Annotation Free Analysis of Recurrent Somatic Mutations

Jason Liu

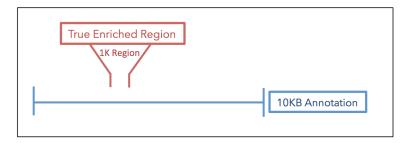
Mentor: JZ

July 29, 2015

Identifying Non-coding Driver Mutations

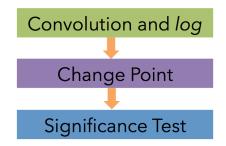
- Non-coding variants may serve as drivers in many cancer types:
 - ► TERT, PLEKHS1, WDR74 and SDHD promoters
 - miRNA binding sites
- Our goal is to identity regions in the noncoding regions that are highly mutated

Previous Efforts

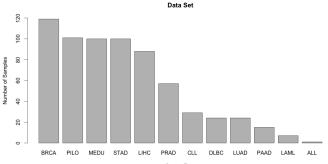

Two papers

- Weinhold, N. et al. Genome-wide analysis of noncoding regulatory mutations in cancer. Nature Genetics
- Melton, C. et al. Recurrent somatic mutations in regulatory regions of human cancer genomes.

Nature Genetics


Drawback

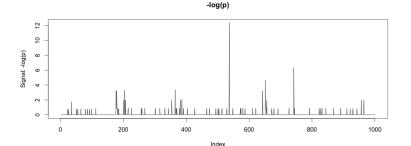
- Annotations low genome coverage
- Small Fixed Regions low mutation rate resolution
- Not dynamic, not true region


Annotation Free Analysis

- ► Goal:
 - Auto-cluster genome into regions of enriched mutations
- 3 Steps:

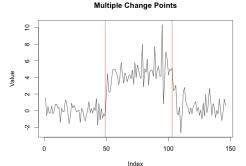
Dataset

- Somatic Mutations from:
 - ▶ 12 Cancer Types
 - ▶ 665 WGS total
- Includes Alexandrov et al data (WGS)

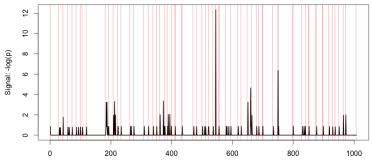

Cancer Type

Convolution and \log

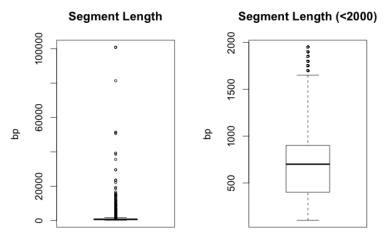
- Divide genome into 50bp bins
- Number of mutations in bin, k
- \blacktriangleright For a single cancer type \sim Binomial
- Convolution Method: Combine discrete probabilities over all cancer types
 - $\Pr(K \ge k) = 1 \Pr(K < k)$
 - linear combination of discrete probabilities
 - Result: single p-value for each 50bp bin


Convolution and \log

- For each *p*-value, take negative log $(-\log)$
- Creates signal for each 50bp bin, correlating to significance
- Pros
 - Amplify significant mutation count signal
 - Reduce signals that are less significant
 - Removes some noise found in mutation counts

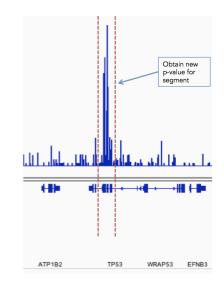

Change Point Detection

- Motivation:
 - Change points: determine start and end of region of interest
- Change in distribution before and after point
- Series of change points can be detected


Change Point Detection: Usage

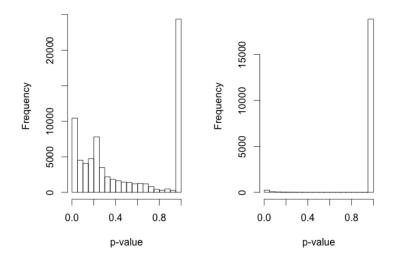
- ▶ p-values ~ Uniform
- $\log(p) \sim \text{Exponential}$
- Apply change point algorithm to dataset of log(p) for whole genome
- Example Result:

50kb Region: Chr17

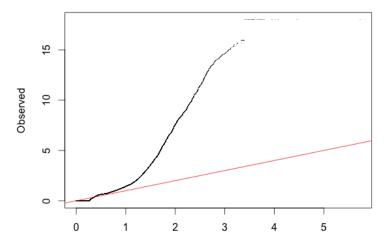

Change Point Segment Lengths

10/14

Statistical Testing


- Statistical testing on each segment
- Assess significance of segments determined by change point
- New *p*-value for segment (Convolution Method)

Segment P-values


Segment<1000bp

Segment>1000bp

Preliminary Results

chr17: p-value QQ Plot

Expected

Further Analysis

- Perform FDR or other p-value correction
 - Filter for significant segments
- Intersect significant segments with annotations
 - Expectation:
 - Intersections with known regulatory elements
 - Regions not contained in annotations, but also significant