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Summary

The 1000 Genomes Project set out to provide a comprehensive description of
common human genetic variation by applying whole-genome sequencing to a
diverse set of individuals from multiple populations. Here, we report completion of
the project, having reconstructed the genomes of 2,504 individuals from 26
populations using a combination of low-coverage whole-genome sequencing, deep
exome sequencing, and dense microarray genotyping. We characterized a broad
spectrum of genetic variation, totaling over 88 million variants (84.7 million SNPs,
3.6 million short indels, and 60 thousand structural variants), all phased onto high-
quality haplotypes. This resource includes >99% of SNP variants with a frequency of
>1% for a variety of ancestries. We describe the distribution of genetic variation
across the global sample, and discuss the implications for common disease studies.



Main Text

The 1000 Genomes Project has already elucidated the properties and distribution of
common and rare variation, provided insights into the processes that shape genetic
diversity, and advanced understanding of disease biology'2. This resource provides
a benchmark for surveys of human genetic variation and constitutes a key
component for human genetic studies, by enabling array design34, genotype
imputation®, cataloguing of variants in regions of interest, and filtering of likely
neutral variants®”.

In this final phase, individuals were sampled from 26 populations in Africa (AFR),
East Asia (EAS), Europe (EUR), South Asia (SAS), and the Americas (AMR) (Figure
1A; see Supplementary Table 1 for population descriptions and abbreviations). All
individuals were sequenced using both whole-genome sequencing (mean depth =
7.4X) and targeted exome sequencing (mean depth = 65.7X). In addition, individuals
and available first-degree relatives (generally adult offspring) were genotyped using
high-density SNP microarrays. This provided a cost-effective means to discover
genetic variants and estimate individual genotypes and haplotypes?®2.

Dataset Overview

In contrast to earlier phases of the project, we expanded analysis beyond bi-allelic
events to include multi-allelic SNPs, indels, and a diverse set of structural variants
(SV). Variant discovery used an ensemble of 24 sequence analysis tools
(Supplementary Table 2), and machine-learning classifiers to separate high-quality
variants from potential false positives, balancing sensitivity and specificity.
Construction of haplotypes started with estimation of long-range phased haplotypes
using array genotypes for project participants and, where available, their first
degree relatives; continued with the addition of bi-allelic SNPs and indels that were
analyzed jointly to improve these haplotypes; and concluded with the placement of
multi-allelic and structural variants onto the haplotype scaffold one at a time (Box
1). Overall, we discovered, genotyped, and phased 88 million variant sites
(Supplementary Table 3). The project has now contributed or validated 80 of the
100 million variants in the public dbSNP catalog (version 141 includes 40 million
SNPs and indels newly contributed by this analysis). These novel variants especially
enhance our catalog of genetic variation within South Asian (which account for 24%
of novel variants) and African populations (28% of novel variants).

To control the false discovery rate (FDR) of SNPs and indels at <5%, a variant
quality score threshold was defined using high depth (>30X) PCR-free sequence
data generated for one individual per population. For structural variants, additional
orthogonal methods were used for confirmation, including microarrays and long
read sequencing, resulting in FDR <5% for deletions, duplications, multi-allelic
copy-number variants, Alu and L1 insertions, and <20% for inversions, SVA
(SINE/VNTR/Alu) composite retrotransposon insertions and NUMTs® (nuclear



mitochondrial DNA variants). To evaluate variant discovery power and genotyping
accuracy, we also generated deep Complete Genomics data (mean depth = 47X) for
427 individuals (129 mother-father-child trios, 12 parent-child duos, and 16
unrelateds). We estimate the power to detect SNPs and indels to be >95% and
>80%, respectively, for variants with sample frequency of at least 0.5%, rising to
>99% and >85% for frequencies >1% (Supplementary Figures 1 and 2). At lower
frequencies, comparison with >60,000 European haplotypes from the Haplotype
Reference Consortium?® suggests 75% power to detect SNPs with frequency of 0.1%.
Furthermore, we estimate heterozygous genotype accuracy at 99.4% for SNPs and
99.0% for indels (Supplementary Table 4), a three-fold reduction in error rates
compared to our previous release?, resulting from the larger sample size,
improvements in sequence data accuracy, and genotype calling and phasing
algorithms.

A Typical Genome

We find that a typical genome differs from the reference human genome at 4.09 -
5.02 million sites (Figure 1B; Table 1). While >99.9% of variants consist of SNPs and
short indels, structural variants affect more bases: the typical genome contains an
estimated 2,100-2,500 structural variants (~1,000 large deletions, ~160 copy-
number variants, ~915 Alu insertions, ~128 L1 insertions, ~51 SVA insertions, ~4
NUMTs, and ~10 inversions), affecting ~20 million bases of sequence.

The total number of observed non-reference sites differs greatly among populations
(Figure 1B). Individuals from African ancestry populations harbor the greatest
numbers of variant sites, as predicted by the out-of-Africa model of human origins.
Individuals from recently admixed populations show great variability in the number
of variants, roughly proportional to the degree of recent African ancestry in their
genomes.

The majority of variants in the dataset are rare: ~64 million autosomal variants
have frequency <0.5%, ~12 million have frequency between 0.5% and 5%, and only
~8 million have frequency >5% (Supplementary Figure 3A). Nevertheless, the
majority of variants observed in a single genome are common: just 40 - 200
thousand of the variants in a typical genome (1-4%) have frequency <0.5% (Figure
1C, Supplementary Figure 3B). As such, we estimate that improved rare variant
discovery by deep sequencing our entire sample would at least double the total
number of variants in our sample but increase the number of variants in a typical
genome by only ~20 - 60 thousand.

Putatively Functional Variation

When we restricted analyses to the variants most likely to affect gene function, we
found a typical genome contained 149 - 182 sites with protein truncating variants,
10 - 12 thousand sites with peptide sequence altering variants, and 459 - 565
thousand variant sites overlapping known regulatory regions (UTRs, promoters,
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insulators, enhancers and transcription factor binding sites). African genomes were
consistently at the high end of these ranges. The number of alleles associated with a
disease or phenotype in each genome did not follow this pattern of increased
diversity in Africa (Supplementary Figure 4): we observed ~2,000 variants per
genome associated with complex traits through GWAS and 24 - 30 variants per
genome implicated in rare disease through ClinVar; with European ancestry
genomes at the high-end of these counts. The magnitude of this difference is unlikely
to be explained by demography!%11, but instead reflects the ethnic bias of current
genetic studies. We expect that improved characterization of the clinical and
phenotypic consequences of non-European alleles will enable better interpretation
of genomes from all individuals and populations.

Sharing of Genetic Variants Among Populations

Systematic analysis of the patterns in which genetic variants are shared among
individuals and populations provides detailed accounts of population history.
Although most common variants are shared across the globe, rarer variants are
typically restricted to closely related populations (Figure 1A); 86% of variants were
restricted to a single continental group. Using a maximum likelihood approach!?, we
estimated the proportion of each genome derived from several putative ‘ancestral
populations’ (Figure 2A; Supplementary Figure 5). This analysis separates
continental groups, highlights their internal substructure, and reveals genetic
similarities between related populations. For example, East-West clines are visible
in Africa and East Asia, a North-South cline is visible in Europe, and European,
African, and Native-American admixture is visible in genomes sampled in the
Americas.

To characterize more recent patterns of shared ancestry, we first focused on
variants observed on just two chromosomes (sample frequency of 0.04%), the
rarest shared variants within our sample, and known as f; variants2. As expected,
these variants are typically geographically restricted and much more likely to be
shared between individuals in the same population or continental group, or
between populations with known recent admixture (Supplementary Figures 6A and
B). Analysis of shared haplotype lengths around f; variants suggests a median
common ancestor ~296 generations ago (7,410 - 8,892 years ago; Supplementary
Figures 6C and D), although those confined within a population tend to be younger,
with a shared common ancestor ~143 generations ago (3,570 - 4,284 years ago)13.

Insights About Demography

Modeling the distribution of variation within and between genomes can provide
insights about the history and demography of our ancestor populations!4. We used
the Pairwise Sequentially Markovian Coalescent (PSMC)'# method to characterize
the effective population size (Ne) of the ancestral populations (Figure 2B;
Supplementary Figures 7 and 8). Our results clearly show a shared demographic
history for all humans beyond ~150 - 200 thousand years ago. Further, they show
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that European, Asian and American populations shared strong and sustained
bottlenecks, all with Ne < 1500, between 15 - 20 thousand years ago. In contrast, the
bottleneck experienced by African populations during the same time period appears
less severe, with Ne > 4,250. These bottlenecks were followed by extremely rapid
inferred population growth in non-African populations, with notable exceptions
including the PEL, MXL and FIN.

Due to the shared ancestry of all humans, only a modest number of variants show
large frequency differences among populations. We observed 762,000 variants that
are rare (defined as having frequency <0.5%) within the global sample but much
more common (>5% frequency) in at least one population (Figure 3A). Several
populations have relatively large numbers of these variants, and these are typically
genetically or geographically distinct within their continental group (LWK in Africa,
PEL in America, JPT in East Asia, FIN in Europe, and GIH in South Asia; see
Supplementary Table 5). Drifted variants within such populations may reveal
phenotypic associations that would be hard to identify in much larger global
samples?>.

Analysis of the small set of variants with large frequency differences between
closely related populations can identify targets of recent, localized adaptation. We
used the Fst-based population branch statistic (PBS)¢ to identify genes with strong
differentiation between pairs of populations in the same continental group (Figure
3B). This approach reveals a number of previously identified selection signals (such
as SLC24A5 associated with skin pigmentation!’, HERC2 associated with eye color!8,
LCT associated with lactose tolerance, and the FADS cluster that may be associated
with dietary fat sources!®). Several potentially novel selection signals are also
highlighted (such as TRBV9, which appears particularly differentiated in South Asia,
PRICKLE4, differentiated in African and South Asian populations, and a number of
genes in the immunoglobulin cluster, differentiated in East Asian populations;
Supplementary Figure 9), although at least some of these signals may result from
somatic rearrangements (e.g. via V(D)] recombination) and differences in cell type
composition among the sequenced samples. Nonetheless, the relatively small
number of genes showing strong differentiation between closely related populations
highlights the rarity of strong selective sweeps in recent human evolution??.

Sharing of Haplotypes and Imputation

The sharing of haplotypes among individuals is widely used for imputation in
genome-wide association studies (GWAS), a primary use of 1000 Genomes data. To
assess imputation based on the Phase 3 dataset, we used Complete Genomics data
for 9-10 individuals from each of 6 populations (CEU, CHS, LWK, PEL, PJL, and YRI).
After excluding these individuals from the reference panel, we imputed genotypes
across the genome using sites on a typical 1M SNP microarray. The squared
correlation between imputed and experimental genotypes was >95% for common
variants in each population, decreasing gradually with minor allele frequency
(Figure 4A). Compared to Phase 1, rare variation imputation improved considerably,
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particularly for newly sampled populations (e.g. PEL and PJL, Supplementary Figure
10A). Improvements in imputations restricted to overlapping samples suggest
approximately equal contributions from greater genotype and sequence quality and
from increased sample size (Figure 4A insert). Imputation accuracy is now similar
for bi-allelic SNPs, bi-allelic indels, multi-allelic SNPs, and sites where indels and
SNPs overlap but slightly reduced for multi-allelic indels, which typically map to
regions of low-complexity sequence and are much harder to genotype and phase
(Supplementary Figure 10B). While imputation of rare variation remains
challenging, it appears to be most accurate in African ancestry populations, where
greater genetic diversity results in a larger number of haplotypes and improves the
chances of rare variants being tagged by a characteristic haplotype.

Resolution of Genetic Association Studies

To evaluate the impact of our new reference panel on GWAS, we re-analyzed a
previous study of age-related macular degeneration (AMD) totaling 2,157 cases and
1,150 controls?l. We imputed 17.0M genetic variants with estimated R? > 0.3,
compared to 14.1M variants using Phase 1, and only 2.4M SNPs using HapMap?2.
Compared to Phase 1, the number of imputed common and intermediate frequency
variants increased by 7%, while the number of rare variants increased by >50%,
and the number of indels increased by 70% (Supplementary Table 6). We permuted
case-control labels to estimate a genome-wide significance threshold of p < ~1.5 x
10-8, which corresponds to ~3 million independent variants and is more stringent
than the traditional threshold of 5 x 108 (Supplementary Table 7). In practice,
significance thresholds must balance the false positives and false negatives?2-24. We
recommend thresholds for strict control of false positives be determined using
permutations, and expect these to become more stringent thresholds as larger
sample sizes, more diverse populations and/or direct sequencing are used. After
imputation, five independent signals in four previously reported AMD loci25-28
reached genome-wide significance (Supplementary Table 8). When we examined
each of these to define a set of potentially causal variants using a Bayesian Credible
set approach??, lists of potentially functional variants were ~4x larger than in
HapMap2-based analysis and 7% larger than in analyses based on Phase 1
(Supplementary Table 9). In one locus, the most strongly associated variant was
now a structural variant (estimated imputation R? 0.89) that previously could not be
imputed, consistent with some functional studies30. Deep catalogues of potentially
functional variants will help ensure that downstream functional analyses include
the true candidate variants, and will aid analyses that integrate complex disease
associations with functional genomic elements3!.

The performance of imputation and GWAS studies depends on the local distribution
of linkage disequilibrium (LD) between nearby variants. Controlling for sample size,
the decay of LD as a function of physical distance is fastest in African populations
and slowest in East Asian populations (Supplementary Figure 11). To evaluate how
these differences influence the resolution of genetic association studies and, in
particular, their ability to identify a narrow set of candidate functional variants, we
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evaluated the number of tagging variants (r? > 0.8) for a typical variant in each
population. We find that each common variant typically has over 15-20 tagging
variants in non-African populations, but only about 8 in African populations (Figure
4B). While only ~3-6 tagging variants are typically found within 100 kb of variants
with frequency <0.5%, the differences between the continental groups are
considerably less marked.

Among variants in the GWAS catalog (which have an average frequency of 26.6% in
project haplotypes), the number of proxies averages 14.4 in African populations and
30.3 - 44.4 in other continental groupings (Supplementary Table 10). The potential
value of multi-population fine-mapping is illustrated by the observation that the
number of proxies shared across all populations is only 8.2 and, furthermore, that
34.9% of GWAS catalog variants have no proxy shared across all continental
groupings.

To further assess prospects for fine-mapping genetic association signals, we
performed expression quantitative trait loci (eQTL) discovery at 17,667 genes in 69
samples from each of 6 populations (CEU, CHB, GIH, JPT, LWK, and YRI)32. We
identified eQTLs for 3,285 genes at 5% FDR (average 1,265 genes per population).
Overall, a typical eQTL signal comprised 67 associated variants, including an indel
26-40% of the time (Figure 4C). Within each discovery population, 17.5%-19.5% of
top eQTL variants overlapped annotated transcription factor binding sites (TFBSs),
consistent with the idea that a substantial fraction of eQTL polymorphisms are TFBS
polymorphisms. Using a meta-analysis approach to combine pairs of populations,
the proportion of top eQTL variants overlapping TFBSs increased to 19.2 - 21.6%
(Figure 4D), consistent with improved localization. Including an African population
provided the greatest reduction in the count of associated variants and increased
overlap between top variants and TFBSs.

Discussion

The course of the 1000 Genomes Project has witnessed substantial advances in
sequence data generation, archiving and analysis. Primary sequence data
production improved with increased read length and depth, reduced per-base
errors, and the introduction of paired-end sequencing. Sequence analysis methods
improved with the development of strategies for identifying and filtering poor
quality data, for more accurate mapping of sequence reads (particularly in
repetitive regions), for exchanging data between analysis tools and enabling
ensemble analyses, and for capturing more diverse types of variants. Importantly,
each release has examined larger numbers of individuals, aiding population-based
analyses that identify and leverage shared haplotypes during genotyping. Whereas
our first analyses produced high-confidence short-variant calls for 80-85% of the
reference genome!l, our newest analyses reach ~96% of the genome using the same
metrics, although our ability to accurately capture structural variation remains
more limited33. In addition, the evolution of sequencing, analysis and filtering
strategies means that our results are not a simple superset of previous analysis.
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While the number of characterized variants has more than doubled relative to Phase
1, ~2.3 million previously described variants are not included in the current
analysis; most of which were rare or marked as low quality: 1.6 million had
frequency <0.5% and may be missing from our current read set, while the
remainder were removed by our filtering processes.

These same technical advances are enabling the application of whole genome
sequencing to a variety of medically important samples. Some of these studies
already exceed the 1000 Genomes Project in size34-36, but the results described here
remain a prime resource for studies of genetic variation for several reasons. First,
the 1000 Genomes Project samples provide a broad representation of human
genetic variation - in contrast to the bulk of complex disease studies in humans,
which primarily study European ancestry samples and which, as we show, fail to
capture functionally important variation in other populations. Second, the project
analyses incorporate multiple analysis strategies, callsets and variant types. While
such ensemble analyses are cumbersome, they provide a benchmark for what can be
achieved and a yardstick against which more practical analysis strategies can be
evaluated. Third, project samples and data resulting from them can be shared
broadly, enabling sequencing strategies and analysis methods to be compared easily
on a benchmark set of samples. Because of the wide availability of the data and
samples, these samples have been and will continue to be used for studying many
molecular phenotypes. Thus the samples will accumulate many types of data that
will allow connections to be drawn between variants and both molecular and
disease phenotypes.

Box 1: Building a haplotype scaffold
(Box Figure 1)

To construct high quality haplotypes that integrate multiple variant types, we
adopted a staged approach3?. 1) A high-quality ‘haplotype scaffold’ was constructed
using statistical methods applied to SNP microarray genotypes and, where available,
genotypes for first degree relatives (available for ~52% of samples; Supplementary
Table 11)38. 2a) Variant sites were identified using a combination of bioinformatic
tools and pipelines to define a set of high-confidence bi-allelic variants, including
both SNPs and indels (white triangles), which were jointly imputed onto the
haplotype scaffold. 2b) Multi-allelic SNPs, indels, and complex variants (represented
by yellow shapes, or variation in copy number) were placed onto the haplotype
scaffold one-at-a-time, exploiting the local linkage disequilibrium information but
leaving haplotypes for other variants undisturbed3°. 3) The biallelic and multi-allelic
haplotypes were merged into a single haplotype representation. This multi-stage
approach allows the long-range structure of the haplotype scaffold to be maintained
while including more complex types of variation. Comparison to haplotypes
constructed from fosmids suggests the average distance between phasing errors is
~1062 kb, while typical phasing errors are ~37 kb (Supplementary Table 12).



Methods Summary

Details concerning sample collection, data generation, data processing, and analysis
are in the Supplementary Information. Supplementary Figure 12 summarizes the
process and points to the relevant supplementary sections.
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Tables

AFR AMR EAS EUR SAS
Samples 661 347 504 503 489
Mean Coverage 8.2 7.6 7.7 7.4 8.0

Var. Sites  Singletons | Var. Sites Singletons | Var. Sites Singletons | Var. Sites Singletons | Var. Sites Singletons

SNPs 4.31M 14.5k 3.64M 12.0k 3.55M 14.8k 3.53M 11.4k 3.60M 14.4k
Indels 625k - 557k - 546k - 546k - 556k -
Large Deletions 1.1k 5 949 5 940 7 939 5 947 5
CNVs 170 1 153 1 158 1 157 1 165 1
MEI (Alu) 1.03k 0 845 0 899 1 919 0 889 0
MEI (LINE1) 138 0 118 0 130 0 123 0 123 0
MEI (SVA) 52 0 44 0 56 0 53 0 44 0
MEI (MT) 5 0 5 0 4 0 4 0 4 0
Inversions 12 0 9 0 10 0 9 0 11 0
NonSynon 12.2k 139 10.4k 121 10.2k 144 10.2k 116 10.3k 144
Synon 13.8k 78 11.4k 67 11.2k 79 11.2k 59 11.4k 78
Intron 2.06M 7.33k 1.72M 6.12k 1.68M 7.39k 1.68M 5.68k 1.72M 7.20k
UTR 37.2k 168 30.8k 136 30.0k 169 30.0k 129 30.7k 168
Promoter 102k 430 84.3k 332 81.6k 425 82.2k 336 84.0k 430
Insulator 70.9k 248 59.0k 199 57.7k 252 57.7k 189 59.1k 243
Enhancer 354k 1.32k 295k 1.05k 289k 1.34k 288k 1.02k 295k 1.31k
TFBS 927 4 759 3 748 4 749 3 765 3
Filtered LoF 182 4 152 3 153 4 149 3 151 3
HGMD-DM 20 0 18 0 16 1 18 2 16 0
GWAS 2.00k 0 2.07k 0 1.99k 0 2.08k 0 2.06k 0
ClinVar 28 0 30 1 24 0 29 1 27 1

Table 1: Median autosomal variant sites per genome. See Supplementary Table 1 for continental
population groupings.




Main Figures

Private to Shared across
popula(io@l continents
Private to Shared across

continent continents

»
®
T

o
.
I
B
=2
1

PEL +
+ OLM ACB

IS
@
T
|

+

: |

~ FIN CEU TSI

»
IS
T

Singletons per Genome (x 1000)

»
(S}

Variant Sites / Genome (Million)
>

IS
~

CDX ST MXL 2

3.8

Individual ‘g\g&e@g@\%@b&g\«%yc;g%&g})&@@@’g&%%%g&

Figure 1: Population sampling. A) Polymorphic variants within sampled populations. The area of
each pie is proportional to the number of polymorphisms within a population. Pies are divided into
four slices, representing variants private to a population (darker color unique to population),
private to a continental area (lighter color shared across continental group), shared across
continental areas (light grey), and shared across all continents (dark grey). Dashed lines indicate
populations sampled outside of their ancestral continental region. B) The number of variant sites

per genome. C) The average number of singletons per genome.
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Figure 2: Population structure and demography. A) Population structure inferred using a
maximum likelihood approach with 8 clusters. B) Changes to effective population sizes over time,
inferred using PSMC. Lines represent the within-population median PSMC estimate, smoothed by
fitting a cubic spline passing through bin midpoints.



A Variants at < 0.5% frequency globally, but > 5% frequency within population
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Figure 3: Population differentiation. A) Variants found to be rare (<0.5%) within the global sample,
but common (>5%) within a population. B) Genes showing strong differentiation between pairs of
closely related populations. The vertical axis gives the maximum obtained value of the Fsr-based
population branch statistic (PBS), with selected genes colored to indicate the population in which

the maximum value was achieved.
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Figure 4: Imputation and eQTL discovery. A) Imputation accuracy as a function of allele frequency
for six populations. The insert compares imputation accuracy between Phase 3 and Phase 1, using
all samples (solid lines) and intersecting samples (dashed lines). B) The average number of tagging
variants (r?> 0.8) as a function of physical distance for common (top), low frequency (middle), and
rare (bottom) variants. C) The proportion of top eQTL variants that are SNPs and indels, as
discovered in 69 samples from each population. D) The percentage of eQTLs in TFBS, having
performed discovery in the first population, and fine mapped by including an additional 69 samples
from a second population (One star: p<0.01, two stars: p<0.001, three stars: p<0.0001, McNemar’s
test). The diagonal represents the percentage of eQTLs in TFBS using the original discovery sample.



1) Construction of haplotype
scaffold from SNP microarray
genotypes, using trio data
where available.

Box 1 figure.

2a) Joint genotyping and
statistical phasing of biallelic
variants from sequence data
onto haplotype scaffold.
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2b) Independent genotyping
and phasing of multi-allelic
and complex variants onto
haplotype scaffold.

3) Integration of variant calls
into unified haplotypes.
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