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Denosing autoencoder on sputum
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y = sigmod(Wx + b)
z = sigmod(W T y + b′)
L =

∑
(−xlog(z)− (1− x)log(1− z))

Then use stochastic gradient descent to find local minimum.
#visible(v) = #gene,#hidden(h) ∈ 20, 30, 50, . . ., learning rate=0.01, corruption
level=0.05; cycle = 100
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Result

Weight matrix(W, h × v), represent the contribution of each gene for each node.
The hidden value(Y, hs), can be thought as the activity value of each node in each
sample(s)
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Clustering and Asthma severity

100 cycle, 20 hidden node,learning rate 0.2
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Clustering and Asthma severity

100 cycle, 50 hidden node,learning rate 0.1 and corruption level 0.01
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Clustering and TAE cluster

100 cycle, 20 hidden node,learning rate 0.2
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Clustering and TAE cluster

100 cycle, 50 hidden node,learning rate 0.1 and corruption level 0.01
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High discriminantal node

We define genes contribution into three classes: extreme high(H), normal,
extreme low(L) by µ± 2σ

xx node26 node27 both
H 232 246 232
L 713 681 676

The same way, we characterize node 38,45, 50.
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Function annotation

1. Highly Enrichment in keratinization for TAE1 specific high weighted gene. Asthma
associate with keratinization.
2. Fatty Acid related process
3. Hormone response related process
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Another validation
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Another validation
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Clustering using genes expression from above nodes

Lou Shaoke (Yale University) P2 Tech August 12, 2015 8 / 20



Another validation
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Clustering using random selected genes
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FEV1/FVC
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Measurement

1 purity

Purity(Ω,C) = 1
N

∑
k

maxj |ωk ∩ cj |

2 normalized mutual information
NMC(Ω,C) = I (Ω;C)

(H(Ω)+H(C))/2

3 Rand Index:

4 F-value:
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Clinical background

Eosinophilic and Neutrophilic Inflammation in Asthma. eosinophilic and neutrophilic
inflammation in asthma, and they are not mutually exclusive subtype.

Neutrophils are prominent in airway secretions during acute severe asthma

Macrophages exert prominent effects in the defense of the respiratory tract from airborne
pathogens

Distinct cellular subtypes of asthma based on the presence or absence of sputum
granulocytesnamely, eosinophilic asthma (EA), neutrophilic asthma (NA), mixed
eosinophilic and neutrophilic asthma (ME/NA) and paucigranulocytic asthma (PGA)

Lou Shaoke (Yale University) P2 Tech August 12, 2015 11 / 20



Cell types across samples
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Decomposition

1 5 cell types, all sample: control vs astham

2 5 cell types, samples: control vs severe asthma

3 3 cell types, all sample

4 3 cell type, control versus severe asthma

Given FDR<0.05, all above comparison have no significant genes, if FDR ¡ 0.1, the last
comparison finds :DEFA3, DEFA1 and RPS4Y1(robosomal protein) Microphase cell line.
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Followup

- Expression value, log-based?

- Conventionally, use cell count to determine subtypes, know more about the experiment
design

- other medical information: disease duration, medication etc

- cellular changes < cell proportion changes, inflammatory response, proportion or count
change is the best and easiest way to do it.

- meta analysis and supervised learning
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Cocktail Party

http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi
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Problem Definition

Given a set of mixed gene expression sets Xgs for gene g ∈ 1, 2, ...,G and sample
s ∈ 1, 2, ...,m. The samples can be from case-control tissue, different tissues type and
blood sample etc. Due to the sample hetergeneous, the gene expression should be a
mixture of expression of different cell type/condition w ∈ 1, 2, ...,W .

The motivation:
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Problem Definition

Given a set of mixed gene expression sets Xgs for gene g ∈ 1, 2, ...,G and sample
s ∈ 1, 2, ...,m. The samples can be from case-control tissue, different tissues type and
blood sample etc. Due to the sample hetergeneous, the gene expression should be a
mixture of expression of different cell type/condition w ∈ 1, 2, ...,W .

The motivation:
1) Can we deconvolve the expression to cell-type specific expr? csSAM, PERT
2) Can we deconvolve the expression to cell-type like value/latent? for example: cancer,
control;(DeMix, ISOpure etc)

Lou Shaoke (Yale University) P2 Tech August 12, 2015 16 / 20



Linear Deconvolution

X = A× S
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Linear Deconvolution

X = A× S
SS Shen-Orr (Nature method 2010): Two-group Model

Xij =
∑K

k=1 wikh
(1)
kj + eij and Xij =

∑K
k=1 wikh

(2)
kj + eij
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Algorithms
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Issue

1. technical reasons and data transformation. Yi Zhong et al 2012 response to SS
Shen-Orr.

2. Theoretical and pratical. How to evalute the results? It is good if more DEGs
were found?
Celltype-wise seperation?
blind expression seperation? especially for more complex situation. such as
metatstasis tissue with adjacent and original tissue.

Lou Shaoke (Yale University) P2 Tech August 12, 2015 19 / 20



Our options?

- use known algorithms to explore functional

- From the practical view: diagnosis and prognosis
blood test: marker and diagnosis (require clinical information)

- Metastasis
Seed and soil

- Combination?
Origin site → blood → Metastasis
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