

from eQTL gene expression with high accuracy, addressing 

privacy concerns related to genetic data  

identifiability. Despite their important contribution to 

addressing this problematic issue, I have some concerns 

and questions about this manuscript that preclude me  

from giving it my strongest support. 

Author 
Response 

We thank the reviewer for careful assessment and consideration 
of our manuscript. We address each comment below. 

Excerpt From 

Revised Manuscript  

 

-- Ref4: Major Critique:  the authors do not compare the 
performance of their method with this previous one. This should 

be done –-- 

Reviewer 

Comment 

The authors rightfully cite a previous publication (Schadt 

et al, Nature Genetics 2012) that relates to their study, 

as they also developed a method to predict  

genotypes from eQTL gene expression. Nevertheless, the 

authors do not compare the performance of their method 

with this previous one. This should be done, as to  

assess the importance of this new method with the current 

state-of-the-art tools addressing the same issue. 

Author 
Response 

We understand that the reviewer recommends this comparison 
between the methods. It is first necessary to note that both 
methods perform linking attacks, so the genotype predictions are 
performed as middle steps. In fact the source code that we 
received from the Schadt et al does not give as output the 
genotype predictions. We therefore compared the linking 
accuracies of the two methods. For comparison, we divided the 
GEUVADIS dataset into 3 sets: First set is used for identifying 
eQTLs (85 individuals). Second set is used for training Schadt et 
al method (85 individuals) and the final set is used (174 individuals) 
for performing the linking attack and comparing the accuracies. We 
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utilized the 1000 top eQTLs identified on the training dataset. 
Extremity based linking takes as input the eQTLs and the testing 
expression dataset. Schadt et al method takes as input the training 
set (expression and genotypes) and the testing expression 
dataset. The linking accuracies are shown in Table S2. It can be 
seen that both methods perform with very high accuracy. These 
results show that our approach performs comparably at high 
accuracy as the approach proposed by Schadt et al.  
 
As the amount of data that is required is not the same while testing 
two methods, we also compared the amount of input that each 
method requires to gain the reported linking accuracies. Our 
method takes, for each eQTL only 1 parameter, which is the 
correlation coefficient. Schadt et al method, on the other hand, 
takes as input a training dataset (expressions and genotypes) to 
build the prediction model. We changed the training data size and 
evaluated the linking accuracy of Schadt et al’s method (Results in 
Table S2). It can be seen when the training data size is at 30 data 
points per eQTL, the accuracy of Schadt et al is almost comparable 
to extremity based attack. This result illustrates the difference in 
the required data size for both methods. Our extremity attack 
requires almost 30 times less data compared to Schadt et al 
method, which highlights the practical applicability of the extremity 
attack on a dataset.  
 
We would like to emphasize that these comparison results should 
be interpreted with caution. Our aim in this comparison is to show 
that the extremity attack has comparable accuracy to the training  
based attack. When the data is to be published or served, these 
attacks must be considered altogether (rather than choosing the 
best performing one) since they represent different paths to a 
privacy breach. 
 
We added the Supplementary Section 3 to report the Comparison 
Results. 
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Revised Manuscript Supplementary Section 3: Comparison of Extremity 
based Linking Attack Accuracy with Linking Attack 
in Schadt et al 

It is worth comparing the accuracies of extremity attack and the attack 

proposed in Schadt et al11. This attack takes as input a training set 

comprising the expression and genotype dataset and the list of eQTLs. 

Using the training set and eQTLs, it trains a genotype prediction model, 

which is then used for in the linking attack. On the other hand, extremity 

attack takes only the list of eQTLs. In order to compare the linking 

accuracies, we first divided the GEUVADIS dataset into 3 sets: First set 
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is used for identifying eQTLs (85 individuals). Second set is used for 

training Schadt et al method (85 individuals) and the final set is used 

(174 individuals) for performing the linking attack and comparing the 

accuracies. We utilized the 1000 top eQTLs identified on the training 

dataset, as used in Schadt et al study11. Extremity based linking takes as 

input the eQTLs and the testing expression dataset. Schadt et al method 

takes as input the training set (expression and genotypes) and the testing 

expression dataset. The linking accuracies are shown in Table S2. It can 

be seen that both methods perform with very high accuracy. These 

results show that our approach performs comparably at high accuracy as 

the approach proposed by Schadt et al.  

As the amount of data that is required is not the same while testing two 

methods, we also compared the amount of input that each method 

requires to gain the reported linking accuracies. Our method takes, for 

each eQTL only 1 parameter, which is the correlation coefficient. 

Schadt et al method, on the other hand, takes as input a training dataset 

(expressions and genotypes) to build the prediction model. We changed 

the training data size and evaluated the linking accuracy (Results in 

Table S2). It can be seen when the training data size is at 30 data points 

per eQTL, the accuracy of Schadt et al is almost comparable to 

extremity based attack. This result illustrates the difference in the 

required data size for both methods. Extremity attack requires 20 to 30 

times less data compared to Schadt et al method, which highlight the 

practical applicability of the extremity attack on a dataset. 

 

 

-- Ref4:  the authors do not mention which was their p-value 
threshold. At least FDR<5% should be used. –-- 

Reviewer 

Comment 

The authors use the reported eQTL correlation coefficient 

as the criteria for strength of the eQTL association. 

Nevertheless, the authors do not mention which was  

their p-value threshold. At least FDR<5% should be used. 

One of the problems of using only the correlation 

coefficient is that for instance for rare SNPs, the  

correlation coefficient might be extremely high but the p-

value can be borderline significant. 

Author 
Response 

We agree with the reviewer’s rightful concern. There are several 
eQTL datasets that we used: For eQTLs obtained from GEUVADIS 
project, we made sure to use FDR<5% eQTLs, which are located 
under project data files. For the eQTL datasets that are identified 
via training datasets using Matrix eQTL method, we used only the 
expression-genotype pairs for which Matrix eQTL reports at most 
5% FDR, which is computed via Benjamini-Hochberg 
methodology. 
 
We have updated the Methods Section in detail to explain how 
eQTL selection was performed. 
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Excerpt From 

Revised Manuscript Methods Section 4.7: eQTL Identification on 
Training Sets with Matrix eQTL 

For identification of eQTLs, we used Matrix eQTL12 method. We first 

generated the testing and training sample lists by randomly picking 210 

and 211 individuals, respectively, for testing and training sets. We then 

separated the genotype and expression matrices into training and testing 

sets. In order to decrease the run time, Matrix eQTL is run in cis-eQTL 

identification mode. After the eQTLs are generated, we filtered out the 

eQTLs whose FDR was larger than 5%. We finally removed the 

redundancy by ensuring that each gene and each SNP is used only once 

in the eQTL final list. 

 

Methods Section 5: Datasets 
The normalized gene expression levels for 462 individuals and the 

eQTL dataset are obtained from gEUVADIS mRNA sequencing 

project17. The eQTL dataset contains all the significant (At most 5% 

false discovery rate cutoff) gene-variant pairs with high genotype-

expression correlation. To ensure that there are no dependencies 

between the variant genotypes and expression levels, we used the eQTL 

entries where gene and variants are unique. In other words, each variant 

and gene are found exactly once in the final eQTL dataset. The 

genotype, gender, and population information datasets for 1092 

individuals are obtained from 1000 Genomes Project 18. For 421 

individuals, both the genotype data and gene expression levels are 

available. 

 

-- Ref4:  why does the genotype accuracy decreases when the 
absolute correlation threshold is bigger than ~ 0.7? –-- 

Reviewer 

Comment 

In Figure 5b, why does the genotype accuracy decreases 

when the absolute correlation threshold is bigger than ~ 

0.7? 

Author 
Response 

The reviewer is raising a good point. The problem is with the 
accuracy computation: At the high absolute correlation threshold, 
there are very small number of SNPs (Figure 4a). This makes the 
genotype accuracy (the fraction) unstable. Although we expect 
very high accuracy, 1 wrong prediction out of a small number in the 
fraction pulls accuracy down significantly. The decrease at 0.7 
threshold is reflecting this behavior. We updated the Results 
Section to include a clarification for this behavior. 

Excerpt From 

Revised Manuscript Results Section 2.4: 

The slight decrease of genotype accuracy at correlation thresholds 

higher than 0.7 is caused by the fact that the accuracy (fraction of 

correct genotype predictions within all genotypes) is not robust at very 
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small number of SNPs. Although we expect very high accuracy, even 

one wrong prediction among small number of total genotypes decreases 

the accuracy significantly. 

 

 

-- Ref4:  It is not clear if your tool available at 
http://privaseq.gersteinlab.org can use the "Extremity based 

Genotype Prediction" –-- 

Reviewer 

Comment 

It is not clear if your tool available at 

http://privaseq.gersteinlab.org can use the "Extremity 

based Genotype Prediction". Please clarify in a README 

file. 

Author 
Response 

The reviewer is bringing up an interesting question about whether 
the tool supplies the predicted genotypes with extremity based 
linking. The genotypes predictions are used by our tool to perform 
compute the genotype distances and perform linking. They are, 
thus, only intermediate data that is used by the tool, so we do not 
supply the extremity based genotype predictions.  
 
The output from the tool is one tab delimited file that contains 
vulnerability information for each sample. In each row, there are 4 
columns that correspond to following: 
 
… 
 
whether each individual is vulnerable and also the first distance 
gap statistic corresponding to the individual’s linking. 
 
We updated the README file to clarify these. 

Excerpt From 

Revised Manuscript  

 

-- Ref4:  can your tool address this by being able to use imputed 
genotypes?–-- 

Reviewer 

Comment 

Since a lot of new studies have published eQTL datasets 

based on imputed genotypes, can your tool address this by 

being able to use imputed genotypes? 

Author 
Response 

The reviewer is raising an important point. In principle, the SNP 
genotypes that are identified via imputation are not any different 
from genotyped SNPs in terms of characterizing information 
content they provide, so our tool should be able to handle them 
properly. One important point, however, is that the SNPs that are 
in linkage disequilibrium blocks tend to be very highly correlated 
and not give any information. In fact addition of these may increase 
redundancy and add noise to linking process and decrease linking 
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accuracy. This is why we remove all the redundancies in genes 
and SNPs, i.e., each SNP and gene are used once in the linking 
attack. One could, however, evaluate the dependencies between 
genotypes and build a more complicated model of genotype 
prediction (step 2) and also include this information in linking (step 
3) so as to reach a higher accuracy.   
 
We have added a paragraph of these points in the Discussion 
Section. 

Excerpt From 

Revised Manuscript Supplemantary Section 4: Imputed Genotypes and 
Linking Attacks 

Many studies use imputed genotypes in building genotype datasets. One 

practical question is how the imputed genotypes effect the linking 

accuracy. In principle, the SNP genotypes that are identified via 

imputation are not any different from genotyped SNPs in terms of 

characterizing information content they provide, so our tool should be 

able to handle them properly. One important point, however, is that the 

SNPs that are in linkage disequilibrium blocks tend to be very highly 

correlated and not give any information. In fact addition of these may 

increase redundancy and add noise to linking process and decrease 

linking accuracy. This is why we remove all the redundancies in genes 

and SNPs, i.e., each SNP and gene are used once in the linking attack. 

One could, however, evaluate the dependencies between genotypes and 

build a more complicated model of genotype prediction (step 2) and also 

include this information in linking (step 3) so as to reach a higher 

accuracy.   
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