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ABSTRACT 

Motivation: Gene expression is controlled by combinatorial effects of gene regulatory factors from dif-

ferent biological subsystems such as general transcription factors, cellular growth factors and mi-

croRNAs. A subsystem’s gene expression may be controlled by its internal regulatory factors, exclu-
sively, or by other external subsystems, or by both. It is thus useful to distinguish the degree to which a 

subsystem is regulated internally or externally; e.g., to understand how external regulatory factors affect 
the expression of conserved genes during evolution.  

Results: We developed a computational method, DREISS for dynamics of gene expression driven by 
external and internal regulatory modules based on state space model to help dissect the effects of dif-

ferent regulatory subsystems on gene expression. Given a subsystem, the “state” and “control” in the 
model refer to its own (internal) and another subsystem’s (external) gene expression levels. The state 

at a time is determined by the state and control at previous time. DREISS integrates the dimensionality 
reduction for combating the limited time samples, and identifies the canonical temporal expression tra-

jectories (e.g., degradation, growth, damped oscillation) representing the regulatory effects from various 

subsystems.  
    To illustrate DRIESS, we applied it to the time-series gene expression datasets of worm (C. elegans) 

and fly (D. melanogaster) during their embryonic development, to demonstrate its capabilities for study-
ing the regulatory effects of evolutionary conserved vs. divergent transcription factors across distant 

species. We analyzed the expression dynamics of the conserved, orthologous genes (orthologs), see-
ing the degree to which these can be accounted for by orthologous (internal) versus species-specific 

(external) transcription factors (TFs). We found that between the two species, the canonical trajectories 
of orthologs expression driven by orthologous TFs are more similar to each other than those driven by 

species-specific ones. This is particularly true for genes with evolutionarily ancient functions (e.g. the 
ribosome), in contrast to those with more recently evolved functions (e.g., cell-cell communication). This 
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implies that despite striking morphological differences, some basic embryonic-developmental processes 

are still tightly under the control of ancient regulation for the similar canonical trajectories of worm-fly 
orthologs driven by the orthologous TFs. 

Availability and implementation: We make DREISS available as general-purpose tool 
(dreiss.gersteinlab.org) to compare the effects from different types of biological regulatory subsystems 

in future.  

1 INTRODUCTION  
Gene regulatory networks (GRNs) systematically control gene expression dynamics. Those networks are 

highly modular, and consist of various sub-networks. Each sub-network includes a number of regulatory 

factors representing a subsystem to drive particular gene regulatory functions [1,2]. The subsystems in-

teract with one another, and work together to carry out the entire gene regulatory function. For example, 

the gene expression in embryogenesis is controlled by the combinatorial effects of various regulatory 

subsystems comprising complex evolutionary regulatory networks [3]. These regulatory subsystems 

drive very diverse developmental programs, from the highly conserved (e.g. DNA replication) to the 

species-specific (e.g. body segmentation). For example, the orthologous genes are the evolutionary con-

served genes across species, and can be regulated by both orthologous and species-specific transcription 

factors (TFs) [4]. The orthologous TFs constitute an “internal” regulatory network, while the species-

specific TFs constitute an “external” regulatory network. Unfortunately, existing experimental gene ex-

pression data cannot decouple the expression components that are driven by different subsystems. Thus, 

we need computational methods to assess the contribution from each factor or subsystem from the gene 

expression data. In this study, we propose a novel computational method, DREISS - Decomposition of 

gene Regulatory network into External and Internal components based on State Space models. We iden-

tify temporal gene expression dynamic patterns for evolutionarily conserved genes during embryonic 

development, as driven by conserved and species-specific regulatory subsystems. This advances our cur-

rent understanding of GRNs in evolution as well as differentiation during development. 

 

Developmental GRNs control gene expression to determine developmental processes. These GRNs have 

been evolved, making it difficult to understand their regulatory mechanisms at the system level. Hence, 

one typically compares developmental gene expression across species to infer activities of developmen-

tal GRNs. For example, embryogenesis provides a platform to study the evolution of gene expression 
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between different species. Recent work has showed that significant biological insight can be gained by 

cross-species comparisons of the expression profiles during embryogenesis for worms [5], flies [6], 

frogs [7] and several other vertebrates [8]. It was found that the orthologous genes have minimal tem-

poral expression divergence during the phylotypic stage, a middle phase at embryonic development 

across species within the same phylum. These patterns are often characterized as hourglass patterns [9]. 

In addition, the conserved hourglass patterns were observed within a single species while comparing the 

developmental gene expression data across distant species, such as worm and fly [10]; i.e., the expres-

sion divergence among evolutionarily conserved genes become minimal during the phylotypic stage in 

both worm and fly. However, how the orthologous genes in each species eventually contribute to their 

species-specific phenotypes is less studied due to the lack of appropriate computational approaches. 

Thus, we aim to discover the components of the orthologous gene expression during embryonic devel-

opment driven by species-specific transcription factors. Our method is able to identify temporal gene 

expression dynamic patterns for evolutionarily conserved genes during embryonic development, as driv-

en by conserved and species-specific regulatory subsystems. This advances our current understanding of 

GRNs in evolution and differentiation during development. 

 

The state-space model has been widely used in engineering [11] and analyzing gene expression dynam-

ics [12-14]. It models the dynamical system output as a function of both current internal system state and 

external input signal such as vehicle cruise control system. For example, the transcription factors and 

microRNAs can their internal and external regulatory factors for the protein-coding genes, respectively. 

Similarly, for the orthologous genes, their expression at the next developmental stage can be predicted 

from their expression (internal) and species-specific regulatory factors (external) at the current stage. 

Unlike previous studies that calculates the expression correlation between individual genes, the state-

space model predicts the temporal causal relationships at the system level; i.e., the state at a time is de-

termined by the state and external input at previous time. The previous work applied the state-space 

model to study the gene expression dynamics focusing on small-scale systems, and did not explore the 

analytic dynamic characteristics of the inferred state-space models. The complex and large-scale biolog-

ical datasets, especially temporal gene expression data, are very noisy, and high dimensional (i.e., the 

number of genes is much greater than the number of time samples), thereby preventing an accurate esti-

mation of the state-space model’s parameters. The dimensionality reduction techniques have thus been 

used to project high-dimensional genes to low-dimensional meta-genes (i.e., the selected features repre-
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senting de-noised and systematic expression patterns [1,15,16]) as well as the principal dynamic patterns 

for those meta-genes [17,18]. DREISS applies the dimensionality reduction to the gene expression data, 

develops an effective state-space model for their meta-genes, and identifies a group of canonical tem-

poral expression trajectories representing the dynamic patterns driven by effective conserved and spe-

cies-specific meta-gene regulatory networks according to the model’s analytic characteristics. These dy-

namic patterns reveal temporal gene expression components that are controlled by conserved or species-

specific GRNs. 

 

DREISS is a general-purpose tool and can study the gene regulatory effects of any different subsystems 

for a given group of genes. As an illustration, we applied DREISS to the gene expression data during 

embryonic development for two model organisms, worm (Caenorhabditis elegans) and fly (Drosophila 

melanogaster). In both species, we identified the expression patterns of worm-fly orthologs driven by 

the conserved regulatory network consisting of the worm-fly TFs (i.e., the conserved regulatory subsys-

tems between two species), as well as the worm/fly-specific regulatory network consisting of non-

orthologous TFs (i.e., the species-specific regulatory subsystem). Our results reveal that, in addition to 

executing conserved developmental functions between worm and fly, their orthologous genes are also 

regulated by species-specific TFs to involve in species-specific developmental processes. In summary, 

DRIESS provides a framework to analyze distantly and closely related species allowing for better under-

standing the gene regulatory mechanisms during development.  

2 METHODS 
DREISS consists of five major steps (Figure 1):  

Step 1: DREISS models temporal gene expression dynamics using state-space models in control theory. 

The “state” refers to the expressions for a large group of genes of interest, such as the worm-fly ortholo-

gous genes investigated here. The “control” refers to any other group of genes that contribute to gene 

expressions of the “state”, such as the species-specific TFs contributed to control orthologous gene ex-

pression.  

Step 2: Due to the limited number of temporal samples in gene expression experiments, we do not have 

enough data to estimate the parameters of the state-space models that capture interactions among hun-

dreds of genes. Therefore, DREISS projects high-dimensional gene expression space to lower-

dimensional meta-gene expression spaces using dimensionality reduction techniques.  
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Step 3: DREISS then derives the effective state-space models for meta-genes so that model parameters 

can be estimated.  

Step 4: DREISS then identifies the meta-gene expression dynamic patterns; i.e., canonical temporal ex-

pression trajectories driven by “state” (internal) and by “control” (external) based on the analytic solu-

tions to estimated models.  

Step 5: We calculate the coefficients of genes for the dynamic patterns of linear transformations be-

tween genes and meta-genes. DREISS also allows us to compare the dynamic expression patterns of 

multiple datasets with samples taken at different times. We describe DREISS in detail in each step as 

follows. 

2.1 State-space models for temporal gene expression dynamics 

A gene regulatory network is made up of various subsystems [1,2]. These subsystems work together to 

execute the regulatory functions. Given a group of N1 genes in a subsystem, their gene expression levels 

(X) are not only controlled by internal interactions among X, but also affected by the regulatory factors 

from other subsystems outside X (external regulations, the U group in this paper). For example, we can 

consider the worm-fly orthologous genes as the X group. The worm-fly orthologous TFs from the X 

group are the internal regulatory factors, and non-orthologous TFs such as worm- or fly- specific TFs are 

the external regulatory factors to the X group, namely Group U. Both internal and external regulatory 

factors control gene expressions in dynamic ways (i.e., their regulatory signals at the current time will 

affect gene expressions at future times). Thus, the regulatory mechanisms for the gene expressions form 

a control system. In this study, we used a state-space model (linear first-order difference equations, Fig-

ure 2A), which has been commonly used in control engineering, to formulate temporal gene expression 

dynamics for the gene group X (comprising N1 genes) with external regulations from the gene group U 

(comprising N2 genes) at time points 1, 2, … , T as follows: 

Xt+1 = AXt +BUt     (1) 

, where the vector Xt ∈ℜN1×1  , the “state”, includes N1 gene expression levels at time t in group X, and 

the vector Ut ∈ℜN2×1  , the “input or control”, includes N2 gene expression levels at time t in group U. 

The system matrix A ∈ℜN1×N1  captures internal causal interactions among genes in X (i.e., the ith, jth el-

ement of A, Aij describes the contribution from the jth gene expression at time t to the ith gene expression 

at the next time t+1), which instantiates a gene regulatory network. The control matrix B ∈ℜN1×N2  cap-
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tures external causal regulations from the genes in U to genes in X (i.e., the ith, jth element of B, Bij de-

scribes the contribution from the jth gene expression in U at time t to the ith gene expression in X at the 

next time t+1). According to the state space model (1), the gene expression dynamics in X is determined 

by the system matrix A and the control matrix B.  

2.2 Dimensionality reduction from genes to meta-genes 

The temporal gene expression experiments normally have limited time samples (for example, there may 

only be a dozen time points), which are far less than the time samples needed to estimate the large ma-

trices A and B when X and U have hundreds or thousands of genes. Thus, we project high dimensional 

temporal gene expressions to much lower dimensional meta-gene expression levels using dimensionality 

reduction (Figure 2B). Those meta-gene expression levels should capture original gene expression pat-

terns, such as the ones having the greatest degree of co-variation. We calculate the meta-gene expression 

levels as follows: 

!! =!!
∗!!;!! =!!

∗!! (2) 

, where !Xt ∈ℜM1×1 , the “meta-gene state” at time t, includes M1 (<< N1 and <T) meta-gene expression 

levels; i.e., the values of first M1 singular vectors from singular value decomposition (SVD) of the ma-

trix X1X2...XT[ ]  at time t in group X; the vector !Ut ∈ℜM2×1  , the “meta-gene input or control” at time t, 

includes M2 (<< N2 and <T) meta-gene expression levels (i.e., the values of the first M2 singular vectors 

from SVD of the matrix U1U2...UT[ ]  at time t in group U; WX ∈ℜN1×M1 is the linear projection matrix of 

SVD from M1 meta-gene expression space to N1 gene expression space in X, WU ∈ℜN2×M2  is the linear 

projection matrix of SVD from M2 meta-gene expression space to N2 gene expression space in U), and 

(.)* is a pseudo-inverse operation; i.e., W*W=I, where I is the identity matrix.  

2.3 Estimation of effective state-space model for meta-gene expression dynamics 

Next, we can obtain the effective state-space model for meta-genes using linear projections WX and WU 

between genes and meta-genes as follows (Figure 2C). By replacing (1) using (2), we obtain that 

WX
!Xt+1 = AWX

!Xt +BWU
!Ut     (3) 

, and by multiplying the pseudo-inverse of WX, WX
* ∈ℜM1×N1  s.t. WX

*WX = I  where I is an identity matrix, 

at both sides of (3), 
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!Xt+1 =WX
*AWX
!A

"#$ %$
!Xt +WX

*BWU
!B

"#$ %$
!Ut ⇒ !Xt+1 = !A !Xt + !B !Ut     (4) 

, where the effective meta-gene system matrix !A =WX
*AWX ∈ℜM1×M1  captures internal causal interac-

tions among meta-genes in X (i.e., the ith, jth element of !A  ( !Aij ) describes the contribution from the jth 

meta-gene expression at time t to ith meta-gene expression at next time t+1), and the effective control 

matrix !B =WX
*BWU ∈ℜM1×M2  captures external causal regulations from meta-genes in U to meta-genes 

in X (i.e., the ith, jth element of !B , !Bij describes the contribution from the jth meta-gene expression in U at 

time t to ith meta-gene expression in X at next time t+1). Equation (4) describes the effective state space 

model for the meta-genes in X, whose expression dynamics is determined by !A and !B . Because the meta-

gene dimension, M1 (M2) is less than T, and much less than N1 (N2), we can estimate !A and !B  as follows. 

 
We rewrite Equation (4) as a matrix product on the right side: 

!Xt+1 = !A !Xt + !B !Ut = !A !B!
"#

$
%&

!Xt

!Ut

!

"

#
#

$

%

&
&

.                           (5) 

By applying Equation (5) to time points, 2,3, … , T, we then obtain that 

!X2 !X3 " !XT

!

"
#

$

%
&

Ζ
! "#### $####

= !A !B!
"#

$
%&

!X1 !X2 " !XT−1

!U1
!U2 " !UT−1

"

#

$
$
$
$

%

&

'
'
'
'

ϒ
! "##### $#####

           (6) 

, where Ζ ∈ℜM1×(T−1)   and  ϒ ∈ℜ(M1+M2 )×(T−1) . 

The effective internal system matrix !A  and external control matrix !B can be estimated by: 

!A !B!
"#

$
%&
= Ζϒ*

                    (7) 

, where ϒ* ∈ℜ(T−1)×(M1+M2 )  is the pseudo-inverse of ϒ ; i.e.

ϒϒ* = I,  with M1 < N1,M2 < N2,M1 +M2 < T, t =1, 2,...,T.  

2.4 Identification of internally and externally driven principal dynamic expression 

patterns of meta-genes (canonical temporal expression trajectories) 
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According to the analytic solution to Equation (4), the components of meta-gene expressions in X driven 

by effective internal regulations (i.e., the internally driven components of meta-gene states at two adja-

cent time points have !Xt+1
I = !A !Xt

I ) are linear combinations of M1 dynamic patterns determined by the ei-

genvalues of the effective system matrix !A  as follows: 

!Xt
I = λp

t !Vp
A

p=1

M1

∑ ; i.e.,  !!! !!! … !!! = !!! !!! … !!!!
!!! !!!
!!! !!!

… !!!
… !!!

⋮ ⋮
!!!! !!!!

⋱ ⋮
… !!!!

               (8) 

, where λp( !Vp
A ) is the pth eigenvalue (eigenvector) of !A , which determines the pth dynamic pattern driven 

by effective internal regulations, defined as the pth internal principal dynamic pattern (iPDP) = 

!!! !!!! … !!!! . If an eigenvalue λ is complex when is !!asymmetric, then its conjugate ! is also an eigen-

value, so we sum its iPDP and its conjugate eigenvalue, !’s iPDP as a unified iPDP with real elements 

equal to !!!+!!! !!!!+!!! … !!!!+!!! . Similarly, the components of meta-gene expressions in X driven by 

effective external regulations from U, i.e., !Xt+1
E = !B !Xt

E  (externally driven components of meta-gene 

states at two adjacent time points) are linear combinations of M2 dynamic patterns determined by the 

eigenvalues of the effective system matrix !B  as follows: 

!Xt
E = σ q

t !Vq
B

q=1

M2

∑  ; i.e.,  !!! !!! … !!! = !!! !!! … !!!!
!!! !!!
!!! !!!

… !!!
… !!!

⋮ ⋮
!!!! !!!!

⋱ ⋮
… !!!!

                  (9) 

, where )~( B
qq Vσ is the qth eigenvalue(eigenvector) of !B , which determines qth dynamic pattern driven by 

effective external regulations, defined as qth external principal dynamic pattern (ePDP) = !!!!!!!… !!!! . 

If an eigenvalue ! is complex, then its conjugate ! is also an eigenvalue, so we sum its ePDP and its 

conjugate eigenvalue, !’s ePDP as a unified ePDP with real elements equal to 

!!!+!!!!!!!+!!!… !!!!+!!! . 

 

Table 1. Classification of canonical temporal expression trajectories for PDP eigenvalue types 
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expression 

trajectory 

(initial) 

ing (I) 

 

 

(D) 

 
   

oscillation 

(UO) 

 

 

(DO) 

 

 

Both internal and external principal dynamic patterns (PDPs) represent the canonical temporal expres-

sion trajectories, which can be increasing, damped oscillation and so on depending on PDP’s eigenval-

ues (Table 1). 

 

2.5 Identification of gene coefficients of principal expression dynamic patterns 

Because genes and meta-genes have linear relationships in terms of their expression levels as Equation 

(2), the components of gene expression levels in X driven by internal regulations, I
tX can be also ex-

pressed as linear combinations of M1 iPDPs: 

Xt
I =WX

!Xt
I = λp

t WX
!Vp
A

Cp
A
!

p=1

M1

∑ = λp
tCp

A

p=1

M1

∑  ; i.e.,  

!!! !!! … !!! = !!! !!! … !!!!
!!! !!!
!!! !!!

… !!!
… !!!

⋮ ⋮
!!!! !!!!

⋱ ⋮
… !!!!

                            (10) 

, where Cp
A =WX

!Vp
A ∈ℵM1×1  includes the gene coefficients for pth iPDP. The gene expression components 

driven by external regulations from U can be also expressed as linear combinations of M2 ePDPs: 

Xt
E =WX

!Xt
E = σ p

t WX
!Vq
B

Cq
B
!

q=1

M2

∑ = σ p
t Cq

B

p=1

M2

∑  ; i.e.,  

!!! !!! … !!! = !!! !!! … !!!!
!!! !!!
!!! !!!

… !!!
… !!!

⋮ ⋮
!!!! !!!!

⋱ ⋮
… !!!!

                           (11) 

, where Cq
B =WX

!Vq
B ∈ℵM2×1  includes the gene coefficients for qth ePDP. 

3 RESULTS 
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Gene expression data during embryogenesis provide information about dynamics of genomic functions 

throughout developmental processes, from the conserved functions such as DNA replication to the spe-

cies-specific functions such as body segmentations, but hardly reveal evolutionary gene regulatory sub-

systems that drive those developmental functions [3]. Thus, in order to understand the relationships be-

tween those subsystems and their driving genomic functions, we apply DREISS to worm and fly gene 

expression datasets during embryogenesis in modENCODE and identify various developmental genomic 

functions of worm-fly orthologous gene pairs driven by two different evolutionary regulatory subsys-

tems, conserved (worm-fly TFs) and non-conserved (worm/fly TFs). As model organisms for develop-

mental biology, both worm and fly have been used to study embryogenesis for decades.  

3.1 Applications to worm and fly embryonic developmental data in modENCODE: 

orthologous genes, transcription factors and gene expression datasets 

DREISS enables us to compare expression dynamic patterns between two or more temporal gene ex-

pression datasets even though they have different numbers of samples, as well as differences in the times 

at which those samples were collected. For example, we can apply DREISS to two different datasets of 

the same group of genes, and identify similar/different dynamic patterns driven by internal regulations 

captured by the eigenvalues of the effective system matrices between two datasets. 

 

In this paper, we apply DREISS to 3,153 one-to-one orthologous genes between worm (Caenorhabditis 

elegans) and fly (Drosophila melanogaster) as Group X for their expression dynamics during embryonic 

development [10]. We refer to species-specific TFs as external regulations; i.e., Group U. We found that 

worm-fly orthologs have similar internal dynamic patterns, which may be mainly driven by conserved 

TFs, but have very different external dynamic patterns driven by species-specific TFs between worm 

and fly embryonic developmental stages. We focus on comparing internal dynamic patterns along with 

orthologous gene coefficients between worm and fly. The datasets are summarized as follows.  

 

We define Group X as 3,153 one-to-one orthologous genes between worm and fly during embryonic de-

velopment, and Group U as all species-specific TFs (509 worm-specific TFs, 442 fly-specific TFs) 

[19,20]. We used their temporal gene expression levels (as measured by the RPKM values in RNA-seq) 

during embryonic development from the modENCODE project [10]. The worm embryonic development 

dataset includes T=25 time stages at 0, 0.5, 1, 1.5, … , 12 hours, and the fly dataset includes T=12 time 
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stages at 0, 2, 4, … , 22 hours, but t=1,2,..,25 for worm and t=1,2,…,12 for fly are used in this paper, 

representing the relative time points for the entire embryonic development processes. Because M1+ 

M2<T in Equation (7), we choose M1= M2=5 meta-genes for fly (T=12), and find that five meta-genes of 

Group X and five meta-genes of Group U capture ~98% of the co-variation of orthologous gene expres-

sions and fly-specific TF gene expressions, respectively. In order to compare worm and fly, we also 

choose M1=M2=5 meta-genes for worm, which capture ~98% of the co-variation of orthologous gene 

expressions and worm-specific TF gene expressions. 

3.2 Metagenes of orthologous genes between worm and fly have similar internal 

but different external principal dynamic patterns during embryonic develop-

ment 

We find that the meta-gene canonical temporal expression trajectories driven by conserved regulatory 

networks (i.e., internal principal dynamic patterns, iPDPs) include four major patterns in both worm and 

fly embryonic development by order of eigenvalues: 1) a highly varied pattern late; 2) a fast decaying 

pattern early; 3) a slowly increasing pattern; and 4) an oscillating pattern (Figure 3A); i.e., the pattern of 

canonical trajectories (VL, D, I, O) in Table 1. In contrast to the iPDP similarities, we find that worm 

and fly have very different external principal dynamic patterns (ePDPs) (Figure 3B); i.e., the canonical 

temporal expression trajectories driven by species-specific TFs. The meta-gene dynamic patterns driven 

by the worm-specific regulatory network; i.e., worm ePDPs consist of a varied pattern at late embryonic 

development, a varied pattern at early embryonic development, a fast increasing and then unvarying pat-

tern, a decaying pattern, and an increasing pattern at late embryonic development. The fly ePDPs, how-

ever, have two fast decaying patterns at early embryonic development, a fast increasing pattern at late 

embryonic development, and a highly increasing oscillation pattern. Moreover, to see the eigenvalue 

variations across orthologous genes, we left one gene out, and then calculated eigenvalues, which gave 

the eigenvalue variations shown as error bars in Figure 3. The iPDP eigenvalues vary less than ePDP in 

both worm and fly. 

 

The above results suggest that the conserved regulatory networks from orthologous meta-genes between 

worm and fly have similar effects to orthologous meta-genes, given their similar iPDPs (i.e., both have 

four patterns, as described above). The species-specific regulatory networks from species-specific meta-
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genes (i.e., worm-specific or fly specific TFs) have effects that differ from orthologous meta-genes for 

their different ePDPs. 

3.3 Orthologous genes have correlated coefficients between worm and fly for their 

matched internal principal dynamic patterns 

In both worm and fly, we obtain the similar four types of internally driven canonical temporal expres-

sion trajectories; i.e., internal principal dynamic patterns (iPDPs), so we are interested in seeing how in-

dividual orthologous genes relate to those dynamic patterns. We find that the worm-fly orthologous 

genes have correlated coefficients over each of four iPDPs. Based on Equation (10), we can obtain the 

coefficients of orthologous genes for each iPDP. We find that their coefficients are significantly corre-

lated between worm and fly iPDPs with a similar pattern (See patterns in Table 1): r=0.33 (p<2.2e-16) 

for the highly varied pattern at late embryonic development, r=0.66 (p<2.2e-16) for the fast decaying 

pattern at early embryonic development, r=0.67 (p<2.2e-16) for the slowly increasing pattern during 

embryonic development, and r=0.73 (p<2.2e-16) for the oscillation pattern during embryonic develop-

ment (Figure 4), where r represents Spearman correlation of iPDP coefficients of orthologous genes be-

tween worm and fly. This implies that, not only do the orthologous meta-genes have similar internal 

(conserved) regulatory effects (i.e., similar iPDPs), but the orthologous genes also have similar internal-

ly-driven expression dynamics between worm and fly because they have significantly correlated coeffi-

cients for iPDPs. The ePDPs between worm and fly generally do not have similar matches, but if we flip 

worm ePDP No. 3, and compare with fly ePDPs No. 4 and No. 5, they are roughly representing the fast 

decaying patterns. We found that the orthologous gene coefficient correlations between those ePDP pat-

terns are much lower (Spearman correlation r=0.12 of the orthologous gene coefficients of worm ePDP 

No.3 and fly ePDP No. 4, and r=0.18 of worm ePDP No. 3 vs. fly ePDP No. 5). 

3.4 Ribosomal genes have significantly larger coefficients for internal than external 

principal dynamic patterns, but signaling genes exhibit the opposite trend 

The ribosome produces proteins, which is an ancient process and conserved across the worm and fly, 

which diverged roughly a billion years ago. The ribosomal genes are highly expressed during embryo-

genesis, since intensive cell division and migration require a large amount of proteins to be synthesized. 

We collected 195 ribosome-related genes based on the GO annotations. We compared the iPDP and 

ePDP coefficients of ribosomal genes, and found that the iPDP coefficients are significantly larger than 

ePDP ones in both worm (KS-test p<0.001) and fly (KS-test p<2.2e-16) as shown in Figure 5A. This 
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means that the ribosomal gene expression is significantly more driven by the conserved regulatory net-

work than by the species-specific regulatory network, which is consistent with ribosomal genes having 

conserved functions during embryonic development.  

 

The orthologous genes related to signal transduction for cell-cell communication (a significantly more 

recent evolutionary adaptation relative to ribosomes) exhibit the opposite trend. We found that 320 sig-

naling genes from GO annotations have significantly larger ePDP coefficients than iPDP ones in both 

worm (KS-test p<7e-4) and fly (KS-test p<6e-4), as shown in Figure 5B. This result implies that the sig-

naling gene expression is significantly more driven by the species-specific regulatory network than by 

the conserved regulatory network, which is consistent with the signaling genes typically being associat-

ed with species-specific functions, such as body plan establishment and cell differentiation.  

3.5 DNA replication and Proteasome machinery are enriched in orthologous genes 

with high coefficients for the dynamic patterns with fast growing canonical tra-

jectories 

We next turn to the biological meaning of individual canonical temporal expression trajectory for iPDPs 

and ePDPs. For the fast-decaying pattern (2nd iPDP), we found that the DNA replication is significantly 

enriched in Top 300 (~10%) orthologous genes that have the most negative coefficients for this pattern, 

in both worm (p<1.6e-8) and fly (p<4.5e-6). The very negative coefficients for the fast decaying pattern 

mean high positive coefficients for a fast-growing pattern (vertically flipped 2nd iPDP), showing a dras-

tic increase at the beginning of embryogenesis, then remain flat during the late embryogenesis (red 

curves in Figure 6). Most of the cell division of embryogenesis in both worm and fly happens approxi-

mately within the first 300 minutes. Then, the cell elongation and migration start to dominate the devel-

opment [21,22]. The mRNA abundance of the genes involved in DNA replication may change accord-

ingly. This is well reflected by the second iPDP. Interestingly, the original expression patterns of those 

top orthologous genes actually do not have fast-growing patterns (black curves in Figure 6), probably 

because of the combined effects of both conserved and species-specific GRN. Maternal mRNAs, which 

are pre-loaded before fertilization, may also mask the fast growing pattern of DNA replication genes. 

This pattern could only be observed after we separated the effect of two types of TFs using DREISS. In 

addtion, we did not find any enrichment of DNA replication in top genes of other iPDPs and ePDPs. 
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Therefore, the iPDP patterns identified by our method reveal basic cellular process of both species (i.e. 

DNA replication), which should mainly be controlled by the conserved regulatory network.  

 

Besides a fast growing pattern driven by conserved TFs, we also identified a fast growing pattern driven 

by non-conserved TFs for those two species. The Top 300 orthologous genes (~10%) with fast-growing 

worm ePDP and fly ePDP (i.e., driven by species-specific regulatory networks) shared 36 orthologous 

genes. 10 of them encode genes in the proteasome complex (p<1.2e-9). Protein degradation is not only a 

key process in apoptosis, but also throughout the whole process of development [23]. For example, elim-

inating proteins that are no longer needed is a vital process during embryo development; e.g., the mater-

nal proteins need to be cleaned as the embryogenesis proceeds). Previous reports also showed that dif-

ferent species usually have different maternal mRNA in the oocyte, which indicates that species-specific 

strategies might be utilized to regulate the protein degradation process [24]. In our study, after separating 

the effect of conserved and non-conserved regulatory networks, the protein degradation is significantly 

enriched in the genes majorly driven by species-specific TFs. 

 

Besides the 36 shared genes in the fast-growing pattern driven by species-specific TFs, there are addi-

tional observations that we find interesting. Among the Top 300 worm orthologous genes with fast-

growing ePDPs, genes involved in calcium ion binding (p-value<2e-6), GTP binding (p-value<7e-3) and 

neuron differentiation (p-value<0.05) are over-represented, which implies that they are activated in the 

early stage of embryogenesis by worm-specific TFs. This observation indicates the GRN of these genes 

have evolved after the speciation. Proteins involved in calcium ion binding or GTP binding usually play 

a role in cell signal transduction [25]. In fact, the genes involved in Wnt signaling and MAPK signaling 

both exhibit a two-fold change.  

 

In contrast, the Top 300 fly genes with a fast-growing ePDP show no enrichment in signaling transduc-

tion or cell differentiation. Instead, functions associated with respiration, such as oxidative phosphoryla-

tion, are enriched (p<5e-10). The enrichment of energy generation in the Top 300 fly genes with a fast-

growing ePDP is probably indicative of the large energy requirement during fly embryogenesis [26], 

which did not provide the evolutionary conservation of this energy-related gene regulation. Our result 

reveals that the fly genes associated with respiration are more up-regulated by fly-specific TFs relative 

to conserved TFs, and that this up-regulation evolved after the separation of worm and fly. In addition, 
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the lack of signaling enrichment might be due to different sampling time points. It is well-known that the 

Wnt signaling in worms starts as early as at the 4-cell stage, when one cell receives the signal and starts 

differentiation [27]. The time-series worm transcriptome data used in our study may have the resolution 

to detect those processes. However, since each of the first 10 cell cycles takes less than 10 minutes in the 

fly embryo [28], the 2 hour time interval in fly data may not have the resolution to capture the early reg-

ulatory events, such as Wnt signaling. 

4 DISCUSSION 
In this paper, we developed a novel computational method, DREISS, which decomposes time-series ex-

pression data of a group of genes into the components driven by the regulatory network inside the group 

(internal regulatory subsystem), and the components driven by the external regulatory network consist-

ing of regulators outside the group (external regulatory subsystem). DREISS is a general-purpose tool 

that can be used to study the gene regulatory effects of any interested biological subsystems such as pro-

tein-coding transcription factors, micro-RNAs, epigenetic factors and so on. As an illustration, we ap-

plied DREISS to the time-series gene expression datasets for worm and fly embryonic developments 

from the modENCODE project [10], and compared the worm-fly orthologous gene expression dynamic 

patterns driven by the conserved regulatory network (i.e., regulation effects from orthologous TFs), with 

the patterns driven by the species-specific regulatory networks (i.e., regulation effects from worm or fly 

specific TFs). We found that the conserved TFs drive similar genomic functions, but non-conserved TFs 

drive species-specific functions of orthologous genes between worm and fly, implying that, in addition 

to having ancient conserved functions, orthologous genes have been regulated by evolutionarily younger 

GRNs to execute species-specific functions in evolution. This work can be extended to study the regula-

tory effects from orthologous TFs and species-specific TFs to species-specific genes. For example, one 

can find the expression dynamic patterns of worm/fly specific genes driven by specific TFs, and identify 

the genes with strong patterns associated with worm/fly specific functions, such as body formations. To 

the best of our knowledge, DREISS is the first method to reveal how the evolution of GRNs affects gene 

expression during embryogenesis. 

 

We emphasize that DREISS is a general-purpose method (a free downloadable tool at 

github.com/gersteinlab/dreiss). Users can define the internal group (X) and external group (U) according 

to their interests. For example, if users want to identify the protein-coding expression patterns driven by 
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miRNAs, they can define miRNAs as an external group and protein-coding genes as an internal group. 

Additionally, DREISS can be applied to more than two datasets, such as comparing worm, fly and hu-

man embryonic stem cell developmental data, and finding their conserved and specific expression pat-

terns in development. The expression patterns driven by human-specific regulatory factors potentially 

help us understand human-specific developmental processes along with associated human genes.  

 

Due to the limited time samples in gene expression datasets, DREISS uses the simple linear state space 

model (i.e. the first order linear invariant difference equation) to model the temporal gene expression 

dynamics, and identify principal temporal dynamic patterns. This model assumes that the gene regulato-

ry networks controlling temporal gene expression dynamics don’t change across the entire biological 

process such as (A, B) in Equation (1). Thus, based on the analytic analysis, the principal dynamic pat-

terns (PDPs) must follow a small set of canonical temporal trajectories (Table 1). With dramatically in-

creasing gene expression data, however, we can extend DREISS to more advanced models such as 

switched and hybrid system models, non-linear models [29], which allows that the gene regulatory net-

works are time varying, and try to find the more temporal gene expression patterns capturing the more 

complex gene regulatory activities.  

FIGURE CAPTIONS 
Figure 1 DREISS workflow. 1: DREISS models temporal gene expression dynamics using state-space models in 

control theory. The “state” refers to the expressions for a large group of genes of interest, such as the worm-fly 

orthologous genes investigated here. The “control” refers to any other group of genes that contribute to gene ex-

pressions of the “state”, such as the species-specific TF studied here. 2: it then projects high-dimensional gene 

expression space to lower-dimensional meta-gene expression spaces using dimensionality reduction techniques.  

3: it derives the effective state-space models for meta-genes so that model parameters can be estimated. 4: it then 

identifies the meta-gene expression dynamic patterns; i.e., canonical temporal expression trajectories driven by 

“state” (internal) and by “control” (external) based on the analytic solutions to estimated models. 5: it finally cal-

culates the coefficients of genes for the dynamic patterns of linear transformations between genes and meta-genes.  

 

Figure 2 State space model for genes and the effective model for meta-genes. A) linear state space model for a 

given subsystem’s gene expression; i.e., linear first-order difference equations in Equation (2), is used to formu-

late temporal gene expression dynamics for a given subsystem, the gene group X (comprising N1 genes) with ex-

ternal regulations from the gene group U (comprising N2 genes) at time points 1, 2, … , T. The vector  Xt ∈ℜN1×1
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, the “state”, includes N1 gene expression levels at time t in group X, and the vector  , the “input or 

control”, includes N2 gene expression levels at time t in group U. The system matrix  captures internal 

causal interactions among genes in X (i.e., the ith, jth element of A, Aij describes the contribution from the jth gene 

expression at time t to the ith gene expression at the next time t+1). The control matrix  captures ex-

ternal causal regulations from the genes in U to genes in X (i.e., the ith, jth element of B, Bij describes the contribu-

tion from the jth gene expression in U at time t to the ith gene expression in X at the next time t+1). B) Meta-gene 

expression levels. The meta-gene expression levels are obtained by !! = !!
∗!!;!! = !!

∗!!, where , 

the “meta-gene state”, includes M1 (<< N1 and <T) meta-gene expression levels; i.e., the values of first M1 singular 

vectors from singular value decomposition (SVD) of matrix  at time t in group X; the vector 

 , the “meta-gene input or control”, includes M2 (<< N2 and <T) meta-gene expression levels (i.e., the 

values of the first M2 singular vectors from SVD of matrix  at time t in group U; is the 

linear projection matrix of SVD from M1 meta-gene expression space to N1 gene expression space in X, 

 is the linear projection matrix of SVD from M2 meta-gene expression space to N2 gene expression 

space in U), and (.)* is a pseudo-inverse operation; i.e., W*W=I, where I is the identity matrix. C) Effective state 

space model for meta-genes. The effective state-space model for meta-genes, Equation (4) is obtained by using 

linear projections WX and WU between genes and meta-genes from Equations (1-3). The effective meta-gene sys-

tem matrix  captures internal causal interactions among meta-genes in X (i.e., the ith, jth 

element of  ( ) describes the contribution from the jth meta-gene expression at time t to ith meta-gene expres-

sion at next time t+1), and the effective control matrix  captures external causal regula-

tions from meta-genes in U to meta-genes in X (i.e., the ith, jth element of , describes the contribution from 

the jth meta-gene expression in U at time t to ith meta-gene expression in X at next time t+1). Equation (4) de-

scribes the effective state space model for the meta-genes in X, whose expression dynamics are determined by

and . Because the meta-gene dimension, M1 (M2) is less than T, and much less than N1 (N2), we can estimate

and  as follows. 

 

Figure 3 Principal dynamic patterns of orthologous genes between worm and fly during embryonic devel-

opment. A) Metagenes of orthologous genes have similar internal driven principal dynamic patterns. Meta-gene 

canonical temporal expression trajectories driven by conserved regulatory networks (i.e., internal principal dy-

namic patterns, iPDPs) include four major patterns in both worm and fly embryonic development: 1) a highly var-
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ied pattern late  (iPDP with the real eigenvalue No. 1); 2) a fast decaying pattern early (iPDP with the real eigen-

value No. 2); 3) a slowly increasing pattern (iPDP with the real eigenvalue No. 3); and 4) an oscillating pattern 

(iPDP with the complex eigenvalue). B) Metagenes of orthologous genes have different external driven principal 

dynamic patterns. Worm and fly have very different external principal dynamic patterns (ePDPs); i.e., the canoni-

cal temporal expression trajectories driven by species-specific TFs. The meta-gene dynamic patterns driven by the 

worm-specific regulatory network; i.e., worm ePDPs consist of a varied pattern at late embryonic development 

(real eigenvalue No. 1), a varied pattern at early embryonic development (real eigenvalue No. 2), a fast increasing 

and then unvarying pattern (real eigenvalue No. 3), a decaying pattern (real eigenvalue No. 4), and an increasing 

pattern at late embryonic development (real eigenvalue No. 5). The fly ePDPs, however, have two fast decaying 

patterns at early embryonic development (real eigenvalue No. 1 and 2), a fast increasing pattern at late embryonic 

development (real eigenvalue No. 3), and a highly increasing oscillation pattern (complex eigenvalue). 

 

Figure 4 Orthologous genes have correlated coefficients between worm and fly for their matched internal 

principal dynamic patterns. The worm-fly orthologous genes have correlated coefficients over each of four 

iPDPs. Their coefficients are significantly correlated between worm and fly iPDPs with a similar pattern: r=0.33 

(p<2.2e-16) for the highly varied pattern at late embryonic development, r=0.66 (p<2.2e-16) for the fast decaying 

pattern at early embryonic development, r=0.67 (p<2.2e-16) for the slowly increasing pattern during embryonic 

development, and r=0.73 (p<2.2e-16) for the oscillation pattern during embryonic development.  

 

Figure 5 Ribosomal genes have significantly larger coefficients for internal than external principal dynamic 

patterns, but signaling genes exhibit the opposite trend. A) The iPDP and ePDP coefficients of ribosomal 

genes are compared: the iPDP coefficients are significantly larger than ePDP ones in both worm (KS-test 

p<0.001) and fly (KS-test p<2.2e-16); B) The iPDP and ePDP coefficients of signaling genes (cell-cell communi-

cation) are compared: they have significantly larger ePDP coefficients than iPDP ones in both worm (KS-test 

p<7e-4) and fly (KS-test p<6e-4). 

 

Figure 6 DNA replication is enriched in orthologous genes with high coefficients for the dynamic patterns 

with fast growing canonical trajectories. For the fast-decaying pattern (2nd iPDP), we found that the DNA rep-

lication is significantly enriched in Top 300 (~10%) orthologous genes that have the most negative coefficients 

for this pattern, in both worm (p<1.6e-8) and fly (p<4.5e-6). The very negative coefficients for the fast decaying 

pattern means high positive coefficients for a fast-growing pattern, showing a drastic increase at the beginning of 

embryogenesis, then remain flat during the late embryogenesis (red curves). The original expression patterns of 

those top orthologous genes actually do not have fast-growing patterns (black curves). 
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