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Heavy right tails lead to many 
false positives 

observed 
expected 

Challenges in identifying noncoding drivers 

!  Noncoding variants may serve as drivers in many cancer types 
!  TERT, PLEKHS1, WDR74 and SDHD promoters 

!  miRNA-binding sites on BRCA1 and BRCA2  

!  Goal: identify highly mutated noncoding regions as driver 
candidates 

!  Challenge: mutation count data is usually over-dispersed 
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o  Reasons for overdispersion: 
"  Mutation rate 

heterogeneity  
"  Correlations among 

neighboring positions 



Sources of overdispersion 

•  Sources of mutation rate heterogeneity of : 
1.  Mutation rate heterogeneity among different cancer types 
2.  Mutation rate heterogeneity among different sample of the same cancer type 
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Sources of overdispersion 

•  Sources of mutation rate heterogeneity of : 
3.  Regional differences within the same sample 
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•  Sources of mutation rate correlations: 
1.  Correlations of SNVs due to existence of SV 



Binomial and Beta-Binomial 
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!  Binomial distribution: 

$  Beta-binomial distribution: 
o  Assuming p is sampling from a beta distribution 

o  May be interpreted as sampling from different samples, regions, or cancer 
types(if there is)  

xi p :Binomial ni , p( )
p :Beta µ,γ( )

Pr Y = y n, p,γ{ } = n
y

⎛

⎝⎜
⎞

⎠⎟
p + γ i( )

i=0

y−1

∏ 1− p + γ i( )
i=0

n−y−1

∏
1+ γ i( )

i=0

n−1

∏
Mean of the point mutation 

probability 
Indicates the overdispersion of 

mutation counts 

 
log it pk( ) = xkjbj

j=1

J

∑ ,γ ∼ constant



Poisson family 
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!  Poisson distribution: 

!  Negative Binomial Distribution (type I): 

$  Poisson inverse Gaussian Distribution: 

 

P Y = y p( ) = e− p py / y!



Computational Goal 
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!  Reasonable local noncoding mutation rate prediction 
o  Previous model: replication timing + GC content 

o  Current model: list of correlated genomic features 
% GC content, CpG content, Replication timing 

%  Chromatin Accessibility, Histone modification marks 

%  Expression level 

Mutation counts 

Covariant matrix 

Length of FNC elements 

y1,!, yk,!yK
X

n1,!,nk,!nK



Summary of data used 
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Distribution fitting comparison 
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Number of mutations in 1mb bins 

Colon Adenocarcinoma 

Number of mutations in 1mb bins 

Malignant Lymphoma 



Choice of feature list 
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!  Full list: 381 features from the Epigenetics Roadmap 
and ENCODE projects 
!  7 modification marks: Histone_H3K27ac, Histone_H3K27me3, 

Histone_H3K36me3, Histone_H3K4me1, Histone_H3K4me3, 
Histone_H3K9ac, Histone_H3K9me3 

!  Expression data from mRNA-seq, Chromatin accessibility  

!  GC content, CpG percentage, replication timing 

!  Average list: 42 features 
!  40 features averaged across Epigenetics Roadmap project,  

!  GC content + replication timing 
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Problem: redundancy within these features  

&  Multicollinearity problem in 
coefficient estimation 

&  Will not affect the reduce the 
predictive power or 
reliability of the model 

&  Will only impact the 
understanding of a single 
predictor and its 
corresponding hypothesis 
testing 

&  Solution: go with it or use PCA 

based regression 



PCA analysis of covariates 
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Virtualization Example 
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!  Correlation of mutation rate and GC 
!  -0.246 (Pearson) and -0.259 (spearman) 

!  Correlation of mutation rate and replication timing 
'  0.314 (Pearson) and 0.276 (spearman) 



Binomial Family performance 
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•  These 381 features accurately predict the mutation rate in 

various cancer types 

•  Pearson correlation of the observed and predicted variant 

counts varies from 0.692 to 0.975 

•  Performance is not dominated by sample size effect 

No Roadmap data 

Large sample #, but 
low mutation rate 
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Performance comparison of 
the Poisson family 
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%  Poisson > NBI ≈ PIG 
%  Even with PCs explaining 99% of 

variation, performance is still can 
not be comparable to all feature 
list 

%  PC1 is not the most significance 
predictor of mutation counts, 
meaning the factor that 
explaining most covariates 
variation is NOT the one 
explaining the counts  

AIC = 2K − 2 ln L( )
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Lack of statistical power in smaller regions 
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!  Challenge: target regions are usually not large enough for accurate 
background mutation rate estimation 

!  Nearest neighbor: in high dimensional space, difficult to find a neighbor 

!  Solution: test region clustering based on predictions 

 
10kb region Correlation: -0.1127 

M
ut

at
io

ns
/t

ot
al

 b
as

es
 

Local cluster ID 



Flowchart of our mutational analysis 
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Calculate covariant matrix 

Tissue 1 Tissue2 … 

Histone Modifications 

Chromatin Accessibility 

GC, CpG 

expression 

Replication timing 

PCA based regression for neighbor definitions  

µ̂1i :  estimate of k g−1 Xib̂1( )− g−1 Xkb̂1( ) < ξ{ }⇒ pi,1

µ̂2i :  estimate of k g−1 Xib̂2( )− g−1 Xkb̂2( ) < ξ{ }⇒ pi,2

µ̂ki :  estimate of k g−1 Xib̂n( )− g−1 Xkb̂n( ) < ξ{ }⇒ pi,n
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Protein coding genes 



On going work 
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!  Compare the P values from Poisson and Binomial family 
!  Efficient implementation of current method 

!  Annotation free analysis 
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