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ABSTRACT 
The rapidly growing volume of data being produced by next-generation sequencing 

initiatives is enabling more in-depth analyses of protein conservation than previously 

possible. Deep sequencing is uncovering disease loci and protein regions under selective 

constraint, despite the fact that intuitive biophysical mechanisms responsible for such 

constraint (such as the need to engage in protein-protein interactions or residue burial) are 

sometimes lacking. Allosteric hotspots may often provide the missing conceptual link, 

and we use models of protein conformational change to identify such residues. In 

particular, protein conformational changes are used to predict allosteric residues that can 

act on surface cavities or as information flow bottlenecks. We developed a software tool 

(stress.gersteinlab.org) that enables users to perform this analysis on their own proteins of 

interest, and we note that this approach is both computationally tractable and 

fundamentally structural in nature – knowledge of conformational change and protein 

structure are directly included in the search for allosteric residues. Finally, by developing 

a method for automatically culling instances of alternative conformations throughout the 

PDB, allosteric hotspot predictions are made on a database-level scale, and the predicted 

allosteric residues tend to be conserved across both long and short evolutionary time 

scales. 

 

INTRODUCTION 
The ability to sequence large numbers of human genomes is providing a much 

deeper view into protein evolution. When trying to understand the evolutionary pressures 

on a given protein, structural biologists now have at their disposal an unprecedented 

breadth of data regarding patterns of conservation, both across species and between 

individual humans. As such, there are greater opportunities to take a more integrated 

view of the context in which the protein and its residues function. This integrated view 

necessarily includes structural constrains such as residue packing, protein-protein 

interactions, and stability. However, deep sequencing is unearthing a class of conserved 

residues on which no obvious structural constraints appear to be acting. The missing link 
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in understanding these regions may often be provided by considering the protein’s 

dynamic behavior and distinct functional states within an ensemble. 

In addition to the multiple conformations exhibited by a given protein, the 

underlying energetic landscape itself is dynamic in nature: allosteric signals or other 

external changes may reconfigure and reshape the landscape, thereby shifting the relative 

populations of states within an ensemble (Tsai et al, 1999). Landscape theory thus 

provides the conceptual underpinnings necessary to describe how proteins change 

behavior and shape under changing conditions. A primary driving force behind the 

evolution of these landscapes is the need to regulate activity and efficiency in response to 

changing cellular contexts, thereby making allostery and conformational change essential 

components of protein evolution. 

An allosteric mechanism may involve the modulation of large-scale motions upon 

binding of an effector ligand, resulting in conformational changes at distant surface sites. 

Such motions may also affect patterns of communication between residues, and internal 

residues essential to the integrity of these communication networks constitute 

bottlenecks. 

Given the importance of allosteric regulation, as well as the role of allostery in 

imparting efficient functionality, several methods have been devised for the prediction of 

allosteric residues. Conservation has been used, either in the context of conserved 

residues (Panjkovich and Daura, 2012), networks of co-evolving residues (Lee et al, 

2008; Suel et al, 2003; Lockless and Ranganathan, 1999; Shulman et al, 2004; Reynolds 

et al, 2011; Halabi et al, 2009), or local conservation in structure (Panjkovich and Daura, 

2010). In related studies, both conservation and geometric-based searches for allosteric 

sites have been successfully applied to a few systems (Capra et al, 2009), several of 

which also employ support vector machines (Huang et al, 2006, Huang et al, 2013). 

Normal modes analysis, coupled with ligands of varying size, have been used to examine 

the extent to which bound ligands interfere with low-frequency motions, thereby 

identifying potentially important residues at the surface (Panjkovich and Daura, 2012; 

Mitternacht and Berezovsky, 2011; Ming and Wall, 2005). 

In addition, the concept of ‘protein quakes’ has been introduced to explain local 

regions of proteins which are essential for conformation transitions (Miyashita et al 
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2003). A protein may relieve the strain of a high-energy configuration by local structural 

changes. Such local changes are often at the focal point of allosteric behavior, and these 

regions can be identified in a number of ways, including modified normal modes analysis 

(Miyashita et al 2003) or time-resolved X-ray scattering (Arnlund et al, 2014). 

Normal modes have also been used by the Bahar group to identify important 

subunits of proteins that act in a coherent manner for specific proteins (Chennubhotla and 

Bahar, 2006; Yang and Bahar, 2005). Rodgers et al applied normal modes to identify and 

experimentally validate the importance of key residues in CRP/FNR transcription factors 

(Rodgers, 2013). Molecular dynamics (MD) and network analyses have been used to 

identify internal residues which may function as allosteric bottlenecks (Sethi et al, 2009; 

Gasper et al, 2012; VanWart et al, 2012; see also reviews by Csermely et al, 2013, as 

well as Rousseau and Schymkowitz, 2005). In conjunction with NMR, Rivalta et al use 

MD and network analysis to identify important regions in imidazole glycerol phosphate 

synthase (Rivalta et al, 2012). 

Though having provided valuable insights, many of these approaches may be 

limited in terms of scale (the numbers of proteins which may be feasibly investigated), 

computational demands, or the class of residues to which the method is tailored (surface 

or interior). 

Using models of protein conformational change, we determine both surface and 

interior residues that may serve as essential allosteric regions in a computationally 

tractable manner, thereby enabling high-throughput analysis. This framework directly 

incorporates information regarding protein structure and dynamics. In addition, this 

method is applied to a high-confidence set of proteins which exhibit conformational 

change throughout the PDB. The relatively greater conservation of the residues identified 

(both across species and amongst humans) may help to elucidate many of the otherwise 

poorly-understood regions in proteins. In a similar manner, several of our identified sites 

correspond to human disease loci for which no clear mechanism had previously been 

proposed for their pathogenicity. Finally, our pipeline (termed STRESS, for 

STRucturally-identified ESSential residues) is made available through a tool to enable 

users may submit their own structures for analysis. 
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RESULTS 
Predictions of Allosteric Residues 

Allosteric residues at the surface generally play a regulatory role that is 

fundamentally different from that played by allosteric residues within the protein interior. 

While surface residues often represent the sources or sinks of allosteric signals (such as 

allosteric ligand binding sites in the former category, or distally located regulated sites in 

the latter), interior residues generally act to transmit allosteric signals across large 

distances. We use the models of protein conformational change as input for predicting 

both classes of allosteric residues. These predictions are first carried out using a gold 

standard set of 12 well-studied canonical systems for which both the holo and apo states 

are available (see below, Supp. Table 1, and Supp. Fig. 19), and are then implemented to 

predict allosteric residues on a database-level scale. 

Conformational changes may be represented using vectors from alternative crystal 

structures, or they may be inferred from anisotropic network models (ANMs), whereby 

the protein is modeled in a manner similar to that used in normal mode analysis. Here, 

interacting residues are modeled as nodes linked by flexible springs, in a manner similar 

to elastic network models and normal modes analysis. ANMs are not only simple and 

straightforward to apply on a database scale, but unlike using alternative crystal 

structures, the motion vectors inferred using ANMs may be generated using a single 

structure. 

 

Identifying Critical Residues on the Surface 

We identify effector binding sites on the protein surface, some of which may act 

as latent ligand binding sites and active sites, using a modified version of the binding 

leverage framework for ligand binding site prediction (Mitternacht and Berezovsky, 

2011, see Methods). Allosteric ligands often act by binding to surface cavities and 

modulate protein conformational dynamics. Thus, we first identify surface cavities using 

a series of Monte Carlo simulations to probe the protein surface with a simulated flexible 

ligand. The degree to which cavity occlusion by the simulated ligand disrupts large-scale 
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conformational change is used to assign a score to each cavity (Fig. 1, bottom left; see 

Methods). 

The main modifications to this formalism include the use of heavy atoms in the 

protein during the Monte Carlo search, in addition to an automated means of thresholding 

the list of ranked scores to give a more selective set of candidate sites. These 

modifications were implemented in order to provide a more selective set of residues: 

without them, we found that a very a large fraction of the protein surface would constitute 

predicted allosteric regions. We find that this modified approach results in finding an 

average of ~2 distinct binding sites per domain (Fig. 2a; see Methods for the details on 

defining distinct sites). 

In order to evaluate the extent to which this method identifies known binding 

sites, we studied the ligand-binding sites within the gold standard set of proteins, and we 

positively identify an average of 60% of the sites known to be directly involved in ligand 

or substrate binding. Some of the sites identified do not directly overlap sites of known 

biological significance. However, such sites may nevertheless correspond to latent 

allosteric regions (Bowman et al, 2015): even if no known biological function is assigned 

to such sites, their occlusion may still disrupt large-scale motions. Secondly, we often 

find that these sites nevertheless exhibit some degree of overlap with sites of biological 

interest, suggesting that the identified sites often lie within the neighborhood of known 

biological sites (Supp. Table 4). 

 

Dynamical Network Analysis to Identify Critical Residues Within the Interior 

The binding leverage framework described above captures hotspot regions at the 

protein surface, but the Monte Carlo search employed is a priori excluded from the 

protein interior. Allosteric residues often act within the protein interior by functioning as 

essential ‘bottlenecks’ within the communication pathways between distal regions. An 

allosteric signal transmitted from one region to another may conceivably take various 

alternative routes, but many of these routes can share a common set of residues. The 

removal of such a common set of residues can result in the loss of many or all of the 

available routes for information flow, thereby making these residues essential 

information flow bottlenecks. 
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To identify these bottlenecks, the protein may first be modeled as a network of 

interconnecting residues, wherein residues represent nodes and edges represent contacts 

between residues (in much the same way that the protein is modeled as a network in 

constructing ANMs, see above). In this regard, the problem of identifying internal 

allosteric residues is reduced to a problem of identifying which nodes participate in 

network bottlenecks. 

These bottlenecks are identified using an approach schematized in Supp. Fig. 16 

(see Methods for details). Briefly, the network edges are first weighted by the correlated 

motions of contacting residues: a strong correlation in the motion between residues 

suggests that knowing how one residue moves better enables one to predict the motion of 

the other, thereby suggesting a strong information flow between the two residues. The 

weights are used to assign ‘distances’ between connecting nodes, with strong correlations 

resulting in shorter node-node distances.  

Using the weighted network, communities of nodes are identified using the 

Girvan-Newman formalism (Girvan et al, 2002). A community is a group of nodes such 

that each node within the community is highly inter-connected, but loosely connected to 

other nodes outside the community. Communities are thus densely inter-connected 

regions within proteins; threonine synthase, for example, exhibits the community 

partition shown in Supp. Fig. 6.  

Finally, the betweenness of each edge (defined to be the number of shortest paths 

between all pairs of residues which pass through a that edge, with each path representing 

the sum of constituent node-node ‘distances’ assigned in the weighting scheme, described 

above) is calculated, and those residues that are involved in the highest-betweenness 

interactions between all pairs of interacting communities are predicted to be allosteric. 

These residues are critical for information flow between communities, as their removal 

would result in substantially longer paths between the residues of one community to 

those of another. 

 

STRESS (STRucturally-identified ESSential residues) 

Both the surface- and interior-critical residue identification modules have been 

made available to the community through a new software tool, STRESS. A user may 
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specify a PDB to be analyzed, and the output provided constitutes the set of predicted 

allosteric residues. Obviating the need for long wait times, the algorithmic 

implementation of our software is highly efficient (running times for proteins of various 

sizes are provided in Fig. 5). In the surface-critical residue identification module, we use 

local searching to bring down the time complexity by an order comparing with a naïve 

implementation. After carefully profiling and optimization, a typical case takes only 

about 30 minutes on one typical CPU (2.8GHz) core. 

Running time is also minimized by designing a scalable server architecture. The 

thin front-facing servers handle incoming user requests, and more powerful back-end 

servers perform calculations. The back-end servers are automatically and dynamically 

scalable, ensuring that it can handle varying levels of demand. This implementation is 

based on Amazon Web Service (AWS) and is highly portable on cloud environment. 

 

Models of Protein Conformational Change 
High-Throughput Identification of Structures in Distinct Energetic Wells 

Protein conformational change is an principal component and assumption in our 

identification of important residues. Thus, to better ensure that the proteins studied 

exhibit well-characterized distinct conformations, we use a generalized approach to 

systematically identify instances of proteins that exhibit alternative conformations within 

the PDB. 

As a first step, we perform multiple structure alignments (MSAs) across 

sequence-identical domains as well as proteins, with these structures having been filtered 

by resolution and other metrics to ensure quality (Fig. 1). We then use the resultant 

pairwise RMSD values to infer distinct conformational states (see Methods). The 

distribution of the resultant number of conformations for domains and chains is given in 

Fig. 2D and 2E, respectively. Results remained the same whether we used RMSD or QH 

to quantify similarity (Supp. Fig. 3), and we use RMSD in our downstream analyses. The 

fully-processed output of alternative conformations is provided in Supp. File 1, and the 

conformational transitions we observe arise in a diverse set of biological contexts, 

including conformational changes that accompany ligand binding, protein-protein or 
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protein-nucleic acid interactions, post-translational modifications, and changes in 

oxidation or oligomerization state. (Supp. Fig. 4).  

An overview of our dataset in the broader context of the entire PDB is given in 

Supp. Fig. 17. In addition, the distribution of the number of chains and domains for our 

dataset are given in Supp. Fig. 18a and b, respectively. The full annotated dataset of 

conformational changes (with structures, RMSD values, and other statistics) is provided 

as a resource (Supp. File 1). 

 

Comparisons Between Different Models of Protein Motions 

As mentioned, directly using the displacement vectors between all corresponding 

pairs of residues within the two crystal structures of the alternative conformations 

provides another model of conformational change, and we find that this alternative gives 

the same general results (see Supp. Fig. 15 and Supplemental discussion). Thus, our 

method is general with respect to how motion vectors are defined. 

 

Conservation Analyses on Critical Residues 
 Applying the efficient allosteric site prediction formalism to the large number of 

dynamic proteins culled throughout the PDB enables a large-scale analysis of the residues 

identified. In particular, and obvious question that arises is the extent to which the sites 

identified tend to be conserved. Thus, we evaluate the conservation of the predicted 

allosteric sites for this large set of proteins, with conservation being evaluated both across 

long (inter-species) and short (intra-human) evolutionary timescales. We emphasize that 

the signatures of conservation identified not only provide a means of rationalizing many 

of the otherwise poorly-understood regions of proteins, but such conservation also 

reinforces the functional importance of the predicted allosteric sites. 

 

Conservation Across Species 

 Predicted allosteric residues tend to be more conserved, on average, than other 

residues of the same protein with the same degree of burial, and these results hold for 

both surface- and interior-critical residues (Figs. 3B and 3F, respectively). Surface critical 

residues had an average ConSurf score (“conservation score”) of -0.131, whereas non-
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critical residues with the same degree distribution (i.e., same degree of burial within the 

protein) had an average score of +0.059, demonstrating that surface-critical residues tend 

to be more conserved (p < 2.2e-16). Interior-critical residues exhibit a similar trend: the 

average conservation score for interior critical residues and non-critical residues is -0.179 

and -0.102, respectively (p=3.67e-11). 

 

Measures of Conservation Amongst Humans from Next-Generation Sequencing 

Though inter-species metrics may be used to investigate conservation, we may 

also use the genomes and exomes from thousands of humans to study selective 

constraints which are both human-specific and active in more recent evolutionary history. 

Common metrics for such constrains include allele rarity and the fraction of rare alleles. 

Although we observe a general trend in which rare alleles from 1000 Genomes 

coincide with surface critical residues, the trend is not observed to be significant (Fig. 3C; 

p=0.309). The significance improves when considering the shift in the allele frequencies, 

as evaluated with a K-S test (p=0.08, Supp. Fig. 13a), and we note the limited number of 

proteins (44) to be hit by 1000 Genomes single-nulceotide variants (SNVs; see Methods). 

The long tail extending to lower allele frequencies for critical residues may suggest the 

possibility that only a subset of residues in our prioritized binding sites is essential. 

Notably, 1000 Genomes variants hit critical-interior residues with significantly lower 

derived allele frequency than non-critical residues with the same degree (Fig. 3G). 

 We also performed a similar analysis using the data provided by the Exome 

Aggregation Consortium (Exome Aggregation Consortium, abbreviated ExAC). The 

trends obtained using ExAC are similar to those using 1000 Genomes data (distributions 

for critical-surface and critical-interior residues are given in Figs. 3D and 3H, 

respectively). Although the mean minor allele frequencies (MAF) for surface-critical 

residues are higher than those of non-critical residues, the median for surface-critical 

residues is substantially lower than that for non-critical residues. The relative shifts of 

these distributions are also shown in Supp. Fig. 14 (KS test p= 0.0475 and p= 8.7E-5 for 

critical-surface and critical-interior residues, respectively). 

 In addition to examining allele frequency distributions, one may also evaluate the 

fraction of rare alleles as a metric for measuring selective pressure (defined as the ratio of 
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the number of low-DAF or low-MAF SNVs to all non-synonymous SNVs in a given 

protein). Using different DAF cutoffs for 1000 Genomes variants (0.5% and 0.1%) to 

define rarity, the results for surface- and interior-critical residues are summarized in 

Supp. Fig. 7 and Supp. Fig. 8, respectively. Similar results are obtained when using 

ExAC variants: we find that surface residues are generally more conserved than other 

residues, and this result holds using different thresholds for defining rarity (Supp. Table 

7). In sum, when using different thresholds for defining rarity, critical residues tend to be 

enriched in rare variants, again suggesting their greater degree of selection. 

 

Critical Residues in the Context of Human Disease Variants 

Directly related to conservation is the concept of variant deleteriousness: changes 

in amino acid composition at specific loci may be more or less likely to result in disease. 

SIFT and PolyPhen are two tools for predicting such effects, and we evaluated these 

predictions for critical and non-critical residues hit by variants in ExAC. Variants hitting 

critical residues exhibit significantly higher PolyPhen scores relative to non-critical 

residues, suggesting the potentially higher disease susceptibility at critical residues (Supp. 

Fig. 12; higher PolyPhen scores denote more damaging variants), though significant 

disparities were not observed in SIFT scores (Supp. Fig. 11). 

Using HGMD, we identify several proteins to be hit by known disease mutations, 

(Fig. 4A and Supp. Files 2 – 5; Stenson et al 2014). Several identified critical residues 

coincide with known disease loci for which the mechanism of pathogenicity is unclear 

unless an allosteric cause is considered. 

Fibroblast growth factor receptor is a case-in-point (Fig. 2F and Supp. Table 6), 

variants in which have been linked to diseases that manifest in craniofacial defects. 

Dotted lines highlight poorly-understood disease variants that coincide with our critical 

residues. The incorporation of critical surface and interior residues introduces an 

additional layer of annotation to the protein sequence, and may thus help to explain 

otherwise poorly understood disease variants.  

 

DISCUSSION & CONCLUSIONS 
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The same principles of energy landscape theory that dictate protein folding are 

integral to how proteins explore different conformations once they adopt their folded 

states. These landscapes are shaped not only by the protein sequence itself, but also by 

extrinsic conditions. Such external factors often regulate protein activity by introducing 

allosteric-induced changes, which ultimately reflect changes in the shapes and population 

distributions of the energetic landscape. In this regard, allostery provides an ideal 

platform from which to study protein behavior in the context of their energetic 

landscapes. 

To investigate allosteric regulation, and to simultaneously add an extra layer of 

annotation to each protein in the context of its conservation patterns, an integrated 

framework to identify allosteric residues throughout the protein is essential. We introduce 

a framework to identify essential residues that leverages knowledge of conformational 

heterogeneity. To identify potential allosteric residues closer to the surface, heavy atoms 

are included when searching the surface for sites in which the introduction of a ligand 

could strongly perturb conformational changes. Secondly, after these sites are identified, 

we use a formalism originally used in the context of protein folding (the energy gap 

[[cite]]), to define a threshold for selecting the high-confidence prioritized sites. The set 

of high-confidence sites overlaps reasonably well with known ligand binding sites for 

several well-studied canonical allosteric systems. 

A dynamical network-based analysis is used to identify residues that may act as 

bottlenecks between communities within the protein interior. As with the identification of 

critical residues on the surface, information regarding conformational change is used in 

this network-based analysis: edges within the network of interacting residues and 

interacting communities are weighted to reflect dynamic behavior. 

When applied to many proteins with distinct conformational changes in the PDB, 

we investigate the conservation of predicted allosteric residues in both inter-species and 

intra-human genomes contexts, and find that these residues tend to exhibit greater 

conservation in both contexts, suggesting that amino acid changes at these critical sites 

are more deleterious than changes in other parts of the protein. In addition, we identify 

several disease variants for which plausible mechanisms had previously been unavailable, 

but for which allosteric mechanisms provide a plausible rationale. 
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Unlike the characterization of many other structural features, such as secondary 

structure assignment, residue burial, protein-protein interaction interfaces, disorder, and 

even stability, allostery inherently manifests in the context of dynamic behavior: it is only 

by a consideration of protein motions and changes in these motions can a fuller 

understanding of allosteric regulation be realized. As such, MD and NMR are some of the 

most common means of studying allostery and dynamic behavior. However, these 

methods have limitations when studying large and diverse protein datasets. MD is 

computationally expensive and impractical when studying large numbers of proteins. 

NMR structure determination is extremely labor-intensive and better suited to certain 

classes of structures or dynamics. In addition, NMR structures constitute a relatively 

small fraction of structures currently available. 

There are several notable implications of our database-scale analysis. Relative to 

sequence data, allostery and dynamic behavior are far more difficult to evaluate on a 

large scale. The framework described here enables one to evaluate dynamic behavior in a 

systemized and efficient way across many proteins, while simultaneously capturing 

residues on both the surface and within the interior. That this pipeline can be applied in a 

high-throughput manner enables the investigation of system-wide phenomena, such as 

the roles of allosteric hotspots in protein-protein interaction networks. Knowledge of 

predicted allosteric sites across many proteins may also be used to identify the best 

proteins and protein regions for which drugs should be engineered, as well as instances in 

which specific sequence variants are likely to have the greatest impact. 

We emphasize that it is only by applying this framework over a database of a 

large number of proteins can one search for significant disparities in conservation 

between sites predicted to be important in allostery and the rest of the protein. Such 

general trends may not be apparent when studying one protein or a specific class of 

proteins, but they become much more accessible when evaluating a large and diverse 

protein dataset. To our knowledge, this is the first study in which the conservation of 

potential allosteric sites has been measured across a database of proteins. 

The ability to leverage our framework in a high-throughput also better enables 

one to match structural features with the high-throughput data generated through deep 

sequencing. Full human genomes and exomes are being sequenced at an increasing pace, 
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thereby providing an unprecedented window into conservation patterns which can be 

human-specific or active over short evolutionary timescales. With such large volumes of 

data, these patterns increasingly serve as detailed signatures, or as it were, “shadows” of 

selective constraints which may not only be missing in cross-species comparisons, but are 

also sometimes difficult to rationalize using static representations of protein structures. 

We anticipate that, within the next decade, deep sequencing will enable structural 

biologists to study evolutionary conservation using sequenced human exomes just as 

routinely as cross-species alignments. Furthermore, intra-species metrics for conservation 

(such as those gleaned from 1000 Genomes data and ExAC) provide added value in that 

the confounding factors of cross-species comparisons are removed: different organisms 

evolve in different cellular and evolutionary contexts, and it can be difficult to decouple 

these different effects from one another. For instance, cross-species metrics of protein 

conservation entail comparisons between proteins which may be very different in 

structure, and which may impart very different functions in different cellular contexts. 

Sequence-variable regions across species may not be conserved, but nevertheless impart 

essential functionality. Intra-species comparisons, however, can provide a more direct 

and sensitive evaluation of constraint. Examples of intra-species for selective constraints 

are particularly relevant in the context of human disease. The ubiquity of allosteric 

regulation as an essential feature in protein functionality and efficiency makes it well 

suited to provide a conceptual framework for understanding many of the functional 

constraints acting on protein sequences. We believe that the inclusion of allosteric 

predictions as an added annotation to protein structures will better enable investigators to 

understand signatures of conservation in humans, including those of interest in 

personalized medicine. 

We also anticipate that our newly-developed tool (STRESS) will prove to be 

useful in these and related studies (<URL_HERE>). Users may submit protein structures 

in order to perform their own analyses for predicting allosteric residues. As next-

generation sequencing initiatives continue to provide a clearer picture of conservation at 

the residue level, structural biologists will increasingly find a need to explain the 

emergent conservation patterns, and that this tool readily enables the search for allosteric 

regions. 
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METHODS 
 An overview of our pipeline is provided in Fig. 1, and we refer to this outline in 

the appropriate pipeline modules throughout. In brief, we perform MSAs for thousands of 

SCOP domains, with each alignment consisting of sequence-similar and sequence-

identical domains. Within each alignment, we cluster the domains using structural 

similarity to determine the distinct conformational states. We then implement coarse-

grained models of protein motions to identify allosteric sites on the protein surface, as 

well as dynamical network analysis to identify allosteric residues internal to the protein. 

Database-Wide Multiple Structure Alignments 
 FASTA files of all SCOP domains were downloaded from the SCOP website 

(version 2.03) [[cite]]. In order to better ensure that large structural differences between 

sequence-identical or sequence-similar domains are a result of differing biological states 

(such as holo vs. apo, phosphorylated vs. unphosphorylated, etc.), and not an artifact of 

missing coordinates in X-ray crystal structures, the FASTA sequences used were those 

corresponding to the ATOM records of their respective PDBs. In total, this set comprises 

162,517 FASTA sequences. 

BLASTClust [[cite]] was downloaded from the NCBI database and used to 

organize these FASTA sequences into sequence-similar groups at seven levels of 

sequence identity (100%, 95%, 90%, 70%, 50%, 40%, and 30%). Thus, for instance, 

running BLASTClust with a parameter value of 100 provides a list of FASTA sequence 

groups such that each sequence within each group is 100% sequence identical, and in 

general, running BLASTClust with any given parameter value provides sequence groups 

such that each member within a group shares at least that specified degree of sequence 

identity with any other member of the same group (see top of Fig. 1). 

To ensure that the X-Ray structures used in our downstream analysis are of 

sufficiently high quality, we removed all of those domains corresponding to PDB files 

with resolution values poorer than 2.8, as well as any PDB files with R-Free values 

poorer than 0.28. The question of how to set these quality thresholds is an important 

consideration, and was guided here by a combination of the thresholds conventionally 
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used in other studies which rely on large datasets of structures [[cite Kosloff 2008, Burra 

2009, others]], as well as the consideration that many interesting allosteric-related 

conformational changes may correlate with physical properties that sometimes render 

very high resolution values difficult (such as localized disorder or order-disorder 

transitions). As a result of applying these filters, 45,937 PDB IDs out of a total of 58,308 

unique X-Ray structures (~79%) were kept for downstream analysis. 

For each sequence-similar group at each of the seven levels of sequence identity, 

we performed multiple structure alignment (MSA) using only those domain structures 

that satisfy the criteria outlined above. Thus, the MSAs were generated only for those 

groups containing a minimum of two domains that pass the filtering criteria. The 

STAMP[[cite]] and MultiSeq [[cite]] plugins of VMD[[cite]] were used to generate the 

MSAs. Heteroatoms were removed from each domain prior to performing the alignments. 

The quality of the resultant MSA for each sequence-similar group depends on the 

root structure used in the alignment. To obtain the optimal MSA for each group of N 

domains, we generated N MSAs, with each alignment using a different one of the N 

domains as the root. The best MSA (as measured by STAMP’s “sc” score[[cite]]) was 

taken as the MSA for that group. Note that, in order to aid in performing the MSAs, 

MultiSeq was used to generate sequence alignments for each group. 

Finally, for each of the N MSAs generated, MultiSeq was used calculate two 

measures of structural similarity between each pair of domains within a group: RMSD 

and QH. A fuller description of QH is provided in the Supplementary text. 

For each group of sequence-similar domains, the final output of the structure 

alignment is a symmetric matrix representing all pairwise RMSD values (as well as a 

separate matrix representing all pairwise QH values) within that group. The matrices for 

all MSAs are then used as input to the K-means module. 

 

Identifying Distinct Conformations in an Ensemble of Structures 
 For each MSA produced in the previous step, the corresponding matrix of 

pairwise RMSD values describes the degree and nature of structural heterogeneity among 

the crystal structures for a particular domain. The objective is to use this data in order to 

identify the biologically distinct conformations represented by an ensemble of structures. 
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For a particular domain, there may be many available crystal structures. In total, these 

structures may actually represent only a small number of distinct biological states and 

conformations. For instance, there may be several crystal structures in which the domain 

is bound to its cognate ligand, while the remaining structures are in the apo state. Our 

framework for predicting the number of distinct conformational states in an ensemble of 

structures relies on a modified version of the K-means clustering algorithm. 

A priori, performing K-means clustering assumes prior knowledge of the number 

of clusters (i.e., “K”) to describe a dataset. The purpose of K-means clustering with the 

gap statistic (Tibshirani et al, 2001) is to identify the optimal number of clusters intrinsic 

to a complex or noisy set of data points (which lie in N-dimensional space). 

Given multiple resolved crystal structures for a given domain, this method (i.e., 

K-means with the gap statistic) estimates the number of conformational states represented 

in the ensemble of crystal structures (with these states presumably occupying different 

wells within the energetic landscape), thereby identifying proteins which are likely to 

undergo conformational change as part of their allosteric behavior. 

As a first step toward clustering the structure ensemble represented by the RMSD 

matrix, it is necessary to convert this RMSD matrix (which explicitly represents only the 

relationships between distinct domains) into a form in which each domain is given its 

own set of coordinates. This step is necessary because the K-means algorithm acts 

directly on individual data points, rather than the distances between such points. Thus, we 

use multidimensional scaling [[ref Gower 1966 and Mardia, 1978]] to convert an N-by-N 

matrix (which provides all RMSD values between each pair of domains within a group of 

N structures) into a set of N points, with each point representing a domain in (N-1)-

dimensional space. The values of the N-1 coordinates assigned to each of these N points 

are such that the Euclidean distance between each pair of points are the same as the 

RMSD values in the original matrix. For an intuition into why N points must be mapped 

to (N-1)-dimensional space, consider an MSA between two structures. The RMSD 

between these two structures can be used to map the two domains to one-dimensional 

space, such that the distance between the points is the RMSD value. Similarly, an MSA 

of 3 domains may be mapped to 2-dimensional space in such a way that the pairwise 

distances are preserved; 4 domains may be mapped to 3-dimensional space, etc. The 
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output of this multidimensional scaling is used as input to the K-means clustering with 

the gap statistic. We refer the reader to the work by Tibshirani et al for details governing 

how we perform K-means clustering with the gap statistic. 

Once the optimal K-value was determined for each MSA, we confirmed that these 

values accurately reflect the number of clusters by manually studying several randomly-

selected MSAs, as well as several MSAs corresponding of domain groups known to 

constitute distinct conformations (we also examined several negative controls, such as 

CAP, an allosteric protein which does not undergo conformational change [[ref]]).  

To validate the output generated by this clustering algorithm, we manually 

annotated the alignments of a vast array well-studied canonical allosteric domains and 

proteins. There may be many factors driving conformational change, and those cases for 

which the change is induced by the binding to a simple ligand (i.e., a consideration of apo 

or holo states) constitute only a very small subset of the conformational shifts observed in 

the PDB. For instance, such shifts often result from protein-protein or protein-nucleic 

acid interactions, changes in oxidation states or in pH, mutations, binding to very large 

and complex ligands or the potential to bind to variable sets of ligands, post-translational 

modifications, interactions with the membrane, shifts in oligomerization states or 

configuration, etc. The gap statistic performed well in discriminating crystal structures 

that constitute such a diverse set, and this method has been validated using both domains 

(Supp. Figs. 4a-f) and protein chains (Supp. Figs. 4g-x). 

RMSD values were used to generate dendrograms for each of the selected MSAs. 

The dendrograms are constructed using the hierarchical clustering algorithm built into R, 

hclust [[ref Murtagh 1985]], with UPGMA (mean values) used as the chosen 

agglomeration method[[ref Sokal et al, 1958]]. 

Each domain is assigned to its respective cluster using the assigned optimal K-

values as input to Lloyd’s algorithm. For each sequence group, we perform 1000 K-

means clustering simulations on the MDS coordinates, and take the most common 

partition generated in these simulations to assign each protein to its respective cluster.  

We then select a representative domain from each of the assigned clusters. The 

representative member for each cluster is the member with the lowest Euclidean distance 

to the cluster mean, using the coordinates obtained by multidimensional scaling (see 
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description above). These cluster representatives are then taken as the distinct 

conformations for this protein, and are used for the binding leverage calculations and 

networks analyses (below). 

 

Modified Binding Leverage Framework 
With the objective of identifying allosteric residues (specifically those on the 

protein surface), we employed a modified version of the binding leverage method for 

predicting likely ligand binding sites (Fig. 1, bottom-left), as described previously by 

Mitternacht and Berezovsky. Allosteric signals may be transmitted over large distances 

by a mechanism in which the allosteric ligand has a global affect on a protein’s 

functionally important motions. For instance, introducing a bulky ligand into the site of 

an open pocket may disrupt large-scale motions if those motions normally entail that the 

pocket become completely collapsed in the apo protein. Such a modulation of the global 

motions may affect activity within sites that are distant from the allosteric ligand-binding 

site. 

We refer the reader to the work by Mitternacht and Berezovsky for details 

regarding the binding leverage method, though a general overview of the approach 

follows. Many candidate allosteric sites are generated by simulations in which a simple 

ligand (comprising 2 to 8 atoms linked by bonds with fixed lengths but variable bond and 

dihedral angles) explores the protein’s surface through many Monte Carlo steps (apo 

structures were used when probing protein surfaces for putative ligand binding sites). A 

simple square well potential (i.e., modeling hard-sphere interactions) was used to model 

the attractive and repulsive energy terms associated with the ligand’s interaction with the 

surface. These energy terms depend only on the ligand atoms’ distance to alpha carbon 

atoms in the protein, and they are blind to other heavy atoms or biophysical properties. 

Once these candidate sites have been produced, normal mode analysis is applied is 

generate a model of the apo protein’s low-frequency motions. Each of the candidate sites 

is then scored based on the degree to which deformations in the site couple to the low-

frequency modes; that is, those sites which are heavily deformed as a result of the normal 

mode fluctuations receive a high score (termed the binding leverage for that site), 

whereas sites which undergo minimal change over the course of a mode fluctuation 
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receive a low binding leverage score. The list of candidate sites is then processed to 

remove redundancy, and then ranked based on this score. The model stipulates that the 

high-scoring sites are those that are more likely to be binding sites. Using knowledge of 

the experimentally-determined binding sites (i.e., from holo structures), the processed list 

of ranked sites is then used to evaluate predictive performance (see below). 

Our approach and set of applications differ from those previously developed in 

several key ways. When running Monte Carlo simulations to probe the protein surface 

and generate candidate binding sites, we used all heavy atoms in the protein when 

evaluating a ligand’s affinity for each location. By including heavy atoms in this way 

(i.e., as oppose to using the protein’s alpha carbon atoms exclusively), our hope is to 

generate a more realistic set of candidate ligand binding sites. Indeed, the exclusion of 

other heavy atoms leaves ‘holes’ in the protein which do not actually exist in the context 

of the dense topology of side chain atoms. Thus, by including all heavy atoms, we hope 

to reduce the number of false positive candidate sites, as well as more realistically model 

ligand binding affinities in general. 

In the original binding leverage framework, an interaction between a ligand atom 

and an alpha carbon atom in the protein contributes -0.75 to the binding energy if the 

interaction distance is within the range of 5.5 to 8 Angstroms. Interaction distances 

greater than 8 Angstroms do not contribute to the binding energy, but distances in the 

range of 5.0 to 5.5 are repulsive, and those between 4.5 to 5.0 Angstroms are strongly 

repulsive (distances below 4.5 Angstroms are not permitted).  

However, given the much higher density of atoms interacting with the ligand in 

our all-heavy atom model of each protein, it is necessary to accordingly change the 

energy parameters associated with the ligand’s binding affinity. In particular, we varied 

both the ranges of favorable and unfavorable interactions, as well as the attractive and 

repulsive energies themselves (that is, we varied both the square well’s width and depth 

when evaluating the ligand’s affinity for a given site). 

For well depths, we employed models using attractive potentials ranging from -

0.05 to -0.75, including all intermediate factors of 0.05. For well widths, we tried 

performing the ligand simulations using the cutoff distances originally used (attractive in 

the range of 5.5 to 8.0 Angstroms, repulsive in the range of 5.0 to 5.5, and strongly 
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repulsive in the range of 4.5 to 5.0). However, these cutoffs, which were originally 

devised to model the ligand’s affinity to the alpha carbon atom skeleton alone, were 

observed to be inappropriate when including all heavy atoms. Thus, we also performed 

the simulations using a revised set of cutoffs, with attractive interactions in the range of 

3.5 to 4.5 Angstroms, repulsive interactions in the range of 3.0 to 3.5 Angstroms, and 

strongly repulsive interactions in the range of 2.5 to 3.0 Angstroms. 

In order to identify the optimal set of parameters for defining the potential 

function, we determined which combination of parameters best predicts the known 

binding sites for several well-annotated ligand-binding proteins. This benchmark set of 

proteins comprised threonine synthase (1E5X), phosphoribosyltransferase (1XTT), 

tyrosine phosphatase (2HNP), arginine kinase (3JU5), and adenylate kinase (4AKE). 

Using this approach, an attractive term of -0.35 for ligand-protein atom interactions 

within the range of 3.5 to 4.5 Angstroms was determined to be the best overall. 

The biological assembly files were downloaded from the Protein Data Bank 

(PDB). These proteins were chosen on the basis of literature curation. 

 

Network Analysis 
In our implementation of the Girvan-Newman framework, edges between residues 

within a structure are drawn between any two residues that have at least one heavy atom 

within a distance of 4.5 Angstroms (excluding adjacent residues in sequence, which are 

not considered to be in contact). Network edges are weighted on the basis of their 

correlated motions, with the motions provided by ANMs. We emphasize that, although 

the use of ANMs is more coarse-grained that MD, our use of ANMs is motivated by their 

much faster computational efficiency. This added efficiency is a required feature for our 

database-scale analysis. 

Specifically, the weight wij between residues i and j is set to −log(∣Cij∣), where Cij 

designates the correlated motions between residue i and j. If two contacting residues 

exhibit a high degree of correlated motion, then this implies that the motion of one 

residue may tell us about the motion of the other, suggesting a strong flow of energy or 

information between the two residues, resulting in a low value for wij. The ‘network 

distance’ between residues i and j (synonymous with wij in this discussion) is thus taken 
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to be very short, and this short distance means that any path involving this pair of 

residues is shorter as a result, thereby more likely placing this pair of residues within any 

given shortest path, and more likely rendering this pair of residues a bottleneck pair. In 

sum, a high correlation in motion results in a short distance, thereby more likely 

rendering this a bottleneck pair of residues. 

Finally, once all connections between contacting pairs are appropriately weighted 

and the communities are assigned, a residue is deemed to be critical for allosteric signal 

transmission if it is involved in a highest-betweenness edge connecting two distinct 

communities. For instance, applying this method to threonine synthase results in the 

community partition and associated critical residues highlighted in Supp. Fig. 6. 

 

Conservation Analyses 
All cross-species conservation scores represent the ConSurf scores, as taken from 

the ConSurf Server [[cite]], in which scores for each protein chain are normalized to 0. 

Low (negative) ConSurf scores represent a stronger degree of conservation, and high 

(positive) scores designate less stringent selection. Each point within the cross-species 

conservation plots (Figs 3B and 3F) represents the mean conservation score for all 

residues within one of two classes: the full set of N critical residues within a protein 

structure or a randomly-selected set of N non-critical residues (with the same degree) 

within the same structure. The randomly-selected non-critical set of residues was chosen 

in a way such that, for each critical residue with degree K (K being the number of non-

adjacent residues with which the critical residue is in contact), a randomly-chosen non-

critical residue with the same degree K was included in the set. The distribution of non-

critical residues shown is very much representative of the distribution observed when re-

building the random set many times. 

Our use of degree as a metric for characterizing burial is consistent with our 

networks-based analysis for identifying interior critical residues, as well as our use of 

residue-residue contacts in building networks for producing the ANMs. Residue degree is 

also an attractive metric because it is discrete in nature, thereby allowing us to generate 

null distributions of non-critical residues with the exact same degree distribution. 
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All SNVs hitting protein-coding regions that result in amino acids changes (i.e., 

nonsynonymous SNVs) were collected from The 1000 Genomes Project (phase 3 release) 

[[cite]]. VCF files containing the annotated variants were generated using VAT [[cite]]. 

For nonsynonymous SNVs, the VCF files included the residue ID of the affected residue, 

as well as additional information (such as the corresponding allele frequency and residue 

type). To map the 1000 Genomes SNVs on to protein structures, FASTA files 

corresponding to the translated chain(s) of the respective transcript ID(s) were obtained 

using BioMart [[cite]]. FASTA files for each of the PDB structures associated with these 

transcript IDs (the PDB ID-transcript ID correspondence was also obtained using 

BioMart) were generated based on the ATOM records of the PDB files. For each given 

protein chain, BLAST was used to align the FASTA file obtained from BioMart with that 

generated from the PDB structure. The residue-residue correspondence obtained from 

these alignments was then used in order to map each SNV to specific residues within the 

PDB. As a quality assurance mechanism, we confirmed that the residue type reported in 

the VCF file matched that specified in the PDB file. 

 ExAC variants were downloaded from the ExAC Browser (Beta), as hosted at the 

Broad Institute. Variants were mapped to all PDBs following the same protocol as that 

used to map 1000G variants, and only non-synonymous SNVs in ExAC were analyzed. 

When evaluating SNVs from the ExAC dataset, minor allele frequencies were used 

instead of DAF values (the ancestral allele is not provided in the ExAC dataset – thus, 

analysis is performed for MAF rather than DAF. However, we note that very little 

difference was observed when using AF or DAF values with 1000G data, and we believe 

that the results with MAF values would generally be the same to those with DAF values). 

Only structures for which at least one critical residue and one non-critical residue are hit 

by ExAC SNVs are included in the analysis (as with the 1000 Genomes analysis, this 

enables a more direct comparison between critical and non-critical residues, as 

comparisons between two different proteins would rely on the assumption of equal 

degrees of selection between such proteins). 

 

Software Tool (STRESS) 
DECLAN CLARKE� 8/26/15 10:55 AM
Deleted: Web Server
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Our server has been designed to be both user-friendly and fast. As discussed, we 

use locality-sensitive hashing to do local search in each sampling step in the search for 

surface-critical residues, which takes constant time. The time complexity of the core 

computation, Monte Carlo sampling, is O(|T||S|), where T and S are simulation trials and 

steps for each trial, respectively. After carefully profiling and optimization, a typical case 

takes only about 30 minutes on one E5-2650(2.8GHz) ([[STL2MG]]need to confirm 

with Mihali/Mark, what kind of core we purchased on Grace) core.  

In terms of server operation, our web application utilizes two types of servers: 

front-facing servers that handle incoming HTTP requests and back-end servers that 

perform algorithmic calculations. Communication between these two types of servers is 

handled by Amazon's Simple Queue Service. When our front-facing servers receive a 

new request, they add the job to the queue and then return to handling requests 

immediately. Our back-end servers continually poll the queue for new jobs and run them 

when capacity is available. Amazon's Elastic Beanstalk offers several features that enable 

us to dynamically scale our web application. We use Auto Scaling to automatically adjust 

the number of servers backing our application based on predefined conditions, such as 

network traffic and CPU utilization. Elastic Load Balancer then automatically distributes 

incoming traffic across these servers. This system ensures that we are able to handle 

varying levels of demand in a reliable and cost-effective manner. Since we may have 

multiple servers backing our web application simultaneously, some handling HTTP 

requests and some performing calculations, any of which may be terminated at any time 

by Auto Scaling, it is important that our servers are stateless. We thus store input and 

output files remotely in a S3 bucket, accessible to each server via RESTful conventions. 

The corresponding source code is available through github (<temporary_placeholder>). 

 

FIGURE CAPTIONS 
Figure 1 

Pipeline for identifying distinct conformational states. Top to bottom: a) BLAST-

CLUST is applied to the sequences corresponding to a filtered set of protein domains, 

thereby providing a large number of “sequence groups”, with each group being 
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characterized by a high degree of sequence homology. b) For each sequence group, a 

multiple structure alignment of the domains is performed using STAMP (the example 

shown here is adenylate kinase. The SCOP IDs of the cyan domains, which constitute the 

holo structure, are d3hpqb1, d3hpqa1, d2eckb1, d2ecka1, d1akeb1, and d1akea1. The IDs 

of the apo domains, in red, are d4akea1 and d4akeb1). c) Using the pairwise RMSD 

values in this structure alignment, the structures are clustered using the UPGMA 

algorithm, K-means with the gap statistic (δ) is performed to identify the number of 

distinct conformations (2 in this example; more detailed descriptions of the graph are 

provided in the text). d) The domains which exhibit multiple structural clusters (i.e., 

those with a δ > X and K > 1) are then probed for the presence of strong allosteric sites, 

using binding leverage and dynamical network analysis (see Methods). 

 

Figure 2 

K-means clustering algorithm with the gap statistic. Number of binding sites per 

domain (a) and complex (b); c) An example dendrogram and respective structures of a 

multiple-structure alignment, with similarity measured by RMSD. The example shown is 

for phosphotransferase, and the K-means algorithm with the gap statistic identifies K=2 

different conformational states (manually determined to represent the holo and apo states 

of phosphotransferase); d)Histograms representing the K-values obtained across the 

database of SCOP domains and e) across PDB chains. Shown in (f) is a linear annotation 

diagram for fibroblast growth factor receptor. Shown is chain E of the PDB 1IIL, which 

corresponds to the FGFR2. Dotted lines highlight loci that correspond to HGMD sites 

that coincide with critical residues, but for which other annotations fail to coincide. 

Deeply-buried residues are defined to be those that exhibit a relative solvent-exposed 

surface area of 5% or less, and binding site residues are defined as those for which at 

least one heavy atom falls within 4.5 Angstroms of any heavy atom in the binding partner 

(heparin-binding growth factor 2). The loci of PTM sites were taken from UniProt 

(accession no. P21802). 

 

Figure 3 

Conservation of predicted allosteric residues.  
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Throughout, red designates critical residues, and blue designates non-critical residues, 

and results are reported for all proteins in our database with available ConSurf scores 

(cross-species plots) and all proteins hit by a variant in at least one critical and one non-

critical residue (1000 Genomes and ExAC plots). P values are calculated using a 

Wilcoxon Rank sum test. a) Image of phosphfructokinase (PDB ID 3PFK), with red 

denoting sites with high binding leverage scores, and blue denoting sites with low scores; 

b) Distributions of mean conservation scores for surface-critical and non-critical residues 

(p< 2.2e-16); c) Distributions of mean derived allele frequencies (DAF) of 1000 

Genomes variants on surface-critical and non-critical residues (p=0.309); d) Distributions 

of mean minor allele frequencies (MAF) of ExAC variants on critical-surface and non-

critical residues (p=1.49e-3); e) Rendering of phosphfructokinase with interior critical 

residues highlighted as red spheres; f) Distributions of conservation scores for interior-

critical residues and non-critical residues (p=9.31e-11); g) Distributions of DAF values 

for 1000 Genomes variants hitting interior-critical residues and non-critical residues 

(p=1.80e-05); h) Distributions of mean MAF values for ExAC variants hitting critical-

interior residues and non-critical residues (p=7.98e-09). 

 

Figure 4 

HGMD Analyses. a) Venn diagram illustrating the number of distinct proteins in various 

categories; b) Ras (PDB ID 1NVV) is an example of a protein for which HGMD 

locations coincide with prioritized sites. Surface critical residues are shown as red 

spheres, and HGMD locations are in orange; c) p53 (PDB ID 2VUK) is an example of a 

protein for which HGMD locations coincide with interior critical residues. Interior 

critical residues that coincide with HGMD SNVs (red), critical residues that do not 

correspond with HGMD loci (green), and HGMD SNVs in non-critical residues (orange) 

are shown in VDW spheres. 
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