Both the surface- and interior-critical residue identification modules have been made available to the community through a new web server, STRESS. Our server has been designed to be both user-friendly and fast. Obviating the need for long wait times, the algorithmic implementation of our software is highly efficient (running times for proteins of various sizes are provided in Fig. 5). In the surface-critical residue identification module, we use local searching to bring down the time complexity by an order comparing with a naïve implementation. we use locality-sensitive hashing to do local search in each sampling step, which takes constant time. The time complexity of the core computation, Monte Carlo sampling, is O(|T||S|), where T and S are simulation trials and steps for each trial, respectively. After carefully profiling and optimization, a typical case takes only about 30 minutes on one typical CPU (2.8GHz) core.
We also tackle the running time issue by designing a scalable server architecture. The one E5-2650(2.8GHz) core.thin
In terms of server operation, our web application utilizes two types of servers: front-facing servers that handle incoming HTTP user requests and the beefy back-end servers that perform algorithmic calculations. Our back-end servers are. Communication between these two types of servers is handled by Amazon's Simple Queue Service. When our front-facing servers receive a new request, they add the job to the queue and then return to handling requests immediately. Our back-end servers continually poll the queue for new jobs and run them when capacity is available. Amazon's Elastic Beanstalk offers several features that enable us to automatically and dynamically scalablescale our web application. We use Auto Scaling to automatically adjust the number of servers backing our application based on predefined conditions, such as network traffic and CPU utilization. Elastic Load Balancer then automatically distributes incoming traffic across these servers. This system ensures that we are able to handle varying levels of demand in a reliable and cost-effective manner. Our scalable implementation is based on Amazon Web Service (AWS) and highly portable on cloud environment.Since we may have multiple servers backing our web application simultaneously, some handling HTTP requests and some performing calculations, any of which may be terminated at any time by Auto Scaling, it is important that our servers are stateless. We thus store input and output files remotely in a S3 bucket, accessible to each server via RESTful conventions.

