SOMATIC MUTATION BURDEN ANALYSIS BY CORRECTING MULTIPLE COVARIATES

Jing Zhang $6/29/15$ Gerstein Lab

Challenges in identifying noncoding drivers

- \Box Noncoding variants may serve as drivers in many cancer types
	- **E** TERT, PLEKHS1, WDR74 and SDHD promoters
	- miRNA-binding sites on BRCA1 and BRCA2
- \Box Goal: identify highly mutated noncoding regions as driver candidates
- □ Challenge: mutation count data is usually over-dispersed

- o Reasons for overdispersion:
	- **Mutation rate** heterogeneity
	- **E** Correlations among neighboring positions

Sources of overdispersion

- **3**
- Sources of mutation rate heterogeneity of :
	- 1. Mutation rate heterogeneity among different cancer types
	- 2. Mutation rate heterogeneity among different sample of the same cancer type

- SKCM: median number of mutations 74680
- ❖ PBCA: median number of mutations 602
- ❖ Max and min number of mutations of EOPC: 46540 and 63

Sources of overdispersion

- **4**
- Sources of mutation rate heterogeneity of :
	- 3. Regional differences within the same sample

- Sources of mutation rate correlations:
	- 1. Correlations of SNVs due to existence of SV

Binomial and Beta-Binomial

□ Binomial distribution:
$$
\binom{n}{k} p^k (1-p)^{n-k}
$$

Beta-binomial distribution:

$$
x_i | p : Binomial(n_i, p)
$$

 $p : Beta(\mu, \gamma)$

- ^o Assuming p is sampling from a beta distribution
- ^o May be interpreted as sampling from different samples, regions, or cancer types(if there is)

$$
\Pr\left\{Y = y | n, p, \gamma\right\} = \left(\begin{array}{c} n \\ y \end{array}\right) \prod_{i=0}^{\frac{y-1}{y-1}} (p + \gamma i) \prod_{i=0}^{n-y-1} (1 - p + \gamma i)
$$
\nMean of the point mutation
probability

\n
$$
\log it(p_k) = \sum_{j=1}^{J} x_{kj} b_j, \gamma \sim \text{constant}
$$
\n
$$
\log it(p_k) = \sum_{j=1}^{J} x_{kj} b_j, \gamma \sim \text{constant}
$$
\n
$$
\log t(p_k) = \sum_{j=1}^{J} x_{kj} b_j, \gamma \sim \text{constant}
$$

Poisson family

□ Poisson distribution: $P(Y = y|p) = e^{-p} p^y / y!$

6

In Negative Binomial Distribution (type I):

 $\langle Y|\gamma \sim PO(\mu\gamma)$ and $\gamma \sim GA(1, \sigma^{\frac{1}{2}}),$ $E(Y) = \mu$ and $Var(Y) = \mu + \sigma \mu^2$.

$$
p_Y(y|\mu,\sigma) = \frac{\Gamma(y+\frac{1}{\sigma})}{\Gamma(\frac{1}{\sigma})\Gamma(y+1)} \left(\frac{\sigma\mu}{1+\sigma\mu}\right)^y \left(\frac{1}{1+\sigma\mu}\right)^{1/\sigma}
$$

Q Poisson inverse Gaussian Distribution:

$$
Y|\gamma \sim \rho O(\mu \gamma) \text{ and } \gamma \sim IG(1, \sigma^{\frac{1}{2}}),
$$

$$
p_Y(y|\mu, \sigma) = \left(\frac{2\alpha}{\pi}\right)^{\frac{1}{2}} \frac{\mu^y e^{1/\sigma} K_{y-\frac{1}{2}}(\alpha)}{(\alpha \sigma)^y y!}
$$

Computational Goal

□ Reasonable local *noncoding* mutation rate prediction

- \circ Previous model: replication timing $+$ GC content
- ^o Current model: list of correlated genomic features
	- \Diamond GC content, CpG content, Replication timing
	- \Leftrightarrow Chromatin Accessibility, Histone modification marks
	- \Leftrightarrow Expression level

Summary of data used

Distribution fitting comparison

Choice of feature list

- □ Full list: 381 features from the Epigenetics Roadmap and ENCODE projects
	- 7 modification marks: Histone_H3K27ac, Histone_H3K27me3, Histone H3K36me3, Histone H3K4me1, Histone H3K4me3, Histone H3K9ac, Histone H3K9me3
	- **EXPELER** Expression data from mRNA-seq, Chromatin accessibility
	- **E.** GC content, CpG percentage, replication timing
- □ Average list: 42 features
	- 40 features averaged across Epigenetics Roadmap project,
	- \Box GC content + replication timing

Problem: redundancy within these features

● ChIP.Seq_Input ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● O ■ −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 reptiming.hg19 Histone_H3K9me3 smRNA.Seq mRNA.Seq MRE.Seq Reduced_Representation_Bisulfite.Aeq Bisulfite.Seq မ္တ MeDIP.Seq Histone_H2AK9ac Histone_H4K12ac Histone_H3K36me3 Histone_H3K4me3 Histone_H3K27ac Histone_H3K9ac Histone_H3K4me2 Chromatin_Accessibility Digital_Genomic_Footprinting Histone_H2BK20ac Histone_H3K9me1 Histone_H3K4me1 Histone_H3K79me1 Histone_H3K79me2 Histone_H4K20me1 Histone_H4K8ac Histone_H2BK5ac Histone_H4K5ac Histone_H2BK15ac Histone_H3K23ac Histone_H3K56ac Histone_H2BK120ac Histone_H2BK12ac Histone_H2AK5ac Histone_H3K18ac Histone_H4K91ac Histone_H3K14ac Histone_H3K4ac Histone_H3K27me3 Histone_H3K23me2 Histone_H2A.Z Histone_H3T11ph ChIP.Seq_Input reptiming.hg19 Histone_H3K9me3 smRNA.Seq mRNA.Seq MRE.Seq
Bisulfite.Seq Reduced_Representation Bisulfite.Seq gc MeDIP.Seq Histone_H2AK9ac Histone_H4K12ac Histone_H3K36me3 Histone_H3K4me3 Histone_H3K27ac Histone_H3K9ac Histone_H3K4me2 Chromatin_Accessibility Digital_Genomic_Footprinting Histone_H2BK20ac Histone_H3K9me1 Histone_H3K4me1 Histone_H3K79me1 Histone_H3K79me2 Histone_H4K20me1 Histone_H4K8ac Histone_H2BK5ac Histone_H4K5ac Histone_H2BK15ac Histone_H3K23ac Histone_H3K56ac Histone_H₂BK120ac Histone_H2BK12ac Histone_H2AK5ac Histone_H3K18ac Histone_H4K91ac Histone_H3K14ac Histone_H3K4ac Histone_H3K27me3 Histone_H3K23me2 Histone_H2A.Z Histone_H3T11ph \triangleright Multicollinearity problem in coefficient estimation \triangleright Will not affect the reduce the predictive power or reliability of the model \triangleright Will only impact the understanding of a single predictor and its corresponding hypothesis testing & *Solution: go with it or use PCA based regression*

PCA analysis of covariates

- o Use PCA to project the features into orthogonal space and run regression on these independent components
- o PCA based regression might be very sensitive for number of PCs selected
- \circ To keep approximately the same performance, need at least 105 PCs that explains > 0.99 percent of variation

Virtualization Example

- **13**
- □ Correlation of mutation rate and GC
	- **□** -0.246 (Pearson) and -0.259 (spearman)
- \Box Correlation of mutation rate and replication timing
	- '0.314 (Pearson) and 0.276 (spearman)

Binomial Family performance 50 100 150 200 250 100 200 300 400

Performance comparison of the Poisson family $AIC = 2K - 2\ln(L)$

Number of parameters in the model

- \Diamond Poisson > NBI \approx PIG
- \diamondsuit Even with PCs explaining 99% of variation, performance is still can not be comparable to all feature list
- \Leftrightarrow PC1 is not the most significance predictor of mutation counts, meaning the factor that explaining most covariates variation is NOT the one explaining the counts

16

1.0 ٠ŗ ـە
○ ● ● ● 0.8 。 0 \circ ● \circ ● ● ● \circ 0 ⊾0 ● ● \circ \blacksquare ● ● ● ● ● ● pearson correlation \circ 。
○■ [○] $\overline{\circ}$ 0.6 \circ ● Ω \circ 0.4 \circ 0.2 regression $\overline{}$ prediction $\overline{\mathbb{R}}$ 0.0 HNSC EOPC **BLCA** PRAD MALY LICA LIRI GACA δ KICH KIRP KIRC BRCA
LAML
THCA
SARC LGG UCEC CESC PBCA GBM DLBC PAEN ORCA SKCM CLLE BOCA BTCA PACA LIHC LUAD LUSC STAD ESAD COAD READ

average feature list

Lack of statistical power in smaller regions

- □ Challenge: target regions are usually not large enough for accurate background mutation rate estimation
- \Box Nearest neighbor: in high dimensional space, difficult to find a neighbor
- □ Solution: test region clustering based on predictions

Flowchart of our mutational analysis

roadmap enhancer

 $-log10(p_$ unif)

On going work

- \Box Compare the P values from Poisson and Binomial family
- \Box Efficient implementation of current method
- \Box Annotation free analysis

22

chr14::107168676::107169229 ,real= 0 ,rand.Pos.Num= 10

Acknowledgement

- □ Mark Gerstein
	- **E** Lucas Lochovsky
	- \Box Jason Liu
- \Box Ekta Khurana
	- **n** Priyanka Dhingra

Questions: J.zhang@yale.edu