FunSeq3: design, plan and results

Lou Shaoke

Department of Molecular Biophysics and Biochemistry loushaoke@gmail.com

July 22, 2015

Method

Tissue-specific enhancer-gene linkage:

- Data from "Learning three-dimensional regulation of gene expression" (Jianrong Wang, Manolis et al), contains enhancer-gene linkage from 56 tissues.
- Variants Sampling from 1KG
- FunSeq 2.1.2

Weights for discrete features

Motif breaking score fitting

Motif gain score fitting

Case study: Glioblastoma

- 1. exome somatic mutation (public data)
- 2. test on three set of gene-enhancer linkages:

Original enhancer-gene linkage;

E070 Brain_Germinal_Matrix

E071 Brain_Hippocampus_Middle

Results from different linkages set are the same

Distribution of Noncoding Score

Enrichment analysis

Sublist	<u>Category</u> :	<u>Term</u> :	⇔ RT Genes	Count	% ≑ <u>va</u>	Benjamint
	UP_TISSUE	Epithelium	RT	43	35.5 ^{2.9}	9E- 3.4E-7
	GNF_U133A_QUARTILE	Cardiac Myocytes_3rd	RT	86	71.1 8	DE- 3.9E-6
	KEGG_PATHWAY	Pathways in cancer	RT	18	14.9 8	^{7E-} 5.5E-6
	GNF_U133A_QUARTILE	PB-CD14+Monocytes_3rd	RT	97	80.2 7	^{LE-} 8.3E-6
	KEGG_PATHWAY	Small cell lung cancer	RT ==	10	8.3 7	BE- 1.3E-5
	SMART	<u>HLH</u>	RT ==	10	8.3 6	^{2E-} 8.3E-5
	KEGG_PATHWAY	Chronic myeloid leukemia	RT =	9	7.4 6	SE- 4.4E-5
	CGAP_SAGE_QUARTILE	vascular_high-grade comedo DCIS endothelium_3rd	RT	23	19.0 6	9E- 6.7E-4
	CGAP_SAGE_QUARTILE	stem cell_null_3rd	RT	22	18.2 5.1 6	IE- 8.8E-4
	CGAP_SAGE_QUARTILE	stem cell_null_3rd	RT	21	17.4 5	5E- 1.7E-3
	CGAP_SAGE_QUARTILE	brain 3rd	RT	23	19.0 5	^{2E-} 2.8E-3
	CGAP_SAGE_QUARTILE	kidney_normal_epithelium_3rd	RT	25	20.7 5	SE- 2.5E-3
	GNF_U133A_QUARTILE	leukemiapromyelocytic(hl60)_3rd	RT	43	35.5 ^{3.9}	9E- 1.0E-3
	GNF_U133A_QUARTILE	Whole Brain_3rd	RT	51	42.1 5	9.5E-4
	CGAP_SAGE_QUARTILE	stem cell_null_3rd	RT ====	22	18.2 5.0	DE- 2.9E-3
	KEGG_PATHWAY	Prostate cancer	RT =	8	6.6 5.8	BE- 1.2E-3
0	CGAP_SAGE_QUARTILE	stem cell_null_3rd	RT ===	18	14.9 5	BE- 3.4E-3
	CGAP_SAGE_QUARTILE	stem cell_null_3rd	RT	20	16.5 6.9	9E- 3.0E-3
	CGAP_SAGE_QUARTILE	vascular normal liver 3rd	RT ====	21	17.4 5	DE- 2.7E-3

Motif Gain

Variant	TF	diff <i>₅core</i>		
chr20:24565630:G:A	GATA	3.819		
chr4:175229838:A:G	ETS	3.271		
chr6:146350618:C:T	TEAD1	4.394		
chr6:30131441:C:T	ZNF354C	0.811		
chrX:153208532:C:T	ETS	4.395		

ETS high expression lead to glioma proliferation, and we found the motif gain of ETS followed by highly expression of ETS.

TEAD1, MAPK14 and SERP1 promote glioblastoma progression.

GATA, ZNF354C

Network visulization

Relative importance of features

Features are independantuse hirachical rule-based scoring to decrease the dependancy of different features, such as: motif gain/break versus gene-link(promoter, enhancer) etc however,the annotation and linkage is quite important, annotation currently cannot Todo:

- redefine enhancer-gene linkage
- code rewrite
- Ilexible on-the-fly weight updating, weight schema and relative importance.
- 4 Add more features, as indicated in nevar grants
- § Functional annotation by enhanced gene-based network/visualization

Function annotation

Extend the current output to a network-like view:

construct gene-based annotation and network, integrate with network analysis for the functional annotation of non-coding variants.

Motif break/gain; GENE-link,promoter, distal; hot/encode region;

