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Conditional density-based analysis 
of T cell signaling in single-cell data
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Quantitative characterization of T cell signaling. (A) The pCD3ζ-pSLP76 signaling interac-

tion shown as (I) a scatterplot, (II) a kernel density estimate, and (III) by using a conditional DREVI 

method. (IV) Shape features are extracted and quantif ed. (B) DREVI plots of a signaling cas-

cade downstream of TCR show the time-varying nature of edge shapes and strengths. (C) Edge 

strengths are quantif ed by using conditional DREMI. 

to more completely define the function and 

strength of signaling relationships.

RATIONALE: We demonstrate the utility 

of our methods using single-cell data col-

lected from T cells. Although T cell subpop-

ulations are phenotypically delineated into 

several cell subsets—such as regulatory, 

effector, and memory—and are thought to 

have similarly wired signaling networks, 

their responses to activation differ in ways 

that are not understood. 

RESULTS: We used mass cytometry to mea-

sure the abundance of 20 internal and sur-

face protein epitopes, at 13 time points, after 

two different types of T cell receptor (TCR) 

activation in T cells of B6 mice—resulting 

in more than 2 million data points. To study 

TCR signaling, we developed conditional- 

Density Resampled Estimate of Mutual Infor-

mation (DREMI) to quantify the strengths of 

the influence that a protein X has on protein 

Y, and conditional-Density Rescaled Visual-

ization (DREVI) to visualize and characterize 

the edge-response function underlying their 

molecular interaction. A key conceptual shift 

in DREMI and DREVI is our use of the con-

ditional probability of Y|X rather than the 

joint probability of X and Y. We show that 

the consensus Y-response for each value of X 

is much easier to identify in the conditional 

density estimate, especially when the joint 

density is concentrated in a narrow range, 

which is typical of such data (Fig. 1A).

We used DREMI to characterize the 

rapid dynamics of signaling interactions 

upon TCR activation (Fig. 1B) and show 

that the strength of signal transfer peaks 

in canonical pathway 

order (Fig. 1C). We com-

pared edges in naive 

a n d a  n t i g e n - e x p o s e d 

CD4+ T cells and identi-

fied differential signal 

transmission along a key 

signaling cascade that starts at pCD3ζ and 

continues through pSLP76, pERK, and pS6. 

At each stage in this cascade, more informa-

tion (higher DREMI) is transferred down-

stream from one protein to another, over 

a longer time period, in naïve cells than in 

antigen-exposed cells. We validated our char-

acterization in mice lacking the extracellular-

regulated mitogen-activated protein kinase 

(ERK2), demonstrating stronger influence of 

pERK on pS6 in naive cells, as predicted.

CONCLUSION: DREMI solves a challenging 

problem: quantifying the strength of the un-

derlying complex relationships between pro-

teins from noisy data. Our approach reveals 

how signaling is fine-tuned between T cell 

subpopulations: The differences we identi-

fied between naïve and antigen-exposed T 

cells suggest that naïve cells more sensitively 

transmit upstream signaling inputs along a 

key signaling cascade. In contrast, trained ef-

fector or memory cells seem poised for fast 

responses upon repeated exposure.

DREVI and DREMI are broadly appli-

cable across biological systems and single-

cell technologies. As single-cell data become 

more abundant, our methods will enable 

the construction of quantitative models of 

cellular signaling and comparison between 

healthy and diseased cells. ■ 
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INTRODUCTION: Cellular circuits sense 

the environment, process signals, and com-

pute decisions using networks of interact-

ing proteins. Emerging high-dimensional 

single-cell technologies such as mass cy-

tometry can measure dozens of protein 

epitopes simultaneously in millions of in-

dividual cells. With thousands of individ-

ual cells, each providing a point of data on 

co-occurring protein states, it is possible to 

infer and quantify the functional forms of 

the relationships between proteins. How-

ever, in practice these underlying relation-

ships are typically obscured by statistical 

limitations of the data, hence rendering the 

analysis and interpretation of single-cell 

data challenging. We developed computa-

tional methods, tailored to single-cell data, 
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Cellular circuits sense the environment, process signals, and compute decisions using
networks of interacting proteins. To model such a system, the abundance of each activated
protein species can be described as a stochastic function of the abundance of other
proteins. High-dimensional single-cell technologies, such as mass cytometry, offer an
opportunity to characterize signaling circuit-wide. However, the challenge of developing
and applying computational approaches to interpret such complex data remains. Here,
we developed computational methods, based on established statistical concepts, to
characterize signaling network relationships by quantifying the strengths of network edges
and deriving signaling response functions. In comparing signaling between naïve and
antigen-exposed CD4+ T lymphocytes, we find that although these two cell subtypes had
similarly wired networks, naïve cells transmitted more information along a key signaling
cascade than did antigen-exposed cells. We validated our characterization on mice
lacking the extracellular-regulated mitogen-activated protein kinase (MAPK) ERK2, which
showed stronger influence of pERK on pS6 (phosphorylated-ribosomal protein S6), in
naïve cells as compared with antigen-exposed cells, as predicted. We demonstrate that
by using cell-to-cell variation inherent in single-cell data, we can derive response
functions underlying molecular circuits and drive the understanding of how cells
process signals.

C
ells process external cues through the bi-
ological circuitry of signaling networks in
which each protein species processes infor-
mation pertaining to other proteins, whose
activities themselves are determined by

biochemical modifications (such as phosphoryl-
ation) or other allosteric interactions. Signaling
networks can be remarkably attuned to distin-
guishing subtle features of stimuli to enable key
decisions regarding cellular response or fate. For
example, naïve CD4+ T cells take into account
both dose and duration of T cell receptor (TCR)
engagement, the strength of peptide binding in
themajor histocompatibility complex (MHC) cleft,
and coreceptor cues in making a decision to
differentiate into either regulatory or T helper
cells (1–4).With this example as one amongmany,
it follows then that to properly understand normal
cellular responses and how these are dysregulated
in disease, robust quantitative characterizations
of signaling relationships will be required to en-
able more accurate models of signaling.

Despite progress in the quest to understand
and represent the complexities of signaling biol-
ogy, graph diagrams typically used as depictions
of signaling relationships only offer qualitative
abstractions. In such graphs, the vertices corre-
spond to proteins, and a directional edge indi-
cates the influence of one protein or molecular
species on another, and as such, these graphs fail
to capture many of the more complex ways
through which signaling networks process in-
formation. Further, such representations are not
designed to readily enable predictions of response
to stimuli or therapeutic intervention. Although
quantitative models have been proposed to de-
scribe signaling networks (3, 5, 6), these are spe-
cific to each system and require measurements
of biochemical rates and many additional param-
eters. To scale to a large number of signaling
networks and cell types, a robust data-driven ap-
proach that can quantify signaling interactions
in molecular circuits is required. A data-driven
approach would take advantage of statistically
relevant differences in complex cell populations
so as to better inform the function that is en-
coded by an inferred circuit diagram.
To this end, single-cell measurement technol-

ogies can offer quantitatively precise, even ab-
solute (given appropriate probes and experimental
design), measures of dozens of cellular compo-
nents representing important biochemical func-
tions. Variation in a complex cell population can
be discerned in a functionally relevant context
and enable insights into the underlying relation-

ships between signaling molecules. Mass cytom-
etry, for example, can assay the abundance of
dozens of internal and surface protein epitopes
simultaneously in millions of individual cells
(7, 8), offering an opportunity to quantitatively
characterize signaling at circuit-wide scales. Mod-
eling a signaling network as a computational sys-
tem, in which each signaling protein computes a
stochastic function of other proteins, and treat-
ing each single cell as an example of possible
input-out enables the recovery of how a signaling
network functions. With many thousands of in-
dividual cells, each providing a point of data
about relationships between proteins, we can
infer the network function.
However, a major challenge in deciphering

single-cell signaling data are developing compu-
tationalmethods that can handle the complexity,
noise (which can be either natural stochasticity
or actual instrument noise), and bias in the mea-
surements. First, because cell populations are rare-
ly homogeneous, different cell subpopulations
can manifest distinct behaviors—and therefore,
the relationships between signaling proteinsmay
be obscured beneath a mixture of multiple net-
work states. For example, naïve primary B cells
can haveweak and stochastic responses to stimuli
so that only a small fraction of the population
responds (via activation of signaling pathways),
whereas memory B cells are considered primed
and even evolved toward a more avid binding of
antigen. Similarly, naïve T cells manifest differ-
ent kinetics of response to T cell receptor engage-
ment than do effector T cells. Second, technical
noise in themeasurements can further confound
the quantification ofmolecular interactions. Third,
marker abundance (which often correlates with
cell size) can lead to biased correlations and hence
be misinterpreted as an influence between the
assayed signaling proteins.
We addressed these challenges by developing

an algorithm, based on the statistical concepts of
conditional probability (9) and density estima-
tion (10), termed “conditional-Density Resam-
pled Estimate of Mutual Information” (DREMI)
to quantify the strength of molecular interac-
tions. Given a relationship between two proteins,
whereX influencesY, DREMI considers the abun-
dance or activity of protein Y as a stochastic
function of the abundance or activity of protein
X. DREMI uses the variation in a population of
individuallymeasured single cells to quantify the
amount of information transmitted from protein
X to protein Y in the signaling network.
A key conceptual shift compared with previ-

ous approaches to single-cell analysis is that
DREMI computes mutual information on the es-
timated “conditional probability” of Y | X rather
than the “joint probability” of X and Y (the lat-
ter being the preferred approached in most other
mutual information-based metrics). Joint proba-
bility describes the density of cell states (such as
in a traditional scatter or density plot), whereas
conditional probability describes how the state
of Y varies with different states of X. To explore
such relationships, we couple DREMI to an al-
gorithm we term “conditional-Density Rescaled
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Visualization” (DREVI). We use DREVI to visual-
ly render the estimated conditional density func-
tion as a rescaled heat map, which allows us to
visualize the function underlying the molecular
interaction in the cell population.
T cells offer an opportune systemwithin which

to characterize signaling relationships because
several well-characterized but subtly distinct
T cell subsets exist (such as regulatory, effector,
andmemory)—each of which have a distinct func-
tion, and yet the signaling distinctions between
them are not well appreciated. For example, in
naïve CD4+ T cells, which have not been exposed
to antigen, the activation of the TCR (dependent
on the engagement of coreceptors and availabil-
ity of certain cytokines) leads to differentiation
into functionally distinct effector cell types (11).
In response to the same TCR activation, antigen-
experienced effector or memory T cells tend to
proliferate andmount responsesmore rapidly and
in greater magnitude than naïve T cells (12–14).
However, although thewiring diagrams that broad-
ly describe the basic pathways are partly under-
stood, the molecular mechanisms that lead to
these differences are far from fully resolved.
Using a combination of DREMI and DREVI,

we modeled signaling in pathways downstream
of the TCR. We find that the functional form of
interactions between signaling proteins demon-
strates sigmoidal behaviors that are dynamically
and systematically altered upon activation and
with increases in stimulus strength, leading to
complex but definable outcomes.We applied this
to a physiological case using mass cytometry to
track the abundance of 11 phosphoproteins after
stimulation, ranging from 30 s to several hours,
of mouse TCR-activation in more than 2 million
individual cells. A comparison of T cell subtypes
reveals subtle reconfigurations in the strength
and functional shape of signal transfer between
previously known pairs of interacting signaling
molecules, all of which affects the response to
TCR activation. Our model enabled predicting
the outcome of a perturbation that quantitatively
differed between T cell subtypes that we subse-
quently verified experimentally. The computa-
tional framework developed here can be generally
applied to model any signaling system for which
appropriate antibodies, binding agents, or surro-
gate readouts are available. The approach dis-
cerns signaling behaviors that exist in complex
cell populations and, in a departure from our pre-
vious work (15), uses the inherent stochasticity to
quantify and characterize the underlying signal-
ing behaviors, demonstrating that computation
can help reveal mechanistic insight from multi-
dimensional single-cell data sets.

Results

The dynamics of T cell signalingwas characterized
and compared across mouse T cell subsets. Time-
series data was collected for phospho-signaling
proteins in T-lymphocyte populations of B6mice
(16) after stimulation of the TCR (by cross-linking
TCR and the CD28 costimulator with biotinyl-
ated antibodies). We assayed the abundance of
nine surface markers and 11 phospho-epitopes,

among which were key nodes in TCR signaling
and related pathways (fig. S1 and table S1). Sam-
ples were collected at 13 time points after TCR
activation ranging from 30 s to 80 min with two
different types of stimuli (CD3/CD28 and CD3/
CD4/CD28). We measured ~10,000 cells in each
sample, cumulatively resulting in deep profiling
of signaling data for more than 2 million indi-
vidual cells.
The nine surface markers in our panel distin-

guish between T cell subsets, including naïve
CD44low and antigen-experienced CD44high T cells
(fig. S2) (17, 18). Overall, with 20 markers per
individual cell, these studies simultaneously re-
solve six T cell subsets in the lymph nodes along
with their signaling responses, thus reducing tech-
nical limitations inherent in the assay of post-
sorted T cell subsets.

Conditional density-rescaled
visualization of single-cell data
To analyze these data, we considered each indi-
vidual cell in our mass cytometry data as an in-
stance of co-occurring protein states and used
this information to quantify the signaling rela-
tionship between the assayed protein parameters.
We demonstrate our approach using a signaling
relationship between two measured protein epi-
topes in our data. A primary locus for intracel-
lular signaling initiation of the TCR activation
cascade is a protein scaffold known as the cluster
of differentiation 3 zeta-chain (CD3z). Upon en-
gagement with antigen, CD3z is phosphorylated
(to pCD3z), which creates a scaffold target for the
zeta-chain–associated protein kinase 70 (ZAP-70),
which in turn phosphorylates SLP76 (SH2 do-
main containing leukocyte protein of 76 kD) and
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Fig. 1. Outline of the DREVI method. All panels
represent the relationship between pCD3z and pSLP76
in CD4+ naïve T lymphocytes from B6 mice with CD3
and CD28 before stimulation (A, I to D, I) and 30 s after
stimulation (A, II to D, II). (A) Eachdot in the scatterplot

represents the value of a single cell,where the x axis represents the amount of pCD3z levels, and the y axis
represents the amount of pSLP76 levels. (B) The same data are shown using kernel density estimation,
with red corresponding to dense regions and blue corresponding to sparse regions.The x axis is partitioned
into slices (in practice, we use 256 such slices). (C) A DREVI plot of the same data, renormalizing the
density estimate to obtain a conditional-density estimate of the abundance of pSLP76 levels given the
abundance of pCD3z levels.Within each column,dark red (maximal color) represents the highest density in
that slice. A response function (white curve) is fit to the region of highest conditional density.The top bar
plots the marginal distribution of pSLP76 levels, and the right bar plots the marginal distribution of pS6
levels. (D) Following curve fitting, the inflection point, upper plateau, and AUC can be computed and
compared between conditions.
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LAT [the adaptor protein SH2 domain con-
taining leukocyte protein and Linker of activated
T cells, respectively (19)].
When the relation between pCD3z and pSLP76

prestimulation and 30 s after stimulation (Fig. 1A)
is visualized as a scatterplot (a traditional means
used to analyze flow cytometry data), it is difficult
to identify any clear characteristics of the data
other than the range of expression values. Visual-
izing the data by using a density plot (Fig. 1B) (10),
one observes that the abundance of pCD3z and
pSLP76 is concentrated at a particular value, but
there is no clear statistical dependency between
the twomolecules, nor does this visualizationmeth-
od illuminate the nature of the well-researched
influence that pCD3z has on pSLP76 (20).
Why do traditional methods of visualizing

data, such as scatterplots or density estimations,
fail to reveal clear relationships between mole-
cules? In Fig. 1, the majority of cells can be found
in a narrow range of values for eachmarker. There-
fore, the joint density of pCD3z and pSLP76 is
dominated by a narrow set of values and does
not reveal the overall “functional response”—how

protein Y changes as a function of the activity of
proteinX. To understand Y as a function ofX, we
have to explore X’s full dynamic range and how
values of Y are dependent on values of X.
To visualize and characterize signal transfer

between proteins X and Y, we developed DREVI
(Fig. 1, Box 1, andmaterials andmethods), which
represents in a visual form the stochastic func-
tion of how X influences Y. By using the natural
variation in the amount of X and Y from cell to
cell, we empirically learn the probability density
P(X,Y) from the data. To characterize the influ-
ence that X extends on Y, we shift from the joint
density and empirically estimate the conditional
density P(Y|X) (materials and methods) by means
of a kernel density estimation method based on
heat diffusion (10, 21). The conditional density
enables us to ascertain how Y’s values are chang-
ing with respect to the values of X, regardless of
where the majority of cells are concentrated in
the joint distribution. Although statisticians have
previously developed sophisticated methods to
directly compute the conditional density (22),
these perform poorly on our data (fig. S3).

DREVI plots are shown in Fig. 1C that depict
pSLP76 abundance (Y) when conditioned on
pCD3z (X) abundance. This view of the data re-
veals a distinct difference in the relation between
pCD3z and pSLP76 before and after TCR activa-
tion that was not apparent in the scatterplots or
jointdistribution.Givenanequal amountof pCD3z,
we observe that pSLP76 has a stronger response
to increasing pCD3z levels after TCR activation
(in Fig. 1C, the increased values of the median
response are represented by the white line). This
suggests that after TCR activation, additional
factors (perhaps ZAP70 or LAT) modulate the
relationship between pCD3z and pSLP76. Sim-
ilarly, DREVI can help clarify the relationship
between additional protein pairs (fig. S4) and
visualize how the relationships change through
time (fig. S5).

Conditional density-resampled
estimate of mutual information

To systematically compare between conditions,
time points, and cell types, a measure that quan-
tifies the relationship between two proteins is
needed. Often, mutual information (MI)–based
metrics are used to evaluate relationships between
gene or protein pairs. However, MI is difficult
to compute on continuous data. To resolve this,
a first step is to discretize the data. Currently,
adaptive partitioning (23) is one of the most
widely used approaches for such discretization
(24, 25). However, adaptive partitioning assumes
that denser regions of the data are more impor-
tant than sparser regions, and therefore, the dense
regions are partitionedmore finely than are sparse
regions and dominate the resultant mutual-
information metric. In contrast, we developed a
measure that allows for sparser populations to be
accounted for, thus preventing bias against small
cell populations that could have distinct and in-
teresting biology that might inform understand-
ing of the signaling relations in question.
To quantify the strength of the influence pro-

tein X has on protein Y, we developed DREMI
(Box 2, Fig. 2, and materials and methods). Like
MI (26), DREMI is a shape-agnostic measure that
scores how predictive X is of Y, but—unlike MI—
it is not symmetric (and therefore might inform
directionality) and also captures the strength of
this relationship over all populated regions of the
dynamic range, regardless of the (often peaked)
distribution of X in the data. This is achieved by
computing mutual information on the condi-
tional density estimate of the data rather than
the raw data itself. DREMI begins with the con-
ditional density estimate, computed for DREVI
(Box 1). The data are then resampled evenly
through the range of the conditional probability
density, and MI is computed on the resampled
data spanning the entire range.
To understand the differences between MI

and DREMI, we use the data from Fig. 1. MI
works well for data that is well distributed across
the range of X and Y (Fig. 2A, for example); by
equipartitioning slices of X, the range of Y dras-
tically drops within each slice, and therefore,
knowing the value of X provides substantial

SCIENCE sciencemag.org 28 NOVEMBER 2014 • VOL 346 ISSUE 6213 1250689-3

Box 2. Conditional density-resampled estimate of mutual information.

DREMI provides a score for the strength of the influence protein X has on protein Y. In many
physiological conditions, only a small fraction of the cells have activated protein X in response
to stimuli, and these active populations have little influence on the mutual information metric.
DREMI explicitly factors these populations by computing a score based on the conditional
distribution of Y | X rather than joint distribution. DREMI estimates the computation Ic, given

by Ic(x,y) = ∑
x
∑
y
p(y|x)log½ pðy,xÞ

pðxÞpðyÞ�
DREMI is computed as follows:

(i) Begin with the rescaled conditional-density estimate f̂*(G) as in DREVI (Box 1), computed
on the grid of points G = {(xi, yj ), 1 < i < n, 1 < j < m}.

(ii) Round values f̂*(xi,yj) < e to 0, for user-defined threshold e, to eliminate technical noise
from the measurements.

(iii) Resample from G according to the conditional density estimate f̂(G).

(iv) Equi-partition the full range of the data and calculate mutual information, using this
partition as the discretization.

Box 1. Conditional density-rescaled visualization.

DREVI reveals the influence of protein X on protein Y. Most methods for visualizing pairwise
data (such as scatterplots and density contours) depict the joint probability of X and Y. In
contrast, we reveal signaling behavior along its full dynamic range by visualizing conditional
probability. The main steps of DREVI are as follows:

(i) Compute the joint kernel density estimate f̂(x,y) (10).

(ii) Compute the marginal density of X, f̂(x), and the conditional density estimate of Y given X

as f̂(y|x) = f
^ðy,xÞ
f
^ðxÞ on a fine grid of points G = {(xi, yj ), 1 < i < n, 1 < j < m } that span the range of X

and Y (2, 12, 15).

(iii) Rescale each value of the conditional density estimate by its column-maximum to obtain
f̂*(yj|xi) = f̂(yj|xi)/maxk[f̂(yk|xi)]

(iv) Visualize f̂*(G) as a heatmap, adding side-bars depicting the marginal densities of X and Y.
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information on the likely value of Y. However, in
distributions typical of single-cell data (Fig. 2B),
MI is dominated by a peak in density (a narrow
range of X) in which only minor changes in Y are
observed; thus, the relationship between X and Y
is obscured. In contrast, DREMI (Fig. 2C) resam-
ples from the conditional density estimate and
equally weighs all regions along the entire range
of X, as long as there are enough cells to form a
robust conditional density estimate. Thus, DREMI
takes into account sparse populations along the
x axis and factors for the full range.
DREMI takes advantage of mass cytometry’s

ability to collect large sample sizes (data for mil-
lions of cells), facilitating the estimation of the
conditional distribution in relatively sparse re-
gions. For example, with 50,000 cells, an X range
with only 1% of the data (typically treated as an
outlier) still contains 500 cells, a sufficient num-
ber to robustly estimate P(Y | X = x). To further
ensure a robust estimation of P(Y | X = x),
DREMI incorporates an automated noise-filtering
step in which points are eliminated if they have a
low rescaled conditional density.
We evaluated the robustness of DREMI to

noise (fig. S6) and subsampling (fig. S7). As shown
in fig. S6, DREMI values generally decrease lin-
early as the SD of the noise increases, and the
noise-elimination step can be used to adjust sig-
nal detection in noisy experimental conditions.
A key strength of DREMI is that it is similarly
resilient to noise, whether the underlying func-
tion is linear or sigmoid, making it well suited
to capture the range of behaviors observed in
biology. Further, DREMI is a robust measure
that remains consistent under multiple sub-
samples of the data (fig. S7).

Characterization of signaling relations
by curve-fitting

In the case of a strong relationship (high DREMI
score), we can derive a “response function” from
the conditional density using curve-fitting. Con-
ditional density is particularly suited for the der-
ivation of an edge response function because it
allows for identification of the consensus Y re-
sponse (densest region inDREVI; the deep red in
the heat maps) for each value of X. We compare
curve-fitting of the conditional density with di-
rectly fitting the raw data in order to demonstrate
the superiority of the former—both in terms of fit
[root mean squared error (RMSE)] and in terms
of the interpretability of the parameters (fig. S8).
For a well-fit curve, we expect most of the data
points to fall in close proximity to this curve, as
measured with RMSE. A fit to the conditional
mean results in a sigmoidal curve that closely
follows the data points (indicated by low RMSE),
whereas the raw data best fits a line—but the fit
is of lower quality (indicated by high RMSE). An
optimal sigmoidal fit on the raw data results in
degenerate curves, in which most data points
reside at a large distance.
Fitting a curve in this manner allows for a

parametric description of the relationship be-
tween the two proteins X and Y. Such a func-
tional description of the relationship between X

and Y enables us to potentially predict the value
of Y, if the value ofX is altered by an intervention
or drug. To derive the edge-response function,
we fit points sampled from the conditional den-
sity to one of three models using regularized re-
gression: linear, sigmoidal, or double sigmoidal
(27). If none of themodels result in a good fit, the
model is then fit to a free-form curve.
In Fig. 1, we fit DREVI plots of the pCD3z-

pSLP76 edge before and after TCR activation to a
sigmoid curve (Fig. 1D, I and II). Among other
characteristics, the parameters of the fitted sig-

moid specify the lower and upper asymptote that
correspond to a digital “low” and “high”mode of
activation for the protein Y, and the inflection
point (the activation threshold of X at which the
protein Y transitions from low to high state).
Comparing the edge before TCR activation
with after, there is a similar inflection point
activation threshold in the pCD3z axis but a
considerably higher response on the SLP76 axis,
and a corresponding increase in total activation
of SLP76 (Fig. 1D). The postactivation state re-
sults in higher “area under the curve” (AUC),
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Fig. 2. Outline of the DREMI method. (A) Simulated data depicting a relationship with high MI. Across
the entire range of X, Y has a wide range of values (left). After conditioning on X (red lines), the range of Y
within each X-slice is substantially smaller (right).Thus, knowledge of X’s value provides information on Y’s
likely value. (B) The data represent the relationship between pCD3z and pSLP76 30 s after stimulation of
the TCR, as in Fig. 1B, II. Most of the cells are concentrated around a single peak, as shown in the 2Ddensity
estimate (left). If we resample from this density estimate, samples will fall within a narrow range in which
there is little change in Y’s range.This narrow range dominates the MImetric. (C) Instead, DREMI samples
from the renormalized conditional density estimate, which covers entire X-range. So there is the same
number of cells in each X-slice, as long as there are sufficient cells in the original data. MI information is
calculated over this resampled data.

RESEARCH | RESEARCH ARTICLE

Corrected 5 March 2015; see full text.



which is proportional to the average amount of
pSLP76 generated per quantity of pCD3z. A
larger AUC implies more signal transfer activity
so that after stimulation, less pCD3z is required
to induce a response in pSLP76. Thus, when the
TCR is activated, not only do pCD3z amounts
increase, but this change is also more impactful
than a similar increase would have been before
stimulation. This increase in edge strength in-
dicates that the pairwise relation between the
two proteins is boosted by changes in the recruit-
ment and localization of additional and poten-
tially unknown proteins (the effects of which are
successfully captured with DREVI and DREMI).
Not only do the DREMI and AUC scores in-

crease after T cell stimulation, but they also en-
able distinguishing between different strengths
and forms of stimulus (Fig. 3). Mouse T cells were
stimulated with either CD3/CD28 or CD3/CD28/
CD4, and mass cytometry analysis was under-
taken as per above. CD4-costimulus, in addition
to CD3/CD28, is known to boost signaling re-
sponses in CD4+ T cells by engaging additional
pathways that reinforce the signal transmission

(28). When comparing these two forms of stimu-
li, we derive a higher DREMI score under the
stronger stimulus in all three of the edges shown
in Fig. 3. The CD3/CD28/CD4 stimulus clearly
leads to a higher activation (magnitude) and/or a
lower activation threshold in the edge-response
functions. This translates to a higher AUC in both
the sigmoidal (pCD3z-pSLP76) (Fig. 3A, IV) and
linear (pERK-pS6) (Fig. 3C, IV) cases. The pSLP76-
pERK edge (Fig. 3B) can be interpreted as a
stochastic “digital” response, with a larger per-
centage of cells responding upon CD3/CD28/CD4
stimulus (Fig. 3B, IV) (5). Together, DREMI,
DREVI, and the edge-response function form a
powerful toolbox for the analysis of signaling
interactions.

Canonically ordered signaling
transfer in the TCR pathway

We used DREMI to analyze the dynamics of the
pCD3z-pSLP76-pERK-pS6 signaling cascadedown-
stream of the TCR (Fig. 4). The edge strengths and
shapes were highly dynamic within just a few
minutes after TCR activation. The DREMI scores

pinpoint the “peak timing” of signal transduc-
tion, meaning the timing when protein activation
of Y is most sensitive to changes in the activity of
protein X. The peak timings of all edges in this
signaling cascade followed the expected canon-
ical order (Fig. 4). For example, a pCD3z and
pSLP76 relationship, or edge, was detectable in
a small population of cells when pCD3z is at its
highest value even before stimulation (Fig. 4, top
left). However, after TCR activation, pCD3z reached
maximumsignal transferwithin 30 s anddecreased
soon after. The pSLP76-pERK edge scored high-
est at 1 min after activation, and the pERK-pS6
edge peaked at 2 min after TCR activation. Thus,
the peak response follows the canonical ordering
of the pathway in a manner analogous to the
“just-in-time” transcriptional networks of meta-
bolic pathways in Zaslaver et al. (29).
The observed dynamics highlight the impor-

tance of time series data and the impact of sig-
naling dynamics on the relationships that can be
derived from each individual time point. For in-
stance, the pSLP76-pERK edge (Fig. 4A) is only
active in the 1- to 2-min time frame with a strong
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Fig. 3. Comparison
between stimulation
conditions. The cells
are CD4+ naïve T
lymphocytes of B6
mice. (A) (I and II)
The pCD3z-pSLP76
edge at 30s after
stimulation under
both stimulation
conditions. (III) As
stimulation strength
increases, DREMI
increases. (IV) The
inflection threshold
moves to the left, and
the upper plateau of
the response curve
also increases,
resulting in a higher
AUC. (B) The
pSLP76-pERK edge
2 min after stimula-
tion. The blue lines
indicate a partitioning
between “low” and
“high” states of
pERK. The pie charts
in IV show an increase
in the percentage of
cells that reach the
high state at the
higher dose. (C) The
pERK-pS6 edge has a
linear edge-response
function. Here,
increasing stimulation
strength results in an
increase in DREMI,
shown in III, and AUC,
shown in IV.
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sigmoidal shape. The pSLP76-pERK edge is flat
at other times. Such signaling dynamics are sug-
gestive of the observed negative feedback loop,
resulting in dephosphorylation of ERK perhaps
by PTPN22 or SHP-1 (30, 31) because the influence
of pSLP76 on pERK drastically decreased at 4 min,
although pSLP76 remained activated at the 4-min
time point (Fig. 4A, top row, fifth from left). The
DREMI scores quantify the intuitive visual inter-
pretation of the DREVI plots (Fig. 4B).
This canonical pathway ordering of peak tim-

ing is demonstrated again under the CD3/CD28
stimulation (fig. S9). However, we see that under
the CD3/CD28/CD4 stimulation, signals are trans-
ferred downstream faster, and the signal transfer
is sustained for longer periods. For example, the
pCD3z-pSLP76 edge is only activated up until
2 min under CD3/CD28 stimulation, whereas
it remains active until 4 min under a CD3/CD28/
CD4 stimulatory environment. Additionally, the
pSLP76-pERK edge activates only after 2 min
under the CD3/CD28 stimulation but is activated
within 1 min under CD3/CD28/CD4 stimulation.
This is in accordance with upstream influences
that change the nature and speed of the signal-
ing behavior downstreamas reflected in the edges
more distal to the TCR. This increased activation
possibly is due to additional signaling pathways
that converge through other signaling network
components downstream of the TCR.
DREMI quantified the strength of each known

edge in a given network, and the dynamics of
how the molecular interactions underlying this
edge changed over time. Together, they enabled
an elucidation of a classically understood path-
way in a single experiment while providing subtle
insights into the timing of signaling relation-
ships within the network.

Performance evaluation of DREMI

To compare the performance of DREMI with
other approaches that quantify relations typi-
cally used for this data type, we used the ca-
nonical timing of signaling edges described in
the previous section as a basis for comparison.
We compared these metrics on six edges to eval-
uate the ability of each method to rank edge
strengths at various time points after TCR stimu-
lation. DREMI outperformed Pearson correla-
tion and recently developed dependency measures
such as maximal information coefficient (MIC)
(32) and adaptively partitioned MI (Fig. 5I and
fig. S10) (23). DREMI identified the peak timing
of signal transfer in all six test cases. Adaptive
partitioning missed the peak timing in four of
the six cases, including two cases in which
adaptive partitioning picked the prestimulation
time as the peak, and typically does not perform
well when the joint density is concentrated in a
narrow range. In such cases, adaptive partition-
ing places many partitions in the dense region
(so that the partitions are often finer than the
sensitivity of the experimental technology) and
only a few in the sparse regions. MIC tends to
pick peaks similarly to adaptive partitioning,
identifying the correct peak in only one case.
MIC has a further limitation in that there is very

little range in the scores, possibly because it aims
for equitability (33), which is a condition that
does not hold in these data. Pearson correlation
missed the peak timing in two cases and typically
did not perform well for noisy and nonlinear
relationships. We also compared the performance
of DREMI in an additional biological system
using published mass-cytometry data focused
on human B cells after B cell receptor stimula-
tion, as described in (8). Similar to T cell signaling,
DREMI was able to quantify and rank relation-
ships better than metrics typically used for such
data (fig. S11).
Last, we compared DREMI with other ap-

proaches on synthetic data that was designed to
exemplify features of realistic data (Fig. 5II). We

compared two weak, low-noise linear relation-
ships against two strong, nonlinear noisy rela-
tionships. Specifically, we included a sigmoidal
relationship and a nonmonotonic quadratic
function typical of systems that simultaneously
induce both protagonist and antagonistic path-
ways (34). The weak relationships were charac-
terized by only slight changes in the distribution
of Y compared with its dynamic range, as X in-
creases (small slope), whereas the stronger non-
linear relationships have more pronounced
change in the distribution of Y with changes in
X. In both examples, the other methods scored
the weaker linear relationship higher (Fig. 5II).
A key advantage of single-cell technologies

such as mass cytometry and flow cytometry are
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Fig. 4. DREVI and DREMI reveal the dynamics of TCR signaling. The pCD3z -pSLP76-pERK-pS6
cascade at various time points after TCR activation. All panels represent data from CD4+ naïve T
lymphocytes fromB6micewith CD3,CD28, andCD4 cross-linking. (A) Each row represents an edge in the
cascade, and each column represents a time point after TCR activation. DREVI plots show the dynamics of
TCRsignaling; edges change their strength and shape as signaling proceeds.The scale used is the same as
in Fig. 1,with dark red representing the behavior of themajority of cells,whereas the other colors depict the
heterogeneity and spread of the response. (B) Network diagrams with DREMI values indicated on each
edge, columns matching the same time points as in (A). For each edge, the color indicates the computed
DREMI values, with darker purple indicating a higher DREMI score. DREMI captures peak signal transfer
timings in each of the three edges.
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Fig. 5. Comparison of DREMI with three other metrics. The metrics
compared are mutual information using adaptive partitioning (23), MIC (32),
and Pearson correlation. (I) Comparisons are performed on edges in naïve CD4+

Tcells underCD3andCD28stimulation. In each case, the greenoutline indicates
thepointwith the strongest relationship upon visual inspection of theDREVI plot.
(A) The pCD3z-pSLP76 edge. Only DREMI identifies the poststimulation 0.5 m
time point as having a stronger signaling relationship than the prestimulation
data. (B) The pMAPKAPKII-IkBa relationship as an example of a negative rela-

tionship. DREMI successfully identifies this negative relationship, whereas other
methods are unable to detect it. Four additional edges are compared in fig S10.
(II) Comparison of dependency metrics on synthetic data. Both parts (A) and
(B) show comparisons between a noiseless but weak dependence of Y on X,
compared with a noisy but strong dependence of Yon X, (A) sigmoidal and (B)
quadratic relationships.The other three metrics score the linear, weaker depen-
dence higher than the noisier but stronger dependence. Because single-cell
signaling data are often noisy and nonlinear, DREMI is better suited.
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the provision of millions of data points in each
experiment. Therefore, the scalability of the
analysis is imperative to effectively analyze such
data. DREMI is faster and more scalable than
either MIC or adaptive partitioning (fig. S12). On
a data set with 500,000 cells, DREMI analysis
can be computed within 10 s. MI with adaptive
partitioning takes over 90 min to perform the
same computation, and MIC is limited to data

sets of less than 10,000 cells. Thus, DREMI is a
versatile metric that can handle a variety of char-
acteristics, including large sample size, non-
linearity, and different degrees of stochasticity.
Unlike the other metrics, DREMI is a direc-

tional metric; DREMI(X, Y) is not necessarily
equal to DREMI(Y, X) (fig. S13). We based our
analysis on the known network diagram and
scored DREMI in the causal direction of influ-

ence. Evaluating DREMI in the reverse direction
shows a slight degradation of performance com-
pared with DREMI in the correct direction (figs.
S10, S11, and S14). However, reverse DREMI out-
performs the three symmetric measures used in
our comparison and has the advantage that it
can handle nonlinearity and noise (fig. S14). The
correct causal direction scores approximately equal
or higher in three of the four edges explored at
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Fig. 6. Comparison of naïve with antigen-exposed Tcells. Data from CD4+

naïve (CD44low) and effector or memory (antigen-exposed, CD44high) T
lymphocytes from B6 mice with CD3, CD28, and CD4 cross-linking. (A and B)
We compare the pCD3z-pSLP76-pERK-pS6 cascade between the naïve and
effector or memory CD4+ T cells using (A) DREVI and (B) DREMI. The time
points in (A) match the indicated time points in (B). Both depictions show that
signal transmission is sharper and more sustained in naïve cells. (C) Bar graph
depicts the higher peak-DREMI detected in naïve cells; DREVI plots with edge

response functions showalterations in edge behavior during peak signaling.The
pCD3z-pSLP76 edge response function shows an earlier inflection point in
effector or memory cells and is relatively flat after induction.This suggests only
a small amount of pCD3z is needed to initiate a complete response. In contrast,
pSLP76 needs more pCD3z for a similar response in naïve cells. The pSLP76-
pERK edge indicates that the pERK response is weaker and requires more
pSLP76 in these cells. Last, the pERK-pS6 edge shows a steeper slope in naïve
cells, indicating that pS6 responds more strongly to pERK levels in naïve cells.
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peak signaling times (fig. S13). The exceptionwas
pERK-pS6, where pS6 is known to have many
additional factors influencing its activity, a recur-
ring situation in cases in which DREMI in the
reverse-causal direction scores higher. We show
that increasing the number of parents decreases
the DREMI in the causal direction more than in
the reverse direction both in linear and non-
linear functions (fig. S15).

Comparison of signaling interactions
between T cell subtypes

The high dimensionality of mass cytometry en-
abled us to simultaneously treat and measure
multiple T cell subsets, including both naïve and
antigen-exposed CD4+ T cells. It is well docu-
mented that naïve T cells behave differently than
cells that have previously seen and “remember”
antigen. In naïve CD4+ T cells, the activation of
the TCR and appropriate coreceptors under the
right cytokine environment leads to differentia-
tion toward different effector cell fates (11). In
response to the same TCR activation, antigen-
experienced effector or memory T cells pro-
liferate and respond to the infection (12–14).
Moreover, the activation response time is known
to be faster and of greater magnitude in effec-
tor T cells than in naïve T cells. However, the
signaling mechanisms that create these differ-

ences are not yet clear. The data set collected
here enabled direct comparison of signaling
responses in T cells before and after exposure to
antigen because the cell subsets are in the same
experimental tube and are resolved aftermeasure-
ment by means of gating techniques (such as the
differential expression of the surface marker
CD44).
We used DREMI and DREVI to analyze dif-

ferences along the signaling cascade that starts at
pCD3z and continues down through pSLP76,
pERK, and pS6. Naive and antigen-exposed T
cells had threemain differences in their responses
to TCR cross-linking. First, we found that along
each edge in this pathway, naïve cells had higher
peak-DREMI, indicating that signals were trans-
ferred more faithfully from the upstream mole-
cule to the downstreammolecule (Fig. 6, A to C).
Second, we found that naïve cells had more sus-
tained periods of high-DREMI (Fig. 6B), which
indicated that signal transduction events tran-
spired longer. Third, despite the fact that there
was amore faithful signal transfer in naïve T cells,
the levels of most of the measured phospho-
proteins along this cascade, except pCD3z, were
observed to be higher (constitutively starting at
time 0) in antigen-exposed cells (Fig. 6D).
The peak DREMI score (Fig. 6C) in either the

naïve or the effector cascades occurs at 30 s for

the pCD3z -pSLP76 edge, at 1 min for the pSLP76-
pERK edge, and at 2 min for the pERK-pS6 edge.
All three of these were substantially higher in
naïve cells than in effector-memory cells. Further,
the pCD3z -pSLP76 relationship sustained signal
transmission (high DREMI) for 2 min in naïve
cells, comparedwith only 30 s in antigen-exposed
cells. Similarly, the pSLP76-pERK edge had high
DREMI between 1 and 3 min in naïve cells,
whereas DREMI was only high between 1 and
2 min for antigen-exposed cells. Thus, at each
stage in this cascade, Y transmitted more infor-
mation about X, over a longer time period, in
naïve cells than in antigen-exposed cells, suggest-
ing tighter control in naïve cells. This difference
between naïve and antigen-exposed cells was
consistently observed across multiple replicates
(fig. S16).
Although edge strength was higher in naïve

cells, pSLP76 levels were higher in antigen-
exposed cells independent of pCD3z levels (Fig. 7A).
The near-saturation of the pSLP76 levels can
also be seen in the high and flat slope of pCD3z-
pSLP76 edge at 30 s (Fig. 6C). Similarly, pERK
amounts weremore faithfully transmitted to pS6
in naïve cells, whereas pS6 amounts were basally
higher—independent of pERK—in antigen-exposed
cells (Fig. 7A). In the case of TCR activation with
CD4 costimulation, the analysis suggests that the
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Fig. 7. Comparison of naïve with antigen-exposed Tcells on
the pAKT pathway. Data from CD4+ naïve (CD44low) and
effector or memory (antigen-exposed, CD44high) T lymphocytes
from B6mice with CD3, CD28, and CD4 cross-linking. (A) Com-
parison of phophoprotein abundances between of naïve CD4+ T
cells, with effector or memory CD4+ T cells. Red indicates the
phosphoprotein levels amounts are higher in naïve CD4+ Tcells,
and blue indicates the phosphoprotein amounts are higher in
effector ormemoryCD4+ Tcells, demonstrating that differences
in the average behavior of nodes (protein species) are not nec-

essarily telling of the differences in edges (relationships between proteins).
(B) DREVI plots comparing naïve and effector or memory cells on the
pAKT-pS6 edge from 0 to 3 min after stimulation. (C) Network diagrams
depicting DREMI scores in naïve and effector or memory cells, showing the

combined pCD3z-pSLP76-pERK-pS6 and pCD3z-pAKT-pS6 pathways.The prestimulation pAKT-pS6 edge is stronger in
effector-memory cells at 0 and 2 min, whereas responses downstream of pCD3z are stronger in naïve cells at 2 min.
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AKT pathway might explain the higher level of
pS6 in antigen-exposed cells. The AKT-pS6 edge
had higher DREMI in antigen-exposed cells than
in naïve cells (Fig. 7, B and C, and fig. S17) in early
time points. Moreover, the AKT-pS6 relation was
active before stimulation in antigen-exposed cells,
providing a constitutive boost in signaling, per-
haps through positive feedback between pS6 and
pAKT (35).
Together, these differences suggest that antigen-

exposed cells are poised toward a more easily

triggered response (12–14, 36). Because the basal
levels of the phospho-proteins are higher, a
shorter period of signal integration (as indicated
by less sustained periods of high-DREMI) would
be needed to elicit a cellular response. On the
other hand, naïve cells, which are experiencing
antigen for the first time, may need to mount a
more cautious response, with the signaling cas-
cade transmitting information carefully for longer
periods of time to avoid spurious activation
(12–14, 36).

ERK-knockout validation
Because DREMI analysis determined that the
influence of pERK on pS6 is stronger in naïve
cells, this predicts that knockout of ERK2 should
have a larger impact on pS6 levels in naive cells
(Fig. 8A), and this difference should be detected
at the time the DREMI of this edge increases,
2 min after stimulation. We used the edge-
response function and the measured difference
in pERK abundance to approximate the expected
change in pS6 levels at 2min after knockout with
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Fig. 8. Validation of dif-
ferences in edge-strength
using an inducible Erk2-
knockout mouse. Data are
from CD4+ naïve T lym-
phocytes from both B6 and
Erk2-knockout mice with
CD3 and CD28 cross-
linking. (A) DREMI is used
to compare the strength of
the pERK-pS6 relationship
between naïve and effector
or memory T cells in B6
mice. Higher DREMI in
naïve T cells predicts a
bigger impact of Erk2
knockout on pS6 in naïve
cells. (B) Heatmaps show
the amounts of pERK and
pS6 in the control and
knockout mice cells. (C)
Edge-response functions
for B6 mice at the 2-min
time point predict the out-
come of a knockout exper-
iment in (I) naïve cells and
(II) effector or memory
cells. The x axes of both
figures are annotated with
the measured change in
mean pERK levels upon
knockout, and the y axis
shows the predicted
decrease in pS6 levels
based on the edge-
response function. (D) I and
II show two replicates
demonstrating the change
in pS6 amounts after
ERK2 knockout. The blue
bars represent the aver-
age difference between
pS6 in normal and ERK2-
knockout mice cells in
naïve T cells. The maroon
bars show the same
difference in effector or
memory cells. The blue
bars are significantly
higher than the maroon
bars, especially after the
2-min time point (as pre-
dicted); therefore, our
edge strength assessment is validated.
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an expectation to observe a change that is ~50
to 60% larger in naïve cells relative to effector/
memory cells at 2 min (Fig. 8, B and C). To val-
idate these predictions, we collected data from
a mouse model (37), which enables tamoxifen-
induced knockout of ERK2 within a normally
differentiated T cell population. To allow for di-
rect comparison, immune cells from both the B6
and ERK knockoutmice were stimulated andmea-
sured in the same tube and subsequently identified
through congenic markers CD45.1 and CD45.2.
To test the hypothesis that naïve T cells showed

a stronger relationship between pERK and pS6,
based on the relatively higher DREMI in naïve
cells, we assessed the impact of the Erk2 depletion
on pS6 levels in both naïve and antigen-exposed
cells. As predicted, changes in pS6 abundance are
larger in naïve cells than in antigen-exposed cells.
Approximately 50%greater response in naïve cells
began at 2 min, as predicted (Fig. 8D). DREMI
also predicts that the influence of pERK on pS6 is
stronger in CD4+ T cells than CD8+ T cells (fig.
S18), which was also confirmed experimentally
(fig. S19), demonstrating that DREMI can cor-
rectly predict differences in signaling edge strengths
between related T cell subsets.

Discussion

DREVI and DREMI combined with single-cell
data provide solutions to a challenging problem
that has obstructed the analysis of single-cell
biology: that of quantifying the strength of the
underlying complex relationships between pro-
teins from data. Other approaches such as cor-
relation, mutual information, and MIC—which
are typically used to quantify the strengths of
interactions—are not always reliable in the face
of technical noise, natural stochasticity, bimodality,
spurious correlations, and nonlinearity inherent in
single-cell data. DREMI, on the other hand, con-
sistently quantifies the relative strengths of rela-
tionships and how they change after stimulation
through time and between different cell types.
We used DREVI and DREMI to functionally

and quantitatively analyze edges within intra-
cellular protein networks. DREVI and DREMI
directly regard the single-cell population as in-
stantiations of an underlying signal processing
circuit and infer the form and strength of each
edge in the circuit. Many DREVI plots have a
sigmoid (or partial sigmoid) response curve, sug-
gestive of the signaling kinetics. With absolute
quantification of cytometry data, it would be pos-
sible to derive biochemical rate constants for
multiple enzymatic pairs andmultiple subsets in
a single experiment. This would provide an enor-
mous advantage over laborious experiments cur-
rently needed to compute such rate constants.
Therefore, a versatile, data-driven approach such
as that represented here enables the systematic
and quantitative comparison of signaling rela-
tionships between different stimuli, time points,
and cell types.
The analysis in this manuscript focused on

mass cytometry data collected frommouse T cells
measuring 11 phosphoproteins and nine surface
markers. The analysis determined that the TCR

signaling network is dynamic, with edges acti-
vating and deactivating quickly as the signals are
transduced downstream. We used DREMI and
DREVI to gain insights into how signaling is fine-
tuned between related T cell populations. The
differences we identified in TCR signaling be-
tween naïve and antigen-exposed T cells suggest
that naïve cells more sensitively transmit up-
stream signaling inputs along a central signaling
cascade. Thismore fine-tuned signaling response
might help regulate the cell’s decision to differ-
entiate into either regulatory or helper T cells. In
contrast, entrained effector or memory cells seem
poised for fast responses upon secondary expo-
sures. To explain this observation, we noted that
several alternative pathways had higher activity
in antigen-exposed cells, including AKT under
CD4 costimulation, which likely bolsters phospho-
protein levels and shortens input integration time
in antigen-exposed cells.
Cumulatively, these techniques can allow the

tracking of subtle reconfigurations in signaling
that occurs between related cell subtypes. These
reconfigurations do not result in an essentially
rewired network, but rather a network that is
behaviorally reconfigured to produce changes in
response. Although we have presented a specific
application of our techniques, focused on TCR
activation in T cell subsets, we believe that DREVI
and DREMI are broadly applicable across biol-
ogical systems and single-cell technologies (38, 39).
Our ability to characterize signaling edges and
their strengths is of particular value for disease
studies because it has been shown that many
disease alleles affect the edge strengths of the
signaling network (40). In (16), we report the direct
application of these methods to identify and char-
acterize the impact of complex genetic variation
associated with type-1 diabetes on TCR signaling
networks. As single-cell data becomemore abun-
dant, our methods will allow construction of
more quantitative models of cellular signaling.
Such models can then elucidate how these sig-
naling circuits differ between cell types as well as
characterize essential and therapy-targetable differ-
ences between health and disease.

Materials and methods

Mice

Mice were maintained in specific pathogen-free
facilities at Harvard Medical School (Institutional
Animal Care and Use Committee 99–20, 02954).
Age-matched, 4- to 6-week-old male B6g7 mice
were used for all experiments. For TCR signaling
responses in peripheral T cells from TCR trans-
genic mice, BDC2.5 and BDC2.5/B6g7.Rag−/− mice
were used. This mouse strain was previously
described (41).

Cell stimulation

For analysis of phosphorylation events by means
of mass cytometry, total lymph node cell suspen-
sions from B6g7 were used. Cells were stimulated
in medium containing 2 or 6 mg/ml of biotinyl-
ated stimulatory antibodies to CD3e and CD28
and incubated for 2 min at 37°C before addition
of 8 or 24 mg/ml streptavidin. At various times

after cross-linking, the stimulation was stopped
by addition of paraformaldehyde (final concen-
tration 2%) and incubation at room temperature
for 20 min. In some experiments, biotinylated
antibodies to CD4 were also included in the
stimulation mix. The cells were measured before
stimulation and at various time points after stim-
ulation: 30 s, 1, 2, 3, 4, 6, 8, 10, 20, and 80 min.

Erk knockout experiment

To study the role of ERK in peripheral T cells, we
used an inducible model that was developed in
(37) with the Erk2 floxed-gene and ER-CRE,
which is a tamoxifen-inducible adenosine 3´,5´-
monophosphate (cAMP) response element (CRE)–
recombinase.Adultmice are injectedwith tamoxifen,
every day (Sigma-Aldrich, St. Louis, MO) for 6 con-
secutive days, to induce the deletion of the floxed
gene and create ERk2-deficient cells. The mice
were analyzed 2 days later. There are normal num-
bers of peripheral T cells in these mice because
they are analyzed only 2 days after the tamoxifen-
induced deletion. Therefore, these peripheral
cells are a result of normal differentiation and
transportation from the thymusweeks before the
tamoxifen treatment injections (37) but have ERK2
knocked-down for the TCR activation experiment.
Normal B6 and Erk knockout cells express

different congenic CD45 surface antigens (Erk-
knockout mice express CD45.1, and normal B6
express CD45.2), allowing for the stimulation of
both cell types in the same tube. B6 and Erk
knockout cells are therefore mixed before stim-
ulation and identified after analysis with anti-
bodies against CD45.1 and CD45.2. This strategy
has the considerable advantage of eliminating
any contribution of experimental variations dur-
ing the stimulation, staining, and CyTOF process-
ing of the samples (for each time point analyzed).

Measurement of phospho-signaling
events with mass cytometry

In our experiments, we used mass cytometry to
measure surface and internal proteins. Primary
conjugates of themass cytometry antibodies (com-
plete list is provided in table S1) were prepared
and titrated as described (8). Paraformaldehyde
(PFA) fixed and frozen lymphocyte suspensions
were thawed at room temperature and then trans-
ferred to ice.
Single samples of 1 million cells were stained

in a 50 ml final volume. All samples from a given
time series of a stimulation-condition were run
in a single barcoded tube. Each barcoded tube
contained 20 individual samples andwas stained
in 300 ml. Cells were stained with a cocktail of
metal isotope conjugated antibodies (table S1) by
using a two-step procedure (surface stains in-
cluded CD4, CD8, TCRb, CD5, CD19, CD25, CD44,
CD45.1, and CD45.2; intracellular stains included
pCD3z, pSLP76, pERK1/2, pS6, pCREB, pMAP-
KAPKII, IkBa, pNFkB, pRB, pFAK, and pAKT).
The signaling network consisting of all markers
is shown in fig. S1. Cell fixation, permeation, and
staining were performed as previously described
(8). To make all samples maximally comparable,
all data was acquired by using internal metal
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isotope bead standards as previously described
in (42). Approximately 100,000 eventswere acquired
per sample on aCyTOF I (DVS Sciences, Sunnyvale,
CA) by using instrument settings previously de-
scribed in (42).

Barcoding of samples

To reduce sample-to-sample variability, cells cor-
responding to each stimulation condition and
time point were barcoded by using all six stable
palladium isotopes with amethod similar to that
described by (43). In the barcoding scheme, each
isotope is used in binary fashion, high for “1” and
low for “0.” Hence, the barcode itself is a binary
string that can be decoded for each cell to de-
termine the treatment condition for that cell. For
this purpose, we developed an error-correcting
3-one barcoding scheme that both facilitates
ease of debarcoding, and eliminates the major-
ity of doublets. All legal barcodes in our scheme
have exactly 3 ones and 3 zeroes, resulting in 20
possible barcodes. This barcoding scheme also
enables the detection of most cell doublets be-
cause in awell-mixed tube, it is unlikely to have a
doublet created by two cells from the same con-
dition. Doublets with cells from two different con-
ditions would have an illegal combined barcode
(with more than 3 “1”s) that is represented by the
logical OR of the individual barcodes. Therefore,
this scheme eliminates almost all doublet events.
Further, each pair of barcodes has a distance of at
least 2, and therefore, this scheme is also robust
to errors during the debarcoding.

Post-processing of mass cytometry data

Individual time series were normalized to the
internal bead standards before analysis by using
the method described in (42). In addition, as de-
scribed in (8), for all analysis of the mass cytom-
etry data, abundance values reported by the mass
cytometer were transformed by using a scaled
arcsinh, with scaling factor 5 tominimize the noise
in measurements where the data are close to zero
(the limit of detection on themass cytometry scale).
Events recorded by the mass cytometer were
gated based on cell length and DNA content (to
avoid debris and doublets), as described in (8).

Gating of cell subsets

Cells were then filtered through a series of gates,
as depicted in fig. S2, for the purpose of isolating
particular subpopulations of T cells such as CD4+

naïve T cells, CD8+ naïve T cells, and CD4+

effector/memory T cells. These gates include
(gate 1) a gate that separates T cells (TCRb+

CD19–) from B cells (TCRb– CD19+), (gate 2) a gate
that further separates CD4+ T cells (CD4+) from
CD8+ T cells (CD8+), (gate 3) a gate that further
separates CD4+ T cells into conventional T cells
(Tconv cells) (CD25–) and regulatory T cell (Treg
cell) (CD25+) populations, and (gate 4) a gate that
further separates CD4+ Tconv cells and CD8

+ T cells
into naïve (CD44–) and antigen-exposed effector/
memory populations (CD44+). Because there is
no known CD8+ equivalent of the CD4+CD25+

Treg population, CD8
+ cells are not passed through

gate 3. The final populations that we isolate and

use in our comparisons include (i) naïve CD4+

T cells (CD44– CD25– CD4+ CD8– TCRb+ CD19–),
(ii) naïve CD8+ T cells (CD44– CD25– CD8+ CD4–

TCRb+CD19–), and (iii) Effector/memory CD4+

T cells (CD44+ CD25– CD4+ CD8– TCRb+ CD19–).
The nodes, cell types, stimulation, and time points
used in each figure are shown in table S2.

Data availability

All data are available for download at www.c2b2.
columbia.edu/danapeerlab/html/dremi.html.

Description of computational methods

In the following sections, we provide a detailed
explanation of howDREVI, DREMI, and the edge-
response functions are computed,

Kernel density and conditional
density estimation

A kernel density estimate f

ˇ

ðxÞ is a nonparam-
etric approximation of the probability density
function p(x). The standard method for compu-
tation of a kernel density estimate is to introduce
a narrow Gaussian (or alternative) kernel at each
point in the rawdata and calculate the integral of
the individual kernel values over a large set of
points (21, 44). If (x1, x2, x3, … xn) are inde-
pendent, identically distributed random samples
from an unknown probability density function f,
then the kernel density estimator is

f

ˇ

ðxÞ ¼ 1

n
∑n

i¼1 Khðx − xiÞ ð1Þ

where K is the kernel function. The commonly
used Gaussian kernel is given by

KðxÞ ¼ 1ffiffiffiffiffi
2p

p e−
x2

2

� �
ð2Þ

Kh refers to the kernel density function scaled by
1/h (where h denotes the bandwidth). Intuitively,
one can think of kernel density estimation as
placing a small smooth kernel Kh at each sam-
pled point and integrating over all such kernels
to determine a smooth probability density func-
tion. The kernel density estimate in two dimen-
sions is given by

f

ˇ

h1h2ðx; yÞ ¼∑n

i¼1 Kh1ðx − xiÞKh2ðy − yiÞ ð3Þ
This standard method of kernel density estima-
tion suffers from several deficiencies, including
(i) sensitivity to selected bandwidth and the as-
sumption of normalcy inmany bandwidth estima-
tion methods, (ii) boundary bias, and (iii) over- or
under-smoothing.
Instead, we use the heat-diffusion method

from (10) for two-dimensional (2D) kernel den-
sity estimation. Thismethod views the kernel den-
sity estimate as a solution to the heat equation,
which it evolves for a time period proportional to
the bandwidth. This interpretation of a kernel
density estimate derives from the notion of a
“Weiner” process. A Weiner process W is a sto-
chastic Markov process (the next state can be
directly computed by the previous state) with
(i) Initial probability uniformly spread through

the d-dimensional data points (x1, x2, x3, … xn).

(ii) The transition probability of going from
point xi to xj is given by the Gaussian kernel
ptransðxi; xjÞ ¼ 1ffiffiffiffiffi

2pt
p e−

ðxj−xi Þ2
2t

The Gaussian kernel density estimation (KDE)
can be interpreted as the probability distribu-
tion function (PDF) for this process at time t,
which is the same as Eq. 2 with bandwidth
h: ftðxÞ ¼ 1

n

n

∑
i¼1

1ffiffiffiffiffi
2pt

p e−
ðx−xi Þ2

2t

But because this is an iterative process, the
transition satisfies the following differential
equation, which is also known as the “heat
equation”: ∂f

ˇ

ðx;tÞ
∂t ¼ 1

2
∂2f

ˇ

ðx;tÞ
∂x2 ; t > 0

The initial condition is given by f

ˇ

ðx; 0Þ=
1
n

N

∑
i¼1

δxi ðxÞ, where δ is the dirac delta function

(which gives point-masses to all data points). The
advantage of writing this in PDF form is that if
the PDF is known to be 0 outside the range, then
boundary conditions enforcing this can be added,
which results in a θ kernel rather than a Gaussian
kernel:

f

ˇ

ðx; tÞ ¼ 1

n

n

∑
i¼1

θðx; xi; tÞ

¼ 1

n

n

∑
i¼1

∞

∑
k¼∞

e−k
2πt=2cosðkπxÞcosðkπxiÞ

ð4Þ
The θ kernel is locally adaptive and has the prop-
erty that it behaves like a Gaussian kernel for
small bandwidths and like a uniform kernel for
large bandwidths. The evolution of the heat
equation decides the shape of the kernel rather
than having a fixed Gaussian estimate. This often
results in a smoother density function (fig S3).
Additionally, (i) it can be solved quickly by using
fast Fourier transform methods, (ii) it can be ex-
tended to amore general diffusion equation easily,
and last (iii) the bandwidth t can be solved as a
fixed point solution to a recursion without a
normal assumption on the distribution. The su-
perior performance and speed of computation of
the heat-equation–based KDE is shown in fig. S3.
To obtain the standard conditional density

estimate, the joint density estimate f

ˇ

ðx; yÞ is
divided by the marginal density estimate f

ˇ

ðxÞ
as follows (45):

f

ˇ

ðyjxÞ ¼ f

ˇ

ðy; xÞ
f

ˇ

ðxÞ
ð5Þ

We use the conditional density estimate as a
starting point for DREVI and DREMI as ex-
plained in the following sections.

Conditional density-rescaled visualization

DREVI is aimed at visualizing the stochastic
function representing how X influences Y by de-
picting the distribution of Y for each value of X.
To visualize 2D relationships in single-cell data,
we begin by computing a 2D kernel density esti-
mate as described in Eq. 4 (10) on a square mesh
grid. The mesh grid of points is denoted G =
{(xi, yj), 1 < i < n, 1 < j <m}, and the 2-D kernel
density estimate is a matrix D = f

ˇ

ðGÞ where D
(i, j) corresponds to f

ˇ

ðxi; yjÞ.The mesh grid of
points G is selected so that the X-Y ranges are
restricted to regions that are well-populated by
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cells. Most markers (such as phosphoproteins)
are distributed among the measured cells as
heavy-tailed multimodal distributions (fig. S7C).
For any pair of markers X and Y, we remove 1%
of both tails of these distributions as outliers, re-
moving ~200 cells from a population of ~10,000
cells (per condition and time point). The remain-
ing range is generally well populated by cells and
is amenable for a robust density estimate, which
results in robust visualization and scoring, as
shown in fig. S7.
After the 2D kernel density estimate is com-

puted, each column ofD (corresponding to a fixed
X-value, X = xi) is renormalized by the marginal
density estimate of X = xi, as shown in Eq. 5, f

ˇ

ðxÞ
for that column to obtain the conditional density
matrix

Dðxi; yjÞ ¼ f

ˇ

ðyj jxiÞ ð6Þ
This is an estimate of P(Y | X) on the same mesh
grid. This matrix is rescaled for the purposes of
visualization as follows:

f

ˇ

*ðyj jxiÞ ¼ f

ˇ

ðyj jxiÞ=maxk½f

ˇ

ðykjxiÞ� ð7Þ

We denote the matrix of rescaled kernel density
estimates as

D*ðxi; yjÞ ¼ f

ˇ

*ðxijyjÞ ð8Þ
The matrix of Eq. 8 is visualized as a heatmap
using the “jet” color scale, where densest regions,
corresponding to the highest rescaled conditional
density, are maroon/red and the sparsest regions
are blue. This way, theX-Y relationship is revealed
even in regions populated by fewer cells because
each X-slice is renormalized individually. The
computation of DREVI is demonstrated Fig. 1.

Conditional Density-Resampled Mutual
Information (DREMI)

Wedeveloped amethod for scoring relationships
termed DREMI. Like MI, this will depend on
howwell the value ofX can predict the value of Y.
However, unlike MI, we are not interested in
how the entropy of Y decreases with X in a given
sample on average. Instead, we are interested
in looking at the underlying stochastic function
F(X) = Y, with the aim of learning the strength
of this relationship over the entire dynamic range
of X, regardless of the distribution in the specific
sample.
The key mathematical insight in DREMI is

that we provide a score for the conditional dis-
tribution ofP(Y |X) rather than joint distribution
P(X, Y). DREMI resamples from the conditional
density estimate as described above, taking care
to generate a uniform number of samples from
each column of the matrix D*, so that the rela-
tionship betweenX-and-Y is scored through the full
dynamic range ofX that iswell sampled by the data.
DREMI begins with the rescaled conditional

density matrix D* described in Eq. 8. To filter out
noise, we round values of D*ðxi; yjÞ < e to zero
and eliminate the corresponding points from the
grid G. We generate n new points Si = {si

1, si
2, si

3,
…, si

n } from the density distribution in each
column i ofD*, denoted D*i . We generate a total of

n ×m samples S = {S1, S2,… Sm}. Because points
in each column of D*i have a similar value X = xi,
we are generating an equal number of samples
from the entire range of X (up to the fine-mesh
grid level of granularity).
Last, we define a discrete partition of the X

and Y axes and compute mutual information
I(X:Y) as in Eq. 10 using the samples in S. We
generally use eight equi-partitions of the X and Y
axes to compute the mutual information on these
samples, but our software can use any number of
equi-partitions based on a user-defined param-
eter. Our partitions are formed by pooling all
data from conditions being compared for a par-
ticular variable, taking the maximal range of the
X and Y and partitioning that space into eight
equal units along each axis.Wenormalize DREMI
by the log base 2 of the number of partitions to
provide a score that lies between 0 and 1.
To derive the mathematical expression for

DREMI, we start with standard mutual infor-
mation, computed as the differential entropy
between Y and Y | X:

IðY ;XÞ ¼ HðY Þ−HðY jXÞ ¼
−∑

j

pðyjÞlog½pðyjÞ�þ

∑
i

∑
j

pðxi; yjÞlog½pðyj jxiÞ� ¼

∑
i

∑
j

pðxi; yjÞlog½pðyjÞ�þ

∑
i

∑
j

pðxi; yjÞlog½pðyj jxiÞ� ð9Þ

Alternatively, MI can be regarded as a measure
of the distance between the joint distribution
P(X, Y) and the marginal distributions P(X) and
P(Y). An equivalent formula for computing mu-
tual information is given by (26)

Iðx; yÞ ¼∑
i

∑
j

pðxi; yjÞlog pðxi; yjÞ
pðxiÞpðyjÞ

� �
ð10Þ

The first three steps of the DREMI algorithm in-
volve estimating the conditional density by nor-
malizing the joint kernel density estimate and
filtering out noise. These steps result in a smoothed
and de-noised conditional density estimate that
will fill gaps in the raw data. The final step in-
volves estimating MI from this computed con-
ditional density. In fig. S20, we show intuitively
how sampling from the conditional density esti-
mate is equivalent to taking weighted samples
from the joint distribution. Each point (xi, yj)
from the joint distribution has sample weight
proportional to 1

pðxiÞ.
Given this, DREMI can be written in terms of

the differential entropy formulation of mutual
information (Eq. 8) as follows:

Ic(Y | X) = Hc(Y) – Hc(Y | X) (11)

where Hc(Y) and Hc(Y|X) are reweighted entro-
pies so that each point (xi, yj) in the joint distri-
bution is weighted by 1

pðxiÞ given as follows:

HcðY Þ ¼ −∑
i

∑
j

pðxi; yjÞ
pðxiÞ log½pðyjÞ� ð12Þ

HcðY jXÞ ¼ −∑
i

∑
j

pðxi; yjÞ
pðxiÞ log½pðyj jxiÞ� ð13Þ

Substituting Eq. 13 and Eq. 12 into Eq. 11 gives

IcðY jXÞ ¼ −∑
i

∑
j

pðxi; yjÞ
pðxiÞ log½pðyjÞ�−

n
−∑

i

∑
j

pðxi; yjÞ
pðxiÞ log½pðyj jxiÞ�

o

¼∑
i

∑
j

pðxi; yjÞ
pðxiÞ log½pðyj jxiÞ�−log½pðyjÞ�

¼∑
i

∑
j

pðxi; yjÞ
pðxiÞ log

pðyijxjÞ
pðyjÞ

� �

¼∑
j

∑
i

pðxi; yjÞ
pðxiÞ log

pðxi; yjÞ
pðxiÞpðyjÞ

� �

¼∑
j

∑
i

pðyijxjÞlog pðxj ; yiÞ
pðxjÞpðyiÞ

� �

ð14Þ
The final form in Eq. 14 is equivalent to Eq. 10,
with each point reweighted by 1

pðxiÞ. Hence, Ic

maintains many properties of mutual informa-
tion, including the fact that Ic(Y |X) = 0 if p(x, y) =
p(x)p(y).

Robustness analysis

We demonstrate that DREVI and DREMI are
robust methods. As shown in fig. S7, the down-
sampling of the data by 20% results in virtually
identical DREVI plots and very similar DREMI
scores (SD of 0.02 or less) for several edges. The
reason underlying this robustness is our use of
density estimationwith a locally adaptive smooth-
ing that results from the evolution of a differential
equation whose solution is equivalent to the ker-
nel density estimate (10). The density estimation
method interpolates and fills gaps within the
data by integrating using a smooth kernel.

Fitting edge-response functions

For strong relationships,P(Y |X) is highly peaked
for any value of X. Moreover, the peak of P(Y | X)
for adjacentX-slices tend to follow along a smooth
and continuous curve, the “edge-response func-
tion,” which we fit to the data. We derive the
edge-response function by fitting points sam-
pled from the noise-filtered conditional den-
sity D* to one of three models using regularized
regression: linear, sigmoidal, or double sigmoi-
dal (27). If none of the models obtain signifi-
cant fits (based on P values), we fit to a free-form
curve (examples are provided in Figs. 1C, 3,
and 5C).
We define the edge-response function as the

function f(X) that best fits the data.We derive the
edge-response function by performing nonlinear,
mixed-model regression (46) of the high-valued
regions of the conditional-density estimate. The
models we use are
(i) linear: f1(x) = ax + b
(ii) sigmoidal: f(x) = [(L – U)/1 + (xn/Kd)] + U
(iii) double-sigmoidal: f(x) = {[(L1 –U1)/1 + (xn/

Kd1)] + U1} + {[(L2 – U2)/1 + (xn/Kd2)] + U2}
(iv) free-form curve
We minimize over both the models and pa-

rameters in (i) to (iii). If no model results in
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sufficiently high significance of fit, we fit to a
nonparametric curve.

Method availability

The methods described, along with an interactive
graphic user inteface (GUI) are available for down-
load at www.c2b2.columbia.edu/danapeerlab/
html/dremi.html.

Performance of DREMI on synthetic data

We used synthetic data to evaluate how DREMI
behaves under increasingly noisy conditions (fig.
S6). We generated the synthetic databases on
characteristics of real pairwise relations observed
in single-cell cytometry data:
(i) X is concentrated in a narrow band within

the entire X-range.
(ii) The high-density region of the conditional

distribution reveals a consensus of response that
is smooth and can be fit to a curve.
(iii) The noise in Y is variable.
To fulfill these conditions, we generated data

as follows:
For condition (i), the X is a random variable

that follows the distribution normal distribution
with SD 0.25: N(2, 0.25).
For condition (ii), the mean Y is functionally

related to X: E(Y | X = x) = f(x). We use linear,
sigmoidal, and quadratic functional relationships
in the synthetic data.
For condition (iii), Y has varying degrees of

Gaussian noise added on top of its mean value:
Y = f(X) + N(0, s), for parameter s.
Each synthetic data set contained ~20,000

points. We generated synthetic data following
the above conditions for five different values of
noise: s = {0.25, 0.5, 0.75, 1, 1.25}. As shown in
fig. S6, the results of computing DREMI on this
synthetic data show that DREMI scores decrease
roughly linearly with the SD of the Gaussian
noise, regardless of the underlying functional
shape of the relationship.
In addition to the analysis described in the

main text, we also evaluate how varying the
noise-filtering threshold influences the results.
Also shown in fig. S6 is how the noise-filtering
threshold e can be used to eliminate experimen-
tal noise. Depicted in fig. S6B is a horizontal line
that equalizes the scores of all of the noise levels.
Thus, the value of e can be tuned to compensate
for experimental or measurement noise.
There are certain settings that provide natu-

rally noisier signals than others. For instance,
certain antibodies can have weak binding affin-
ities with their target proteins, others can non-
specifically bind to a variety of proteins. In such
cases, a higher level of the outlier-elimination
threshold may be useful. In other situations, such
as the pSLP76-pERK edge, the response of the
protein itself is stochastic, and therefore, the sto-
chasticity itself has meaning. In such cases, the
outlier-elimination threshold can be set higher
to capture the natural stochasticity in the data.
Other global contexts, such as measurements on
primary cells as opposed to cell lines, lead to
higher noise and weaker response. In these cases,
itmay be useful to set the noise-filtering threshold

to a particular global value.Weuse a globally fixed
noise-filtering threshold of 0.85 for all figures and
DREMI values computed for this manuscript.
As shown in fig. S6, within any set noise-filtering
threshold, the DREMI score decreases linearly
with the SD of noise, and as such is able to
relatively rank DREMI scores for comparison
purposes.

Comparing DREMI to other methods

We compared the performance of DREMI
against other commonly used dependency mea-
sures: (i) MIC (32), (ii) adaptively partitioned MI
(47), and (iii) Pearson correlation (Fig. 5). Be-
cause no gold standard exists to compare strength
of signal transfer along an edge, we created a
framework to conduct the comparisons based
on the dynamics of signaling. We used DREVI
to visually determine the peak timing of the
dynamic signaling response, and in cases in
which peak timing is known, our visual inspec-
tion matched published literature (2). We then
assess whether each of the four metrics can
recover the peak timing and also order the time
points correctly according to strength of signal
transfer. We systematically computed all of the
metrics along the time series in each of the six
edges (Fig. 5I and fig S10). DREMI outper-
formed all other metrics.
To show that DREMI is able to quantify and

rank relationships in settings other than TCR-
stimulated mice cells, we also compared DREMI
on three known signaling edges on previously
published B cell data (8) from the bone marrow
of healthy human donors after BCR (B cell re-
ceptor) stimulation (fig. S11). These data only
have a single time point after BCR stimulation,
therefore instead of ranking edge strength along
time points, we rank edge strength across in-
creasingly mature B cell populations. The five
populations, in order of maturity, are (i) Pre-BI,
(ii) Pre-BII, (iii) Immature B cells, (iv) Mature
CD38+ B cells, and (v) Mature CD38– B cells. The
cells are gated into these populations based on
phenotypic B cell markers such as CD20, CD38,
CD45RA, CD19, and CD123, as described in (8).
We used prior biological knowledge to deter-
mine the cell population expected to have
strongest signaling, determined before comput-
ing the metrics. DREMI outperformed all other
metrics on this data.
An important goal of MIC is “equitability.”

Intuitively, this means that different types of
edge shapes are given similar scores if they are
similarly “fuzzy” (33). Evaluating MICs’ perform-
ance, this does not seem to be a suitable assump-
tion formolecular relations. Adaptive partitioning
puts more weight into the densest part of the
distribution. Although this might make sense, in
essence, it makes a large number of microscopic
partitions over the small rangewheremost of the
density lays. Thus, the partitions often represent
random measurement noise rather than biolog-
ical signal. Pearson correlation prefers linear de-
pendencies to other types of dependencies,whereas
nonlinear dependencies are frequently present
in signaling relationships.

In Fig. 5, II, we compare DREMI on synthetic
data, where the generating function is known.
Here, we generate a weak linear relationship
with low slope compared with the range of the
data, Y = aX + N(0, 0.1), to compare against
strong nonlinear relationships:
(i) A quadratic relationship with a high degree

of noise, Y = –AX2 + N(0, 0.75).
(ii) A sigmoidal relationship X-Y with both

Gaussian noise and uniform noise in the range
[0, Y], for any value of Y: Y = sigmoid(X) + N(0,
0.75) + U[0,sigmoid(X)], where U is a uniform
random function.
In both cases, the noisy-yet-strong relation-

ships scored lower than the weak linear relation-
ship, with low noise for all metrics other than
DREMI.

Evaluating edge-response functions on
raw verses resampled conditional data

In fig. S8, we show that the data resampled from
the conditional density is more suitable for curve-
fitting than the raw data. In the first two columns,
we use linear, sigmoidal, or double sigmoidal
least-squares regression on the raw mass cytom-
etry data. In the third column, we resample from
the dense regions of the conditional density and
perform the same types of regression on this
resampled data. Last, in the fourth column we
perform regression on the conditional mean
(computed from the conditional density).
In each case, the best fit on the raw data has

higher RMSE than the best-fit data that is re-
sampled from the conditional density (measured
on the raw data). In addition, the linear fit al-
ways results in a better fit on the raw data,
whereas the conditional data result in a variety
of shapes linear, sigmoidal, and double sigmoi-
dal. The raw data tend to be concentrated in a
small region of the X-Y plane, resulting in a weak
penalty for deviations in most regions of the X-Y
plane, and a heavy penalty for deviation only in
the region of data concentration. Therefore, a
line that passes through the concentrated region
of the raw data generally results in the best fit.
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