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The amount of genomic information is growing at an astonishing pace due to vast improvements 

in next generation sequencing (NGS) technology (Figure 1A) \cite{PMID:26151137}. An 

essential goal of these efforts is to realize the objective of personalized medicine by analyzing 

genetic variation within healthy human populations as well as identifying pathological disease-

associated variants \cite{PMID:21706342,PMID:21383744}. While a large proportion of these 

mutations occur in noncoding regions of the genome, a few medically-relevant mutations and 

rare variations occur within proteins, some of which appear in databases such as the Online 

Database of Mendelian Inheritance in Man (OMIM) \cite{PMID:15608251}, the Human Gene 

Mutation Database (HGMD) \cite{PMID:19348700}, Humsavar \cite{} and ClinVar 

\cite{PMID:24234437} [[SK2ANS: Another resource,Humsavar]]. It is essential to incorporate 

structural information for inferring the mechanistic basis of the evolutionary pressure preventing 

these variations and for developing drugs to combat the effects of disease-causing changes to 

the protein sequence. However, it remains challenging to annotate the physical effects of these 

mutations on proteins due to the assortment of functional constraints on a protein family and an 



incomplete knowledge of these constraints. In particular, a mutation in protein structure may 

cause local perturbations or large changes in structure or it could also have a massive impact 

on the protein-protein interaction (PPI) network, and each kind of change adds different kinds of 

functional constraints on the protein. Conversely, as the amount of genomic data continues to 

grow, we envision a future in which biologists will utilize genetic variation within human 

population(s) to help interpret their molecular data \cite{PMID:22691493}[[SK2ANS: 

\cite{22691493}]]. [[MG: structural biology is going to change because we will have 100s of 

thousands of exome data and we can understand the structure a lot better in light of this 

information]][[ANS2MG: Done!]] Population genetic analysis of variation within human proteins 

has already been used to identify new species-specific functional constraints within a protein 

family \cite{PMID:16494531}. In addition, a number of fundamental insights about biological 

pathways can be garnered by analyzing new loci associated with a particular disease 

\cite{PMID:19812666}.[[ANS2MG: Tried to make this stronger!]] 

[[dc2ANS]]Current overview / organization in introduction: 

1) NGS is providing a lot of data, some of it gives deleterious variants in structure 

2) Multiple potential aspects of constraint: destabilizing folds, interfering w/PPIs, etc 

3) In the future, structural biologists will use NGS data to study proteins 

 

 

 

An Abundance of Sequence Variation: 
[[MG: Existing headings are those that struct biologists often see and know -- we should also 

incl the presentation of variation -- ie, allele frequencies, selection in a population context, etc. 

Human polymorphism data is not the same thing as cross-species conservation (cross-species 

is a much longer-term and acting set of pressures). Struct biologists are not as acquainted w/the 

data and thinking assoc. w/next-gen sequencing as applied to human populations. Rare 

mutations have different types: de-novo mutation that is disease-causing, or just benign. A lot of 

stuff that struct biologists don’t relate to. Include JC’s figures -- to some extent, this is LIKE 

cross-species conservation, but it is not the exact same -- cross-humans conservation is not 

exactly what most would think in all cases. This can play out in the context of structures. Why 

(ie, what are these human-specific phenomena)? Maybe b/c there’s a new interaction interface 

that’s human-specific. Or it could be POSITIVE selection, etc. Expl. to struct biologists: pilot 

1000G, phase I, ExAC, etc -- what does it mean when the numbers go up -- why get more and 

more sequences? Partially for better significance. # variants per exome = ? How many 

mutations would you expect in a given structure, etc? JC can maybe fill in the numbers of 



common and rare variants in a typical exome. If you aggregate many people, all the variants are 

rare. YZ can give summary of phase 3]] [[ANS2MG: Done!]] 

 

There is a phenomenal growth in genomic data acquisition - both in the form of whole genome 

and exome sequencing. The exome comprises the coding sequences of all protein-coding 

genes and is equivalent to approximately 1% of the total haploid genomic sequence (30 Mb) 

\cite{PMID:19684571}. Due to the reduced cost of exome sequencing and clinical relevance of 

variation within the coding regions of the genome, it is more widely used for genetic diagnosis. 

On average, the genome of any individual contains 20,000-25,000 coding variants (Table 1), of 

which 9,000-11,000 are nonsynonymous changes (i.e., result in a change in amino acid) 

\cite{PMID:20981092,PMID:22604720,PMID:23128226,PMID:24092746}. About 25-50% of the 

rare non-synonymous variants within healthy individuals were estimated to be harmful or 

deleterious indicating that the human proteome is highly robust to a large number of non-

specific perturbations and because most rare deleterious variants are heterozygous with the cell 

also containing a functional copy of the gene \cite{PMID:23128226,PMID:24092746}. The 

majority of genetic variation within coding regions are due to distinct single nucleotide variants 

(SNVs), each of which occur very rarely within the human population (minor allele frequency < 

0.5%). Close to one-third of the rare coding variants are predicted to be deleterious (or harmful) 

and lower the fitness of the individual \cite{PMID:22604720}. A common mechanism to identify 

genes associated with a disease is to identify deleterious variants that affect genes within 

diseased individuals more often than in healthy populations. However, these variations might 

not be causative of a disease and may be in linkage disequilibrium (i.e., occur in a correlated 

fashion along with) [[SK2ANS: why throw in LD without describing.not sure structural biologist 

know about it]] with an unanalyzed causative mutation. Furthermore, different genes display 

different amounts of variation, with some proteins being enriched in SNVs when compared with 

other proteins, [[JC2ANS 150717: I am dubious about this ensuing part-sentence - you mean 

‘neutral’ or ‘adaptive’ mutation? I dont think there are alot of adaptive mutations; most are 

neutral probably or just LD passengers since in same gene]] probably because they do not 

affect the individual’s survival or because some of them may play a role in adaptation to a 

particular environment [[ANS2JC: If there is positive selection, isn’t some of the change leading 

to fitness in environment?]]. For example, some signaling and immunological proteins that 

sense and react to the environment are highly enriched in nonsynonymous SNVs 

\cite{PMID:23128226,PMID:24092746}. Hence, cataloging and characterizing the entire 

frequency spectrum of different variations is critical for understanding the fitness effects of 

different alleles. 



 

The simple common disease-common variant hypothesis, which states that complex disease is 

largely attributable to a moderate number of common variants, dominated the field initially 

\cite{}. However, a number of studies show that common variants only explain a small minority 

of phenotypic difference in the human population implying that rare variants may be involved in 

complex disease etiology \cite{}. Hence, we need to continue sequencing a large number of 

individuals to characterize and catalog rare variants and their frequency within the human 

population. Indeed, the number of rare variants continues to grow even after the 1000 Genomes 

Consortium and Exome Aggregation Consortium data (60,706 individuals) data has become 

available. This suggests that every individual has their own private set of variants and about 

200,000-500,000 unobserved SNVs get discovered after each personal genome is sequenced 

\cite{1000 Genomes}. Because these variants are rare and novel, understanding their effect on 

function will be extremely challenging, and such an understanding is vital because the complex 

interactions between the deleterious and protective variants within a personal genome dictate 

the individual’s health risk. As deleterious variants that are likely to increase disease 

susceptibility are under negative selection, the “clan genomics” concept posits that the 

combination of disease-causing alleles are likely to have arisen rather recently within extended 

familial lineages \cite{PMID:21962505}. According to this theory, the common variants within a 

population will have lesser influence on an individual’s fitness than recently arisen rare variants 

and de novo mutations. It is imperative, however, to consider the whole collection of rare and 

common variants within an individual rather than to focus on specific variants. However, we 

need to annotate the effect of individual variants before we can predict the collective outcome of 

a large number of de novo variants. 

 

Traditionally, structural biologists have utilized evolutionary conservation across species to 

identify functionally constrained regions within a protein family (Figure 2a)[[SK2ANS:we need lot 

of citations in this paragraph]] \cite{}. Regions that vary among different species are used to 

denote functionally unimportant regions. There is an important distinction between interpreting 

inter-species conservation and conservation within human populations. While considering 

genomic variation within a species, regions under positive selection (alleles spreading 

[[JC2ANS150717: this is an odd word to use]] [[ANS2JC: I have seen it used often in literature]] 

within a species) could help identify a gain-of-function (such as a newly evolved protein-protein 

interaction) event within the human population \cite{} [[JC2ANS/MG: this sentence seems a tad 

odd. But I wont change for now, maybe MG has ideas. I will rework later. For now, I will just add 

on...]] [[ANS2JC: I worked on it a bit]] Moreover, selection constraints, and thereby 



conservation, are generally high within the protein-coding regions of the genome. 

[[ANS2JC:This is repeating some of the stuff I said earlier I think]] As such, we can turn to intra-

human comparisons to uncover more human- or domain-specific features (Figure 2). For 

instance, by comparing conservation of homologous sequences within the human population, 

human-specific features can be uncovered. In contrast to sequence comparisons across 

species, quantification can be accomplished by using an enrichment of rare variants as a proxy 

for conservation (1000 Genomes). Furthermore, one can align homologous regions within a 

single human genome, such as protein repeat domains originating from the same structural 

domain family. This can especially elucidate domain-specific features (Figure 2b).  

 

In addition to the number of common and rare variants on a gene, the ratio of nonsynonymous 

to synonymous variants (dN/dS) is commonly used to measure the selection pressure on the 

coding regions of the genome (Figure 2) \cite{PMID:19081788}. The dN/dS ratio is expected to 

exceed unity only if natural selection promotes changes in gene sequence \cite{PMID:865622}. 

Comparative genetics/genomics studies have already uncovered a growing list of genes that 

might have experienced positive selection during the evolution of human and/or primates 

\cite{PMID:16494531}. These genes offer valuable inroads into understanding the biological 

processes specific to humans, and the evolutionary forces that gave rise to them. [[ANS2JC - 

can you please add a sentence next to figure ref saying something about ankyrin and how you 

are using it as an example to illustrate some of these points]]  

[[specific examples -- ankyrin, and FGFR]] 

 

 

[[JC2ANS150715: I think adding some interplays between rare v common, ns v s variants etc 

within the context of protein structures/PPI/isoforms and related amino acids and molecules can 

be nice; also maybe functional impact (SIFT, polyphen etc) based on seq conservation, 

structure etc; physicochemical BLOSUM]] [[de Beer, Thornton (lastau) et al 2013, PLoS Comp 

Biol]][[ANS2JC/MG: I added the last paragraph and the clone genomics paragraph to highlight 

these points - some of the sequence based conservation part is in the next section]]  

[[JC2ANS150715: do we want a few sentences about to protein-and-seq related technology like 

RNA-seq?]] [[ANS:I think there is no space]] 

Deleterious Effects of Variations: 
The effect of a deleterious variant can only be understood when all the functional constraints 

acting on a protein are known [[ANS2DC: Explain how information is incomplete and we cannot 

explain all disease-causing mutations in HGMD for FGF receptor here]]. The protein needs to 



function within the cellular environment and during the course of its function, it needs to also 

interact with other biomolecular entities.  As this review focuses on variation within the coding 

regions of the genome, we refer the reader to comprehensive essays on the phenotypic effect of 

noncoding variation \cite{} and we only focus on deleterious effects on the PPI network here. 

Various experimental and computational approaches were applied to characterize the human 

PPI network \cite{} and these networks have been invaluable in interpreting the role of 

evolutionary constraints on a protein family. The system properties of the network have also 

aided in understanding the effect of these mutations.  

 

Proteins that are highly interconnected in PPI networks (hubs) are under strong negative 

selection constraints while proteins at the periphery of the network are under positive selection 

in humans \cite{maybe see Kim et al, 2007 paper in PNAS}. Proteins that are more central in an 

integrated “multinet” formed by pooling biological networks from different context (PPI, 

metabolic, post-translational modification, GRN, etc.) are under negative selection within human 

populations \cite{PMID:23505346}. In agreement with this, perturbations to hub proteins are 

more likely to be associated with diseases than non-hub proteins \cite{}. The PPI networks are 

organized in a modular fashion as proteins associated with the same function are more likely to 

interact with one another \cite{} and proteins associated with similar diseases tend to occur 

within the same module \cite{}. The system properties of the network have also been useful in 

interpreting how the human proteome is robust even in the presence of a large number of 

deleterious variants within healthy individuals. [[JC2ANS150715: maybe a sentence about 

compensatory mutations and/or redundant pathways?]] [[ANS2JC: modified next sentence]] 

Most deleterious variants observed in healthy individuals occur on peripheral regions of the 

interactome, and have marginal effects on the interactome either due to compensatory 

mutations or due to the interactome’s redundant nature \cite{PMID:25261458}. Meanwhile, 

cancer-associated somatic deleterious variations occur in the internal regions of the interactome 

and tend to have larger structural consequences on the PPI network.  The interactome provides 

a good framework to measure the harmful effects of a variant. As shown in figure 4, deleterious 

mutations can either lead to the removal of a node (nonfunctioning protein) or the removal of an 

edge (a single PPI is lost).  

 

Deleterious Effects of Variations on Nodes: 
The protein sequence has several evolutionary constraints imposed upon it based on its 

biological function. Specifically, a sequence change should not hinder a protein from folding to 

its native state \cite{PMID:11295823}, bind to a specific ligand, and perform its function. If a 



protein is unable to fold or function, it is equivalent to removing one node from the PPI network. 

While the number of structures resolved in the PDB database continues to grow, we have 

reached a stage where the discovery of new folds has begun to saturate (Figure 1). As a result, 

the stage is set to utilize this structural information to assess the effect of mutations on a 

protein’s functional activity. Nonsynonymous amino acid substitutions that occur within the 

coding regions of healthy human populations is highly correlated with the frequency of amino 

acid occurrence in the human proteome \cite{}. Furthermore, the pattern of amino acid changes 

observed in inter-species sequence alignments, which is dominated by changes between 

chemically similar amino acids, is different from the pattern of mutations that occur within a 

species \cite{}. Both inter and intra-species sequence alignments of a gene or protein family are 

used to infer whether a naturally occurring variant would be benign or deleterious. Several 

computational tools based on sequence conservation (inter-species or intra-species) and/or 

several structural features (the physicochemical characteristics of the amino acid change, 

solvent accessibility, secondary structure, active site annotations, and protein-protein 

interactions) were developed to predict the deleterious effect of sequence variations on a 

protein’s function \cite{}. Disease-associated mutations are found to be highly enriched in the 

interior of proteins (22% of all mutations in HGMD and OMIM) and are predicted to destabilize 

the protein \cite{PMID:26027735}. Incorporation of sequence variation with structural 

information indicates that, as expected, rare variants are highly enriched on active sites of a 

protein as these mutations have a profound effect on its functional activity 

\cite{PMID:20981092,PMID:22604720,PMID:23128226,PMID:24092746}. 

  

It is important to note, however, that mutations not only affect the native state of the protein but 

affect the stability of unfolded or misfolded intermediates within the folding pathway and this is 

typically ignored while assessing the effect of mutations on a protein’s structure. Furthermore 

these models overlooks the role of heterogeneity in the native contact energetics, which is 

considered essential in determining functional characteristic of proteins. In addition, mechanistic 

insight into the mutation induced structural changes requires knowledge of the folding kinetics, 

which still remain elusive in these models. Finally, mutations to the protein that occur distal to its 

active site can also affect its efficiency by affecting the dynamics or thermodynamic constant 

between its different states (Sarah Teichmann Science Article, 2014).  

 

Deleterious Effects of Variations on Edges: 
In addition to disease variants acting through disruptions in the nodes, a significant proportion of 

mutations may be associated with diseases because they disrupt the interaction network of the 



protein. Even though the interactome remains incompletely characterized \cite{}, the underlying 

basis of a large number of diseases can be inferred utilizing the network context of the disease-

associated biomolecules \cite{PMID:25700523}. Mutations at the PPI interface can have drastic 

effects on the biomolecular binding constant and several sequence and structure-based 

methods have been proposed to identify these interaction hotspots \cite{}. While the discovery 

of structural folds has saturated, the discovery of new domain-domain interactions continues to 

grow (Figure 1). Even though we have incomplete information, it has been predicted that about 

12% of all the HGMD and OMIM mutations occur at a PPI interaction \cite{PMID:26027735} 

while approximately 28% of experimentally-tested HGMD missense mutations affect one or 

more interactions emphasizing the importance of these interactions for annotating rare variants 

and disease-associated mutations \cite{PMID:25910212}. 

 

In an effort to bridge the information gained from individual structures with network properties of 

the interactome, Kim, et al., \cite{} combined the experimentally determined interactome with 

structural information from the iPfam database to form the structural interaction network (SIN) 

and were able to obtain a higher-resolution understanding of the selection constraints on the 

hubs. Using structural information, the hubs were classified into different groups based on the 

number of interfaces utilized for biomolecular complex formation and they showed that the hubs 

with two or more interfaces are more essential than hubs with one or two interfaces. Consistent 

with this interpretation, hub proteins in PPI network contain a higher fraction of disease-causing 

mutations on their solvent exposed surface, as compared to non-hub proteins indicating that a 

larger fraction of a hub’s disease-associated mutations could affect its interactions 

\cite{PMID:23505346}. 

The distinction between hub and non-hub proteins also extends to considerations 

regarding conformational heterogeneity. Hub proteins have been shown to generally exhibit 

greater degrees of conformational change than non-hubs. Furthermore, the number of distinct 

interfaces in hub proteins is correlated with degrees of conformational heterogeneity 

\cite{PMID:21826754}. To the extent that variants may enable or disable certain conformational 

states from being visited, such mutations could potentially affect protein complex formation and 

signalling pathways, and this has not yet been examined very closely. As hub proteins undergo 

larger conformational changes on binding to their interaction partners, such mutations could 

also have large effect on the PPI network and affect the phenotype of the cell. As proteins can 

utilize different interfaces for different (sets of) interactions, multiple mutations on the same 

protein can be associated with drastically different diseases based on the PPI on which they 

occur. Such mutations would have different “edgetic” effects on the protein’s interaction network 



- by breaking or weakening one of its interactions while the rest of its interactions remain intact - 

and a large proportion of HGMD and OMIM mutations are predicted to have edgetic effects on 

the PPI network \cite{PMID:22252508,PMID:25910212}.  

 

As a mutation typically displays tissue-specific phenotypic effects, an understanding of 

functional constraints on a protein should also incorporate tissue information. While the gene 

regulatory network is being mapped out in a developmental time point and cell type-dependent 

fashion by several international consortia (cite ENCODE, REMC), the PPI network is largely 

treated in a static fashion. Recent work has tried to integrate proteome and gene expression 

profiles with PPI networks to create tissue-specific networks \cite{}. However, these studies 

typically neglect the protein isoform even though the interactions a protein is involved in is highly 

dependent on its isoform \cite{Kim, Babu}. A structural study on the effect of sequence 

variations on isoform-dependent PPI complexes has not been performed and will improve the 

prediction of phenotypic effects due to missense mutations. However, it is likely that the high 

costs (both financial as well as in terms of experimental labor) associated with studying isoform-

specific assays in various cell types have impeded these types of studies. We anticipate that 

isoform-specific protein-protein interaction network annotation will become easier and more 

accessible in the near future, which will present new opportunities to better annotate such 

networks. 

 

Effect of Mutations on Disordered Regions: 
The discovery and prominent role (>30% of eukaryotic proteome) of intrinsically disordered 

regions within proteins that lack an ordered three-dimensional structure, has challenged the 

paradigm that structure determines the function of protein \cite{Dunker}. The hubs in PPI 

networks tend to contain higher amount of disordered regions and these regions typically gain 

structure only after binding to a ligand or another biomolecule 

\cite{PMID:18364713,PMID24606139}. The assessment of a mutation on the activity of an 

intrinsically disordered protein is even more challenging because it would depend upon the 

effect of a mutation on either the unfolded ensemble and the structure gained in the presence of 

its interaction partner. Due to their flexibility, the unfolded ensembles of disordered proteins are 

difficult to characterize using either experimental or computational techniques 

\cite{PMID:19162471,PMID:22947936}. However, the effect of mutations on the functional 

viability of a disordered protein is important because a number of proteins also change their 

interaction partners in a tissue-specific manner based upon the dominant isoform of the protein 

in that tissue \cite{PMID:23633940}. Cancer driver mutations are enriched in these alternatively-



spliced disordered motifs showing that they are important for understanding the phenotypic 

effects of sequence variations in the human genome \cite{PMID:23633940}.  

 

Conclusions: 
The exponential growth in genomic data has elucidated that a surprisingly large amount of 

genomic variation exists within the human population and it has also helped identify a vast 

number of rare variants and disease-associated variants. Though the motivation of developing 

methods to annotate the effects of variants that cause human disease are clear, it remains 

challenging to do so as it requires bridging disparate sources of information together to 

understand the functional constraints on a protein family. The network properties of the protein 

along with sequence and structural information regarding the nonsynonymous amino acid 

change need to all be considered in a single framework before predicting the phenotypic impact 

of an amino acid change. 

 

 

 


