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ABSTRACT
Pseudogenes were initially regarded as non-functional
genomic fossils resulted from inactivating gene mutations
during evolution. However, later studies revealed that
they play a plethora of roles at multiple levels (DNA,
RNA and/or protein) in diverse physiological and
pathological processes, especially in cancer, both
parental-gene-dependently and parental-gene-
independently. Pseudogenes can interact with parental
genes or other gene loci, leading to alteration in their
sequences and/or transcriptional activities. Pseudogene-
derived RNAs play multifaceted roles in post-
transcriptional regulation as antisense RNAs, endogenous
small-interference RNAs, competing endogenous RNAs
and so on. Pseudogenic proteins can mirror, mimic or
interfere with the functions of their parental counterparts.
Herein, we discuss the general aspects (origination,
classification, identification) of pseudogenes, focus on
their multiple functions in cancer pathogenesis and
prospect the potentials they hold as molecular signatures
assisting in cancer reclassification and tailored therapy.

INTRODUCTION
The word ‘pseudogene’ was first introduced by
Jacq et al1 in 1977, when a copy of the 5S rRNA
gene was discovered in Xenopuslaevis, with 50-end
truncation and 14-bp mismatches that render it
non-functional. Since then, numerous pseudogenes
have been discovered in organisms from prokar-
yotes to eukaryotes. In human genome, there are
about 11 000 pseudogenes,2 exceeding half the
number of protein-coding genes.
Traditionally, pseudogenes are considered as

genomic loci that resemble real genes, yet are bio-
logically inconsequential because they harbour
mutations that abrogate their transcription or trans-
lation.3 Resultantly, they were once regarded as
‘junk genes’, ‘relics of evolution’ or ‘genomic
fossil’.4 5 Recently, however, with the aid of next-
generation sequencing and research advance in non-
coding RNAs, multilayered functions of pseudo-
genic DNA, RNA or protein have been discovered
in multiple cancers. Pseudogenes play important
roles in transcriptional and post-transcriptional reg-
ulations and also have the potential to evolve into
novel genes, thus serving as a reservoir for gene
renewal. Moreover, a small handful of pseudogenes
have been reported to retain or regain protein-
coding properties, and the resultant pseudogenic
proteins/polypeptides mirror or interfere with the
functions of their parental counterparts in tumori-
genesis.6–11 In this review, we discuss the identifica-
tion, classification, functions and clinical relevance
of pseudogenes in cancer, with recent advances and
future perspectives.

ORIGINATION AND CLASSIFICATION OF
PSEUDOGENES
The existence of more than one copy of a gene in
human genome allows the production of gene var-
iants which may generate novel genes in some con-
texts, whereas they give birth to pseudogenes in
others. Pseudogenes can derive from gene muta-
tions, or unfaithful gene duplications, or retrotran-
sposition of processed mRNAs back into the
genome. Accordingly, pseudogenes can be cate-
gorised into three types: (1) unitary pseudogenes
(figure 1A), (2) duplicated or unprocessed pseudo-
genes (figure 1B) and (3) processed or retrotran-
sposed pseudogenes (figure 1C).
Unitary pseudogenes are generated when spon-

taneous mutations in a coding gene abolish either
transcription or translation of that gene. As a
result, unitary pseudogenes lack the fully functional
counterparts (termed ‘ancestral genes’, ‘cognate
genes’ or ‘parental genes’) as the other two types of
pseudogenes do. Duplicated pseudogenes derive
from unfaithful gene duplication, resulting in the
loss of promoters/enhancers or frameshift muta-
tions or premature stop codons, thus rendering
them non-functional, whereas their parental genes
remain functional. Duplicated pseudogenes are
often located within the vicinity of their parental
genes. Both the unitary pseudogenes and the dupli-
cated pseudogenes retain intron–exon structures.
On the contrary, processed pseudogenes lack intons
because they are originated from mRNAs that are
reverse-transcribed into DNAs and then integrated
back into the genome at a new location.

IDENTIFICATION AND CANCER-SPECIFIC
EXPRESSIONS OF PSEUDOGENES
Due to their high homology to parental genes, a
major challenge faced by pseudogenes studies is
how to distinguish them from their parental genes,
with individual genome differences and sequencing
errors further complicating the matter. In recent
years, multiple approaches have been developed for
this purpose at DNA level12–14 or, for expressed
pseudogenes, at RNA level.14–16

Pipelines established to identify pseudogene DNA
include PseudoPipe,17 the Human and Vertebrate
Analysis and Annotation (HAVANA) method,18

PseudoFinder and RetroFinder.19 These pipelines
have now been integrated into a consensus platform
called ENCyclopedia Of DNA Elements
(ENCODE), the most comprehensive database for
pseudogenes at present.20 21

Previously, approaches to identify pseudogene
RNAwere quite limited, mainly relying upon incon-
gruent gene expression platforms, such as public
mRNA and Expressed Sequence Tag databases, Cap
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Introduction
Discovered in 1977, pseudogenes were dis-
missed as “junk DNA” (1). They were not 
formally studied; indeed, extensive effort 
went into developing strategies to avoid 
their unintended detection (1–3).

Over the past two decades, multiple 
classes of regulatory RNAs, both long 
RNAs (between a few hundred and a few 
thousand nucleotides) and short RNAs 
(<200 nucleotides) that do not encode pro-
teins have been identifi ed. Long noncoding 
RNAs (lncRNAs) comprise intronic and 
intergenic ncRNAs and natural antisense 
transcripts (NATs) (4–6). Extensive study 
of the short and long types of ncRNAs has 
shown that the noncoding part of our ge-
nome is far from nonfunctional (5). Fur-
thermore, the use of tiling arrays and high-
throughput sequencing strategies has shown 
that more than 90% of the human genome is 
transcribed, whereas only 1 to 2% encodes 
proteins (7). Thus, it may be that there are 
more biologically functional ncRNAs than 
protein-encoding ones, which provides a ra-
tionale for the annotation of the noncoding 
transcribed genome.

The attribution of function to specifi c 
pseudogenes has raised these underappreci-
ated molecules to the status of a new class of 
regulatory lncRNAs involved in both physi-
ological and pathological processes (8).

Types of Pseudogenes
Pseudogenes are structurally similar to genes 
that encode functional proteins, but pseudo-
genes contain “defects” that, in most cases, 
render them unable to encode fully functional 
proteins (9). Three categories of pseudogenes 
have been identifi ed: nonprocessed, pro-
cessed, and unitary pseudogenes (Fig. 1) (10).

Nonprocessed pseudogenes derive from 
gene duplication (Fig. 1A). They are located 
on the same chromosome as the parental 
gene and may possess introns and fl anking 
sequences. The loss of promoter sequences, 
premature stop codons, frameshift muta-
tions, or alterations in splice sites prevent 
them from being transcribed or encoding 
functional proteins.

Processed pseudogenes originate by ret-
rotransposition (RNA that has been reverse-
transcribed into a DNA sequence that is 
integrated into the genome), do not contain 
introns, and are located on different chro-
mosomes than the genes from which they 
originate (Fig. 1B). Retrotranscription is not 
a high-fi delity process, and processed pseu-
dogenes accumulate numerous mutations 
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Because they are generally noncoding and thus considered nonfunctional and 
unimportant, pseudogenes have long been neglected. Recent advances have es-
tablished that the DNA of a pseudogene, the RNA transcribed from a pseudogene, 
or the protein translated from a pseudogene can have multiple, diverse functions 
and that these functions can affect not only their parental genes but also unre-
lated genes. Therefore, pseudogenes have emerged as a previously unappreci-
ated class of sophisticated modulators of gene expression, with a multifaceted 
involvement in the pathogenesis of human cancer.

Fig. 1. Types of pseudogenes. (A) Nonprocessed pseudogenes derive from gene duplication 
and are located on the same chromosome as the parental gene from which they are de-
rived. (B) Processed pseudogenes arise by retrotransposition and are located on a different 
chromosome than the parental gene. (C) Unitary pseudogenes derive from mutations of the 
parental gene, which is in turn lost. Blue boxes and lines, parental (pa) gene and mRNA; gray 
boxes and lines, pseudogene (pg) gene and RNA; orange dots and boxes, mutations; yellow 
arrow, unrelated promoter. 
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Pseudogenes regulate & interfere with the 
expression & activity of functional protein 

coding genes

• Through their pseudogene DNA sequence 

• Through their RNA product 

• Through their pseudo-protein/polypeptide product
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Functions of pseudogene DNA
Gene Conversion

The pseudogene DNA sequence replaces a 
sequence in the parent such that the two 
sequences become identical. 

e.g: CYP2A6 gene is converted by its 
pseudogene to a new variant CYP2A6*1B that 
influences the smoking-induced lung cancer risk.

Homologous Recombination
Exchange of DNA between the parent and the 
pseudogene sequence. 

e.g: homologous recombination between BRCA1 
gene and psiBRCA1 pseudogene resulted in a 
37kb deletion that pseudogenizes the original 
BRCA1 gene (by removing the promoter and 
start codon sequence) 
—> new mechanism for oncosuppressor gene 
inactivation.6



Functions of pseudogene DNA
Exonisation

The pseudogene uses the transcriptional 
mechanism of the host gene. 

e.g: somatically acquired pseudogenes 
during cancer development

7



8



Background
• Cancer development is based on DNA mutations 

• Processed pseudogenes  
• are the product of the LINE-mediated retrotransposition 
• influence the evolution though gene duplication, novel 

exons, gene fusions, antisense transcript productions

Aim
• Develop a bioinformatics method to detect somatically acquired 

processed pseudogenes in cancer samples through targeted 
exome and genome-wide studies

Data
• 660 cancer samples: 629 primary & 31 cell lines 
• 18 tumour types 
• low coverage (2-5x) pair-end, high-coverage (30-40x) pari-end shotgun
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Somatic pseudogene 
identification pipeline

BWA alignment to reference transcriptome
      and genome

Convert transcriptome mappings back to
                         genome space

Tumour vs normal comparison

Whole genome sequencing Whole exome  sequencing

Structural variant algorithm
         run over genomic
               alignments

Candidate somatic pseudogenes

Visual inspection in IGV, PCR validation

genomes exomes

Filter on MQ, distance,
          Cigar string

Annotate read pairs

Filter on gene names

42 somatic pseudogenes:  
   -14 out of 629 primary cases 
   -  3 out 31 cell lines
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e.g. Lung cancer — FOPNL

which 10 were inserted in intergenic regions, three in introns, two
in 30 UTRs and one in the first exon of the MGA gene. We found
no evidence of expression from somatic pseudogenes inserted in
intergenic regions, whereas one of the three intronic insertions
was expressed. In this case, a partial KTN1 pseudogene inserted
into the last intron of PSD3 in a primary squamous cell lung
cancer. We saw a clear peak of expression arising from the PSD3
intron immediately adjacent to the insertion, with aberrantly
mapping read pairs aligning to the KTN1 UTR on one end and
the PSD3 intron on the other end (Supplementary Fig. 8). Of the
two insertions into 30 UTRs, both were expressed. In one, a
KRT6A pseudogene was inserted into the 30 UTR of MLL, the
latter being a well-known fusion gene in leukaemias
(Supplementary Fig. 9). The RNA-sequencing data show that
the last 1.2 kb of the MLL 30 UTR is lost from the mature
transcript and replaced by the somatic pseudogene, since we

found paired-end reads spanning the 50 insertion point but not
the 30 insertion point (Fig. 3b). The 30 UTR of MLL has been
shown to regulate transcript levels26, a feedback loop that could
be disrupted by such a change, although expression of an aberrant
transcript does not in itself imply oncogenicity. Similarly, a
KIF18A pseudogene inserted into the 30 UTRs of two overlapping
genes on opposite strands, KIAA1967 and BIN3. Reads reporting
both KIAA1967-KIF18A and BIN3-KIF18A fusion junctions were
found in the RNA-sequencing data (Supplementary Fig. 10).

We also observed that somatic pseudogene insertion could
abrogate expression of a target gene at the insertion site. In lung
adenocarcinoma cell line NCI-H2009, a PTPN12 pseudogene
caused an 8 kb target-site deletion that removed the promoter and
first exon of MGA (Fig. 3c). In corresponding RNA-sequencing
data, we find only wild-type exon 1 splicing into downstream
exons, with no reads linking PTPN12 to MGA. Thus residual

FOPNL

Linked to chr7:127Mb

TT...TT
AA...AA

SND1: Intron 11 SND1: Intron 11

chr7: 127,462,764

FOPNL: Somatic pseudogene

chr16: 15,959,576 chr16: 15,982,446

chr7: 127,462,755

CATAATTTTC
GTATTAAAAG

Target site
duplication

Target site
duplication

Exon 5 4 3 2 1 CATAATTTTC
GTATTAAAAG

Insert between paired reads
Split in read

Mapping position of read

a

b
chr3:

181,126,747
chrX:
62,917,097

Exon 10 5 469 8 7

chr3:
181,126,757

chrX:
62,857,910

PCR 1 PCR 2

ARHGEF9: Somatic pseudogene

PolyA tail

Figure 1 | Somatic pseudogenes. (a) A somatic FOPNL pseudogene in a non-small cell lung cancer. Sequencing reads from high-coverage whole-genome
shotgun sequencing of the tumour reveal a series of split reads (red) crossing the four canonical exon–exon splice junctions in the gene. In addition, read
pairs map to adjacent exons with an insert size larger than expected (light brown). At either end of the gene, read pairs linking to chr7 could be identified,
revealing that the FOPNL pseudogene is inserted into intron 11 of the SND1 gene in the opposite orientation with an intact polyA tail and a target-site
duplication of 10 bp. (b) A somatic ARHGEF9 pseudogene in a non-small cell lung cancer. The insertion was confirmed as somatic by PCR (Supplementary
Fig. 2) and capillary sequencing across an exon–exon junction and insertion site.
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•all 5 FOPNL exons are 
inserted in SND1’s 11th 
intron in oposite 
orientation 

•5’UTR & full 3’UTR 
sequence conserved 

•The pseudogene is not 
seen in the germline 
DNA
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Properties of somatic pseudogenes

expression is derived from the intact MGA allele, and loss of the
promoter and exon 1 has eliminated expression from the
disrupted allele. MGA encodes a MAX-interacting protein27,
with focal deletions and inactivating mutations in lymphoid
malignancies28,29. From a compendium of 7,651 exome
sequences30, we previously found that MGA is a likely tumour
suppressor gene on the basis of a statistically significant excess of
nonsense mutations (qo10! 6) especially in lung adenocarci-
noma31 (Supplementary Fig. 9b).

The diversity, complexity and iniquity of mutational processes
operative during the development of cancer have been laid bare by
whole-genome sequencing, and here we describe another novel
mechanism of somatic mutation. There has been much recent interest
in how retrotransposition of repeat elements in somatic cells reshapes
the genome during normal brain development and during cancer
development4,8. The formation of pseudogenes in somatic cells repre-
sents a companion mutational process, with considerable flexibility in
potential mechanisms to alter a cell’s transcriptional activity.
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Figure 2 | Properties of somatic pseudogenes. (a) Histogram showing the fraction of somatic pseudogenes with particular features. (b) Sequences of
target-site duplications (between square brackets) and adjacent genomic regions, showing that the polyA tail of the somatic pseudogene inserts in the
consensus TTTTAA sequence between the TTTT and AA. Target-site deletions were also occasionally seen (deleted sequence between the round
brackets). (c) An example of an internal inversion in a somatic pseudogene, inserted into intergenic sequence. The insertion was confirmed as somatic by
PCR. (d) Phylogenetic trees for four patients in whom multiple samples were sequenced, showing at which stage during the evolution of the cancer somatic
pseudogenes were acquired.
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similar to rearrangements 
observed in 8% of L1 LINE 
elements in the genome.

expression is derived from the intact MGA allele, and loss of the
promoter and exon 1 has eliminated expression from the
disrupted allele. MGA encodes a MAX-interacting protein27,
with focal deletions and inactivating mutations in lymphoid
malignancies28,29. From a compendium of 7,651 exome
sequences30, we previously found that MGA is a likely tumour
suppressor gene on the basis of a statistically significant excess of
nonsense mutations (qo10! 6) especially in lung adenocarci-
noma31 (Supplementary Fig. 9b).
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Tissue specific patterns of somatic 
pseudogenes in cancer

Methods
Sequence data. Sequencing data comprised low coverage (2–5! genome
coverage) paired-end sequencing for genomic rearrangements32–34, high-coverage
(30–40! ) paired-end shotgun sequencing35,36 and targeted pull-down and
sequencing of the coding exome37,38 generated at the Wellcome Trust Sanger
Institute as described, both published and unpublished, on the Illumina HiSeq
platform (Supplementary Table 1). In total, 660 cancer samples (629 primary
samples and 31 cell lines) spanning 18 tumour types were analysed (Supplementary
Table 2). The identity of cell lines was confirmed by STR testing and were obtained
from ATCC. The Cambridgeshire Local Research Ethics Committee approved the
studies and all patients gave informed consent.

Pseudogene detection. Data were aligned to both the reference genome
(GRCh37) and the reference Ensembl transcriptome using BWA39 and the
alignment coordinates from the transcriptome mapping were converted back to
genome space. Owing to the different characteristics of exome versus genome data,

the analyses of these alignments were optimized to deal with the different data
types (Supplementary Fig. 1). It is important to note that, regardless of the analysis
method, exome versus genome data are likely to have differential sensitivities for
detecting pseudogenes.

Targeted exome data includes less than 2% (50 Mb) of the human genome and
provides high depth over exons but does not contain the intronic and intergenic
regions where the majority of genomic structural rearrangements lie. Analysis of
genomic alignments through our standard structural variant algorithm35,40 was
therefore sufficient for pseudogene detection in these data, as it provided high
confidence calls for exon–exon junctions with few calls representing other types of
genomic rearrangement. Candidate pseudogenes were required to have at least two
apparent deletion events in the same gene, that is, involvement of at least three
exons, with breakpoints separated by a distance of at least 500 bp but less than
50 kb, a size range that includes the majority of introns of the human genome41.
To remove polymorphic germline pseudogenes, groups were excluded if they
contained any read pairs from either a matched normal or an unmatched normal
panel of nine unrelated individuals. Breakpoints were further excluded if the
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Figure 3 | Tissue-specific patterns of somatic pseudogenes. (a) Expression of template genes for somatic pseudogenes (individual points) compared
with all genes for the most frequently affected organ sites. The violin plot formulation for all genes shows the median (white point), interquartile
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for somatic pseudogenes were different to that expected. (b) RNA-sequencing data showing expression of the MLL-KRT6A fusion gene. (c) Deletion of the
promoter and first exon of MGA during somatic pseudogene insertion, leading to abrogation of expression from that allele.
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• Highly expressed transcripts 
are more likely to be templates 
for somatic pseudogenes

• Somatic pseudogene were most frequent in non-small cell lung 
cancer (19%) & colorectal cancer (18%)  
      * high rate of somatic retrotransposition of the LINE elements  
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Why do somatic pseudogenes 
matter?

• if inserted in introns, UTRs, or exons the 
pseudogene is most likely to be expressed 

• the somatic pseudogene insertion can stop the 
expression of a target gene at the insertion site 

• no evidence was found if the pseudogene was 
expressed when inserted in intergeneric region
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Functions of pseudogene DNA
Exonisation

The pseudogene use the transcriptional 
mechanism of the host gene 

e.g: somatically acquired pseudogenes 
during cancer development 

The pseudogene can obtain exons de 
novo. 

e.g: KLK3 pseudogene has 2 extra exons 
compared to the parent. Both are 
regulated by androgen but show different 
expression patternsInsertional Mutation

The pseudogene inserts itself into the 
promoter/exons of the host gene and 
stops its expression
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Pseudogenes regulate & interfere with the 
expression & activity of functional protein 

coding genes

• Through their pseudogene DNA sequence 

• Through their RNA product 

• Through their pseudo-protein/polypeptide product

16



• formation of anti sense transcripts:

Functions of pseudogenic RNA: to regulate the 
expression of parent genes

• Competition for RNA binding proteins or the 
translation machinery

• Recruitment of regulatory protein by pseudogene 
antisense RNAs to complimentary  sites in the 
parental gene to modulate chromatin remodelling 
and transcription

17



293 samples in 13 cancer and 
normal tissue types 
2082 pseudogene transcripts:  

* 154 highly tissue specific 
* 218 expressed only in cancer 

TCGA RNA-seq data 
9925 expressed 
pseudogenes in 2808 
cancer samples 
547 breast cancer 
pseudogenes

RESEARCH ARTICLE Open Access

Pseudogenes transcribed in breast invasive
carcinoma show subtype-specific expression and
ceRNA potential
Joshua D Welch1,2, Jeanette Baran-Gale1,3, Charles M Perou1,3,4, Praveen Sethupathy1,3,4* and Jan F Prins1,2*

Abstract

Background: Recent studies have shown that some pseudogenes are transcribed and contribute to cancer when
dysregulated. In particular, pseudogene transcripts can function as competing endogenous RNAs (ceRNAs). The
high similarity of gene and pseudogene nucleotide sequence has hindered experimental investigation of these
mechanisms using RNA-seq. Furthermore, previous studies of pseudogenes in breast cancer have not integrated
miRNA expression data in order to perform large-scale analysis of ceRNA potential. Thus, knowledge of both
pseudogene ceRNA function and the role of pseudogene expression in cancer are restricted to isolated examples.

Results: To investigate whether transcribed pseudogenes play a pervasive regulatory role in cancer, we developed
a novel bioinformatic method for measuring pseudogene transcription from RNA-seq data. We applied this method
to 819 breast cancer samples from The Cancer Genome Atlas (TCGA) project. We then clustered the samples using
pseudogene expression levels and integrated sample-paired pseudogene, gene and miRNA expression data with
miRNA target prediction to determine whether more pseudogenes have ceRNA potential than expected by chance.

Conclusions: Our analysis identifies with high confidence a set of 440 pseudogenes that are transcribed in breast
cancer tissue. Of this set, 309 pseudogenes exhibit significant differential expression among breast cancer subtypes.
Hierarchical clustering using only pseudogene expression levels accurately separates tumor samples from normal
samples and discriminates the Basal subtype from the Luminal and Her2 subtypes. Correlation analysis shows more
positively correlated pseudogene-parent gene pairs and negatively correlated pseudogene-miRNA pairs than
expected by chance. Furthermore, 177 transcribed pseudogenes possess binding sites for co-expressed miRNAs
that are also predicted to target their parent genes. Taken together, these results increase the catalog of putative
pseudogene ceRNAs and suggest that pseudogene transcription in breast cancer may play a larger role than previously
appreciated.

Background
Pseudogenes are genomic sequences sharing consider-
able sequence identity with protein-coding genes yet
possessing features such as premature stop codons, dele-
tions/insertions, or frameshift mutations that prevent
them from producing functional proteins. There are
three classes of pseudogenes: processed, duplicated, and
unitary. A processed pseudogene lacks introns, resem-
bling a spliced transcript that was inserted into the gen-
ome. A duplicated pseudogene is essentially a partial or

complete copy of a protein-coding gene, including in-
trons and sometimes even upstream regulatory elements.
Thus, for any processed or duplicated pseudogene, there
is an associated protein-coding gene called its parent
gene that is highly similar in sequence. The third type of
pseudogene is the unitary pseudogene, which arises
when a protein-coding gene loses its coding potential
through the accumulation of mutations. Unitary pseudo-
genes therefore do not have parent genes.
According to the GENCODE pseudogene annotations

(v.17), there are nearly 15,000 human pseudogenes.
Since their discovery in 1977, pseudogenes have gen-
erally been considered “biologically inconsequential”
and non-functional [1]. Therefore, the discovery that a
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Pseudogene expression pipelines

Figure 1 Reliable quantification of pseudogene expression. (A) Example showing that even an ideal aligner may produce uniquely
misaligned reads in the presence of mutations and read errors if alignments to unmappable regions are considered trustworthy. In this example,
the gene and pseudogene differ in one nucleotide so the regions are not identical. Now the gene in the subject genome being sequenced has
undergone mutation so it differs from the reference genome in 3 positions. RNA-seq produces reads from this gene reflecting the mutations in
the subject genome. If the reads are then mapped back to the genome allowing 2 mismatches, they map only to a pseudogene of the gene that
produced the reads. The problem arises because the sequences of the gene and pseudogene are sufficiently similar that unique misalignment
cannot be ruled out. (B) If a read has at least two alignments that are at distance δ1 and δ2 from the reference genome, respectively, then the
true position of the read should be considered ambiguous unless |δ1-δ2| > ε for some integer safety margin ε > 0. (C) Pipeline for computing
RPKUM expression levels for pseudogenes. (D) “Synthetic regions” around splice junctions are used to extend mappability to the transcriptome. A
synthetic region is constructed by concatenating k–1 nucleotides from the donor and acceptor exons on either side of a splice junction. Any k-mer that
crosses the splice junction thus occurs in the synthetic region.

Welch et al. BMC Genomics  (2015) 16:113 Page 4 of 16

Pan-Cancer Breast Cancer

Pseudogenes are dysfunctional copies of protein-coding
genes that have lost their ability to encode amino acids
through the accumulation of deleterious mutations such as

in-frame stop codons and frame-shift insertions/deletions1. In the
human genome, there are pseudogene copies for many protein-
coding genes: for example, the ENCODE project recently
annotated B15,000 human pseudogenes2. Importantly, a large
fraction of pseudogenes are transcriptionally active2. Despite their
huge number and prevalent occurrence in the genome,
pseudogenes have long been considered as nonfunctional and
assumed to evolve neutrally3. In recent years, a growing body of
evidence has strongly suggested that individual pseudogenes play
critical roles in human diseases such as cancer4,5. For example,
NANOG and OCT4 are essential transcription factors for the
maintenance of pluripotency in embryonic stem cells6,7, while
their pseudogenes, NANOGP1 and POU5F1P1, are aberrantly
expressed in human cancers8. Poliseno et al.9 showed that the
pseudogenes of key cancer genes (for example, PTENP1 and
KRASP1) can regulate the expression of their wild-type (WT)
cognate genes by sequestering miRNAs. More recently,
Kalyana-Sundaram et al.10 performed the first genome-wide
characterization of pseudogene expression in human cancers
using the RNA-seq approach and revealed a considerable number
of pseudogenes with a lineage- or cancer-specific expression
pattern. These studies provide key insights into the potential role
of transcribed pseudogenes in tumour biology. However, due to
the limited number of patient samples surveyed in previous
studies, the biomedical significance of pseudogene expression in
cancer cannot be fully assessed. In particular, it remains unclear
whether pseudogene expression can effectively characterize the
tumour heterogeneity within a specific cancer type and represent
a meaningful dimension for patient stratification. Therefore, it is
essential to perform a systematic analysis across large patient
sample cohorts to evaluate the potential clinical utility of
pseudogene expression.

Taking advantage of large-scale RNA-seq transcriptomic
data recently made available from The Cancer Genome Atlas
(TCGA) project, we developed a computational pipeline and
characterized the pseudogene expression profiles of a large
number of patient samples in a wide range of cancer types. With
this unprecedented dataset, we first identified differentially
expressed pseudogenes among established tumour subtypes and
demonstrated the predictive power in classifying clinical tumour
subtypes of endometrial cancer. Then we examined the
biomedical relevance of the tumour subtypes revealed by
pseudogene expression and assessed the potential clinical utility
of pseudogene expression subtypes in terms of predicting patient
survival. Taken together, our results indicate that expressed
pseudogenes represent an exciting paradigm for investigating
cancer-related molecular mechanisms and discovering effective
prognostic biomarkers.

Results
Overview of pseudogene expression in multiple cancer types.
To comprehensively detect expressed pseudogenes and quantify
their expression levels in human cancer, we developed a com-
putational pipeline, as shown in Fig. 1. First, we combined the
latest pseudogene annotations from the Yale Pseudogene data-
base11 and the GENCODE Pseudogene Resource2 and filtered
those pseudogene exons overlapped with any known protein-
coding genes. Second, to address the issue of potential cross-
mapping between pseudogenes and their WT-coding genes,
we evaluated the sequence uniqueness of each exon of a
pseudogene12, and only retained those pseudogenes containing
exon(s) with sufficient alignability for further characterization
(Methods). Third, we filtered those reads mapped to multiple
genomic locations from TCGA BAM files. Through analysing
more than 378 billion RNA-seq reads, we measured the
expression levels of 9,925 pseudogenes (based on the regions of

16,892 pseudogenes
(32,077 exons)

RNA-seq BAM files of
2,808 TCGA samples

Filter reads mapped to multiple
genomic locations

Quantify pseudogene expression

Yale
pseudogene.org

(version 73)

GENCODE
gencodegenes.org

(version 18)

Filter exons with an alignability score < 0.95

9,925 pseudogenes
(14,897 exons)

15,861 pseudogenes
(28,302 exons)

Filter pseudogene exons overlapped with
coding genes

Figure 1 | A computational pipeline to quantify the expression of pseudogenes from TCGA RNA-seq data. First, we combined the latest pseudogene
annotations from the Yale Pseudogene database and the GENCODE Pseudogene Resource, and filtered those pseudogene exons that overlapped with any
known protein-coding genes. Second, we evaluated the sequence uniqueness of each exon of a pseudogene, and only retained those pseudogenes
containing exon(s) with sufficient alignability for further characterization. Third, we filtered those reads mapped to multiple genomic locations from TCGA
BAM files.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4963

2 NATURE COMMUNICATIONS | 5:3963 | DOI: 10.1038/ncomms4963 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.
•  pseudogene expression level 
•  coverage depth of RNA-seq 
•  mismatch distribution patterns between pseudogene and parental gene
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Quality control on using genome mappability maps 
to quantify pseudogene expression

RPKUM and RSEM [24], a commonly used transcript
quantification method. We computed the mean expres-
sion level across the TCGA dataset for each protein-
coding gene using both methods, then calculated the
correlation between the expression levels from the two
methods. The result showed good agreement between
RPKUM and RSEM values (Spearman correlation > 0.85),
indicating that RPKUM values provide a reliable method
for quantifying expression levels.
An important question is whether RPKUM values

computed from few mappable bases are trustworthy. To
investigate the robustness of the RPKUM metric, we
simulated RPKUM values by randomly sampling posi-
tions of genes that are completely mappable and then
using these sampled bases as the only mappable bases of
a gene in an RPKUM calculation. Genes spanning a wide
range of expression levels from 1 to 200 RPKMs were
used in the simulation. We performed the simulations

with 500, 100, and 50 mappable bases per gene. RPKUM
values computed from genes with as few as 50 simulated
mappable bases showed very strong agreement with the
true RPKM expression levels across the range of expres-
sion levels (ρ = 0.95). In addition, increasing the number
of mappable bases slightly increases the correlation be-
tween RPKUM and RPKM levels (ρ = 0.97 for 100 map-
pable bases and ρ = 0.99 for 500 mappable bases).
Figure 2A shows the distribution of transcriptome

mappability for protein coding genes and GENCODE v.
17 pseudogenes. As expected, pseudogenes are much
less mappable than protein-coding genes; the median
protein-coding gene mappability value is nearly 100% of
gene length, and the vast majority of genes are almost
completely mappable. In contrast, the median pseudo-
gene mappability value is around 80% of pseudogene
length. The distribution of pseudogene mappability is
approximately bimodal, with peaks near 10% and 90%. A
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Figure 2 Pseudogene mappability and read alignments. (A) Violin plot showing the distribution of gene and pseudogene mappability as a
percentage of gene length. The dot in the middle of each plot represents the median, and the black box is the interquartile range. (B) Pie charts
showing how many reads are removed by mappability filtering. From left to right: Fraction of all aligned reads that map to pseudogenes; fraction
of reads aligned to pseudogenes that are uniquely aligned; and fraction of reads uniquely aligned to pseudogenes that are also mappable.
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Transcribed pseudogenes

sizable fraction of pseudogenes are completely unmappable
(2169 out of 14942). Nonetheless, the majority of pseudo-
genes possess a significant fraction of mappable bases and
are thus accurately detectable using RPKUM expression
levels.
As expected, restricting the set of reads aligned to

pseudogenes to only those in mappable regions leads to
a dramatic reduction in the number of reads (Figure 2B).
On average, each sample contains nearly 10 million
reads mapped to pseudogenes, but our filtering process
leaves a set of just over 360,000 pseudogene reads per
sample. The surviving reads comprise a high-confidence
set that can be used to assess pseudogene transcription.

High-confidence breast cancer pseudogene transcripts
Using the GENCODE v. 17 pseudogene annotations, we
identified 2012 pseudogenes with evidence of transcription,
defined as genes with at least 50 mappable bases, 50 reads,
and 1 RPKUM in at least 1 sample (Additional file 1). The

majority of these pseudogenes occurred in only a small
number of samples (Figure 3A). However, a subset of the
pseudogene transcripts occurs in a large number of sam-
ples, including 94 pseudogenes that are transcribed in over
95% (n = 780) of the samples. To investigate the pseudo-
genes that are most likely to play a role in cancer biology,
we chose to focus the remainder of our analysis on pseudo-
genes that exhibited evidence of transcription in at least
10% (n = 80) of the samples; this set consists of 440
pseudogenes.
The GENCODE pseudogene decoration resource

(psiDR v. 0), assembled from a recent genome-wide
survey of pseudogenes using ENCODE data [3], pro-
vides useful information for an initial assessment of
the transcriptional potential of our pseudogene set.
Out of the set of 440 transcribed pseudogenes we
identified, 287 pseudogenes are annotated in psiDR
for a number of attributes, including pseudogene type,
parent gene, transcription evidence, open chromatin,
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Figure 3 Pseudogene occurrence in the TCGA breast cancer samples and overlap with ENCODE functional genomics annotations. (A)
Cumulative distribution function showing how many samples pseudogenes occur in. Approximately 65% of the 2,012 transcribed pseudogenes
occur in fewer than 20 samples. Roughly 25% of the pseudogenes occur in at least 80 samples. (B) Bar chart comparing the set of 287
pseudogenes transcribed in breast cancer with the full psiDR v. 0 annotation set. The asterisks indicate categories that are significantly enriched in
the set of 287 pseudogenes compared to the full set (p < 0.002, χ2 test).
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* Gencode 17 
* 2012 transcribed pseudogenes 
* 94 transcribed in 90% of samples 
* 440 transcribed in at least 10% samples 

—> 287 in psiDR
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Using pseudogene transcription to 
differentiate between cancer subtypes 

Three other interesting examples are shown in Figure 5.
A pseudogene of CASP4, a member of the caspase family
known to initiate apoptosis under certain conditions [27],
is expressed at higher levels in basal samples and down-
regulated in luminal A samples (Figure 5A). Interestingly,
the expression of the CASP4 pseudogene is lower in
tumor samples than normal, which is the expression pro-
file expected for a ceRNA that promotes CASP4 expres-
sion. Additionally, the CASP4 pseudogene was found to
be transcribed in the ENCODE analysis [3]. Another inter-
esting property of this unprocessed pseudogene is that it
shows alternative splicing—there appear to be multiple
isoforms represented in the reads covering the pseudogene
locus. Intriguingly, our analysis of potential ceRNA inter-
actions also indicated that the CASP4 pseudogene is posi-
tively correlated (ρ = 0.3) with expression of its parent
gene and shares a miRNA target site for hsa-mir-203 (see
next section for detailed summary of ceRNA investigation).
The CYP2F1 pseudogene is expressed at quite high

levels compared to most pseudogenes in the dataset, and
the average expression level in the luminal B subtype is
nearly five times the average expression in the basal sub-
type. The pseudogene is a unitary pseudogene, with no
clear parent protein-coding gene. However, it possesses
strong sequence similarity with the cytochrome P450
family of genes. It was previously demonstrated that
CYP2F1 is expressed in colorectal cancer and that ex-
pression in primary tumors correlated with correspond-
ing metastatic tumors in lymph nodes [28]. Like the
CASP4 pseudogene, the CYP2F1 pseudogene shows evi-
dence for multiple isoforms.
A pseudogene of the MSL3 gene shows nearly twice

the expression level in basal compared to luminal A
(Figure 5C). The processed pseudogene was found to be
transcribed in the ENCODE analysis. The MSL3 protein
is thought to play a function in chromatin remodeling
and transcriptional regulation, and it has been reported
as part of a complex that is responsible for histone H4
lysine-16 acetylation [29]. Furthermore, expression of
this pseudogene is correlated with the expression of its
parent gene (ρ = 0.3), and it is predicted to share target
sites for six different miRNAs (see next section for de-
tailed summary of ceRNA investigation).

A

B

Figure 4 Hierarchical clustering based on pseudogene
expression shows pseudogene association with breast cancer
subtypes. (A) Heatmap showing pseudogene expression profiles in
tumor and adjacent normal samples. High expression levels are
shown in light green, and low expression levels are shown in light
blue. Tumor samples are highlighted in red along the top of the
plot; adjacent normal samples are highlighted in green. (B) Heatmap
of pseudogene expression profiles in tumor samples. Samples
belonging to the basal subtype are highlighted in yellow along the
top of the plot.
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e.g. CASP4
A

B

C

Figure 5 (See legend on next page.)
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Functions of pseudogenic RNA

• competing endogeneous RNA 

• competition for the common pool of miRNAs thus 
regulation the parent’s expression as competitive 
endogenous RNA (ceRNA) —> in particular in cancer: 

• e.g. PTEN & KRAS
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 Pseudogene-parent gene and pseudogene-
miRNA pairwise correlations 

Two of these pseudogenes stand out as especially in-
teresting examples. A pseudogene of GBP1 and its par-
ent gene show statistically significant anti-correlation
with hsa-mir-199a, which has been shown to regulate
autophagy in breast cancer cells [33]. This pseudogene
was also found to be transcribed in the ENCODE ana-
lysis [3]. The parent gene GBP1 is known to be the me-
diator of the anti-proliferative effect of inflammatory
cytokines in endothelial cells [34], and is implicated in
several types of cancer according to GeneCards. In
addition, the GBP1 pseudogene shows strong positive
correlation with the expression of its parent gene across
the TCGA dataset (ρ = 0.82). Another interesting pseudo-
gene is SUZ12P1. This pseudogene and its parent gene
both show strong anti-correlation to hsa-mir-28. SUZ12P1
also shows moderate positive correlation with its parent
gene (ρ = 0.41). The parent gene, SUZ12, is a polycomb
group protein and part of the PRC2/EED-EZH2 complex,
an important epigenetic regulator that performs histone
methylation [35]. This gene is also frequently translocated
in endometrial stromal tumors, where it forms the JAZF1-
SUZ12 oncogene [36].
An interesting question is whether the genes that have

pseudogenes with ceRNA potential are functionally re-
lated. To investigate this question, we performed a Gene
Ontology (GO) term enrichment analysis using three

different sets of parent genes. The sets of genes used
were parent genes strongly correlated with a pseudo-
gene, parent genes whose pseudogenes was strongly
anti-correlated with a shared miRNA, and parent genes
participating in a putative gene-pseudogene-miRNA
ceRNA interaction as defined above. For each of these
sets of parent genes, we used the GOrilla tool with de-
fault settings to look for GO terms enriched in the set
compared to the background list of all parent genes. No
significantly enriched GO terms were found for any of
the 3 sets of interest, indicating that there is no clear
functional relationship among the parent genes in the
sets that we have identified.

Discussion
The recent paper by Han et al. that investigated pseudo-
gene expression in cancer [22] identified 748 pseudo-
genes transcribed in breast cancer, 547 of which showed
subtype-specific expression. Although the results of Han
et al. partially overlap with our own, our study is distinct
in two key ways: (1) we investigate the ceRNA potential
of pseudogenes transcribed in breast cancer, but Han
et al. do not and (2) we use a more detailed method for
measuring pseudogene transcription, designed to maximize
specificity. In an effort to avoid the artifacts that plague
pseudogene transcription detection, we designed our
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• Integrate miRNA target prediction with pseudogene, gene, and 
miRNA expression levels 

• 17 examples of pseudogenes with strong ceRNA potential 
• GBP1 pseudogene —> its parent gene is mediator of the anti-

proliferative effect of inflammatory cytokines in endothelial cells 
• significant anti correlation with hsa-mir-199a-2-5p and 

significant expression correlation with parent 

•  SUZ12P1 —> its parent gene is a polycomb group protein and 
part of the PRC2/EED-EZH2 complex; an important epigenetic 
regulator that performs histone methylation

 Transcribed pseudogenes with 
ceRNA potential
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Summary
• Mappability maps are useful in obtaining reliable 

results when quantifying pseudogene transcription, 
however the method will always be dependent of 
the data quality  

• Pseudogene transcription is a good marker for 
distinguishing between cancer types 

• Integrating pseudogene, gene and miRNA 
expression highlights ceRNA potential as 
pseudoRNA function in cancer

27



28



BRAF pseudogene
• overexpressed in various tumour types 

• regulates the expression parent gene through 
sequestration of shared miRNAs and BRAFP1   

• mediated elevation of BRAF may promote MAPK 
signalling and tumorgenesis. 

• murine Braf-s1 and B-Raf are targeted by 54 and 114 
miRNA families, 53 of which they have in common

• human BRAFP1 and BRAF are targeted by 60 and 48 
miRNA families, 40 of which are common to both
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Regulatory role for BRAF 
pseudogene

• expression of BRAF pseudogene in 
human and mice cancer cells, elevate 
the BRAF protein phosphorylation 

• ectopic expression of BRAF 
pseudogene increased the expression 
of its parent gene  
and  elevated the proliferation of 
DICER1-proficient mouse cells 
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Figure 1. The BRAF Pseudogene Regulates
BRAF in a Dicer1-Dependent Manner
(A) Western blot demonstrating increased BRAF

and pERK expression upon ectopic BRAF pseu-

dogene expression in mouse (NIH 3T3, left) and

human (PC9, right) cells.

(B) Western blot of B-Raffl/fl fibroblasts over-

expressing Braf-rs1 or control (yellow fluorescent

protein [YFP]) in the presence or absence of

Adeno-Cre infection.

(C) Increased proliferation of NIH 3T3 fibroblasts

upon ectopic Braf-rs1 expression.

(D) Increased proliferation of PC9 cells upon

ectopic BRAFP1 expression.

(E and F) Western blot (E) and proliferation assay

(F) of Dicer1FL/D and Dicer1D/D murine sarcoma

cells overexpressing Braf-rs1.

(G and H) Western blot (G) and proliferation assay

(H) of Dicer1WT and Dicer1Mut human HCT116

colon cancer cells overexpressing BRAFP1.

Error bars represent mean ± SD. *p% 0.05; **p%

0.01; ***p % 0.001. See also Figure S1.
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(A) Western blot demonstrating increased BRAF

and pERK expression upon ectopic BRAF pseu-

dogene expression in mouse (NIH 3T3, left) and

human (PC9, right) cells.

(B) Western blot of B-Raffl/fl fibroblasts over-

expressing Braf-rs1 or control (yellow fluorescent

protein [YFP]) in the presence or absence of

Adeno-Cre infection.

(C) Increased proliferation of NIH 3T3 fibroblasts

upon ectopic Braf-rs1 expression.

(D) Increased proliferation of PC9 cells upon

ectopic BRAFP1 expression.

(E and F) Western blot (E) and proliferation assay

(F) of Dicer1FL/D and Dicer1D/D murine sarcoma

cells overexpressing Braf-rs1.

(G and H) Western blot (G) and proliferation assay

(H) of Dicer1WT and Dicer1Mut human HCT116

colon cancer cells overexpressing BRAFP1.

Error bars represent mean ± SD. *p% 0.05; **p%

0.01; ***p % 0.001. See also Figure S1.
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(A) Western blot demonstrating increased BRAF

and pERK expression upon ectopic BRAF pseu-

dogene expression in mouse (NIH 3T3, left) and

human (PC9, right) cells.

(B) Western blot of B-Raffl/fl fibroblasts over-

expressing Braf-rs1 or control (yellow fluorescent

protein [YFP]) in the presence or absence of

Adeno-Cre infection.

(C) Increased proliferation of NIH 3T3 fibroblasts

upon ectopic Braf-rs1 expression.

(D) Increased proliferation of PC9 cells upon

ectopic BRAFP1 expression.

(E and F) Western blot (E) and proliferation assay

(F) of Dicer1FL/D and Dicer1D/D murine sarcoma

cells overexpressing Braf-rs1.

(G and H) Western blot (G) and proliferation assay
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0.01; ***p % 0.001. See also Figure S1.

Cell 161, 319–332, April 9, 2015 ª2015 Elsevier Inc. 321

BRAF pseudogene induced 
effects are depended on 

BRAF and Dicer1
30



was between 1.3 and 2.5 (Figure S2E). RNA-sequencing (RNA-
seq) analysis confirmed Braf-rs1 induction and found B-Raf:
Braf-rs1 ratios in a range similar to that determined by qPCR (Fig-

ure S2F and data not shown). Next, we determined the number of
molecules of miR-653, miR-134, andmiR-543 in TRE-BPSMEFs
by qPCR using standard curves. MiRNA expression was not
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Figure 2. The BRAF Pseudogene Functions as a miRNA Sponge
(A) BRAF 30 UTR-luciferase reporter assay in Dicer1WT and Dicer1Mut HCT116 cells expressing BRAFP1 or control (YFP).

(B) Luciferase reporter assay using the 30 UTRs of B-Raf and Braf-rs1 to analyze repression by the indicated miRNAmimics. miR141 serves as a negative control.

(C) Braf-rs1 sequesters miRNAs to regulate MRE-Luc reporter activity. HEK293T cells were co-transfected with MRE-Luc reporter constructs, the respective

miRNA mimics, and Braf-rs1-L277 or empty control L277 plasmids. The luciferase activity relative to a Luc reporter without MRE is shown.

(D) Luciferase activity measured in HEK293T cells co-expressing MRE-Luc reporters (Luc-653, Luc-134, or Luc-543) and wild-type or MRE mutant Braf-rs1 or

empty vector.

(E) qPCR showing tTA-induced Braf-rs1 expression in TRE-BPS MEFs.

(F) Western blot for B-Raf and pERK in tTA-infected TRE-BPS MEFs.

(G) Proliferation of TRE-BPS MEF1 shown in (F).

Error bars represent mean ± SD. *p % 0.05; **p % 0.01; ***p % 0.001. See also Figure S2.
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• Luciferase reported assay 

• 10 mouse miRNA significantly 
repressed the BRAF gene 
luciferase reporters in both 
mouse and human 

• variation in concentration as well 
as the potency of the miRNA 
affect the ceRNA crosstalk  
        —> most effective at low 
concentrations

BRAF pseudogene as ceRNA

was between 1.3 and 2.5 (Figure S2E). RNA-sequencing (RNA-
seq) analysis confirmed Braf-rs1 induction and found B-Raf:
Braf-rs1 ratios in a range similar to that determined by qPCR (Fig-

ure S2F and data not shown). Next, we determined the number of
molecules of miR-653, miR-134, andmiR-543 in TRE-BPSMEFs
by qPCR using standard curves. MiRNA expression was not
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Figure 2. The BRAF Pseudogene Functions as a miRNA Sponge
(A) BRAF 30 UTR-luciferase reporter assay in Dicer1WT and Dicer1Mut HCT116 cells expressing BRAFP1 or control (YFP).

(B) Luciferase reporter assay using the 30 UTRs of B-Raf and Braf-rs1 to analyze repression by the indicated miRNAmimics. miR141 serves as a negative control.

(C) Braf-rs1 sequesters miRNAs to regulate MRE-Luc reporter activity. HEK293T cells were co-transfected with MRE-Luc reporter constructs, the respective

miRNA mimics, and Braf-rs1-L277 or empty control L277 plasmids. The luciferase activity relative to a Luc reporter without MRE is shown.

(D) Luciferase activity measured in HEK293T cells co-expressing MRE-Luc reporters (Luc-653, Luc-134, or Luc-543) and wild-type or MRE mutant Braf-rs1 or

empty vector.

(E) qPCR showing tTA-induced Braf-rs1 expression in TRE-BPS MEFs.

(F) Western blot for B-Raf and pERK in tTA-infected TRE-BPS MEFs.

(G) Proliferation of TRE-BPS MEF1 shown in (F).

Error bars represent mean ± SD. *p % 0.05; **p % 0.01; ***p % 0.001. See also Figure S2.
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What happens in vivo?
• generation of transgenic allele mice containing the BRAF-rs1 

(mouse pseudogene) under the control of a doxyciline tet- 
response element  

• expression of BRAF-rs1 resulted in a lymphoid malignancy
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Figure 3. Braf-rs1 Expression In Vivo Results in a Lymphoid Malignancy
BPS, TRE-BPS; CAG-rtTA3 mice on Dox; control, TRE-BPS, or CAG-rtTA3 mice on Dox here and in all figures.

(A) Survival of BPS and control mice.

(B and C) Size (B) and weight (C) of BPS and control mouse spleens.

(D and E) Photomicrograph of a spleen from a control (D) and BPS mouse (E).

(F) Higher-magnification photomicrograph showing tumor cells in a BPS spleen.White arrowheads denote plasma cells, and black arrowhead highlights amitotic

figure.

(G) Quantification of Ki-67 staining.

(H–J) Flow cytometry-based quantification of splenic B220+ (H), CD3+ (I), and Gr-1+/Mac-1+ (J) populations.

(K) Size of control and BPS mouse lymph nodes.

(L and M) Flow cytometry-based quantification of B220+ (L) and CD3+ (M) populations in lymph nodes.

Error bars represent mean ± SD. See also Figure S3.
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Figure 3. Braf-rs1 Expression In Vivo Results in a Lymphoid Malignancy
BPS, TRE-BPS; CAG-rtTA3 mice on Dox; control, TRE-BPS, or CAG-rtTA3 mice on Dox here and in all figures.

(A) Survival of BPS and control mice.

(B and C) Size (B) and weight (C) of BPS and control mouse spleens.

(D and E) Photomicrograph of a spleen from a control (D) and BPS mouse (E).

(F) Higher-magnification photomicrograph showing tumor cells in a BPS spleen.White arrowheads denote plasma cells, and black arrowhead highlights amitotic

figure.

(G) Quantification of Ki-67 staining.

(H–J) Flow cytometry-based quantification of splenic B220+ (H), CD3+ (I), and Gr-1+/Mac-1+ (J) populations.

(K) Size of control and BPS mouse lymph nodes.

(L and M) Flow cytometry-based quantification of B220+ (L) and CD3+ (M) populations in lymph nodes.

Error bars represent mean ± SD. See also Figure S3.
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BRAF pseudogene is required for the 
development  and maintenance of 

malignancy

The ‘‘CDS’’ and ‘‘30 UTR’’ of Braf-rs1 Possess Oncogenic
Potential
Based on Braf-rs1’s ability to decoy miRNAs, we reasoned that
shorter fragments of Braf-rs1 may be able to crosstalk with

B-Raf through a subset of the shared miRNA pool. Such frag-
mentswould elicit similar phenotypes provided that the crosstalk
remains robust. Alternatively, different portions of Braf-rs1
may regulate distinct ceRNA networks and yield distinct,
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G H
I

Figure 5. Lymphomas Are Transplantable, Are Addicted to Braf-rs1 Expression, and Activate the MAPK Pathway
(A) Transplanted lymphoma cells infiltrating the spleen, liver, kidney, and lungs of NSG recipient mice.

(B) Spleen size measurements after Dox withdrawal.

(C–F) H&E staining (C and D) and Mum1 immunohistochemistry (E and F) of BPS and control mouse spleens depicted in (B) after Dox withdrawal.

(G) Immunohistochemical staining for B-Raf of lymphoma and adjacent normal white pulp in BPS spleen.

(H) Immunohistochemical staining for pERK of lymphoma and adjacent normal white pulp in BPS spleen.

(I) Percentage of liver infiltration by TRE-BPS; CAG-rtTA3; Pten+/! lymphoma cells transplanted into NSG mice in response to GSK1120212 treatment. Each

symbol represents a liver section, and each recipient mouse is color coded.

Error bars represent mean ± SD. ***p % 0.001. See also Figure S4.
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Which part of the pseudogene is actual culprit?  
CDS, UTR or the full length?  

• Hypothesis: since BRAF-rs1 is able to decoy miRNAs shorter 
fragments may be able to crosstalk with the parent gene using the 
shared miRNA pool. 
                    

B-Raf-unrelated phenotypes. To experimentally examine these
possibilities, we generated two additional Dox-inducible mouse
models overexpressing either the ‘‘CDS’’ or the ‘‘30 UTR’’ ofBraf-
rs1 (Figures S2C and S2D). TRE-BPSCDS and TRE-BPS30UTR

mice were crossed to CAG-rtTA3 mice and their offspring fed a
Dox-containing diet for 6 months. Remarkably, both TRE-
BPSCDS and TRE-BPS30UTR mice displayed enlarged spleens
and lymph nodes similar to full-length TRE-BPS mice (Figures
6A and 6B).Braf-rs13

0UTR overexpression resulted in splenomeg-
aly and reduced survival (Figures 6C and 6D and S5C) similar to
TRE-BPS mice. The histology and immunophenotype of lym-
phomas in TRE-BPS30UTR mice were similar to that of full-length
TRE-BPS animals (Figures 6E–6J, S5A, and S5B), indicating
that Braf-rs13

0UTR overexpression elicits a phenotype similar to
full-length Braf-rs1. TRE-BPSCDS mice developed lymphomas
with a reduced penetrance and aggressiveness compared to
mice overexpressing full-lengthBraf-rs1 orBraf-rs13

0UTR (Figures
6C and 6D and data not shown). Similarly, infection of TRE-
BPSCDS and TRE-BPS30UTR MEFs with tTA-pMSCV induced
Braf-rs1CDS and Braf-rs13

0UTR expression (Figure S5D), but only
Braf-rs13

0UTR elicited a significant effect on B-Raf expression

A B
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E F G
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Figure 6. Braf-rs1CDS and Braf-rs13
0UTR

Possess Oncogenic ceRNA Activity Similar
to Full-Length Braf-rs1
(A and B)Weights of spleens (A) and inguinal lymph

nodes (B) of the indicated mouse strains after

6 months on Dox.

(C) Survival of TRE-BPS30UTR and TRE-BPSCDS

mice.

(D) Table summarizing the penetrance, median

survival, and disease onset of TRE-BPS, TRE-

BPS30UTR, and TRE-BPSCDS mice.

(E) H&E staining of Braf-rs13
0UTR-induced lym-

phoma. White arrowheads indicate plasma cells,

and black arrowhead indicates mitotic figure.

(F–J) Immunohistochemical staining of Braf-

rs13
0UTR-induced lymphoma for Ki-67 (F), CD45R/

B220 (G), CD3 (H), Bcl6 (I), and Mum1 (J).

Error bars represent mean ± SD. See also

Figure S5.

and proliferation, while the Braf-rs1CDS-
induced effects were negligible (Figures
S5D–S5G). Braf-rs1CDS and Braf-rs13

0UTR

may regulate distinct ceRNA networks,
but the finding that the severity of the
phenotype elicited by the three Braf-rs1
variants correlated with their ability to
deregulate B-Raf provides compelling
support to the notion that Braf-rs1 oper-
ates as a proto-oncogenic ceRNA
through B-Raf in B cells.

BRAFP1 Is an Oncogenic ceRNA in
Human Cancer
Overexpression of human BRAFP1 in-
creased BRAF and pERK levels as well
as proliferation of human cells (Figures

1A, 1D, 1G, and 1H), suggesting that BRAFP1 may be an onco-
gene in human cancer. To explore this possibility further, we first
determined whether BRAFP1 is expressed in human DLBCL.
Interestingly, BRAFP1 expression was not found in primary hu-
man B cells (Figures 7A and S6A) but was detected in 30% of
human primary DLBCL and 20% of human DLBCL cell lines (Fig-
ures 7A and S6A). Similar observations have been made in the
thyroid, where BRAFP1 was expressed in some tumors, but
not in normal tissue (Zou et al., 2009). Moreover, BRAFP1 was
expressed in melanoma, prostate cancer, and lung cancer cell
lines (Figure S6A).
We next interrogated TheCancer GenomeAtlas’s (TCGA) cBio

Cancer Genomics Portal for genomic abnormalities of the locus
containing BRAFP1. As pseudogene data are not yet included in
TCGA, we focused our analysis on two protein-coding genes
flanking BRAFP1: ZDHHC15 and MAGEE2 (Figure S6B).
Notably, concurrent copy-number gains and amplification of
ZDHHC15 and MAGEE2 were observed in numerous cancer
types (Figure S6B). Importantly, BRAFP1 expression could be
detected in such cancer types (Kalyana-Sundaram et al.,
2012). Thus, both transcriptional mechanisms and genomic
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and proliferation, while the Braf-rs1CDS-
induced effects were negligible (Figures
S5D–S5G). Braf-rs1CDS and Braf-rs13

0UTR

may regulate distinct ceRNA networks,
but the finding that the severity of the
phenotype elicited by the three Braf-rs1
variants correlated with their ability to
deregulate B-Raf provides compelling
support to the notion that Braf-rs1 oper-
ates as a proto-oncogenic ceRNA
through B-Raf in B cells.

BRAFP1 Is an Oncogenic ceRNA in
Human Cancer
Overexpression of human BRAFP1 in-
creased BRAF and pERK levels as well
as proliferation of human cells (Figures

1A, 1D, 1G, and 1H), suggesting that BRAFP1 may be an onco-
gene in human cancer. To explore this possibility further, we first
determined whether BRAFP1 is expressed in human DLBCL.
Interestingly, BRAFP1 expression was not found in primary hu-
man B cells (Figures 7A and S6A) but was detected in 30% of
human primary DLBCL and 20% of human DLBCL cell lines (Fig-
ures 7A and S6A). Similar observations have been made in the
thyroid, where BRAFP1 was expressed in some tumors, but
not in normal tissue (Zou et al., 2009). Moreover, BRAFP1 was
expressed in melanoma, prostate cancer, and lung cancer cell
lines (Figure S6A).
We next interrogated TheCancer GenomeAtlas’s (TCGA) cBio

Cancer Genomics Portal for genomic abnormalities of the locus
containing BRAFP1. As pseudogene data are not yet included in
TCGA, we focused our analysis on two protein-coding genes
flanking BRAFP1: ZDHHC15 and MAGEE2 (Figure S6B).
Notably, concurrent copy-number gains and amplification of
ZDHHC15 and MAGEE2 were observed in numerous cancer
types (Figure S6B). Importantly, BRAFP1 expression could be
detected in such cancer types (Kalyana-Sundaram et al.,
2012). Thus, both transcriptional mechanisms and genomic
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• both CDS and UTR constructs have shown phenotypic changes 
• only the BRAF-3’UTR had a significant effect on the parent gene 

expression and proliferation 
• no significant effect from BRAF-CDS 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BRAFP1 in human cancer
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Figure 7. BRAFP1 in Human Cancer
(A) Percentage of primary human B cells, primary human DLBCL, and human DLBCL cell lines expressing BRAFP1 as determined by qPCR analysis.

(B and C) Positive correlation of BRAFP1 and BRAF expression in human DLBCL primary tumors (B) and cell lines (C).

(D–G) Western blot for BRAF and pERK in OCI-Ly18 (D), H1299 (E), PC9 (F), and OCI-Ly1 (G) cells in response to BRAFP1 silencing.

(H–K) Proliferation of OCI-Ly18 (H), H1299 (I), PC9 (J), and OCI-Ly1 (K) cells in response to BRAFP1 silencing.

(L) Western blot for BRAF and pERK in OCI-Ly1 cells overexpressing BRAFP1.

(legend continued on next page)
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• experiments in human cell lines 
indicate the BRAFP1 may 
operate as ceRNA to regulate its 
parent expression 

• knockdown of BRAFP1 in cancer 
cells reduced the expression of 
BRAF 

• silencing BRAFP1 reduced the 
levels of mRNA levels in some 
but NOT all cell lines —> cell 
line specificity
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Figure 7. BRAFP1 in Human Cancer
(A) Percentage of primary human B cells, primary human DLBCL, and human DLBCL cell lines expressing BRAFP1 as determined by qPCR analysis.

(B and C) Positive correlation of BRAFP1 and BRAF expression in human DLBCL primary tumors (B) and cell lines (C).

(D–G) Western blot for BRAF and pERK in OCI-Ly18 (D), H1299 (E), PC9 (F), and OCI-Ly1 (G) cells in response to BRAFP1 silencing.

(H–K) Proliferation of OCI-Ly18 (H), H1299 (I), PC9 (J), and OCI-Ly1 (K) cells in response to BRAFP1 silencing.

(L) Western blot for BRAF and pERK in OCI-Ly1 cells overexpressing BRAFP1.

(legend continued on next page)
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Figure 7. BRAFP1 in Human Cancer
(A) Percentage of primary human B cells, primary human DLBCL, and human DLBCL cell lines expressing BRAFP1 as determined by qPCR analysis.

(B and C) Positive correlation of BRAFP1 and BRAF expression in human DLBCL primary tumors (B) and cell lines (C).

(D–G) Western blot for BRAF and pERK in OCI-Ly18 (D), H1299 (E), PC9 (F), and OCI-Ly1 (G) cells in response to BRAFP1 silencing.

(H–K) Proliferation of OCI-Ly18 (H), H1299 (I), PC9 (J), and OCI-Ly1 (K) cells in response to BRAFP1 silencing.

(L) Western blot for BRAF and pERK in OCI-Ly1 cells overexpressing BRAFP1.

(legend continued on next page)
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Are BRAF pseudogenes the 
same in mouse and human?

• NO 

• evolved independently 

• are not in syntenic regions 

• however, both 3’UTR show high sequence similarity 
to parents 

• both mediate the expression of their parent gene 
by acting as miRNA sponges
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Pseudogenes regulate & interfere with the 
expression & activity of functional protein 

coding genes

• Through their pseudogene DNA sequence 

• Through their RNA product 

• Through their pseudo-protein/polypeptide product
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Functions of pseudo-protein

share miRNA response elements (MRE) and, therefore, regulate
each other’s expression by competing for the same pool of
miRNAs (figure 3E). Theoretically, any RNA that contains MRE
can serve as ceRNAs, or RNA sponges, including pseudogene
RNAs. Due to the fact that pseudogene RNAs harbour many of
the same MREs as their parental RNAs, they are perfect candi-
dates to form ceRNA pairs with their parental RNAs.
Additionally, pseudogene RNAs as ceRNAs regulating expres-
sions of genes other than parental genes have also been
reported.

For example, pseudogene OCT4-pg4 transcript was reported
to function as a ceRNA to regulate the expression of its parental
gene OCT4 by competing for miR-145 in liver cancer.
Moreover, the expression level of OCT4-pg4 is significantly rele-
vant with patients’ prognosis. Subsequent bimolecular experi-
ments suggested oncogenic role of OCT4-pg4 in HepG2 cell
line.46

PTENP1, a pseudogene of the famous tumour suppressor gene
phosphatase and tensin homolog (PTEN), was found to act as
ceRNA both parental-gene-dependently and parental-gene-inde-
pendently. PTENP1 was found to increase cellular levels of PTEN
mRNA in prostate cancer through competitively binding to
miR-17, miR-19, miR-21, miR-26 and miR-214 families, freeing
PTEN mRNA from miRNA-induced suppression.3 Intriguingly,
however, in PTEN knockout cancer cells, PTENP1 showed onco-
suppressive role as well, suggesting its oncosuppressive role is at
least partially parental-gene-independent. Subsequent study
revealed that PTENP1 knockdown leads to reduced levels of p21
in cancer cells.3 Considering that p21 is a target of the miR-17
family and that PTENP1 sequesters miR-17 families, it is reason-
able to infer that PTENP1 sequesters miR-17 and reverses
miR-17-mediated p21 suppression.

Given the ubiquitous ceRNA network in post-transcriptional
regulation3 42–46 and the prevalent existence of pseudogene in
human genome,2 it is sensible to expect an increasing number
of pseudogene-involved ceRNA networks identified in cancers.

As competitors for RBP or translational machinery
Due to the high similarity in sequence, pseudogene RNAs can
also compete with their parental counterparts for RBPs or trans-
lational machinery, and thus exert a regulatory role on the latter
(figure 3F).

The effects of competition between pseudogenic and parental
RNA for RBPs depend on functions of the RBP. For an

RNA-stabilising RBP, it would lead to reduced parental RNAs.
Conversely, for a RNA-degenerating RBP, it would lead to par-
ental RNAs upregulation (figure 3F). For example, MYLKP1, a
pseudogene of omyosin light chain kinase (MYLK) gene that
encodes non-muscle and smooth muscle myosin light chain
kinase (smMLCK) isoforms, inhibits parental RNA expression
and thus promotes cancer cell proliferation. Subsequent mech-
anism research revealed that coexpression of MYLKP1 with
smMLCK leads to decreased mRNA stability of smMLCK, sug-
gesting competition may exist between this pair of pseudogenic
and parental RNA for RNA-stabilising RBPs.47

Upon competition for translational machinery, it will result in
decreased translation of parental RNAs (figure 3F). ψCx43, for
example, is a pseudogene of connexin43 (Cx43), which encodes
a protein involved in intercellular communication and tumour
pathogenesis. In breast cancer, ψCx43 inhibits Cx43 translation
since the former binds to the translation machinery more effi-
ciently than the latter. Knockdown of ψCx43 leads to increased
levels of Cx43 mRNA and protein and thus increased cellular
sensitivity to chemotherapeutics.48

As chimeric RNAs
Various chimeric RNAs have been identified in multiple cancers
recently, with some of them expressed cancer-specifically.49–51

Herein, chimeric RNA refers to an RNA sequence that is tran-
scribed partially from pseudogenes and partially from other
genes, but is fused together as a whole (figure 2C).

For example, a chimeric RNA transcript composed of the first
two exons of KLK4 and the last two exons of pseudogene
KLKP1 has been identified in prostate cancer.15 52 This chimeric
RNA was highly expressed in 30%–50% of prostate cancer
tissues, with barely any expression in benign prostate or other
tissues, suggesting a cancer type-specific and tissue-specific
expression pattern. However, whether this chimeric RNA can
be translated into protein, or how it functions in prostate
cancer, remain unclear.

Functions of pseudogenic protein
By definition, pseudogenes are gene loci harbouring premature
stop codons, indels or frameshift mutations that abrogate their
translation.3 In reality, however, though the majority of pseudo-
genes have lost protein-coding ability, a small handful of pro-
cessed pseudogenes retain or regain this ability. The first
pseudogenic protein was discovered in 2002, namely PGAM3, a

Figure 4 Functions of pseudogenic
protein. Pseudogenic protein can be
fully functional (A), partially functional
through interaction with parental
protein (B) or as antigenic peptide (C).
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Cancer pseudogenes…
• … can be used as biomarkers to differentiate between 

different types of cancer & also can be used as a prognostic 

• … account for (possibly) the key difference between 
aggressive and mild forms of cancer 

• … can regulate the expression of their parent genes but also 
of neighbouring protein coding genes  

• “The term “pseudo” implies sequence variance compared to 
the parental gene, not indicating pseudo function […] many 
pseudogenes perform real and indispensable functions in 
physical and pathological processes.”
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