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TITLE NEEDED – suggested by KKY: Identification of 
allosteric residues by exploring alternative 
conformations in PBD 
 

ABSTRACT 
Throughout the early years of protein structure determination efforts, the primary 

objective has been the discovery of novel folds and structures. However, as the pace of 

novel fold discovery has slowed, and as structure determination has become easier, there 

is a growing degree of redundancy within the PDB, whereby a given fold or protein is 

represented by multiple structures. This redundancy has partially enabled structural 

genomics initiatives, and has also shifted the focus from novel fold discovery to 

understanding protein dynamics and function, especially in the context of their free 

energy landscapes and alternative conformations. Coincident with these trends, there is a 

growing appreciation of the role that allostery plays in protein behavior, and it has been 

proposed that allostery is at play in virtually all proteins (Gunasekaran et al, 2004; Tsai et 

al, 2014). Herein, we describe a workflow to automate the identification structures that 

occupy alternative energetic minima, and apply this framework to the wealth of data 

available in the PDB. Using the proteins identified by this scheme, we employ two 

complementary approaches in attempting to identify the key residues that might mediate 

allostery or otherwise function as significant regulatory sites in the context of 

conformational change. One approach is a refinement of the binding leverage concept 

introduced by Mitternacht et al to identify essential patches on the surface, and the 

second is a network-based method employing models of conformational transitions to 

identify internal residues, some of which may link the surface patches. Notably, these 

complementary methods are mechanistic in nature, in contrast to relying on conservation 

or biophysical properties of the individual residues. We demonstrate that the sites 

identified are generally conserved (both across species and within human populations), 

and identify cases in which these sites coincide with human disease loci. Finally, we 
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provide a user-friendly interface to perform these predictions on submitted protein 

structures. 

 

INTRODUCTION 
Early models of protein structure and function were largely static in nature: the 

extent to which dynamics and conformational heterogeneity play essential roles in 

functionality were largely underappreciated until well after the initial development of the 

PDB. This static conception of protein structure was partially a consequence of the 

individual snapshots provided by X-ray crystallography, as well as the lack of a 

consistent unifying principle that would encompass both the importance of structure-

function relationships as well as the simultaneous need for proteins to change behavior in 

response to changing physiological contexts. This static conception of structure is 

underscored, for instance, by early descriptions of enzyme-substrate interactions as 

proceeding through lock-and-key mechanisms [[ref]], as well as the widely held view that 

allosteric mechanisms are restricted to a very limited set of systems [[ref]]. 

The accumulation of X-ray structures necessitated the development of the PDB, 

which largely served to provide information on individual protein structures. The guiding 

principle was that a given structure dictates function, and it was this idea that motivated 

the concept of protein folds as a means of cataloguing proteins on the basis of common 

structural features. One or very few structures were available for a given protein.  

However, by the time novel fold discovery began to slow, the notion of protein 

structures as static entities had been evolving into one in which proteins are highly 

dynamic, with populations of configurational states being dictated by their relative 

energies. This evolving intuition of proteins as dynamic entities that constitute ensembles 

of related structures was aided by newer experimental methods for structure 

characterization (such as NMR), as well as the need to rationalize allosteric behavior in 

certain systems, whereby regulatory information is transmitted across distant regions 

within the protein structure. The conceptual groundwork for this new understanding of 

proteins as structurally heterogeneous yet functionally specific macromolecules was 

provided by energy landscape theory (Bryngelson et al, 1995). 
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The free energy landscape is defined as a function that maps all states along the 

protein-folding pathway (as well as all conformational sub-states within the fully-folded 

protein) to a particular energy. Under this framework, structural differences and 

functional specificity are now compatible: the protein is ‘funneled’ by the landscape to 

adopt one of a limited number of conformations, with each conformation imparting 

distinct functional properties. In the context of the folded protein, this framework is 

useful for rationalizing the relative populations of conformations under a given set of 

conditions (Nussinov et al, 2015). 

Notably, in addition to the conformations exhibited by an ensemble of structures, 

the underlying energetic landscape itself is dynamic in nature: allosteric signals or other 

external changes may actually reconfigure and reshape the landscape, making previously 

high-energy configurations more favorable, for instance, thereby shifting the relative 

populations of states within an ensemble (Tsai et al, 1999). Thus, energy landscape 

theory also provides the conceptual underpinnings necessary to describe how proteins 

change behavior in under changing conditions and stimuli. 

In addition to being facilitated by newer experimental methods, a need to describe 

allosteric behavior, and the introduction of energy landscape theory, this growing 

appreciation for dynamic behavior and the importance of conformational heterogeneity is 

being facilitated by a saturation in the number of folds (Supp. Fig. 1a) and a growing 

trend toward sequence redundancy within the PDB. Such redundancy is represented, for 

instance, when the same protein is structurally resolved under different conditions, 

potentially resulting in alternative conformations. This redundancy has also aided 

structural genomics initiatives (for cases in which template-based modeling is used to 

predict the structure of a protein that would otherwise be difficult to crystallize; 

Ashkenazy et al, 2011), in addition to motivating efforts to catalogue and model 

conformational changes on a database-wide scale (Gerstein et al, 1998; Krebs et al, 2000; 

Echols et al, 2003; Flores et al, 2006). 

This growing redundancy shifts the emphasis from static macromolecular 

architectures to structural heterogeneity and ensembles – a priori, X-ray crystal structures 

constitute proteins in energetic wells, and may thus provide snapshots of alternative 

conformations that, in turn, exhibit different functional characteristics (such as different 
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catalytic rates or ligand specificities). As the volume of crystal structures continues to 

expand, there is a growing need and opportunity to leverage this data to identify 

alternative conformations, and to thus more comprehensively elucidate their energetic 

landscapes and modes of regulation. 

Given that a primary driving force behind shaping the evolution of these 

landscapes is the need to impart allosteric regulation, the mechanisms responsible for 

allostery and conformational change in general have been given greater attention. An 

allosteric mechanism may involve the modulation of large-scale motions upon binding of 

an effector ligand, with this modulation resulting in changes within the dynamic behavior 

of a surface site very distant from the effector-binding site. It may also entail changes in 

how different sub-regions within a protein interact, with some allosteric signals 

enhancing mutual interactions between regions, and other signals dampening such 

interactions. 

The elucidation of allosteric behavior in the context of such conformational shifts 

has traditionally been obtained through experiments on proteins that are limited in 

number, size, or both. Such studies [[cite Ranganathan, maybe also MD studies, others]] 

achieve high accuracy and yield valuable insights, but the limitations in scope and 

applicability of in-vitro studies on individual systems have made the systematic study 

across thousands of proteins infeasible.  

 As allostery is often accompanied by changes in shape (and vice-versa), 

identifying and discriminating between alternative conformations aids in selecting many 

of the proteins that may employ allostery as fundamental mechanisms of their regulation 

[[cite]]. Changes in global conformation and dynamics may constitute allosteric 

regulation, for instance, when the inactive state of an enzyme is rendered more stable 

upon the binding of an inhibitor at a site that is distant from the active center.  

Motivated by these ideas, we develop and apply a framework to identify instances 

of alternative conformations, and apply this method to the entire PDB. We then 

determine sites within the protein that could potentially affect the thermodynamic 

stability of these conformational states in a computationally tractable manner. 

Specifically, allosteric regulation is usually imparted by a small subset of residues within 

a given protein: these may constitute a set of residues on the protein surface (such as an 
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effector binding site) or a channel of residues within the interior that are responsible for 

linking distal sites. A mechanistic approach is applied for identifying surface residues 

that may be allosterically significant, and we apply a dynamical networks-based 

community analysis to identify residues that may be essential for transmitting allosteric 

information, most of which are internal to the protein. The sites identified are generally 

conserved, both across species and even within human populations. Several of our 

identified sites correspond to human disease loci for which no clear mechanism had 

previously been proposed. Finally, our pipeline is made available to the public through a 

server hosted by our group, through which users may submit their own structures for 

analysis. 

 

RESULTS 
High-Throughput Identification of Structures in Distinct Energetic Wells 

To build the high-confidence dataset of conformational changes, we use a 

generalized approach to leverage the wealth of data in the PDB for systematically 

identifying proteins that occupy alternative energetic wells. It may be that a subset of 

these proteins do not exhibit allosteric behavior as part of their native functionality within 

cells, but the multiple energetic minima captured in their crystal structures may 

nevertheless be exploited for protein engineering [[cite C.J. Wilson, others]] or in 

pharmaceutical contexts [[cite]] (see proceeding discussion). 

As a first step toward culling a high-confidence set of alternative conformations, 

we perform multiple structure alignments (MSAs) across sequence-identical domains as 

well as proteins, with these structures having been filtered by resolution and other metrics 

to ensure quality (see Methods and Fig. 1 for details). We first worked with domains to 

probe for intra-domain conformational changes of functional significance. In addition, 

better structure alignments are generally possible at the domain level. The filtered dataset 

of domains contains 79% of all available crystal structures in the PDB (as of December 

2013). PDB-wide MSAs across sequence-similar groups reveal that, in agreement with 

expectation, average pairwise root-mean-square deviation (RMSD) values increase at 

lower levels of sequence identity, as do QH values (QH, an alternative metric to RMSD, 
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quantifies the degree to which residue-residue distances differ between two 

conformations, and is detailed in [[cite]] and Methods) (Supp. Fig. 2). 

After performing multiple structure alignments for each sequence-identical group 

of proteins, we use the resultant pairwise RMSD values to infer distinct conformational 

states. This is a non-trivial task, as considerable sources and degrees of variation are 

inherent in the MSA of each protein (sources of such variation may lie in either 

experimental limitations or the biology itself; examples include limited resolution, the 

fact that small differences in ensembles of structures may occur within a single energetic 

well, or slight differences in crystallization conditions). Thus, in order to reduce false 

positives and confidently automate the identification of biologically relevant, large-scale, 

and truly distinct energetic wells, we apply a modified k-means clustering algorithm in 

order to assign each structure to a particular well within an MSA; structures that cluster 

together (i.e., exhibit low pairwise RMSD) constitute a given well (Fig. 2B; see 

Methods). 

This algorithm (termed K-means clustering with the gap statistic) identifies the 

ideal number of clusters (i.e., K) to describe a dataset in an automated way by 

comparison with a randomized null dataset. The algorithm is further detailed in methods 

and in (Tibsherani, 2001). Briefly, the K values obtained using this algorithm, which we 

take to represent the number of distinct energetic wells, is used to reduce the uncertainty 

associated with limited crystallographic resolution and the potential for a protein to 

exhibit subtle conformational heterogeneity within a single well.  

To validate the output generated by this clustering algorithm, we manually 

annotated the MSAs of several well-studied canonical allosteric systems. The gap statistic 

performed well in discriminating crystal structures that were manually determined to 

constitute alternative biological states. Some of the key systems we manually annotated 

include proteins that have been very well-studied and characterized in the literature, such 

as tyrosine phosphatase (Wiesmann et al, 2004), DNA polymerase I (Xiang et al, 2006), 

adenylate kinase (Arora et al, 2007), Hsp ATPase (Liu et al, 2010), phosphoglycerate 

dehydrogenase (Grant et al, 1996), phosphofructokinase (Laurent et al, 1984), 

phosphotransferase (Kohl et al, 2005), and alanyl-tRNA synthetase (Dignam et al, 2011). 

For each of these cases, we manually determined that there were two main biological 
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states (for example, with and without bound ligand, Supp. Fig 4). The gap statistic 

correctly determined that the appropriate K value for these cases was two. 

Allosteric signals are often transmitted through inter-domain mechanisms. In 

some respects, proteins are preferable to domains in that a given protein often spans more 

than one domain. We confirmed the performance of the gap statistic on several high-

scoring proteins, and the corresponding dendrograms are provided in the supplementary 

materials. 

 

Modified Binding Leverage to Identify Critical Residues on the Surface 

We use the high-confidence set of alternative conformations described above as 

the input to two complementary methods for predicting the residues that are most 

important in allosteric regulation and activity. In the first, binding sites on the protein 

surface (some of which may act as latent ligand binding sites) are identified using a 

modified version of the “binding leverage” framework for ligand binding site prediction 

developed by Mitternacht et al (Mitternacht et al, 2011, also detailed in Methods).  

Briefly, this method first entails using a series of Monte Carlo simulations to 

probe the protein surface (with the protein being represented with all heavy atoms) with 

an artificial ligand, thereby generating a series of candidate sites. Each candidate site is 

then scored on the basis of the degree to which the occlusion (with the artificial ligand) 

disrupts the large-scale motions of the protein (Fig. 1, bottom left). The main 

modifications to the formalism described by Mitternacht et al include the inclusion of 

heavy atoms in the protein during the Monte Carlo search, in addition to an automated 

means of thresholding the list of ranked sites to give a more selective set of candidate 

sites. This approach results in finding an average of ~2 distinct binding sites per domain 

(Supp. Fig. 5a; see Methods for the details on defining distinct sites).  

Surface residues important to allosteric behavior may either be the binding sites 

for allosteric ligands or the allosteric ‘sinks’ in signal transmission (that is, the sites 

affected by binding to a ligand in a distal region). In order to evaluate the extent to which 

this method identifies sites of the former category, we studied the ligand-binding sites in 

a set of 12 well-studied systems for which the crystal structures of both the holo and apo 

states are available (Supp. Table 1). We find that, out of the 12 canonical systems 
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studied, we positively identify an average of 60% of the known ligand-binding sites. It 

has previously been shown that it is especially difficult to identify the sites in aspartate 

transcarbamoylase (Mitternacht et al, 2011); excluding aspartate transcarbamoylase from 

this analysis results in finding an average of 65% of known ligand-binding sites. We note 

that these statistics are achieved by covering an average of 15% of proteins’ residues 

(Supp. Table 2). For most proteins, selecting 15% of the residues is conservative -- more 

than 15% of the proteins’ residues are involved in ligand binding for most proteins (Supp. 

Table 3). 

We note that, for those sites that constitute false positives (sites which we predict 

to be important for allostery, but which nevertheless do not meet the thresholds needed 

for defining a known ligand binding sites), we often find overlap with sites of biological 

interest, suggesting that the identified sites often lie within the neighborhood of known 

biological sites (Supp. Table 4). We also emphasize that our high-scoring sites which do 

not correspond to known biological ligand-binding sites may nevertheless correspond to 

latent sites (Bowman et al, 2015): even if no known biological function is assigned to 

such regions, the occlusion of such sites may still disrupt large-scale motions. Such latent 

allosteric pockets may be useful in the context of drug development and targeting. 

Conservation of Surface Sites Across Species 

 Residues that lie in our prioritized sites tend to be more conserved, on average, 

than other residues of the same protein with the same degree of burial (Fig. 3C). (Here, 

the degree of each residue, representing the number of other residues with which that 

residue interacts, is used to characterize burial). The conservation is evaluated using 

ConSurf scores (Glaser et al, 2003; Landau et al, 2005; Ashkenazy et al, 2010; Celniker 

et al 2013), and these results constitute the distribution of ConSurf scores for proteins in 

our entire dataset. Here, BL-critical residues had an average ConSurf score of -0.131, 

whereas non-critical residues with the same degree distribution (i.e., same degree of 

burial within the protein) had an average score of +0.059, demonstrating that critical 

residues tend to be more conserved. The significance of the disparity was < 2.2e-16 

(using a Wilcoxon rank sum test). 

1000 Genomes-Derived Conservation of Surface Sites Amongst Modern-Day Humans 
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Although we observe a general trend in which rare alleles coincide with surface 

critical residues, the trend is not significant at the level of 0.05 (Fig. 3B). The lack of 

significance may partly be a consequence of the limited number of proteins (44) in our 

dataset that are hit by 1000 Genomes SNPs. In addition, we note that the long tail 

extending to lower allele frequencies for critical residues may be indicative of the 

possibility that only a subset of residues in our prioritized binding sites are essential (i.e., 

each one of our sites has 10 residues, but there may only be a small subset of these 10 

which are important allosterically, thus explaining the long tail toward lower DAF values 

in Fig. 3B). 

In addition to examining the distribution of derived allele frequencies, we also 

examined the fraction of rare alleles (defined as the ratio of the number of low-DAF 

SNPs to all SNPs in a given protein) in critical residues and non-critical residues for 

those proteins for which at least 1 critical residue and 1 non-critical residue is hit by a 

1000 Genomes non-synonymous SNP. Using different DAF cutoffs (0.05% and 0.01%) 

to define rarity, the results for surface residues are summarized in Supp. Fig. 7. Using a 

rarity threshold of 0.05% (0.01%), the fraction of rare SNPs in critical residues exceeds 

that in non-critical residues for 6 (16) structures (in green), whereas the fraction of rare 

alleles in non-critical surface residues exceeds that in critical residues for only 2 (8) 

structures (in gray). 

ExAC-Derived Conservation of Surface Sites Amongst Modern-Day Humans 

 In addition to evaluating conservation within human populations using 1000 

Genomes data, we performed an analogous analysis using the data provided by the 

Exome Aggregation Consortium (Exome Aggregation Consortium, abbreviated ExAC). 

In the context of the current study, the primary difference between 1000 Genomes and 

the ExAC set of SNPs is a difference of volume: ExAC confers data on many more non-

synonymous variants that does 1000G. The results obtained using ExAC (in which we 

use AF values instead of DAF – see Methods) are similar to those using 1000 Genomes 

data (Supp. Fig. 10). Although the mean allele frequencies for surface-critical (BL) 

residues are higher than those of non-critical residues (Supp. Fig. 10, left), there is a skew 

toward lower allele frequencies for critical residues relative to non-critical residues. We 
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also point out that the median allele frequency for surface-critical residues is substantially 

lower than that for non-critical residues. 

 When measuring human-specific conservation using the fraction of rare alleles, 

we find that surface residues are generally more conserved than other residues, and this 

result holds for different thresholds for defining rarity (Supp. Table 7). For surface-

critical residues, 9.5% (30.0%) of the structures studied were such that the fraction of rare 

alleles in critical residues exceeded that for non-critical residues using a threshold of 

0.005 (0.001), whereas the opposite trend was observed in only 6.0% (13.0%) of eligible 

structures. 

 Finally, we note that SIFT and PolyPhen scores of critical and non-critical 

residues hit by variants from the ExAC dataset were also evaluated. No significant 

disparity was observed between critical and non-critical residues when evaluating SIFT 

scores (Supp. Fig. 11, left). However, surface critical residues were shown to exhibit 

significantly higher PolyPhen scores relative to non-critical residues (Supp. Fig. 12, left; 

note that higher PolyPhen scores denote more damaging variants). 

 

Identifying Internal Residues for Transmitting Allosteric Information Using 
Dynamical Network Analysis 

The binding leverage framework described above captures hotspot regions close 

to or at the surface of the protein, but the Monte Carlo search employed is a priori 

excluded from the protein interior. Thus, motivated by previous studies focused on 

individual proteins, such as tRNA synthetase (Sethi et al, 2009), essential metabolic 

enzymes (Manley et al, 2013), and the HIV envelope glycoprotein (Sethi et al, 2013), we 

apply communities-based network analyses to the protein complexes of our dataset to 

identify important internal residues, in addition to residues that may be closer to the 

surface, and note that the identification of residues in the protein interior are often needed 

to bridge the gap between surface sites.  

The nodes of the network represent individual residues, and edges between these 

nodes are drawn between residues that lie within a mutual proximity of 4.5 Angstroms. 

The first step in this analysis is to define the communities within the network. A given 

“community” refers to a group of residues that are highly inter-connected, but which have 
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minimal edges to residues outside the community (see Methods). We have tried applying 

both an information-theory based method (termed “Infomap”, Rosvall et al, 2007) and the 

classical Girvan-Newman (GN) formalism (Girvan et al, 2002) to decompose networks of 

interacting protein residues into communities (see Methods), and find that GN is more 

appropriate (see Supplemental discussion). The results described here are thus based on 

the GN formalism.  

In order to recapitulate the contributions of various edges to information flow 

over the course of conformational changes, edges are weighted on the basis of the 

correlated movements using anisotropic network models: if two contacting residues 

exhibit a high degree of correlation, then this implies that the motion of one residue may 

tell us about the motion of the other residue. This suggests a strong flow of energy or 

information between the two residues, and when calculating the path distance between 

the two residues, a short distance is assigned (this lowers the shortest paths in which this 

pair of residues participate, thereby favorably weighting this pair as a potential bottleneck 

within the network– see Methods for more details). Finally, once all connections between 

contacting pairs are appropriately weighted and the communities are assigned, a residue 

is deemed to be critical for allosteric signal transmission if it is involved in a highest-

betweenness edge connecting two distinct communities (see Methods). For instance, 

applying this method to threonine synthase results in the community partition and 

associated critical residues highlighted in Supp. Fig. 6. 

Conservation of GN Residues Across Species 

Residues which function as essential allosteric conduits of information in 

mediating signal transduction from one site of a protein to another are likely to be more 

conserved, on average, than residues which lie outside of such channels. Thus, as for the 

case with BL critical residues, as a validation of our method, we use the ConSurf server 

to evaluate conservation of residues identified as critical by GN, and compare these 

conservation scores to those of non-critical residues with the same degree (Fig. 3F).  

Again, each point in this plot represents the mean ConSurf score for all residues 

within one of two classes (the set of GN critical residues or the randomly-selected set of 

non-critical residues with the same degree) within a particular protein structure. The 

randomly-selected non-critical set of residues was chosen in a way such that, for each 
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critical residue with degree K, a randomly-chosen non-critical residue with the same 

degree K was included in the set. The distribution of non-critical residues shown is very 

much representative of the distribution observed when re-building the random set many 

times.  

GN critical residues are generally found to be more conserved than non-critical 

residues with the same degree of burial: the average ConSurf score for GN critical 

residues is -0.179, whereas that for non-critical residues with the same degree is -0.102 

(p=3.67e-11, Wilcoxon rank sum test). 

1000 Genomes-Derived Conservation of GN Residues Amongst Modern-Day Humans 

The residues we identify as critical are shown to be under negative selection in the 

context of modern-day humans. Our analyses of variants identified from The 1000 

Genomes shows that GN-critical residues occur at sites with significantly lower DAF 

values (Fig. 3E). 

As with surface critical residues, we also analyzed the fraction of rare alleles in 

critical network residues and non-critical residues for those proteins for which at least 1 

critical residue and 1 non-critical residue is hit by a 1000 Genomes non-synonymous 

SNP. The corresponding results are given in Supp. Fig. 8. Using a rarity threshold of 

0.05% (0.01%), the fraction of rare SNPs in critical residues exceeds that in non-critical 

residues for 10 (20) structures (in green), whereas the fraction of rare allele in non-critical 

surface residues exceeds that in critical residues for only 0 (1) structure (in gray). 

ExAC-Derived Conservation of GN Residues Amongst Modern-Day Humans 

 As with surface-critical residues, we also evaluated the conservation of GN 

critical residues using data from the ExAC consortium. As with our results using 1000 

Genomes data, GN-critical residues exhibit a significantly lower allele frequency than do 

non-critical residues (Supp. Fig. 10, right). 

 When measuring human-specific conservation using the fraction of rare alleles, 

interior-critical residues are also more conserved than non-critical residues at varying 

thresholds for rarity (Supp. Table 7). 15.5% (41.1%) of the structures studied were such 

that the fraction of rare allele in critical residues exceeded that for non-critical residues 

using a threshold of 0.005 (0.001), whereas the opposite trend was observed in only 0% 

(3.3%) of structures. 
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 SIFT and PolyPhen scores of GN-critical residues hit by variants from the ExAC 

dataset exhibited trends similar to those observed for surface-critical residues: no 

significant difference was seen between GN-critical and non-critical residues with respect 

to SIFT scores (Supp. Fig. 11, right). However, GN-critical residues were shown to 

exhibit significantly higher PolyPhen scores relative to non-critical residues (Supp. Fig. 

12, right), suggesting that modifications to these critical residues are significantly more 

damaging. 

 

Critical Residues that Coincide with Human Disease Variants 
Within our dataset of high-confidence alternative conformations, there are 176 

distinct human proteins for which transcript IDs are available. Within this set of 176 

distinct proteins, we identify 21 distinct proteins that are hit by known disease mutations, 

as collected from HGMD (Fig. 4A) (Stenson et al 2014). Many of these proteins have 

been studied for their important biomedical significance. Examples include hemoglobin, 

phenylalanine hydroxylase, p53, and Ras (a full list of the affected PDBs, along with the 

afflicted residues, are provided as Supp. Files 2 and 3).  

For 15 of this set of 21 proteins, the sites of HGMD mutations coincide with 

residues which lie in prioritized binding leverage surface residues. An example is Ras, 

shown in Fig. 4B). Likewise, 10 proteins have critical GN residues that overlap with sites 

of HGMD mutations. An example of such a system is p53, shown in Fig. 4C. The lists of 

structures for which prioritized binding sites or GN residues are affected by HGMD are 

provided in Supp. Files 4 and 5. 

We note that, for several proteins, our identified critical residues coincide with 

known disease loci for which the mechanism of pathogenicity had been unclear (that is, 

some of our identified critical residues coincide with HGMD SNP locations, for which 

the pathogenic mechanism of the amino acid change associated with the HGMD is not 

obvious, but for which an allosteric mechanism provides a plausible means of 

understanding why the amino acid change may disrupt protein function).  

A case-in-point is provided by a fibroblast growth factor receptor (Supp. Fig. 9), 

variants in which have been linked to Apert syndrome and Crouzon syndrome (diseases 

that manifest in craniofacial defects). Dotted lines in this plot highlight loci that result in 
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disease upon amino acid changes, but for which other biological annotations (such as 

post-translational modification sites, deeply buried regions, etc.) fail to coincide, and for 

which even the published literature introducing these disease mutations fails to propose a 

mechanism (see Supp. Table 6). The incorporation of residues that fall in high binding-

leverage sites or constitute high-betweenness loci in dynamic representations of the 

protein structure (i.e., our critical residues) adds an additional layer of annotation to the 

protein sequence, and these critical sites may help to explain poorly understood HGMD 

variants.  

Other proteins and diseases for which poorly understood HGMD variants coincide 

with our identified critical residues include hemoglobin (alpha-thalassemia and 

erythrocytosis), protein deglycase (Parkinson disease and amyotrophic lateral sclerosis), 

phenylalanine hydroxylase (Phenylketonuria), UDP-glucose 4-epimerase (epimerase-

deficiency galactosemia), isocitrate dehydrogenase (early-onset osteoarthritis), and HFE 

(haemochromatosis). A full listing, along with the results of manual literature curation of 

the associated disease variants, is provided in Supplementary Table 6. 

Finally, as we have done for HGMD SNPs, we also searched the NCBI ClinVar 

database (Landrum et al, 2014) for instances in which our identified critical residues 

coincide with disease locations. The affected proteins generally match those identified in 

the HGMD analysis above, and results are given in Supplementary Files 6 and 7 (for 

surface and interior critical residues, respectively). 

 

Web Server (STRESS) 
(Currently under development by Shantao and undergrad student Richard Chang). 

 

METHODS 
 An overview of our pipeline is provided in Fig. 1, and we refer to this outline in 

the appropriate pipeline modules throughout. In brief, we perform MSAs for thousands of 

SCOP domains, with each alignment consisting of sequence-similar and sequence-

identical domains. Within each alignment, we cluster the domains using structural 

similarity to determine the distinct conformational states. We then implement two 

complementary approaches for identifying likely allosteric residues: coarse-grained 
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models of protein motions are used to primarily identify allosteric sites on the protein 

surface, and a dynamical network approach is used to primarily identify allosteric 

residues internal to the protein. 

 
Database-Wide Multiple Structure Alignments 
 FASTA files of all SCOP domains were downloaded from the SCOP website 

(version 2.03) [[cite]]. In order to better ensure that large structural differences between 

sequence-identical or sequence-similar domains are a result of differing biological states 

(such as holo vs. apo, phosphorylated vs. unphosphorylated, etc.), and not an artifact of 

missing coordinates in X-ray crystal structures, the FASTA sequences used were those 

corresponding to the ATOM records of their respective PDBs. In total, this set comprises 

162,517 FASTA sequences. 

BLASTClust [[cite]] was downloaded from the NCBI database and used to 

organize these FASTA sequences into sequence-similar groups at seven levels of 

sequence identity (100%, 95%, 90%, 70%, 50%, 40%, and 30%). Thus, for instance, 

running BLASTClust with a parameter value of 100 provides a list of FASTA sequence 

groups such that each sequence within each group is 100% sequence identical, and in 

general, running BLASTClust with any given parameter value provides sequence groups 

such that each member within a group shares at least that specified degree of sequence 

identity with any other member of the same group (see top of Fig. 1). 

To ensure that the X-Ray structures used in our downstream analysis are of 

sufficiently high quality, we removed all of those domains corresponding to PDB files 

with resolution values poorer than 2.8, as well as any PDB files with R-Free values 

poorer than 0.28. The question of how to set these quality thresholds is an important 

consideration, and was guided here by a combination of the thresholds conventionally 

used in other studies which rely on large datasets of structures [[cite Kosloff 2008, Burra 

2009, others]], as well as the consideration that many interesting allosteric-related 

conformational changes may correlate with physical properties that sometimes render 

very high resolution values difficult (such as localized disorder or order-disorder 

transitions). As a result of applying these filters, 45,937 PDB IDs out of a total of 58,308 

unique X-Ray structures (~79%) were kept for downstream analysis. 
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For each sequence-similar group at each of the seven levels of sequence identity, 

we performed multiple structure alignment (MSA) using only those domain structures 

that satisfy the criteria outlined above. Thus, the MSAs were generated only for those 

groups containing a minimum of two domains that pass the filtering criteria. The 

STAMP[[cite]] and MultiSeq [[cite]] plugins of VMD[[cite]] were used to generate the 

MSAs. Heteroatoms were removed from each domain prior to performing the alignments. 

The quality of the resultant MSA for each sequence-similar group depends on the 

root structure used in the alignment. To obtain the optimal MSA for each group of N 

domains, we generated N MSAs, with each alignment using a different one of the N 

domains as the root structure. The best MSA generated (as measured by STAMP’s “sc” 

score[[cite]]) was taken as the MSA for that group. Note that, in order to aid in 

performing the MSAs, MultiSeq was used to generate sequence alignments for each 

group. 

Finally, for each of the N MSAs generated, MultiSeq was used calculate two 

measures of structural similarity between each pair of domains within a group: RMSD 

and QH. A fuller description of QH is provided in the Supplementary text. 

For each group of sequence-similar domains, the final output of the structure 

alignment is a symmetric matrix representing all pairwise RMSD values (as well as a 

separate matrix representing all pairwise QH values) within that group. The matrices for 

all MSAs are then used as input to the K-means module. 

The K values for MSAs, as well as the motivating conceptual framework, are 

summarized in Fig 2. About 3000 different domains had a K-value of 1 (i.e., one 

conformation identified), whereas the K-values of close to 2000 domains exceed 1 (these 

exhibit multiple conformations, Fig. 2C). For proteins, close to 8000 had a K-value of 1, 

and about 1000 proteins had K values that exceed 1. When performing K-means 

clustering with the gap statistic, very similar results were obtained when clustering 

structures on the basis of pairwise RMSD or pairwise QH (Supp. Fig. 3), so we use 

RMSD in our downstream analyses. 

The fully-processed output for identifying high-confidence alternative 

conformations (which contains over 1100 proteins) is provided as a flat text file in the 

Supplementary content (Supp. File 1), and it is also included in our server as a 
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downloadable text file. In addition to listing the alternative conformations, this file also 

lists descriptive statistics for each entry, including the RMSD between distinct 

conformers, cluster membership, degrees of confidence in assigning different structures 

to different clusters, etc. 

We note that the pipeline above has been applied not only to SCOP domains, but 

also to individual proteins, with the only difference that only sequence-identical proteins 

were examined in this analysis. 

 

Identifying Distinct Conformations in an Ensemble of Structures 
 For each MSA produced in the previous step, the corresponding matrix of 

pairwise RMSD values describes the degree and nature of structural heterogeneity among 

the crystal structures for a particular domain. The objective is to use this data in order to 

identify the biologically distinct conformations represented by an ensemble of structures. 

For a particular domain, there may be many available crystal structures. In total, these 

structures may actually represent only a small number of distinct biological states and 

conformations. For instance, there may be several crystal structures in which the domain 

is bound to its cognate ligand, while the remaining structures are in the apo state. Our 

framework for predicting the number of distinct conformational states in an ensemble of 

structures relies on a modified version of the K-means clustering algorithm. 

A priori, performing K-means clustering assumes prior knowledge of the number 

of clusters (i.e., “K”) to describe a dataset. The purpose of K-means clustering with the 

gap statistic (Tibshirani et al, 2001) is to identify the optimal number of clusters intrinsic 

to a complex or noisy set of data points (which lie in N-dimensional space). 

Given multiple resolved crystal structures for a given domain, this method (i.e., 

K-means with the gap statistic) estimates the number of conformational states represented 

in the ensemble of crystal structures (with these states presumably occupying different 

wells within the energetic landscape), thereby identifying proteins which are likely to 

undergo conformational change as part of their allosteric behavior. 

As a first step toward clustering the structure ensemble represented by the RMSD 

matrix, it is necessary to convert this RMSD matrix (which explicitly represents only the 

relationships between distinct domains) into a form in which each domain is given its 
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own set of coordinates. This step is necessary because the K-means algorithm acts 

directly on individual data points, rather than the distances between such points. Thus, we 

use multidimensional scaling [[ref Gower 1966 and Mardia, 1978]] to convert an N-by-N 

matrix (which provides all RMSD values between each pair of domains within a group of 

N structures) into a set of N points, with each point representing a domain in (N-1)-

dimensional space. The values of the N-1 coordinates assigned to each of these N points 

are such that the Euclidean distance between each pair of points are the same as the 

RMSD values in the original matrix. For an intuition into why N points must be mapped 

to (N-1)-dimensional space, consider an MSA between two structures. The RMSD 

between these two structures can be used to map the two domains to one-dimensional 

space, such that the distance between the points is the RMSD value. Similarly, an MSA 

of 3 domains may be mapped to 2-dimensional space in such a way that the pairwise 

distances are preserved; 4 domains may be mapped to 3-dimensional space, etc. The 

output of this multidimensional scaling is used as input to the K-means clustering with 

the gap statistic. We refer the reader to the work by Tibshirani et al for details governing 

how we perform K-means clustering with the gap statistic. 

Once the optimal K value was determined for each of the N MSAs, we confirmed 

that these values accurately reflect the number of clusters by visual inspection of several 

randomly-selected MSAs, as well as several MSAs corresponding of domain groups 

known to constitute distinct conformations (we also visually inspected several negative 

controls, such as CAP, an allosteric protein which does not undergo conformational 

change [[ref]]). This visual inspection is carried using the RMSD values to generate 

dendrograms for each of the selected MSAs. The dendrograms are constructed using the 

hierarchical clustering algorithm built into R, hclust [[ref Murtagh 1985]], with 

UPGMA (mean values) used as the chosen agglomeration method[[ref Sokal et al, 

1958]]. 

The next step is to assign each unique domain to its respective cluster in the 

alignment. Using the optimal K values assigned to each group/MSA, we carry out 

standard K-means clustering (Lloyd’s algorithm) to determine domain-cluster 

assignments. For each sequence group, we perform 1000 K-means clustering simulations 
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on the MDS coordinates, and take the most common partition generated in these 

simulations to assign each protein to its respective cluster.  

We then select a representative domain from each of the assigned clusters. The 

representative member for each cluster is the member with the lowest Euclidean distance 

to the cluster mean, using the coordinates obtained by multidimensional scaling (see 

description above). These cluster representatives are then taken as the distinct 

conformations for this protein, and are used for the binding leverage calculations and 

networks analyses (below). 

 

Modified Binding Leverage Framework 
With the objective of identifying allosteric residues (specifically those on the 

protein surface), we employed a modified version of the binding leverage method for 

predicting likely ligand binding sites (Fig. 1, bottom-left), as described previously by 

Mitternacht et al. This method is motivated by the observation that allosteric signals may 

be transmitted over large distances by a mechanism in which the allosteric ligand has a 

global affect on a protein’s functionally important motions. For instance, introducing a 

bulky ligand into the site of an open pocket may disrupt large-scale motions if those 

motions normally entail that the pocket become completely collapsed in the apo protein. 

Such a modulation of the global motions may affect activity within sites that are distant 

from the allosteric ligand-binding site. 

We refer the reader to the work by Mitternacht et al for details regarding the 

binding leverage method, though a general overview of the approach is given here. 

Hundreds or thousands of candidate allosteric sites are generated by simulations in which 

a simple ligand (comprising 2 to 8 atoms linked by bonds with fixed lengths but variable 

bond and dihedral angles) explores the protein’s surface through many Monte Carlo 

steps. (Apo structures were used when probing protein surfaces for putative ligand 

binding sites). A simple square well potential was used to model the attractive and 

repulsive energy terms associated with the ligand’s interaction with the surface. These 

energy terms depend only on the ligand atoms’ distance to alpha carbon atoms in the 

protein, and they are blind to other heavy atoms or biophysical properties. Once these 

candidate sites have been produced, normal mode analysis is applied is generate a model 
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of the apo protein’s low-frequency motions. Each of the candidate sites is then scored 

based on the degree to which deformations in the site couple to the low-frequency modes; 

that is, those sites which are heavily deformed as a result of the normal mode fluctuations 

receive a high score (termed the binding leverage for that site), whereas sites which 

undergo minimal change over the course of a mode fluctuation receive a low binding 

leverage score. The list of candidate sites is then processed to remove redundancy, and 

then ranked based on this score. The model stipulates that the high-scoring sites are those 

that are more likely to be binding sites. Using knowledge of the experimentally-

determined binding sites (i.e., from holo structures), the processed list of ranked sites is 

then used to evaluate predictive performance (see below). 

Our approach and set of applications differ from those outlined by Mitternacht et 

al in several key ways. When running Monte Carlo simulations to probe the protein 

surface and generate candidate binding sites, we used all heavy atoms in the protein when 

evaluating a ligand’s affinity for each location. By including heavy atoms in this way 

(i.e., as oppose to using the protein’s alpha carbon atoms exclusively), our hope is to 

generate a more realistic set of candidate ligand binding sites. Indeed, the exclusion of 

other heavy atoms leaves ‘holes’ in the protein which do not actually exist in the context 

of the dense topology of side chain atoms. Thus, by including all heavy atoms, we hope 

to reduce the number of false positive candidate sites, as well as more realistically model 

ligand binding affinities in general. 

In the framework originally outlined by Mitternacht et al., an interaction between 

a ligand atom and an alpha carbon atom in the protein contributes -0.75 to the binding 

energy if the interaction distance is within the range of 5.5 to 8 Angstroms. Interaction 

distances greater than 8 Angstroms do not contribute to the binding energy, but distances 

in the range of 5.0 to 5.5 are repulsive, and those between 4.5 to 5.0 Angstroms are 

strongly repulsive (distances below 4.5 Angstroms are not permitted).  

However, given the much higher density of atoms interacting with the ligand in 

our all-heavy atom model of each protein, it is necessary to accordingly change the 

energy parameters associated with the ligand’s binding affinity. In particular, we varied 

both the ranges of favorable and unfavorable interactions, as well as the attractive and 



	   21	  

repulsive energies themselves (that is, we varied both the square well’s width and depth 

when evaluating the ligand’s affinity for a given site). 

For well depths, we employed models using attractive potentials ranging from -

0.05 to -0.75, including all intermediate factors of 0.05. For potential well widths, we 

tried performing the ligand simulations using the cutoff distances originally used by 

Mitternacht et al. (attractive in the range of 5.5 to 8.0 Angstroms, repulsive in the range 

of 5.0 to 5.5, and strongly repulsive in the range of 4.5 to 5.0). However, these cutoffs, 

which were originally devised to model the ligand’s affinity to the alpha carbon atom 

skeleton alone, were observed to be inappropriate when including all heavy atoms. Thus, 

we also performed the simulations using a revised set of cutoffs, with attractive 

interactions in the range of 3.5 to 4.5 Angstroms, repulsive interactions in the range of 

3.0 to 3.5 Angstroms, and strongly repulsive interactions in the range of 2.5 to 3.0 

Angstroms. 

In order to identify the optimal set of parameters for defining the potential 

function, we determined which combination of parameters best predicts the known 

binding sites for several well-annotated ligand-binding proteins. This benchmark set of 

proteins comprised threonine synthase, phosphoribosyltransferase, tyrosine phosphatase, 

arginine kinase, and adenylate kinase. The structures for these five proteins were those 

provided as the biological assemblies associated with the PDB IDs 1E5X, 1XTT, 2HNP, 

3JU5, 4AKE, respectively. Using this approach, an attractive term of -0.35 for ligand-

protein atom interactions within the range of 3.5 to 4.5 Angstroms was determined to be 

the best overall.  

The biological assembly files (as well as individual proteins and standard PDBs) 

for several well-annotated allosteric and ligand-binding proteins [[list]] were downloaded 

from the Protein Data Bank (PDB). These proteins were chosen on the basis of literature 

curation. Analyzed more proteins as gold standard (from several refs). Results are 

provided on server. 

 

Network Analysis 
In our implementation of the Girvan-Newman framework, edges between residues 

within a structure are drawn between any two residues that have at least one heavy atom 
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within a distance of 4.5 Angstroms (excluding adjacent residues in sequence, which are 

not considered to be in contact). Network edges are weighted on the basis of their 

correlated motions, with the motions provided by anisotropic network models. This 

weighting scheme is the same as that implemented by Sethi et al (see Sethi et al, 2009 for 

details), with the notable difference arising in the use of ANMs as an alternative to MD. 

We emphasize that, although the use of ANMs is more coarse-grained that ANMs, our 

use of ANMs is motivated by their much faster computational efficiency relative to MD. 

This added efficiency is a required feature for our database-scale analysis. 

Specifically, the weight wij between residues i and j is set to −log(∣Cij∣). After 

weights are assigned, the betweenness for each edge is calculated. Residues that are 

involved in the highest-betweenness interactions connecting pairs of interacting 

communities are assigned to be in the class GN-critical residues. Edge betweenness is 

defined as the total sum of shortest paths in which that edge is involved, with path lengths 

equal to the sum of edge weights (see Sethi et al, 2009 for a more detailed discussion). 

 

1000 Genomes and HGMD Mapping & Analyses 
All SNPs hitting protein-coding regions that result in amino acids changes (i.e., 

nonsynonymous SNPs) were collected from The 1000 Genomes Project (phase 3 release) 

[[cite]]. VCF files containing the annotated variants were generated using VAT [[cite]]. 

For nonsynonymous SNPs, the VCF files included the residue ID of the affected residue, 

as well as additional information (such as the corresponding allele frequency and residue 

type). To map the 1000 Genomes SNPs on to protein structures, FASTA files 

corresponding to the translated chain(s) of the respective transcript ID(s) were obtained 

using BioMart [[cite]]. FASTA files for each of the PDB structures associated with these 

transcript IDs (the PDB ID-transcript ID correspondence was also obtained using 

BioMart) were generated based on the ATOM records of the PDB files. For each given 

protein chain, BLAST was used to align the FASTA file obtained from BioMart with that 

generated from the PDB structure. The residue-residue correspondence obtained from 

these alignments was then used in order to map each SNP to specific residues within the 

PDB. As a quality assurance mechanism, we confirmed that the residue type reported in 

the VCF file matched that specified in the PDB file. 
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 ExAC variants were downloaded from the ExAC Browser (Beta), as hosted at the 

Broad Institute. Variants were mapped to all PDBs following the same protocol as that 

used to map 1000G variants, and only non-synonymous SNPs in ExAC were analyzed. 

When evaluating SNPs from the ExAC dataset, allele frequencies (AF) were used instead 

of DAF values (the ancestral allele is not provided in the ExAC dataset – thus, analysis is 

performed for AF rather than DAF. However, we note that very little difference was 

observed when using AF or DAF values with 1000G data, and we believe that the results 

with AF values would generally be the same to those with DAF values). Only structures 

for which at least one critical residue and one non-critical residue are hit by ExAC SNPs 

are included in the analysis (as with the 1000 Genomes analysis, this enables a more 

direct comparison between critical and non-critical residues, as comparisons between two 

different proteins would rely on the assumption of equal degrees of selection between 

such proteins). 

 

DISCUSSION & CONCLUSIONS 
The same principles and landscape theories at play in dictating protein folding 

have emerged as essential to understanding how native folded proteins explore different 

conformational states in order to carry out needed functions. As in the case folding, these 

landscapes are shaped not only by the protein sequence itself, but also by extrinsic 

conditions, such as post-translational modifications, interactions with ligands or other 

proteins, or physiological conditions within the cell. Such external factors often affect 

protein behavior by introducing allosteric-induced changes, which ultimately reflect 

changes in the topology and population distributions of the energetic landscape. 

In this regard, allostery provides a sensible platform from which to study protein 

behavior in the context of their energetic landscapes. Understanding allosteric signal 

transmission inevitably entails a consideration of the dynamic properties that generally 

accompany and are required for such allosteric behavior, as well as the identification of 

the principle residues responsible. Although not all allosteric proteins undergo 

conformational change (i.e., allosteric signals may sometimes be transmitted by changing 

the frequency of native-state fluctuations, rather than imparting large changes in 

conformational topology) [[cite Rodgers, Nussinov]] and not all conformational changes 
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are associated with allostery [[cite ex: Calmodulin]], it is frequently the case that 

allosteric behavior is accompanied by substantial shifts in configurational space. Though 

a small number of examples in which allostery can occur without conformational change 

have been discussed in the literature (Tsai et al, 2009; Nussinov et al, 2015), the fact that 

these specific systems have been highlighted as exceptions underscores the important role 

played by conformational change in the vast majority of well-studied proteins, many of 

which have been investigated as a result of their significance in disease.  

Molecular dynamics (MD) and NMR are some of the most common means of 

studying allostery and dynamic behavior. However, these methods have limitations when 

studying large and diverse protein datasets. Notably, MD is computationally very 

expensive, and is thus impractical when studying large numbers of proteins. Like MD, 

NMR yields important insights, but NMR structure determination is not only labor-

intensive and suited to structures of a particular nature, but in addition, they constitute a 

relatively small fraction of the available structures (currently about 10%). 

Given the limitations in applying MD, NMR, or related methods to large numbers 

of proteins, there remains a need to evaluate dynamic behavior in a systemized way 

across many proteins at once. This type of investigation applied to many proteins 

simultaneously also provides a means of better characterizing the large number of 

variants that have been shown to be deleterious through next-generation sequencing 

initiatives, thereby shedding light on the mechanisms at play for specific disease variants. 

Notably, such a database-scale approach is also much easier to exploit in studies focused 

on large networks of protein-protein interactions. 

A database-scale approach necessitates careful and appropriate processing of data 

in the PDB. Though originally focused on finding structures for new proteins, there is 

now a great deal of redundancy in folds and proteins, and a concomitant greater degree of 

heterogeneity from a functional point of view (i.e., more models for a given protein in 

different biological states). This redundancy opens the door to large-scale analyses aimed 

at investigating protein conformational heterogeneity and potential allosteric behavior on 

a database-level scale. 

Thus, motivated by the idea that large differences in shape correspond to distinct 

conformations that occupy different energetic wells (Fig. 2), we describe and implement 
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a pipeline for the identification of structures in distinct conformations, using a statistical 

formalism that, to our knowledge, has never previously been applied in the context of 

protein structures. In doing so, we integrate data from the large number of X-ray crystal 

structures in the PDB, and simultaneously avoid the use of computationally expensive 

processes. The distinct conformations culled in this analysis are manually determined to 

correspond to proteins known to be in distinct functional states, such as active and 

inactive states, or holo and apo configurations. 

Though a database of allosteric proteins (Allosteric Database, ASD), has been 

described previously (Huang et al, 2011), the correspondence between ASD and our 

dataset exhibits relatively poor overlap. We emphasize that ASD was built using 

literature curation rather than direct considerations of the physical properties of the 

proteins themselves. In addition, the data in ASD is highly heterogeneous in nature, in 

that the structures vary considerably in terms of resolution and experimental origin, and 

paired entries need not be sequence-identical. Our focus is on a more confident set of 

large-scale conformational changes exclusively, with minimized noise. 

These different conformations are used as the raw material for the identification 

of residues that may be important in the context of their allosteric behavior. In the first of 

two complementary approaches for identifying such residues (one approach being 

tailored to residues at the surface, such as those in effector binding sites or allosteric 

sinks, and the other approach tailored to residues deeper inside the protein, which may 

transmit signals through distal regions), we describe a modified version of the binding 

leverage method developed by Mitternacht et al. We introduce information about the 

heavy atoms when searching the protein surface for candidate sites in which the 

introduction of a ligand could strongly perturb the conformational changes of a protein, 

thereby finding sites that that more closely reflect cavities in the protein topology. 

Secondly, after the candidate sites are ranked by their ability to perturb the motions 

derived through anisotropic network models, we use a formalism originally used in the 

context of protein folding, the energy gap [[cite]], in order to define a threshold for 

selecting the high-confidence prioritized sites. We demonstrate that the set of high-

confidence sites overlaps reasonably well with known ligand binding sites for a set of 

well-studied canonical allosteric systems. 



	   26	  

In our second approach for finding allosteric residues, we employ a dynamical 

network-based analysis to search for sets of residues that may act as bottlenecks between 

communities in the protein structure. These communities are defined using the GN 

formalism, with edge weights reflecting the dynamic properties of the protein. This 

network-based analysis finds residues that are both internal to and within protein loops, 

some of which may be on the protein surface. 

Thus, we emphasize that, while many previous studies use sequence 

characteristics or biophysical properties of individual amino acids to investigate allostery, 

focus on only the interior or surface residues, or may otherwise be restricted to a small 

number of proteins, we work on many proteins simultaneously within a generalized 

framework to use a mechanistic approach for identifying both surface and core residues 

which may be important for imparting allosteric behavior.  

To evaluate the ability of this method to identify residues that may be important 

for allosteric behavior, we investigate their conservation in both inter-species and intra-

human genomes contexts. The residues identified using the dynamical network analysis 

are shown to be conserved relative to other residues in the protein. More notably, the 

critical residues identified tend to be more conserved than residues with the same degree 

distribution (i.e., number of neighboring residues) within protein structures.  

In addition, this greater conservation is also reflected in the genomes of modern-

day humans: non-synonymous SNPs tend to hit these critical residues with lower 

frequencies than do other non-synonymous SNPs hitting the same protein, suggesting that 

amino acid changes at these critical sites may be more deleterious than changes in other 

parts of the protein. This trend is exhibited in both the distribution of allele frequencies, 

as well as with respect to the fraction of rare SNPs, and these results are observed when 

using either 1000 Genomes or ExAC datasets. We observe similar (though weaker) 

trends for surface residues implicated in allosteric behavior.  

HGMD was used in order to identify any known disease-causing variants that hit 

the proteins in our dataset, and we found that several known disease SNPs, as culled from 

HGMD, hit the residues that we identify as being critical for allostery, on both the surface 

and within the interior. Given a particular set of PDBs (for example, the set of PDBs for 

which GN critical residues overlap with HGMD variant loci), the number of distinct 
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proteins represented in this set was obtained by ensuring that no protein shares more than 

90% sequence identity with any other protein in the set. We note that our set of 238 

distinct HGMD proteins are those for which PDB structures are available, with the PDB 

structures satisfying structure quality criteria. 

Given that allostery has previously been studied in the context of individual 

proteins, there are several notable implications of our database-scale analysis. That we 

achieved compelling results suggests that the level of coarse graining (i.e., in X-ray 

crystal structures and using ANMs instead of MD) was low enough to still recapitulate 

biologically interesting findings. That this pipeline can be applied en masse also suggests 

avenues for future applications, including applications to PPIs, guiding experimental 

studies to prioritize residues that are candidates for allosteric behavior (cite Rama 

Ranganathan, others), the simultaneous characterization of many disease variants in a 

diverse set of proteins (HGMD), and drug development pipelines/screens in which a drug 

is targeted to groups of functionally related proteins (such as those related to a particular 

signaling cascade or functional module) rather than to specific individual structures. 

Knowledge of predicted allosteric sites across many proteins may be used to identify the 

best proteins for which drugs should be engineered, as well as instances in which 

sequence variation is likely to have the greatest impact by modifying the relative 

populations of different states. 

 

 

FIGURE CAPTIONS 
Figure 1 

Pipeline for identifying distinct conformational states. Top to bottom: a) BLAST-

CLUST is applied to the sequences corresponding to a filtered set of protein domains, 

thereby providing a large number of “sequence groups”, with each group being 

characterized by a high degree of sequence homology. b) For each sequence group, a 

multiple structure alignment of the domains is performed using STAMP (the example 

shown here is adenylate kinase. The SCOP IDs of the cyan domains, which constitute the 

holo structure, are d3hpqb1, d3hpqa1, d2eckb1, d2ecka1, d1akeb1, and d1akea1. The IDs 

of the apo domains, in red, are d4akea1 and d4akeb1). c) Using the pairwise RMSD 
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values in this structure alignment, the structures are clustered using the UPGMA 

algorithm, K-means with the gap statistic (δ) is performed to identify the number of 

distinct conformations (2 in this example; more detailed descriptions of the graph are 

provided in the text and in Fig X). d) The domains which exhibit multiple structural 

clusters (i.e., those with a δ > X and K > 1) are then probed for the presence of strong 

allosteric sites, using the complementary methods of binding leverage and dynamical 

network analysis (see Methods). 

 

Figure 2 

K-means clustering algorithm with the gap statistic. a) A schematized rendering of the 

k-means clustering algorithm; b) An example dendrogram and respective structures of a 

multiple-structure alignment, with similarity measured by RMSD. The example shown is 

for phosphotransferase, and the K-means algorithm with the gap statistic identifies K=2 

different conformational states (manually determined to represent the holo and apo states 

of phosphotransferase); c)Histograms representing the k-values obtained across the 

database of SCOP domains and d) across PDB chains. 

 

Figure 3 

Conservation of predicted allosteric residues. a) Image of phosphfructokinase (PDB 

ID 3PFK), with red denoting sites with high binding leverage scores, and blue denoting 

sites with low scores. Known biological ligands are shown in white VDW rendering; b) 

Database-wide distributions of derived allele frequency (DAF) values of BL critical 

residues (red) and non-critical residues (blue); c) Corresponding distributions of ConSurf 

scores for BL critical residues (red) and non-critical residues (blue) d) Rendering of 

phosphfructokinase with GN critical residues highlighted as red spheres; e) Database-

wide distributions of DAF values of GN critical residues (red) and non-critical residues 

(blue) f) Corresponding distributions of ConSurf scores for GN critical residues (red) and 

non-critical residues (blue). 

 

Figure 4 
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HGMD Analyses. a) Venn diagram illustrating the number of distinct proteins in various 

categories; b) Ras (PDB ID 1NVV) is an example of a protein for which HGMD 

locations coincide with prioritized BL sites. BL residues are shown as red spheres, and 

HGMD locations are in orange; c) p53 (PDB ID 2VUK) is an example of a protein for 

which HGMD locations coincide with GN residues. GN residues that coincide with 

HGMD SNPs (red), GN residues that do not correspond with HGMD loci (green), and 

HGMD SNPs in non-critical residues (orange) are shown in VDW spheres. 
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