
Dear Dr. Cho, 

 

We want to thank the reviewers or recognizing the importance of our study and offering 

insightful comments. We have significantly revised the manuscript to address their helpful 

comments. We have performed a major overhaul of the pipeline and corresponding analyses. Per 

reviewers #2 and #3’s suggestions to include the newer advances in the field of allele-specific 

variant detection, we now use a beta-binomial test to account for the overdispersion properties of 

RNA-seq and ChIP-seq datasets in order to call ASE and ASB variants. Additionally, we 

implemented a first-pass filter in which we compute the overdispersion parameter for each of the 

1,280 ChIP-seq and RNA-seq datasets prior to the pipeline to identify and remove those that are 

highly overdispersed. Per reviewer #1’s suggestion, we have uniformly re-called the peaks for 83 

ChIP-seq datasets with a common peak caller, PeakSeq. The peak calling was performed using 

the personal genomes for each of the 14 individuals with matching ChIP-seq data. To further 

build AlleleDB as a resource, we developed novel formalisms to call allele-specific genes and 

genomic elements. We also included new analyses and figures to illustrate the advantages of 

having results from allele-specific analyses obtained from a large number of genomes. 

 

The specific reviewers’ comments are further addressed below. 

 

 

Reviewer #1 (Remarks to the Author): 
 

This manuscript by Chen, et al. entitled "Allele-specific binding and expression: a uniform survey over 

many individuals and assays". This study is an exploration of the effects of genomic variation on 

expression of one of alleles and on transcription factor binding using previously generated RNAseq and 

ChIPseq datasets. The importance of this topic is timely and potentially significant. The manuscript is 

written in a relatively clear manner. While there is much to recommend this manuscript, several areas and 

questions need to be addressed to assist the reader to better understand or accept the findings. The major 

issues include: 
Response We thank the reviewer for acknowledging the importance and timeliness of our 

study and for his/her thorough examination of our manuscript. We have made 

significant changes to specifically address the technical and analytical aspects 

of our manuscript for the reader. 

 
 

 

1) It's not clear why Bowtie1 (DNA aligner) was used for aligning RNA-seq reads. This significantly 

reduces the number of mappable reads, and also can miss the allele-specific splicing. The use of a RNA 

(spliced) aligner might better be used for RNA-seq mapping. 

 

Response: We have some preliminary analyses, demonstrating that the use of spliced aligners does not 

increase the number of mappable reads by more than 20%. Thus, the effect of using a splice aligner might 

be modest. We can include these analyses in the revised manuscript. 

Response While we do agree with the reviewer that a RNA (spliced) aligner might 

improve the number of mappable reads, however, we have performed some 

analyses to demonstrate that the use of a RNA aligner increases the number of 

mappable reads by less than 16%. Thus, the effect of using a RNA aligner is 



relatively modest. In addition, we chose to use a consistent aligner in order to 

uniformly re-process both the existing ChIP-seq and RNA-seq datasets. Hence, 

in light of these two points, we decided to use a DNA aligner for the alignment 

of both ChIP-seq and RNA-seq reads in our study.  

 
 

 

2) While calculating ASE for each of the SNV is straightforward, it's not clear how the ASEs of the genes 

are calculated. This would require combining ASE from multiple SNVs (and isoforms) of the same gene. 

 

Response: We agree with the reviewer and indeed, the use of multiple SNVs of the same gene is the 

central premise of our enrichment analyses in determining how allele-specific a gene is in ASE and ASB. 

Perhaps our description in the method section was not sufficiently clear; we will clarify the text in the 

revised manuscript. 

Response We totally agree with the reviewer and indeed, the use of multiple SNVs of the 

same gene is the central premise of our enrichment analyses in determining 

the amount of allele-specific behavior for a gene. Perhaps our description in 

the method section was not sufficiently clear; we have clarified this in the 

‘Methods’ section of the revised manuscript. 

 

Excerpt “Enrichment analyses were performed in two ways: ‘collapsed’ and 

‘expanded’ (Figure 4b). In both cases, we aggregate ASB and ASE SNVs 

within a specific genomic element, such as a gene or an enhancer. We then use 

the Fisher’s exact test to calculate the odds ratio and the hypergeometric p 

value…” 

 
 

 

3) AS SNVs are counted if they fall within the called ChIPseq peaks. However, the peaks used were the 

ones used for each of the datasets studied with the exception of the McVicker's set. The lack of a uniform 

peak called for the calling of peaks will lead to significant variability due to the disparity in the results 

derived from various algorithms (i.e. some peaks cover more for the genome). In turn this can potentially 

inflate or diminish the number of sites evaluated. At least some evidence should be presented that the use 

of various peak callers will not significantly alter the number of variant with allele-specific phenotypes. 

 

Response: We agree with the reviewer that uniformity in peak calling is vital and we will address this in 

the revised manuscript. 

Response We strongly agree with the reviewer that uniformity in peak calling is vital and 

have taken major steps in the revision to alleviate the concern. We addressed 

this by re-aligning reads from all the 276 ChIP-seq datasets. This is 

additionally performed in the context of each of the 14 pairs of personal 

haplotypes of each dataset, re-calling the peaks for each haplotype using a 

common peak-caller, PeakSeq, and then re-combining the peaks per dataset 

and for each personal diploid genome (haplotype pair). 

 

Excerpt “Peak regions are determined by first performing PeakSeq60 for each of the 

personal haploid genome. Only a single read per strand per position is kept 

and duplicates removed. The fragment length is set to 200 bps. Peak calling is 



performed with default parameters and the final peak set for each 

transcription factor is identified at a false discovery rate of 5%. Finally, the 

coordinates of the peaks (based on the respective personal haploid genomes) 

are mapped to the reference genome and then finally being merged between 

the haploid genomes.” 
 

 

4) While the study has as one of its strengths the development of a pipeline that can handle many (380) 

genomes with low coverage, it is unclear what the biological insights on this tour de force are other than 

the identification of 144K and 169K unvalidated ASEs and ASBs, respectively. 

 

Response: The reviewer’s criticism is that he/she believes that the sole utility of detecting allelic events in 

many genomes is merely the identification of large numbers of ASE and ASB SNVs. We contend that it 

is precisely because of the identification of large numbers of ASE and ASB SNVs using multiple 

genomes, that more biological insights and uses can be developed.  

 

Our downstream analyses provide a window into some of these possibilities when many genomes are 

available. For instance, enrichment analyses will not be feasible without a large number of ASE and ASB 

SNVs. It is important to appreciate that previous studies mostly focus on a very small number of 

genomes. The abundance and detection of allele-specific rare variants increases with many genomes and 

can be combined to provide the necessary statistical power to define allele-specificity across a genomic 

region, as already alluded to in the second comment of the same reviewer. In this case, further annotation 

and biological insights can be provided for regions that seem to be more attuned to allele-specific 

behavior. In addition, the aggregation of many genomes enables a more confident identification of 

common SNVs that have corroborating allele-specific evidence across multiple individuals, which in 

itself can serve as a validation and a biological observation. 

 

We will better address this concern in our revised manuscript. 

Response The reviewer’s criticism is that he/she believes that the sole utility of detecting 

allelic events in many genomes is merely the identification of large numbers of 

ASE and ASB SNVs. We contend that it is precisely because of the 

identification of large numbers of ASE and ASB SNVs using multiple genomes, 

when appropriately processed, that more biological insights and uses can be 

developed. 

 

Our downstream analyses provide a window into some of these possibilities 

when many genomes are available. For instance, enrichment analyses will not 

be feasible without a large number of ASE and ASB SNVs. It is important to 

appreciate that previous studies mostly focus on a very small number of 

genomes. The abundance and detection of allele-specific rare variants 

increases with many genomes and can be combined to provide the necessary 

statistical power to define allele-specificity across a genomic region, as 

already alluded to in the second comment of the same reviewer. In this case, 

further annotation and biological insights can be provided for regions that 

seem to be more attuned to allele-specific behavior. In addition, the 

aggregation of many genomes enables a more confident identification of 

common SNVs that have corroborating allele-specific evidence across multiple 



individuals, which in itself can serve as both a validation and a biological 

observation. 

 

Thus in the revised manuscript, we have included a discussion of how having 

many genomes, when appropriately processed, can be useful, for instance, in 

enrichment analyses that aggregate rare variants in gene- or element-centric 

analyses. We have also included a new analysis to quantify the effects of 

having common allele-specific variants across multiple individuals. We now 

have two new figures: Figure 4, to illustrate the advantage of visualizing and 

having many genomes in validating common variants, and Figure 5, to 

capitalize on common variants in performing a population-aware enrichment 

analysis. 

 

Excerpt “An expanded population-aware approach emphasizes on common allele-

specific variants found across multiple genomes to determine the allele-

specificity of an element. An element is deemed more likely to be allele-specific 

if it is supported by more evidence of an allele-specific SNV occurring in 

multiple individuals. On the other hand, a collapsed approach treats each 

common and rare variant independently. An element that is deemed more 

allele-specific in this case, but not in the population-aware enrichment 

analysis, might mean that there are many more rare variants exhibiting allele-

specific behavior.” 

 
 

 

5) Minor point: No definition for CEU (Northern Europeans from Utah) RPB2, PAX5, etc. 

 

Response: All the definitions of the various human populations used for the 1000 Genomes Project are in 

fact already included in the Methods section. They are intentionally omitted from the main text to enable 

readability. We will include them, along with the definitions of the transcription factors (if any) such as 

RPB2 and PAX5, in the main text of the revised manuscript where we first mention them. 

Response All the definitions of the various human populations used for the 1000 

Genomes Project were, in fact, already included in the original Methods 

section of the manuscript. They are intentionally omitted from the main text to 

enable readability. In the current revision, we have added a sentence referring 

the reader to the Methods section in the main text. We have also included the 

full names of the transcription factors (or short descriptions if no full names) 

such as RPB2 and PAX5, in the main text, at instances where we first 

mentioned them. 

 

Excerpt “The number of rare allele-specific SNVs (MAF ≤ 5%) is about two folds 

higher in the YRI than the other European sub-populations of comparable 

(CEU, FIN) or larger (TSI) population sizes (see Methods for full explanation 

of population abbreviations).” 

 



“Our visualization shows ASB loci from POL2 (RNA polymerase II largest 

subunit), RPB2 (RNA polymerase II second largest subunit) and MYC (also c-

Myc, or v-myc avian myelocytomatosis viral oncogene homolog)…” 

 
 

 

 

 

 



Reviewer #2 (Remarks to the Author): 
 

This is an exceptionally naïve analysis of ASE and ASB patterns. The analysis to identify the ASE/ASB 

patterns is flawed, the statistical modeling is too basic, and the enrichment analysis is crude. 

 

Response: AlleleDB is, in fact, intended as a resource for ASB and ASE. Nonetheless, we will include 

more rigorous analyses and make the statistical modeling more sophisticated in our revision.  

Response We thank the review for the thorough examination of our manuscript. 

AlleleDB is, in fact, intended as a resource for ASB and ASE. Nonetheless, we 

have taken into account advances in the field and implemented more 

sophisticated changes to the statistical underpinnings of our pipeline. We have 

also included more rigorous analyses in our revised manuscript. 

 
 

 

I have two concerns that, in my mind, are fatal flaws of the current analysis: 

 

First, mapping to a personal diploid genome indeed reduces the reference bias, but it does not eliminate 

the error associated with differences in mappability between the two alleles. In other words, the bias is 

gone, but the inflated variance due to mappability issues still persists. The only solution to date has been 

to map each allele separately and only retain reads that map uniquely at each allele, before the counting is 

done. This is a crucial aspect of the analysis presented in this paper and it must be addressed. 

 

Response: We agree with the reviewer that, in addition to building a personal diploid genome, mapping 

only unique reads to the individual haplotype or allele before the counting process is important. Our 

approach does encompass this and we will emphasize in the revised manuscript to better reflect this. 

Response We agree with the reviewer that, in addition to building a personal diploid 

genome, mapping only unique reads to the individual haplotype or allele 

before the counting process is important. Our approach does encompass this 

and we have emphasized this point in the revised manuscript to better reflect 

this. 

 

Excerpt “Reads are aligned against each of the derived haploid genome 

(maternal/paternal genome for trio) using Bowtie 1.56 When a read is aligned 

to the same locus, we only pick the alignment that map better to a haplotype. 

Otherwise, if a read is tied in alignment to both haplotypes, we discard the 

reads. No multi-mapping is allowed and only a maximum of 2 mismatches per 

alignment is permitted. ” 

 
 

 

Second, the ASE analysis was performed using a simple binomial test. This leads to a large number of 

falsely identified ASE patterns because of over dispersion in the data. Over dispersion in both RNA-seq 

and ChiP-seq data sets has been documented and commented on in a large number of papers. The correct 

analysis must use some strategy to estimate the over dispersion parameter and take it into account when 

testing for ASE. 

 



Response: Many very recent publications have also used a simple binomial test in their detection of ASE 

and ASB SNVs (we list some of them below). However, we agree with the reviewer’s comment and will 

build a more sophisticated statistical model to accommodate overdispersion.  

 

McDaniell, R. et al. (2010). Science. 328(5975):235-9 

Montgomery, S. et al. (2011). PLoS Genet. Jul;7(7):e1002144 

Reddy, T. et al. (2012). Genome Res. 22(5):860-9 

Lappalainen, T. et al. (2013). Nature. 501(7468):506-11 

Ding, Z. et al. (2014). PLoS Genet. 10(11):e1004798 

Response While we thank the reviewer for his/her suggestion, we also note that many 

very recent publications have also used a binomial test in their detection of 

ASE and ASB SNVs. We list some of them here: 

 

Reddy, T. et al. (2012). Genome Res. 22(5):860-9 

Lappalainen, T. et al. (2013). Nature. 501(7468):506-11 

Ding, Z. et al. (2014). PLoS Genet. 10(11):e1004798 

Dixon, JR. et al. (2015). Nature. 518(7539):331-6 

 

Nonetheless, we agree with and have taken to heart the reviewer’s comment,in 

order to provide a repository with ‘cleaner’ sets of ASE and ASB SNVs. As a 

result, we have significantly revamped our pipeline in terms of its statistical 

underpinnings and also re-processed all the 1,280 ChIP-seq and RNA-seq 

datasets. We now use a beta-binomial distribution to estimate the 

overdispersion behavior of each dataset and then use this as a filtering step to 

exclude those that exhibit a greater overdispersion estimated from the allelic 

ratio distribution. As pointed out by the reviewer, overdispersion leads to a 

large number of false positives. This first step thus acts as a first pass in 

identifying datasets that are too overdispersed to start off with. Subsequently, 

we then use a beta-binomial test to estimate and account for overdispersion 

during our ASE and ASB detection. 

 

The new Figure 1 and Methods section give a summary of our revised 

pipeline. 

 
 

 

I have a few other major concerns: 

 

It is not entirely clear to me how the 'control SNVs' were defined. Are these simply cases where ASE was 

not detected? This seems a bit naïve to me; is the probability of including as a control a case where the 

null is rejected with a marginal p value is the same as a case where the null is rejected at, for example, P > 

0.8? Also, I don't understand what it means to match the controls to the test cases by 'accessibility for 

statistical significance'. The terminology used is strange to me; is this a complicated way to say that you 

matched the power? If so, how was it done? If a cutoff for power was used, this would not result in true 

matching because the controls would probably be biases towards the lower threshold. More details on this 

analysis are needed. 

 



Response: In our manuscript, we describe our ‘control SNVs’ as a set of heterozygous, non-allele-specific 

but ‘accessible’ SNVs. We also describe ‘accessible’ SNVs as heterozygous SNVs that in principle, can 

be detected as allele-specific, because they meet the minimum read depth requirement, which is computed 

relative to the size of the ChIP-seq or RNA-seq dataset. Thus, each set of control SNVs is matched with 

the corresponding set of allele-specific SNVs for each dataset. 

 

We will provide more detailed explanation to further clarify how we obtain the ‘control’ SNVs. 

Response Previously in our manuscript, we described our ‘control SNVs’ as “a set of 

heterozygous, non-allele-specific but accessible SNVs.” We also described 

accessible SNVs as heterozygous SNVs that in principle, can be detected as 

allele-specific, because they meet the minimum read depth requirement, which 

is computed relative to the size of the ChIP-seq or RNA-seq dataset. Thus, 

each set of control SNVs is matched with the corresponding set of allele-

specific SNVs for each dataset. Perhaps we were not sufficiently clear in our 

descriptions. 

 

We have provided more detailed explanations in both the main text and the 

Methods section to further clarify how we obtain the ‘control’ SNVs. 

 

Excerpt “We define accessible SNVs as all heterozygous SNVs that exceed the 

minimum number of reads detectable statistically by the beta-binomial test for 

each dataset, including both allele-specific and non-allele-specific SNVs. This 

is an additional criterion imposed on top of the minimum threshold of 6 reads. 

The minimum number of reads thus varies with the pooled size (coverage) of 

the ChIP-seq or RNA-seq dataset. Thus, the accessible SNVs are dataset-

specific; they are determined for each pooled ChIP-seq (grouped by individual 

and TF, not by study) or RNA-seq dataset (grouped by individual)… ‘Control’ 

SNVs are subsequently derived from accessible SNVs that are non-allele-

specific, i.e. they are the set of accessible SNVs that has excluded the 

respective ASB or ASE SNVs for each dataset.” 

 
 

 

The heritability analysis (using a single trio...) is confusing to me. It is, in a sense, a corrupted version of 

what is typically considered heritability analysis. The comment that analysis was performed separately for 

single parent - child pairs in order to 'maximize statistics' is entirely unclear, and in general, the entire 

analysis seems ad hoc and does not result in what we typically consider a measure of heritability. 

 

Response: In our manuscript, we did recognize that this is an adapted version of the conventional 

heritability analysis in population genetics, since we do not have a population of trios. In fact, many other 

studies have adapted the analysis in similar ways to show inheritance; we provide the citations for some 

of them below. 

 

McDaniell, R. et al. (2010). Science. 328(5975):235-9 

Kasowski, M. et al. (2013). Science. 342(6159):750-2 

Kilpinen, H. et al. (2013). Science. 342(6159):744-7  

Response We thank for the reviewer for pointing out that this is not the measure of 

heritability of what we typically conceive. In our original manuscript, we did 



recognize that this is an adapted version of the conventional heritability 

analysis in population genetics. Even though we do not have a population of 

trios, there is still information about heritability that can be gleaned from a 

single trio. In fact, many other studies have also adapted their analyses in 

similar ways to show inheritance; we provide the citations for some of them: 

 

McDaniell, R. et al. (2010). Science. 328(5975):235-9 

Kasowski, M. et al. (2013). Science. 342(6159):750-2 

Kilpinen, H. et al. (2013). Science. 342(6159):744-7 

 

We have re-worded it to better reflect this. 

 

Excerpt “The conventional measure of ‘heritability’ allows the estimation of (additive) 

genetic contribution to a certain trait. The population genetics definition of 

‘heritability’ in a parent-offspring setting is described by the slope, β, of a 

regression (Y=βX + α), with the dependent variable being the child’s trait 

value (Y) and the independent variable (X) being the average trait values of 

the father and the mother (‘midparent’).60 This is a population-based measure 

typically performed on a large set of trios for a particular trait (e.g. height) 

and β is not necessarily bound between 0 and 1… Given that we have only a 

single trio, we adapt the typical definition of ‘heritability’ to quantify allele-

specific inheritance for each TF.” 

 
 

 

The analysis of functional annotation of the identified SNVs implicitly makes the assumption that these 

are causal variants. This is not the case, especially for the ASE, where the typed SNV is most likely in LD 

with the causal regulatory locus. As has been previously shown, the causal assumption is a poor one when 

ASB is considered as well. 

 

Response: We are in total agreement with the reviewer that these AS SNVs are not causal and have never 

intended to imply causality in our writing. We will re-word the manuscript to better reflect this.  

Response We are in total agreement with the reviewer that these AS SNVs are not 

necessarily causal and have never intended to imply causality in our writing. 

We will re-word the manuscript to better reflect this. 

 

Excerpt “…it is important to note that the AS SNVs detected are not causal. The 

resultant allelic difference in gene expression and binding can be due to 

another undetected causal variant that has a strong linkage disequilibrium 

with the detected variant or, it could be due to a group of variants that act 

collectively to give the resultant allelic expression or binding.37” 

 
 

 

Minor comments: 

 



From the intro: "AS variants can be detected regardless of their population allele frequencies." - This is 

actually not true in practice. ASE in intermediate frequency alleles are still easier to detect in the entire 

population because one can estimate the over dispersion parameter more precisely. 

 

Response: The sentence was not meant to refer to the ease in detection, but rather the range, of allele 

frequencies that can be detected in allele-specific variants. We will re-word the manuscript to better 

reflect our intention. 

Response The sentence was not meant to refer to the ease in detection, but rather the 

range, of allele frequencies that can be detected in allele-specific variants. We 

will re-word the manuscript to better reflect our intention. 

 

Excerpt “Using each allele in a diploid genome as a perfectly matched control for the 

other allele, allele-specific variants can be detected even at low population 

allele frequencies.” 

 
 

 

I applaud the author's computational competence, but is the sentence, in the Results, on the amount of 

CPU time needed for the analysis really adds to the narrative? I think such details should be reported in 

the methods section. 

 

Response: We agree with the reviewer and will move the sentence from the main text to the Methods 

section. 

Response We agree with the reviewer and have moved the sentence from the main text to 

the Methods section. 

 
 

 

  



Reviewer #3 (Remarks to the Author): 
 

This manuscript provides analysis of allele-specific binding (ASB) and expression (ASE) data for many 

individuals and assays. The authors compile this information in a database and further focus on describing 

the properties of transcription factors and genes which are enriched or depleted in ASB and ASE. I have 

the following major comments: 

Response  We thank the reviewer for the thorough examination of the manuscript. 

 
 

 

1) The methods do not take into account the known statistical challenges of calling ASB or ASE and 

current advances in this area. The authors simply resort to a simple binomial test setting a minimum depth 

of 6 reads. It should be obvious that even with an FDR of 5 or 10% that low depth sites are going to be 

enriched in significant sites. They should plot depth by percentage of significant sites as a sanity check. 

 

Response: As mentioned, we agree with the reviewer’s comment and will build a more sophisticated 

statistical model to accommodate overdispersion. 

Response We agree with the reviewer’s comment that using a binomial test, even with 

multiple hypothesis correction, significant sites will be enriched with low read 

depth sites. Hence, we have built a more sophisticated statistical model using 

a beta-binomial test to account for overdispersion. As mentioned also in 

response to reviewer #2’s comment, we have now re-processed all the 1,280 

ChIP-seq and RNA-seq datasets by first estimating the overdispersion 

parameter of each dataset. We then filter out those that exhibit a greater 

overdispersion (overdispersion parameter, ρ > 0.3 for ChIP-seq datasets and 

ρ > 0.125 for RNA-seq datasets) estimated from the allelic ratio distribution. 

Finally, we use a beta-binomial test to estimate and account for 

overdispersion during our ASE and ASB detection. 

 

The new Figure 1 and Methods section give a summary of our revised 

pipeline. 

 
 

 

2) Many of the datasets they use have ASB and ASE already called on them. The advantage of their 

approach to existing data is not compared. How different are there ASB/ASE calls to gEUVADIS or 

McVicker et al? One would expect that even if these are not online, the methods should minimally be 

compared as there will be an expectation that the AlleleDB database would yield similar quality results. 

 

Response: As also noted by the first reviewer, it is important to appreciate that there is a fair amount of 

heterogeneity in the parameters and tools used in other studies, for instance the peak callers, aligners, 

detection strategies and reference genomes. Hence, there will naturally be great disparities and variability 

when comparing AlleleDB with results with the other studies. In fact, AlleleDB is motivated by the need 

to harmonize and uniformly reprocess all the datasets for allele-specific detection instead of simply 

combining the results from these various studies.  

Response As also noted by the first reviewer, it is important to appreciate that there is a 

fair amount of heterogeneity in the parameters and tools used in other studies, 

for instance the peak callers, aligners, detection strategies and reference 



genomes. Hence, there will naturally be great disparities and variability when 

comparing AlleleDB with results with the other studies. In fact, AlleleDB is 

motivated by the need to harmonize and uniformly reprocess all the datasets 

for allele-specific detection instead of simply combining the results from these 

various studies. 

 

We have included a new supplementary table (Supplementary Table 1) to show 

some of the differences between various studies. 
 

 

 

3) How is AS inheritance at binding sites not a universal phenomenon of TFs like MYC or RPB2? This 

seems like a pretty bold assertion. Isn't it more likely that there is something wrong with your method for 

these sites? Low read depth, poor antibody efficiencies, non-specificity of binding profiles, etc. Why 

make a biological claim before you have exhausted technical sources of error. 

 

Response: We agree with the reviewer and will remove the assertion from the revised manuscript.   

Response We agree with the reviewer and have removed the assertion from the revised 

manuscript. 
  

 

 

4) The phrasing of the paper suggests that ASE sites are actually causal. For instance, the relative 

numbers of sites with ASE and ASB are compared. What does this even mean? How are these even 

directly comparable? An ASE effect suggests the genes are imbalanced. This imbalance could be due to 

multiple causal ASB events. Furthermore, the ASE site is not causal. It is only indicating the potential 

presence of a causal regulatory variant. 

 

Response: We are in total agreement with the reviewer that these sites are not causal and have never 

intended to imply causality. By visualizing ASE and ASB SNVs side by side, we had meant to provide 

some context and possibly set the stage for some biological insights. We will re-work the manuscript to 

better reflect this. 

Response We are in total agreement with the reviewer that these sites are not necessarily 

causal and have never intended to imply causality. By visualizing ASE and 

ASB SNVs side by side, we had meant to provide some context and possibly set 

the stage for some biological insights. 

 

We have included a new figure, Figure 4, to show how concurrent 

visualization of ASB and ASE SNVs in a population of individuals for the gene 

ZNF331 can potentially provide some biological insights into the allele-

specific properties of the gene and its specific sub-regions (exons).  

  
 

 

5) The authors don't seem to understand why a gene would be depleted in allele-specific behavior. Is there 

expectation that allele-specific behavior should influence all genes equally? Furthermore, I worry that 

depth might be more deterministic of which genes are enriched or depleted. 

 



Response: On the contrary, our (null) expectation is a ‘balanced’ (biallelic) behavior in expression or 

binding. Hence, a statistically significant depletion of allele-specific behavior in a genomic element can 

be interpreted as more ‘balanced’. We had mentioned FHIT as an example of such a more balanced 

behavior, but could not understand the significance in relation to its role in cancer. To prevent further 

confusion, we will exclude citing the example in our revised manuscript.  

Response We agree with the reviewer that we do not expect allele-specific behavior to 

influence all genes, or even sub-regions within a single gene, equally. Indeed, 

genomic regions with lower read depth will not have enough power to detect 

AS behavior. However, for regions with sufficient read depth, our 

implementation of an explicit FDR simulation takes into account the respective 

read depth of each heterozygous SNV in order to determine whether a SNV is 

allele-specific or not. Additionally, to determine whether a gene (or genomic 

element) is enriched or depleted in allele-specific behavior, we incorporated 

the use of ‘control’ SNVs that are well-matched in power to the allele-specific 

SNVs. 

 
 

 

6) Why would ASB be under less selective constraint that ASE SNVs? This probably only has to do with 

the background of being in a gene versus being in a non-coding region. Again ASE SNVs are not causal, 

so what is selection acting on. Figure 4 makes no sense. Beyond this, I don't even see a difference 

between the ASB +/- sites at low frequencies. 

 

Response: We agree with the reviewer that a substantial contribution to the comparison of selective 

constraints based on the enrichment of rare variants between ASE and ASB might be due to the 

background of being in a gene versus a non-coding region respectively. We will remove the only sentence 

making the ASE-ASB comparison. In addition, to attenuate such a background effect, we will constrain 

our analysis to only the coding DNA sequence and the transcription factor binding motifs in the revised 

manuscript.  

 

The main aim of this analysis has been to investigate how selective constraints affect allele-specific and 

non-allele-specific sites for expression and binding. Again, we are not implying any causality. If natural 

selection is acting equally on non-causal ASE and non-ASE SNVs, we would not expect any significant 

difference between them. The fact that we are observing a significant difference indicates that a 

considerable proportion of ASE sites is directing the selection. In this case, the ASE SNVs seemed to 

experience less selective constraints than the non-ASE SNVs, suggesting that these regulatory sites can 

accommodate more variability. 

Response We agree with the reviewer that it is reasonable that the background of being 

in a gene versus a non-coding region can contribute to the higher enrichment 

of rare variants in ASE SNVs than ASB SNVs. Hence, we have removed the 

sentence that makes this ASE-ASB comparison.  

 

We had intended to report the rare variant load in ASE and ASB sites only as 

a general observation that might be suggestive, and not indicative, of less 

natural selection in ASE sites. We have re-worked the main text to better 

reflect this. 

 



Furthermore, inspired by the reviewer’s comment, we have constrained our 

analysis to only the coding DNA sequences and the transcription factor 

binding motifs and re-calculate the rare variant loads in ASE, accessible non-

ASE, ASB and accessible non-ASB sites. Indeed, we do not find any significant 

enrichment of ASB sites, compared to accessible non-ASB sites. 

 

Excerpt “Our results in Figure 6 show a statistically significant lower enrichment of 

rare variants in ASE SNVs as compared to non-ASE SNVs (Fisher’s exact test 

odds ratio=0.2, p<2.2e-16) but statistically insignificant higher enrichment of 

rare variants in non-ASB SNVs than ASB SNVs (Fisher’s exact test odds 

ratio=1.4, p=0.08). This observation seems to suggest that ASE variants may 

be under weaker selection than non-ASE variants, which can be a result of 

accommodating varying levels of gene expression across individuals.” 

 
 

 

7) Do the authors have any insight into how well their calls replicate and then their replication at various 

depths. 

 

Response: We can provide some analyses to address the concerns. 

 

Response In response to the reviewer’s suggestion, we have included two new analyses 

as supplementary materials.  

 

The first one investigates how well our pipeline recapitulates, by comparing 

the detected AS SNVs from two biological replicates from the ENCODE RNA-

seq datasets of the same cell line, NA12878. We observe that the number of AS 

SNVs detected is highly dependent not only on the size of the dataset (number 

of reads), but also on how overdispersed the dataset is. Between two 

biological replicates, when the one is more overdispersed, it typically gives a 

higher number of AS sites, even when the other replicate is of a higher read 

depth. 

 

The second one investigates the reproducibility of the AS variant calls from 

pseudo-datasets of various read depths taken from the same ENCODE RNA-

seq NA12878 dataset. The majority of the AS sites overlap at each read depth, 

showing how well the calls replicate. [need to check on these…] 

 
 


