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|dentifying Non-coding Driver Mutations

> Non-coding variants may serve as drivers in many cancer
types:
» TERT, PLEKHS1, WDR74 and SDHD promoters
» miRNA binding sites
» Our goal is to identity regions in the noncoding regions that
are highly mutated
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Previous Efforts

> Two papers

Weinhold, N. et al. Genome-wide analysis of noncoding regulatory mutations in cancer. Nature
Genetics

Melton, C. et al. Recurrent somatic mutations in regulatory regions of human cancer genomes.
Nature Genetics
> Drawback

» Annotations - low genome coverage

» Small Fixed Regions - low mutation rate resolution

» Not dynamic, not true region
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Annotation Free Analysis

> Goal:
» Auto-cluster genome into regions of enriched mutations

> 3 Steps:

Convolution and log



Dataset

» Somatic Mutations from:
» 12 Cancer Types
» 665 WGS total

> Includes Alexandrov et al data (WGS)
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Convolution and log

v

Divide genome into 50bp bins

Number of mutations in bin, &

v
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For a single cancer type ~ Binomial
Convolution Method: Combine discrete probabilities over all
cancer types

» Pr(K >k)=1-Pr(K <k)

> linear combination of discrete probabilities

» Result: single p-value for each 50bp bin
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Convolution and log

» For each p-value, take negative log (—log)
» Creates signal for each 50bp bin, correlating to significance
> Pros

» Amplify significant mutation count signal

» Reduce signals that are less significant

» Removes some noise found in mutation counts

-log(p)

Signal: -log(p)
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Change Point Detection

» Motivation:

» Change points: determine start and end of region of interest
» Change in distribution before and after point
» Series of change points can be detected

Multiple Change Points
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Change Point Detection: Usage

P p-values ~ Uniform
— log(p) ~ Exponential

Apply change point algorithm to dataset of — log(p) for whole genome
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Example Result:

50kb Region: Chr17
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Signal: -log(p)
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Change Point Segment Lengths

Segment Length Segment Length (<2000)
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Statistical Testing

» Statistical testing on each
segment

Obtain new

p-value for
/ segment

> Assess significance of
segments determined by
change point

» New p-value for segment
(Convolution Method)

ATP1B2 TP53 WRAPS53 EFNB3

11 /14



Segment P-values
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Preliminary Results

chr17: p-value QQ Plot
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Further Analysis

» Perform FDR or other p-value correction
» Filter for significant segments

> Intersect significant segments with annotations
» Expectation:

> Intersections with known regulatory elements
> Regions not contained in annotations, but also significant
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