Cost of Sequencing Draft

The real cost of sequencing: higher than you think!
The real cost of sequencing: scaling behaviour
The real cost of sequencing: it's really now computer calc scale
The real cost of sequencing: processing, storage & data transfer
The real cost of sequencing: will it continue to scale?
Scaling of sequencing costs: a fixed & var cost perspective
Scaling of sequencing costs: Are we still in a moore's law regime
The real cost of sequencing: An amortized analysis
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Low cost sequencing and large databases changing biological research:

The,continued decrease in the cost of sequencing and corresponding increase in the size of sequence

databases has changed both the biological research landscape and the common modes of research, The

establishment and growth of sequencing core facilities has helped increase the accessibility of sequencing

technology by mitigating, the upfront fixed cost of purchasing machines. [Add detail about

omicsmaps.com historical data figure], The per base cost of sequencing has also been falling, allowing
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investigators to generate more sequence data. Furthermore, the growth of sequence databases has reduced
the cost of obtaining useful sequence information for analysis. Data downloadable from databases is
ostensibly free. However, costs arise in the need for computational storage and analysis resources as well
as the training necessary to handle and interpret the data.

These developments in DNA sequencing are creating a diverse research ecosystem in which consortia are
producing and disseminating large standardized datasets and individual investigators are able to
contextualize their research by querying the wealth of existing sequence databases. As this research
landscape changes we need to reevaluate the way in which research is performed and how the associated
costs are calculated.

Illustrations of the dramatic increase in rate and amount of sequencing:

The dramatic drop in sequencing costs has been accompanied by an explosion of sequence data
generation. This sequence generation is occurring in part through large consortia generating enormous
datasets. Large consortia have taken advantage of sequencing trends to generate population scale genomic
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data (1000 Genomes) or extensive characterization of cancer genomes by The Cancer Genome Atlgg
L4
(TCGA).
ng ko

Meanwhile, an ever expanding set of seq related assays has taken advantage of inexpensive sequenci

serve as a readout in assays investigating a range of biological processes Additionally, ever larger
amounts of sequence data are being generated from experimental protocols that utilize DNA sequence
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data generated from high throughput platforms as a readout. This data is more lab and experiment specific
compared to the standardized creation of general use datasets addressing larger questions such as TCGA
1000 Genomes, and ENCODE and can serve as a valuable addition to such larger standardized
approaches. Individual lab generated and highly question specific datasets can provide valuable a
annotations and context to the larger general datasets.

Online vs. offline science:

In the past, hypothesis driven research i inni i iyen experiment. *{ Formatted: Space Before: 10 pt

Data generated during an experiment was designed to test a specific q ?
DNA sequencing and size of sequence databases has spurred a rise irﬁypothesis generatw
Many sequencing experiments are aimed at providing large standardithq for oen ~Tven in
cases where sequencing is used to address a specific question the resultant data may later be employed for
a purpose significantly different from that of the original investigator. Under these conditions, the

computational storage and analysis component of a sequencing experiment, will come to represent an
increasing proportion of the costs associated with high throughput sequencing experiments relative to the
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The difference between these two paradigms of scientific research is comparable to the distinction in

computer science made between offline and online algorithms. Offline algorithms take in all inputs at
once and then begin processing. Meanwhile, online algorithms process their input as it arrives without
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knowledge of all of the subsequent inputs.

@J h is similar to that of the offline algorithm. Data is collected at
Q/in a conclusion that represents the end of that specific data’s use.

The process of hypothesis-driven re
once and processed afterwards regal

As decreased cost and g€ gemNration of new seq-based experimental protocols increase the deposition of
sequences in public Aatabales l is becoming increasingly difficult to follow the offline algorithm model.
The scppe of large £0nsortia génerated datasets such as TCGA makes waiting for all the data to be
genera'ted before pe}fg@ﬁhe analysis prohibitive. The use of sequence from existing databases for
secondary analysis creates a situation in which it is impossible to predict the full extent of a dataset’s
usage. Furthermore, if DNA sequencing and synthesis are to be combined in an iterative cycle to better
link genotypic variation to phenotype, then constant analysis of new data in light of the existing
sequencing knowledge base is required.

These new modes of biological research necessitate conceptualizing the experimental process as an o
2ok in which both data generation and analysis are viewed as events in a larger research process of
nown Yiration.

Amortized analysis: /\

Amortized analysis is used by computer scientists to evaluate the worst-case scenario over a sequence of
operations. This type of analysis is commonly applied to online algorithms. The analysis method relies on
the idea that some computationally expensive processes may pay off over a series of operations because
they enable speed improvements in subsequent operations. This approach contrasts with less holistic

approaches in which the worst-case scenario of each operation in a process is determined independently.
These two analysis methods may suggest different series of events as optimal.

It is becoming increasingly important to account for the entire lifespan of a sequence dataset as repeated
use of sequence data in different analyses extend the life of a given dataset. As sequencing prices drop
and the scale of generated sequence data increases the relative importance of initial data generation
decreases. This situation is conducive to the holistic approach taken by amortized analysis.








Considerations in the sequencing pipeline:

[[PM: These next paragraphs might be useful to link between the different sections of the perspective.
More work needs to be done applying an amortized analysis to each step in the sequencing pipeling. The
amortized analysis might be a good analogy to follow through the perspective as it integrates the fixed
and variable cost idea with a more CS perspective.]]

The first question an investigator is faced with is whether to purchase a sequencer or utilize a sequencing
core facility or company. Often the costs involved in purchase, maintenance, and operation of a sequencer
as well as the requisite expertise required of its operators makes it unfavorable for individual investigators
to purchase a sequencer. However, this could change with the advent of low cost sequencer alternatives
such as Oxford Nanopore’s MinION.

[[The following links to cost on Genohub as well as elements in the intro and conclusion]]

The investigator then must decide on the protocol for sample preparation and which sequencing platform
best conforms to their needs. Here a focus on the constraints of the scientific question being asked and the

experimental setup available must be taken into account while optimizing for collection of the most
informative sequence dataset.

[[The following links to data size, network bandwidth, and computational processing power scaling]]

Next the investigator must decide in where and in what format to store the sequence data. At this step it is
important to consider both the volume of sequence generated as well as the frequency and mode of data
access required for downstream analyses. Options at this step range from downloading the data on’a Idsal
machine where all analyses will also be performed to uploading the data to the cloud and similarly
performing analyses in the cloud.

The following links to alignment algorithms

After storing the data, the investigator must decide what algorithms to use in order to initially process the
data. These alignment algorithms can be viewed as a microcosm for the types of questions now being

asked about sequencing more generally. The initial alignment algorithms developed in the 1970s would
be hopelessly slow if confronted with the scale of modern datasets. Over time algorithmic innovations

have enabled alignment algorithms to keep up with the dramatic increase in size and scale. These newer
algorithms utilize practices encouraged by amortized analysis. They devote a significant amount of thej
runtime to a computationally expensive indexing operation that later provides significant imp
the performance of the alignment operation.

[[The following links to the conclusion]]

Once the data has been initially processed, downstream analyses and interpretation must be performed to
obtain scientific insights and knowledge. The search for biological meaning in these datasets will be
helped by two trends. The first trend is an increase in the size and diversity of sequence-based datasets
allowing for ever greater statistical power and new comparisons between datasets. This will help with
large scale analyses of both labelled and unlabeled biological datasets. The second trend is a decrease in
the cost of DNA synthesis combined with improvements in genome engineering at single nucleotide
resolution. This will enable investigators to more easily experimentally follow up on findings derived
from sequence analysis.
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which has experienced a similar if less dramatic scaling in its capabilities, can yield insights into the
future of sequencing. The exponential scaling of the number of transistors in a microprocessor reshaped
both the computer industry and a host of other industries. This rate of technological improvement enabled
increases in computer performance and decreases in cost. Higher performance machines allowed
computers to address ever more challenging problems while decreases in cost drove their widespread
adoption. [[STL: distributed computing cuts cost. a single beefy node is much expensive than 100
mediocre nodes]] Additionally, the development of intuitive interfaces and research on human-computer
interaction helped harness these technological improvements.|[Moore's is baked into the computer
industry.... will it become baked to illumina? Cern thing - how has moore's law affected sci - & Moore's
2nd law]]

Moved down [1]: A recurring theme in the topic of high
throughput sequencing is that of fixed and variable costs.
The initial purchase of sequencing machines is a large initial
fixed cost. However, this cost is often largely shouldered by
sequencing core facilities and not directly by individual
investigators. The fixed cost is amortized in accounting, and
affects pricing. Nevertheless, as newer sequencing machines
are able to produce more reads, the average total cost of
sequencing decreases. Moreover, if the number of
sequencing facilities increases, creating greater competition,
economic theory predicts that the price of sequencing should
be driven down and approach marginal cost. In an
environment of perfect competition, the cost of sequencing
should be equal to the marginal cost, and the fixed cost of
purchasing a sequencing machine should not enter into the
pricing function; rather, it should impact only the decision of
whether or not to operate. If we think about the use of
previously generated sequencing information there are
almost no fixed costs in obtaining sequence information.
This condition would suggest a significant increase in market
(sequence-based research) entry. What is keeping researchers
out of this area? The variable costs of computational
resources and training.
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omputational component of sequencing - what's happening in bioinformatics
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The decreasing cost of sequencing and increasing amount of sequence reads generated are placing greater
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demands on the computational resources and knowledge necessary to handle sequence data. Scalable
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storage, query and analysis technologies are necessary to handle the increasing amounts of genomic data
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being generated and stored. For example, distributed file system greatly increases the storage 1/O
bandwidth, making distributed computing and data management possible. Another example is NoSQL
database provides excellent horizontal scalability, data structure flexibility and support for interactive
queries.
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Changing computing paradigms such as cloud computing are playing a role in managing the flood of [ Formatted: Font:(Default) Times New Roman J
sequencing data. HIPAA compliant cloud resources are being developed so that datasets can be stored and
shared on remote servers. Analysis scripts are then uploaded to the cloud and the analysis is performed [ Formatted: Font:(Default) Times New Roman J
remotely. This greatly reduces the data transfer requirements since only the script and analysis results are
transferred to and from the cloud. [[STL: also democratized research...no fixed/sunk cost]] [Include
download statistics for datasets],
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[[STL(Aug. 8): Should we mention commercial cloud server versus in-house hpc?]]

Traditional scientific computing paradigm is aggressively optimized on linear algebra. This is not of
much benefit to nowadays bioinformatics research, which heavily uses statistical learning algorithms, user
defined functions and semi-structured data. Moreover, today the parallel programming paradigm has
evolved from fine-grained MPI/MP to robust, highly scalable frameworks such as MapReduce and
Apache Spark. This situation calls for customized paradigms specialized for bioinformatical study. We
have already seen some exciting work in this field (cite ADAM from AMP Berkeley)
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Data storage and algorithmic improvements also need to be packaged in intuitive and easily navigable
formats to spur the wider adoption of sequencing information amongst the biological research
community. Illumina’s BaseSpace takes a promising step in this direction by creating an environment that
integrates everything from data transfer out of the sequencers to the app-like options for analysis
programs.

How have reduced costs changed biological research:

Bioinformatics jobs|
P/E ratio of illumina vs. other tech|
Use of datasets by secondary analysts|

- 272272 Cost of sequencing on Genohub)

The dramatic drop in sequencing costs has changed the biological research landscape and spurred
increased generation of sequencing data. However, to what extent are the increases in sequencing data
due to large sequencing centers and established projects producing ever more sequencing data as
compared to adoption of sequencing approaches by labs which did not previously use sequencing data?
As sequencing has become less expensive it has become easier for individual labs with smaller budgets to
undertake sequencing projects. These developments have helped democratize and spread sequencing
technologies and research. However, such trends also run the risk of fragmenting the genomics research
community. If the sequence data generated by individual labs is not processed properly and made easily
accessible and searchable then analysis of integrated datasets will become increasingly challenging. In
addition to posing technical issues for data storage, the increasing volume of sequences being generated
presents a challenge to integrate newly generated information with the existing knowledge base.

It is critically important that as the amount of sequencing data continues to increase it is not simply stored
but done so in a manner that is easily and intuitively accessible to the larger research community. In the
case of consortia, there are often required to ensure that their data is uniformly processed and easily
accessible to the public. [[STL: probably we could talk a little about distributed database systems and how
it realizes interactive querying in large scale ]]

A recurring theme in the topic of high throughput sequencing is that of fixed and variable costs. The
initial purchase of sequencing machines is a large initial fixed cost. However, this cost is often largely
shouldered by sequencing core facilities and not directly by individual investigators. The fixed cost is
amortized in accounting, and affects pricing. Nevertheless, as newer sequencing machines are able to
produce more reads, the average total cost of sequencing decreases. Moreover, if the number of
sequencing facilities increases, creating greater competition, economic theory predicts that the price of
sequencing should be driven down and approach marginal cost. In an environment of perfect competition
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the very early algorithms, Smith-Waterman and
Needle-Wunsch may need huge memory to construct a
backtracking matrix for human genome and some
algorithms will also allocate a large memory to achieve
best performance when doing alignment. To balance
this, we allocate rational enough RAM(at most 60GB)
for all tools, and only test Smith-Waterman and Needle-
Waunsch on Yeast genome with 1000 random selected
short sequences from 1 Million simulated reads. For
alignment tools that need to build index, the total
running time is the summation of index and alignment
time, and all the alignment time are scale up to the
same 1 Million level. The total running time for all the
algorithms reduce exponentially from 1970’s to 2010’s
for both human and yeast dataset. The running time
fulfill Moore’s Law and decrease by half every 18
months [[SKL: Moore law has different versions, here |
use 18month because based on linear regression,
each year will drop to about 0.7, and every 18 month
drop by half, and over 1000 and 400000 fold decrease
between the fastest and slowest algorithms for human
and yeast respectively]]. We also compared the
indexing time and alignment time for those have. Quite
interestingly, index time ratio is negatively correlated
with alignment time ratio with correlation coefficient = -
1. In general, algorithms only need index the ref
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the cost of sequencing should be equal to the marginal cost, and the fixed cost of purchasing a sequencing

machine should not enter into the pricing function; rather, it should impact only the decision of whether or

not to operate. If we think about the use of previously generated sequencing information there are almost Formatted: Font:Font color: Black
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market (sequence-based research) entry. What is keeping researchers out of this area? The variable costs
of computational resources and training.
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sequence alignment algorithms, we compared the alignment efficiency of tools developed from
the 1970’s to the 2010’s.

Since more recent tools mainly focus on short sequences (50-200bp) and usually contain an index
step to consolidate auxiliary
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sequence is too few, we have simulated 1 Million short sequences in 75 bp. On the other hand,
the very early algorithms, Smith-Waterman and Needle-Wunsch may need huge memory to
construct a backtracking matrix for human genome and some algorithms will also allocate a large
memory to achieve best performance when doing alignment. To balance this, we allocate rational
enough RAM(at most 60GB) for all tools, and only test Smith-Waterman and Needle-Wunsch on
Yeast genome with 1000 random selected short sequences from 1 Million simulated reads. For
alignment tools that need to build index, the total running time is the summation of index and
alignment time, and all the alignment time are scale up to the same 1 Million level. The total
running time for all the algorithms reduce exponentially from 1970’s to 2010’s for both human and
yeast dataset. The running time fulfill Moore’s Law and decrease by half every 18 months [[SKL:
Moore law has different versions, here | use 18month because based on linear regression, each
year will drop to about 0.7, and every 18 month drop by half, and over 1000 and 400000 fold
decrease between the fastest and slowest algorithms for human and yeast respectively]]. We also
compared the indexing time and alignment time for those have. Quite interestingly, index time
ratio is negatively correlated with alignment time ratio with correlation coefficient = -1. In general,
algorithms only need index the reference genome once (except Maq that will also need index
reads), the time cost for index can be thought as constant, and the alignment time can be
dramatically decreased for those alignment algorithms, such as BWA, STAR, which maintain a
more complex, well-designed auxiliary index structure
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[[SKL: suggest to delete the highlight region]] new algorithms are needed to more efficiently
handle and process sequence data. The impact and importance of improvements in the
algorithmic component of sequence analysis can be seen in the advances in alignment
algorithms over time. Older alignment algorithms are hopelessly slow when confronted with
something the size of the human genome. A graph of the running time of alignment algorithms
over time emphasizes the decrease in running time as new algorithms have been released over
the years. Another interesting feature in the graph is the relative contribution of indexing and
alignment to the total time of an algorithm. The relative importance of the fixed cost of building
an efficient index relative to the variable cost of alignment can be seen changing as the data
volume increases.
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Large consortia have taken advantage of sequencing trends to generate population scale
genomic data (1000 Genomes) or extensive characterization of cancer genomes (TCGA).
Meanwhile, an ever expanding set of seq related assays has taken advantage of inexpensive
sequencing to serve as a readout in assays investigating a range of biological processes.
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lllumina Hi-seq X 10 — produces 1.8 terrabytes (16 human genomes at 30x coverage) in 3 days

Hi-seq X 10 make it prohibitive for many labs without the requisite # of samples.



