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Introduction

* Heterogeneity within cellular populations has been evident since the
first microscopic observations of individual cells.

* Single cell method provide deep insight into characteristics underlying
developmental plasticity, cancer heterogeneity, and drug resistance

* Recent studies showed the broad diversity of activity within
regulatory elements when comparing phenotypically distinct cell

populations

* Heterogeneity at the single-cell level
extends to accessibility variability
within cell types at regulatory
elements.

ATAC-seq: Assay for Transposase Accessible Chromosome
followed by sequencing (Buenrostro, 2013)
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scATAC-seq: Single Cell ATAC-seq

ATAC-seq: Assay for Transposase Accessible Chromosome followed by sequencing
Identifies the parts of the genome which are transposase accessible. Transposase inserts sequence adapters to the

accessible regions.
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scATAC-seq: Single Cell ATAC-seq
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scATAC-seq: Single Cell ATAC-seq

* Using single-cell ATAC-seq, we generated DNA accessibility maps from 254 individual

GM12878 lymphoblastoid cells.

» Aggregate profiles of scATAC-seq data closely reproduce ensemble measures of
accessibility profiled by DNase-seq and ATAC-seq.

* Data from single cells recapitulate several characteristics of bulk ATAC-seq data
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Studied Cell Lines

* We further validated the approach by measuring chromatin
accessibility from a total of 1,632 IFC chambers representing three
tier 1 ENCODE cell lines:

 H1 human embryonic stem cells (ES cells),
* K562 chronic myelogenous leukaemia and
e GM12878 lymphoblastoid cells

 And V6.5 mouse ES cells,

* EML.cells (mouse haematopoietic progenitors),
* TF-1 cells (human erythroblast),

* HL-60 cells (human promyeloblasts)

 BJ fibroblasts (human foreskin fibroblasts).
(Data is available for download)



Analysis Strategy: Deviation and Variability

* The sparse nature of scATAC-seq data makes analysis of cellular variation at
individual regulatory elements impractical.

e Authors develop an analysis infrastructure to measure regulatory variation using
changes of accessibility across sets of genomic features.

* Deviation: How high/low is the accessibility compared to a random background over all the
cells?

 Variability: How variable is the observed accessibility over the cell population?

* Choose a set of open chromatin peaks using the aggregate accessibility track,
which share a common characteristic (such as transcription factor binding motif,
ChIP-seq peaks or cell cycle replication timing domains).

* Calculate the observed fragments in these regions minus the expected fragments,
downsampled from the aggregate profile, within individual cells.

* To correct for bias, divide this by the root mean square of fragments expected
from a background signal constructed to estimate technical and sampling error
within single-cell data sets



Deviation and Variability
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K562 Results

* To comprehensively characterize variability associated with trans-factors
within individual K562 cells, they computed variability across:

* All available ENCODE ChIP-seq,
* Transcription factor motifs
e Regions that differed in replication timing

* They found measures of cell-to-cell varlablllty were highly reproducible

across biological replicates

* Increased variability within different

replication timing domains
e Variable ATAC-seq signal associated with

changes in DNA content across the cell cycle.
* Trans-factors associated with high variability.

GATA1/2, JUN and STAT2, and chromatin
effectors, such as BRG1 (also known as
SMARCA4) and P300 (also known as EP300).
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K562 Results (cont)

* Immunostaining followed by microscopy or flow cytometry confirmed
heterogeneous expression of GATA1 and GATA2.
* Principal component (PC) analysis of single-cell deviations across all trans-

factors show seven significant PCs,

e PC5 describing changes in DNA abundance throughout the cell cycle.
* This analysis suggests that high-variance trans-factors are variable independent of the cell cycle.
 The remaining PCs show contributions from several transcription factors, suggesting that

variance across sets of trans-factors represent distinct regulatory states in individual cells.
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K562 — Synergistic Effects

Peaks unique to GATA1 binding are significantly
more accessible than peaks unique to GATA2
(Extended Data Fig. 6k—I) supporting the
hypothesis that GATA1, an activator of
accessibility, competes with GATA2 to induce
single cell variability.

For example, chromatin accessibility variance
associated with GATA2 binding is significantlg
enhanced when the same region could also be
bound by GATA1, TAL1 or P300.

In contrast, CTCF, SUZ12, and ZNF143 appear to
act as general suppressors of accessibility
variance, unless associated with proximal binding
of ZNF143 or SMC3, the latter a cohesin subunit
involved in chromosome looping

Thus, single cell accessibility profiles nominate
distinct trans-factors that, in combination, induce
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Accessibility can be Modulated Experimentally

e \Variability can be experimentally modulated and further demonstrates that variability is
not solely dependent on the cell cycle.
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Cell Type Specific Regulators of Deviations in Accessibility
« Cells from different biological replicates cluster with their cell type of
origin
« SCcATAC-seq can also be used to deconvolve heterogeneous cellular
mixtures.
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Variation of chromatin
accessibility in cis is highly
correlated with previously
reported chromosome
compartments, opening the
intriguing possibility that
this component of
epigenomic noise has its
roots in higher-order
chromatin organization.
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