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A fundamental guestion on
gene regulation

 How come ditferent kinds of cells or tissues have
the same genome, but different expression
profiles?

* pinding of transcription factors
* nucleosomes positioning, histone marks
* enhancers, networks ...

e spatial organization
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ENCODES3 HI-C data

Dekker Lab

12 completed cell lines: A549, Caki2, G401, LnCAP, NCI-H460,
Panc1, PRMI-7951, SUCRH30, SK-MEL-5, SK-N-DZ, SK-NM-C, T470.
2 replicates per cell lines

Contact maps binned in different sizes: 10mb, 2.5mb, 1mb, 500kb,
250kb, 100kb, 40kb

Raw counts and “ICED”

In progress: HAc (AdrenocorPcal carcinoma) HA-s (Astrocytes spinal
cord) HBVP (Brain vascular pericytes) DLD1 (Colon epithelial), ACHN
(Kidney epithelial), HHSEC (HepaPc sinusoidal endothelial), HBMEC
(BrainMicrovascularendothelial), HCMEC (Immortalized HBMEC)




Thoughts on HI-C data

* (GO into details: Identify the statistical significant
contacts. Enhancer-target prediction. Interplay with
other chromatin features.

e System-wide perspective: To understand the
contacts as a whole



A simple construction: Gene-Gene

Proximity Network

=

2 genes
(interchromosomal/intrachromosomal)

Hi-C contact matrix

@

Gene-Gene proximity
matrix/network

large N means closer

Genomics coordinates
100kb resolution, ICED

all genes

Example: A549
19100 genes

14% of gene pairs
are connected




Gene-Gene proximity versus
Gene-Gene expression

 Many evidences showing that co-expressed genes tend
to be sit next to each other in the genome (1D) as well as
spatially close together (3D).
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Gene-Gene proximity versus
Gene-Gene expression

expression pattern of A549 spatial structure of A549




Gene-Gene proximity versus
Gene-Gene expression

expression pattern of A549 spatial structure of A549




Gene-Gene proximity versus
Gene-Gene expression

expression pattern of A549 spatial structure of A549 proximity network of A549

e




Graph partition (bisection)

problem

Consider a graph G = (V, E), where V denotes the set of n
vertices and E the set of edges. The objective is to
partition G into k (k=2) components while minimizing the
weights of the edges between separate components.

H = — Zdijeiej
v]

d is the weighted adjacency matrix and e=+1 or -1

a low energy state means co-expressed genes are co localized

proximity network of A549

e



80

70+

60 |-

S0 F

40 -

30t

20

10+

Gene-Gene proximity versus
Gene-Gene expression

Distribution of H by shuffling the expression profile of A549
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Gene-Gene expression

Distribution of H by shuffling the expression profile of A549

N nodes:

empirical A549 profile
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* The spatial location of expressed genes
are highly non-random.

 May be it's too naive to compare with
random - perform shuftling while
preserving other genomics features

-400000



In relationship with Topologically
Associating Domains (TADS)

TADs —
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Dekker et al. Nat. Rev. Genetics 2013

TADs are defined based on intra-chromosomal contacts.
Our approach takes into account of inter-chromosomal contacts.



s the expression protile
optimal?

Given a spatial configuration, the observed expression profile has a much lower

energy than random, but is it optimal?
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Gene-Gene proximity versus
Gene-Gene expression
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eigenvector 3
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Targets of transcription factors In
the Gene-Gene proximity network
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-localized targets - transcription factories?

Standard spectral clustering:
Project the network onto a few
eigenvectors of the diffusion matrix.
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Comparison of GGP networks
between 12 cell types

 Gene-Gene proximity, conserved? specific?
« what's the proper distance metric?
* We have been working on the comparison of networks:

* Network rewiring - addition/removal of nodes, edges

OrthoClust, multi-layers network clustering

Compare regulatory networks of worm, fly, human

o BrainSpan, co-expression networks in different parts of the brain

Tissue specific PPl networks



On-going work

* Representing the spatial structure of a genome in a
network offers a unified framework to integrate
guite many existing data we have been working on.

* Expression data (graph partition), TF targets,
histone marks, (may be other network properties)

 Network may help us to compare contact maps



Somethings | did

 How the spatial organization of genes shapes their
expression patterns, or vice versa?

- A Bayesian framework for samples
deconvolution

e Update/Introduction of the modERN (worm/fly)
project



Samples deconvolution

samples with
cell-type proportion ~ convoluted expression profiles

cell types specific ] Lm B

expression profiles
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If either one of x or p is known, inferring the other is essentially a quadratic programming problem by
minimizing the function:



non-negative matrix
factorization

cell types
Samples M &/p

K
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k=1

NM > NK + (K —1)M

M N K
decompose X into x and p but minimize Z Z Z Py ok
IU,: :

k=1

subjected to constraints x_i, p_I >0 and sz' =1

existing algorithm: deconf: Repsilber et al. 2010
algorithms based on standard NMF alone, do not take into account of the prior information



a Bayesian framework

P(X|z,p)
prior determined by incorporating
P(X|z,p) ~ exp(—H) knowledge of cell types

H = ZZ X - i@pgﬁy P(x) ~ Gamma()
P(p) ~ Dirichlet()

sample the posteri by MCMC, obtaining
many (x,p) configurations, use the means
z,p as estimates of gold standards



A simulation

K specific cell types M observed samples
x% Y1 x1
\ / X/2 X2
P2 + ¢ =
\ N(0,0)
/ X/M M
z;

expression profiles drawn mixing proportions drawn
from a Gamma distribution from a Dirichlet distribution

Given the observable X, we want to infer x and p, and then compare with the
original gold standards.



reconstruction of cell-type specific
expression profiles:
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reconstruction of cell-type specific
expression profiles: error estimate

, 10 samples
x_acc=0.39 ,"




On-going work
* In principle, prior knowledge could improve deconvolution.

but,

* for practical problems, which prior distributions should be
used?

 make sense in modeling gene expression, I.e. could
well fit the data

e some distributions are easier for MCMC, like certain
conjugate priors

» currently struggling with MCMC



Somethings | did

 How the spatial organization of genes shapes their
expression patterns, or vice versa”?

* A Bayesian framework for samples deconvolution

-+ Update/Introduction of the modERN (worm/fly)
project



MOodERN (model organism
Encyclopedia of Regulatory Networks)

e Currently,

« worm: ~270 ChIP-Seq experiments in various stages, with a
few stages have 40-70 TFs. Total 113 unique TFs (aim: 687).

e fly: ~240 ChIP-Seq experiments in various stages. Total 170
unique TFs (aim: 703).

* |look at orthologs ~10 pairs

* In the future, ChiIP-Seq profiles of more TFs, and RNA-Seq of
~100 TF-knockout mutants

 Compare regulatory networks
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