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Abstract 
 
Allele-specific behavior provides insight into the functional effect of the variants in personal 
genomes. However, since many of these allelic variants are rare, aggregation across multiple 
individuals is necessary to identify broadly applicable “allelic regions” and their association with 
a particular personal genome. Thus, we comprehensively annotate allele-specific binding and 
expression in 382 individuals by uniformly processing 1,263 ChIP-seq and RNA-seq datasets, 
developing approaches to reduce the heterogeneity between datasets due to over-dispersion. We 
then identify genomic regions enriched in allelic activity. We distribute our results via an online 
resource (alleledb.gersteinlab.org). 
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Introduction 
 
In recent years, the number of personal genomes has increased dramatically, from single 
individuals1–3 to large sequencing projects such as the 1000 Genomes Project4, UK10K5 and the 
Personal Genome Project6. These efforts have provided the scientific community with a massive 
catalog of human genetic variants, most of which are rare.4 Subsequently, a major challenge is to 
functionally annotate these variants.  
 
Much of the characterization of variants so far has been focused on those found in the protein-
coding regions, but the advent of large-scale functional genomic assays, such as chromatin 
immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq), has facilitated the 
annotation of genome-wide variation. This can be accomplished by correlating functional 
readouts from the assays to genomic variants, particularly in identifying regulatory variants, such 
as mapping of expression quantitative trait loci (eQTLs)7–9 and allele-specific10,11 variants. eQTL 
mapping assesses the effects of variants on expression profiles across a large population of 
individuals and is usually used for detection of common regulatory variants. On the other hand, 
allele-specific approaches assess phenotypic differences directly at heterozygous loci within a 
single genome. Using each allele in a diploid genome as a perfectly matched control for the other 
allele, allele-specific variants can be detected even at low population allele frequencies. 
Therefore, allele-specific approaches are very powerful, in terms of functionally annotating 
personal genomes, especially for identifying rare cis-regulatory variants on a large scale.  
 
Early high throughput implementations of allele-specific approaches employed microarray 
technologies, and thus are restricted to a small subset of loci.12–14 Later studies have used ChIP-
seq and RNA-seq experiments for genome-wide measurements of allele-specific variants but 
have been mostly limited to a single assay with a variety of individuals,15 or a few individuals 
with deeply-sequenced and well-annotated genomes.11,16 For instance, GM12878, a very well-
characterized lymphoblastoid cell-line from a Caucasian female, has several RNA-seq datasets 
and a huge trove of ChIP-seq data for more than 50 transcription factors (TFs) distributed across 
multiple studies.17–19 Merging these datasets to create a database is advantageous. The database 
consolidates a catalog of annotated allele-specific variants in a central repository. Datasets 
belonging to the same individuals are also combined to increase statistical power in detection and 
simply having more features facilitates intra- and inter-individual comparisons (such as across 
more TFs and populations or investigating ASB-ASE coordination).  
 
However, it is not optimal to simply aggregate results from multiple studies, even for the same 
biological sample. This is because disparate studies might design RNA-seq and ChIP-seq 
experiments with various goals in mind. Even if allele-specific analyses are conducted, they are 
often performed with different sets of tools, parameters and variations of the same test (Supp 
Table 1). In addition, each allele-specific analysis is also sensitive to the technical issues 
associated with variant calling and processing, RNA-seq and ChIP-seq experiments, such as 
thresholding and read mapping.20–23 For example, homozygous SNVs incorrectly called as 
heterozygous will result in reads mapping to one allele (over the other), giving rise to false 
signals of allelic imbalance. Variants called using shorter reads such as those in RNA-seq 
datasets can also contain many artefacts. Thus, it is important to have a call set, particularly 
obtained from whole genome DNA sequencing, such as those from the 1000 Genomes Project. 
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Also, allele-specific SNVs detected in copy number variants have a higher rate of false positives, 
since copy number changes can easily masquerade as allelic imbalance. 
 
Therefore, the task of merging has to be carried out in a uniform, standardized fashion to yield 
interpretable results. To this end, we organize and unify datasets from eight different studies into 
a comprehensive data corpus and repurpose it especially for allele-specific analyses. We first 
take into account the overdispersion of each dataset when we harmonize them and then a second 
time, during the detection of allele-specific variants. Overall, we detect more than 7K and 85K 
single nucleotide variants (SNVs) associated with allele-specific binding (ASB) and expression 
(ASE) events respectively, over 382 individuals. We are able to present a survey for these allele-
specific variants in various general and specific categories of coding and non-coding genomic 
elements and annotations (e.g. CDS regions, enhancers) in a population-aware manner. We 
identified genomic regions that are enriched or depleted in allelic activity. Finally, using our 
consolidated data, we investigate the extent of purifying selection in allele-specific SNVs and the 
inheritance of allele-specific expression and allele-specific binding in two different transcription 
factors. The variants and annotations are available as an online resource, AlleleDB 
(http://alleledb.gersteinlab.org/). 
 
Results 
 
AlleleDB Workflow 
In general, the AlleleDB workflow uniformly processes two pieces of information from each 
individual: the DNA sequence, and reads from either the ChIP-seq or RNA-seq experiment to 
assess SNVs associated with ASB or ASE respectively (Figure 1). Briefly, it starts by (1) 
constructing a diploid personal genome for each of the 382 individuals, using DNA variants from 
the 1000 Genomes Project. (2) It then aligns the ChIP-seq or RNA-seq dataset to each of the 
haploid genomes instead of the human reference genome, and chooses the better uniquely 
mapped alignment. This reduces reference bias that can potentially result in erroneous read 
mapping.16 Because each individual can have multiple ChIP-seq or RNA-seq datasets, the 
alignment is performed to each personal genome twice. (2a) In the first round, the alignment is 
performed for each of 276 ChIP-seq and 987 RNA-seq datasets to calculate a measure of 
overdispersion (with respect to an expected binomial distribution), ρ (see Discussion and 
Methods). We observe that if there is a greater overdispersion in the allelic ratio (defined as the 
proportion of reads that map to the reference allele) distribution of a dataset, the binomial test 
tends to overestimate the number of allele-specific events (Figure 2). There are varying degrees 
of overdispersion in our datasets, even between biological replicates; in general, RNA-seq 
datasets are generally more consistent in overdispersion than ChIP-seq datasets. Differing 
overdispersion in individual datasets poses a challenge later in step 2b when we merge, or pool, 
multiple datasets. In order to harmonize the datasets, we flag and filter datasets that are deemed 
to be more overdispersed in allelic ratio distributions, leaving us with 186 ChIP-seq and 955 
RNA-seq datasets for allele-specific detection (Supp Table 2). (2b) The second alignment is 
performed by pooling the 186 ChIP-seq and 955 RNA-seq datasets that has not been filtered in 
Step 2a. The pooling is performed for each individual and each transcription factor (for ChIP-
seq); e.g. CTCF ChIP-seq datasets for NA12878 that were not filtered were pooled together. An 
overdispersion parameter is re-calculated for each pooled set. (3) Finally, a beta-binomial test is 
performed using the ‘pooled’ overdispersion parameter calculated in Step 2b to detect allele-
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specific SNVs. For ChIP-seq data, the SNVs are further pared down to those within peak 
regions. We also remove SNVs if they lie in regions predicted to be copy number variants (see 
Methods). 
 
We build a database, AlleleDB (http://alleledb.gersteinlab.org/), to house the annotations, the 
allele-specific and accessible SNVs. AlleleDB can be downloaded as flat files or queried and 
visualized directly as a UCSC track in the UCSC Genome browser24 as specific genes or 
genomic locations. This enables cross-referencing of allele-specific variants with other track-
based datasets and analyses, and makes it amenable to all functionalities of the UCSC Genome 
browser. Heterozygous SNVs found in the stipulated query genomic region are color-coded in 
the displayed track; Figure 4a shows a schematic that illustrates an example of a visualization.  
 
ASB and ASE Inheritance analyses using CEU trio 
The CEU trio is a well-studied family and with multiple ChIP-seq studies performed on different 
TFs. Previous studies have also presented allele-specific inheritance.11,18 Here, after uniformly 
processing datasets from multiple studies, we are able to analyze and compare the heritability of 
ASE and ASB across two DNA-binding proteins in a consistent manner (Figure 3; see Methods). 
For the DNA-binding protein CTCF and PU.1, we observe a high parent-child correlation 
(Figure 3, Supp Table 3), denoting great similarity in allelic directionality (Pearson’s correlation, 
r ≥ 0.77 in both parent-child plots). We also observe considerable heritability in ASE, but to a 
lesser degree. In general, the high inheritance of allele-specific SNVs observed in the same 
allelic direction from parent to child also implies a sequence dependency in allele-specific 
behavior. 
 
Allele-specific variants and enrichment analyses 
Using the AlleleDB variants found in the personal genomes of the 2 parents of the trio and 379 
unrelated individuals from Phase 1 of the 1000 Genomes Project, we focus on autosomal SNVs 
and detected 85,742 unique ASE and 7,462 ASB SNVs, representing 16% and 6% of the 
accessible SNVs respectively (Table 1). 15% of our candidate ASE SNVs and 3% of ASB SNVs 
are in the coding DNA sequences (CDS); these correspond to log odds ratios of 0.3 (enrichment) 
and -0.2 (depletion) respectively, when compared to the non-coding regions (Supp Figure 1). 
 
Of great interest, is the annotation of these allele-specific SNVs with respect to known genomic 
elements, both coding and non-coding. We calculate the enrichment of ASB and ASE SNVs in 
various genomic categories. To do so, we further define sets of ‘control’ SNVs. This is especially 
pertinent to our enrichment analyses, since the Fisher’s exact test is dependent on the choice of 
the null expectation (i.e. controls). The control SNVs are not allele-specific and are derived from 
a set of ‘accessible’ SNVs, which are heterozygous SNVs and possess at least the minimum 
number of reads needed to be statistically detectable for allelic imbalance; in other words, the 
control SNVs are well-matched in power to the detected allele-specific SNVs (see Methods). The 
accessible SNVs are determined for each pooled ChIP-seq (grouped by individual and TF, not by 
study) or RNA-seq dataset (grouped by individual).  
 
To estimate the degree of allele-specificity in both coding and non-coding genomic elements, we 
calculate the enrichment of allele-specific SNVs by comparing allele-specific SNVs relative to 
the control SNVs using Fisher’s exact tests. The enrichment analyses are performed in two ways: 
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‘expanded’ and ‘collapsed’. The former counts each occurrence of SNV in a population-aware 
manner, where each accessible or allele-specific SNV is counted for each individual at each 
locus. The latter collapses and counts an accessible or allele-specific SNV location as a unique 
SNV as long as it occurs in at least one individual (Figure 4b). Both enrichment analyses are 
performed in genomic annotations (or categories) with differing granularities, from broad 
genomic categories to individual binding motifs and genes. Broad genomic categories are 
grouped based on similar functional context. These include 708 non-coding genomic categories 
from the ENCODE project25 (e.g. DNaseI hypersensitivity sites and transcription factor binding 
motifs) and six gene sets known to be involved in monoallelic expression (MAE)26,27 (e.g. 
imprinted genes,28 olfactory receptor genes29). Between the two enrichment analyses, we observe 
consistent trends in the odds ratios of ASB SNVs and ASE SNVs across the MAE gene sets, 
except for the T cell receptors. The category is only enriched in ASE SNVs when we collapsed 
the SNV count (Supp Fig 1) but depleted when we expand the enrichment analysis in a 
population-aware fashion. This suggests that the allele-specific expression in T cell receptors is 
not consistently observed in all individuals. Interestingly, there is a consistent depletion in ASE 
SNVs for the constitutively expressed housekeeping genes, implying that most housekeeping 
genes give a more balanced (biallelic) expression (Figure 5).  
 
We further calculate the enrichment of allele-specific SNVs in 19,257 autosomal protein-coding 
genes from GENCODE31 in both collapsed and population-aware expanded fashion. The 
database allows us to visualize allele-specific SNVs across the gene region and over multiple 
individuals. For example, SNRPN and SNURF are maternally-imprinted genes, shown to be 
highly implicated in the Prader-Willi Syndrome, an imprinting disorder.32 Indeed, they are two of 
our most highly-ranked allele-specific genes by overall odds ratio (column ‘AS.OR’ in Supp file 
3). When SNURF is queried in our database, we can see clearly that the allele-specificity is 
supported not only by evidence from 61 ASE loci across the gene but a number of variants are 
shown to be also allele-specific over multiple individuals, one variant even up to 169 individuals. 
The concurrent visualization of ASB and ASE SNVs with respect to genomic elements using the 
UCSC genome browser is also another advantage of AlleleDB. For example, ZNF331 gene 
contains a good number of both ASE and ASB loci. It has previously been shown experimentally 
to be consistently expressed from the paternal allele.33 Our visualization shows ASB loci from 
POL2, RPB2 and MYC of several individuals coinciding near ZNF331 exons; the former two 
DNA-binding proteins are components of RNA polymerase II (Figure 4a). 
 
Additionally, we extend the enrichment analyses to gene elements, such as introns and promoter 
regions. Figure 5 (and Supp Fig 1) shows the enrichment of allele-specific SNVs in elements 
closely related to a gene model, namely enhancers, promoters, CDS, introns and untranslated 
regions (UTR). For SNVs associated with allele-specific binding (ASB), we observe an 
enrichment in the 5’ UTRs. This is in line with an enrichment of ASB SNVs in promoters. 
Though not significant, this suggests functional roles for these variants found in TF binding 
motifs or peaks found near transcription start sites to regulate gene expression. We see variable 
enrichments of ASB SNVs in the peaks of particular TFs such as POL2, SA1 and CTCF in 
promoter regions, while depletion in others, such as PU.1 (Figure 5, Supp file 3). These 
differences might imply that some TFs are more likely to participate in allele-specific regulation 
than others. Between the two enrichment analyses, we observe more consistent trends in the odds 
ratios of ASB SNVs than ASE SNVs. The differences are most likely contributed by the 
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presence of common SNVs that are also behaving consistently (either being allele-specific or 
non-allele-specific) over multiple individuals. 
 
The population-aware analysis allows additional power to calculate enrichment for very specific 
genomic annotations, namely protein-coding genes, enhancers and transcription factor binding 
motifs; this is unlike broad genomic categories that span over multiple regions in broad genomic 
categories. Based on the expanded enrichment analysis, we find xxx protein-coding genes (Supp 
File 2), yyy enhancers and zzz motifs that are significantly enriched and aaa genes, bbb enhancer 
and ccc motifs significantly depleted in allele-specific SNVs; we define the enriched elements as 
‘allele-specific’ and the depleted elements as ‘balanced’, the rest are considered ‘indeterminate’. 
We also provide these lists on the AlleleDB resource. 
 
Rare variants and purifying selection in allele-specific SNVs 
To assess the occurrence of ASB and ASB SNVs in the human population, we consider the 
population minor allele frequencies (MAF). Table 1 shows the breakdown of the accessible and 
allele-specific SNVs in six ethnic populations (we combined the results for CHB and JPT) and 
allele frequencies. Yoruba from Ibadan, Nigeria (YRI) contribute the most to both ASE and ASB 
variants at each allele frequency category. The number of rare allele-specific SNVs (MAF ≤ 5%) 
is about two folds higher in the YRI than the other European sub-populations of comparable 
(CEU, FIN) or larger (TSI) population sizes (see Methods for full explanation of population 
abbreviations). However, the percentage of allele-specific SNVs (in accessible SNVs) remain 
fairly consistent. In general, rare variants do not form the majority of all the allele-specific 
variants. For each category of allele frequency, the proportion of allele-specific SNVs detected 
(with respect to accessible SNVs) is fairly comparable across populations (CEU, FIN, GBR, TSI 
and YRI), with a slight enrichment of ASB SNVs and slight depletion of ASE SNVs as we go 
towards lower frequencies. 
 
To examine selective constraints in allele-specific SNVs, we then consider the enrichment of rare 
variants with MAF ≤ 0.5%.4,36 Figure 6 shows a shift of the allele frequency spectrum towards 
very low allele frequencies in all allele-specific and non-allele-specific SNVs, peaking at MAF ≤ 
0.5% (Figure 6). We limit our analyses for ASE SNVs to only those found in CDS regions and 
ASB SNVs to only those found within known TF motifs (among the 708 non-coding categories 
in Supp File 1). Our results in Figure 6 show a statistically significant lower enrichment of rare 
variants in ASE SNVs as compared to non-ASE SNVs (Fisher’s exact test odds ratio=0.2, 
p<2.2e-16) but statistically insignificant higher enrichment of rare variants in non-ASB SNVs 
than ASB SNVs (Fisher’s exact test odds ratio=1.4, p=0.08). This posits that ASE SNVs are 
under lesser selective constraints than non-ASE SNVs. Such weaker selection may be a result of 
accommodating varying levels of gene expression across individuals. In addition, ASB SNVs 
seem to be under less selective constraints than ASE SNVs, which agrees well with the results in 
a previous study where more variability is being observed in binding than expression 19. 
 
Allele-specific variants in TF binding motifs affecting TF occupancy  
A pertinent ASB analysis is to identify ASB SNVs that might cause a TF binding difference. To 
perform this analysis, we focus on the 328 ASB SNVs found across multiple individuals that 
reside in the binding motifs of 16 TFs. We consider an allele to be disruptive when it occurs less 
frequently at the position in the motif. Thus, we compare the difference in occurrence between 
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the reference and the alternate allele of the ASB SNV in the position weight matrix (PWM) of a 
TF binding motif. For instance, if the alternate allele is disruptive, the reference allele is favored, 
and the difference in occurrence > 0 (see Methods). We then correlate this with the allelic ratio at 
the ASB SNV. We expect a TF binding motif that favors the reference allele of an ASB SNV 
(difference in occurrence > 0) to be associated with more binding to the reference allele (i.e. 
allelic ratio > 0.5). We find a statistically significant correlation between the difference in 
occurrence and the allelic ratio for the 328 ASB SNVs (Pearson’s correlation = 0.70, p<2.2e-16), 
showing that there is indeed an overall trend for the favored allele to correspond to increased TF 
binding. In general, the effects of the SNVs are consistent across individuals in the context of the 
same motifs. As a resource, we provide the list of ASB SNVs with the frequencies of the 
occurrence of their reference and alternate alleles found in the various TF motifs and their 
corresponding allelic ratios (Supp File 4). 
 
Discussion 
 
The binomial test is typically used to provide statistical significance for the identification of 
allele-specific SNVs. However, previous studies have observed a deviation from the binomial 
distribution in read count distributions in ChIP-seq and RNA-seq datasets, which in turn results 
in broader allelic ratio distributions, i.e. overdispersed.7,37–39 We generally assume that most of 
the SNVs in autosomes would have more balanced allelic ratios. Hence, while overdispersion 
could be a biological consequence of allele-specific behavior, high overdispersion in ASE 
distributions would imply biased autosomal gene expression and might in fact indicate potential 
issues, e.g. sparse uneven coverage. Since there are multiple datasets for each individual and TF, 
it would be reasonable to homogenize the separate datasets, so that the resultant pools for each 
individual and TF can facilitate detection of a more conservative set of allele-specific SNVs for 
AlleleDB. In addition to accounting for the overdispersion in the statistical inference of allele-
specific SNVs, we propose the use of the overdispersion parameter, ρ, as a means to select 
datasets that are more similar in the spread of the distributions. Datasets with low overdispersion 
give very similar results between binomial and beta-binomial tests (Figure 2A). The binomial 
test tends to overestimate the number of detected allele-specific SNVs in datasets with higher 
overdispersion; it is too relaxed in these cases (Figure 2B). Consequently, we adopt a serial two-
step approach of first segregating individual datasets with high overdispersion, and then pooling 
the datasets (by individual and TF) for allele-specific detection, using the beta-binomial test to 
account for the degree of overdispersion. We provide a more confident set of allele-specific 
SNVs, which are found to be in the same allelic direction (reference allele) in at least 2 
individuals in AlleleDB (Supp File 6). The list of high-impact ASB SNVs that cause a change in 
transcription binding motif occupancy are also provided. 
 
So far, allele-specific analyses have usually been more SNV- or gene-centric. However, many 
diseases have been found to implicate ASE in particular genomic regions.40–42 Our downstream 
analyses focuses on relating allele-specific activity to known genomic elements and annotations, 
such as CDS and various non-coding regions. This is also useful, considering that a significant 
portion of allele-specific SNVs are rare (Figure 6 and Table 1), i.e. occurring in only a few 
individuals (MAF ≤ 0.5%), and they are often in close proximity to each other. Consolidating 
rare allele-specific SNVs to quantify allele-specificity is helpful in defining SNV sets which 
allows us to assign weights to regions or multiple variants based on allele-specific activity when 
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incorporating into large-scale annotation pipelines43; this is akin to the idea of burden tests for 
rare variants in association studies.44,45  
 
We have also adopted two ways to analyze enrichment: an expanded approach that capitalizes on 
the number of individuals and a collapsed approach that computes enrichment based on unique 
allele-specific SNVs occurring in at least one individual. A difference in results from both 
analyses can suggest an interplay between rare and common allele-specific SNVs or inconsistent 
allele-specificity at a given locus across multiple individuals. By computing the enrichment 
analysis in a population-aware fashion, we can also define elements based on evidence supported 
over multiple individuals. This allows us to quantify allele-specific consistency and enrichment 
even within smaller and very specific genomic annotations, and differentiate those that are 
significantly and more consistently enriched to be ‘allele-specific’, depleted to be ‘balanced’, or 
otherwise ‘indeterminate’. 
 
Additionally, we can provide some insights into the coordination of ASB and ASE within that 
category, by comparing ASB and ASE enrichments within specific genomic regions or broad 
categories (Figure 5). For example, loci associated with monoallelic expression have shown to be 
associated with ASB of various transcription factors, such as imprinted46,47 and immunoglobulins 
genes48. Also, in Figure 4a, we can visualize in AlleleDB specific sub-regions within ZNF331 
gene that ASB and ASE coordination might occur.   
 
Our current catalog of allele-specific SNVs is detected from lymphoblastoid cell lines (LCLs), 
which is also the predominant cell-line type in the literature. However, it has already been known 
that there is considerable variability in regulation of gene expression in different tissues.49 Data 
from projects, such as GTEx49, which has more functional assays and sequencing in other tissues 
and cell lines can be incorporated to provide a more complete allele-specific analysis. 
Furthermore, our search for datasets shows a dearth of personal genomes with corresponding 
ChIP-seq and RNA-seq data in non-European populations. It could be a strong reflection on the 
lack of large-scale functional genomics assays in specific ethnic groups – a concern echoed 
previously in population genetics and is recently being increasingly addressed.50 Since many 
allele-specific variants have been found to be rare at both the individual and the sub-population 
level, it is of great interest and importance that more individuals of diverse ancestries be 
represented.  
 
In conclusion, there is great utility in integrating existing data. However, it is essential to 
harmonize heterogeneous datasets in a uniform fashion. As more diverse and accurate personal 
genomes with haplotype information51–53 and their corresponding functional genomics data 
become available, an allele-specific approach to detect many allele-specific SNVs for a single 
personal genome will increase the number of rare allele-specific SNVs detected. AlleleDB is 
easily scaled to accommodate new individual genomes, tissue and cell types. Additionally, the 
database allows the visualization of ASB and ASE together conveniently. Such should be of 
value to researchers of various backgrounds. 
 
Materials and Methods 
 
Construction of diploid personal genomes 
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There is a total of 382 genomes used in this study: 379 unrelated genomes, of low-coverage 
(average depth of 2.2 to 24.8) from Utah residents in the United States with Northern and 
Western European ancestry (CEU), Han Chinese from Beijing, China (CHB), Finnish from 
Finland (FIN), British in England and Scotland (GBR), Japanese from Tokyo, Japan (JPT), 
Toscani from Italy (TSI), and Yorubans from Ibadan, Nigeria (YRI) and 3 high-coverage 
genomes from the CEU trio family (average read depth of 30x from Broad Institute’s, GATK 
Best Practices v3; variants are called by UnifiedGenotyper). Each diploid personal genome is 
constructed from the SNVs and short indels (both autosomal and sex chromosomes) of the 
corresponding individual found in the 1000 Genomes Project. This is constructed using the tool, 
vcf2diploid.16 Essentially, each variant (SNV or indel) found in the individual’s genome is 
incorporated into the human reference genome, hg19. Most of the heterozygous variants are 
phased in the 1000 Genomes Project; those that are not, are randomly phased. As a result, two 
haploid genomes for each individual are constructed. When this is applied to the family of CEU 
trio, for each child’s genome, these haploid genomes become the maternal and paternal genomes, 
since the parental genotypes are known. Subsequently, at a heterozygous locus in the child’s 
genome, if at least one of the parents has a homozygous genotype, the parental allele can be 
known. However, for each of the genomes of the 379 unrelated individuals and the 2 parents 
from the CEU trio, the alleles, though phased, are of unknown parental origin. 
 
CNV genotyping is also performed for each genome by CNVnator,54 which calculates the 
average read depth within a defined window size, normalized to the genomic average for the 
region of the same length. For each low coverage genome, a window size of 1000 bp is used, 
while for the high coverage genomes, a window size of 100 bp is used. SNVs found within 
genomic regions with a normalized abnormal read depth <0.5 or >1.5 are filtered out, since these 
would mostly likely give rise to spurious allele-specific detection. 
 
RNA-seq and ChIP-seq datasets  
In total, we reprocessed 287 ChIP-seq and 993 RNA-seq datasets for 382 individuals from eight 
different studies (Supp Table 2).  
 
RNA-seq datasets are obtained from the following: gEUVADIS15, ENCODE25, Lalonde et al. 
(2011)55, Montgomery et al. (2010)56, Pickrell et al. (2010)7, Kilpinen et al. (2013)18 and 
Kasowski et al. (2013)19. 
 
ChIP-seq datasets are obtained from the following: ENCODE25, Kilpinen et al. (2013)18, 
Kasowski et al. (2013)19 and McVicker et al. (2013)57.  
 
Read alignment and estimation of ρ in individual and pooled datasets 
Reads are aligned against each of the derived haploid genome (maternal/paternal genome for 
trio) using Bowtie 1.58 No multi-mapping is allowed and only a maximum of 2 mismatches per 
alignment is permitted. This enables the calculation of the proportion of reads that align to the 
reference allele, or the allelic ratio, at each heterozygous SNV.  
 
To estimate ρ, we adopt a three-step approach. We first obtain the empirical histogram for the 
allelic ratios of all heterozygous SNVs with read counts ≥ 6. Next, we calculate the expected null 
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distribution (where there is no allelic imbalance) using the probability density function (pdf) of 
the beta-binomial distribution using the R package, VGAM59:  
 

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑋𝑋 = 𝑘𝑘|𝑛𝑛,𝑎𝑎, 𝑏𝑏) = �𝑛𝑛𝑘𝑘�
𝐵𝐵(𝑘𝑘 + 𝑎𝑎, 𝑛𝑛 − 𝑘𝑘 + 𝑏𝑏)

𝐵𝐵(𝑎𝑎, 𝑏𝑏)
 

 
where n represents the total number of reads at a particular locus, B(x,y) represents the beta 
function with variables x and y, a and b represent the shape parameters of the beta distribution. 
For computational efficiency, if n ≥ 1000, we set it to a maximum of 1000, but retain the allelic 
ratio at the SNV. The VGAM beta-binomial routines require the input of the overdispersion 
parameter, ρ, and probability of success (also the mean of the beta distribution), which we fix at 
p=0.5 since the null hypothesis assumes no allelic imbalance. We then obtain the expected beta-
binomial distributions for ρ=0 to ρ=1 with increment of 0.1, and choose ρ that minimizes the 
least sum of squared errors (LSSE) between the empirical and the expected distributions. Lastly, 
to further refine our estimate, we iterate a bisection method to arrive at a LSSE (R pseudo-code 
available in Supp file 6).  
 
After removing 11 ChIP-seq and 6 RNA-seq datasets that have insufficient read alignments, we 
calculate ρ for each 276 ChIP-seq and 987 RNA-seq individual datasets. For RNA-seq datasets, 
we removed 32 datasets with ρ ≥ 0.125, which is one standard deviation higher than the mean ρ 
amongst the RNA-seq datasets. For ChIP-seq datasets, because many of the datasets have 
considerable ρ, we use a less stringent arbitrary threshold of ρ ≥ 0.3 to remove 90 ChIP-seq 
datasets. Using the resultant 186 ChIP-seq and 955 RNA-seq datasets, we pool datasets by TF 
and individual for ChIP-seq and by individual for RNA-seq and re-calculate ρ for each pooled 
dataset. This final ρ is used in the beta-binomial test for allele-specific SNV detection. 
 
Allele-specific SNV detection  
Allele-specific SNV detection is performed on the pooled datasets, as mentioned above. Here, a 
beta-binomial p-value is derived based on the VGAM R package as described in the previous 
section. Similarly for computational efficiency, if n ≥ 1000, we set it to a maximum of 1000, but 
retain the allelic ratio at the SNV. To correct for multiple hypothesis testing, FDR is calculated. 
Since statistical inference of allele-specificity of a locus is dependent on the number of reads of 
the ChIP-seq or RNA-seq dataset, this is performed using an explicit computational simulation.16 
Briefly, for each iteration of the simulation, a mapped read is randomly assigned to either allele 
at each heterozygous SNV and performs a beta-binomial test using the estimated ρ. At a given p-
value threshold, the FDR can be computed as the ratio of the number of false positives (from the 
simulation) and the number of observed empirical positives. An FDR cutoff of 10% is used for 
ChIP-seq data and 5% for RNA-seq data, since the latter is typically of deeper coverage. 
Furthermore, we allow only significant allele-specific SNVs to have a minimum of 6 reads.  
 
For ChIP-seq data, allele-specific SNVs have to be also within peaks. Peak regions are 
determined by first performing PeakSeq60 for each of the personal haploid genome. Only a single 
read per strand per position is kept and duplicates removed. The fragment length is set to 200 
bps. Peak calling is performed with default parameters and the final peak set for each 
transcription factor is identified at a false discovery rate of 5%. Finally, the coordinates of the 
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peaks (based on the respective personal haploid genomes) are mapped to the reference genome 
and then finally being merged between the haploid genomes. 
 
Allele-specific detection for all TFs and gene expression of 382 individuals took about 600 days 
in CPU time (1.6 years), but the pipeline is highly parallelizable, thereby streamlining the 
process. 
 
AlleleDB 
The final data and results are organized into a resource, AlleleDB 
(http://alleledb.gersteinlab.org/), which conveniently interfaces with the UCSC genome browser 
for query and visualization. Since many in the scientific community are familiar with the genome 
browser, we hope that this would increase the accessibility and usability of AlleleDB. The query 
results are also available for download in BED format, which is compatible with other tools, 
such as the Integrated Genome Viewer61. More in-depth analyses can be performed by 
downloading the full set of allele-specific results. For ASB, the output will be delineated by the 
sample ID and the associated TFs; for ASE, the output will be categorized by individual and the 
associated gene. We also provide the raw counts for each accessible SNV and indicate if it is 
identified as an allele-specific SNV. AlleleDB also serves as an annotation of allele-specific 
regulation of the 1000 Genomes Project SNV catalog.  
 
Allele-specific inheritance analyses 
The conventional measure of ‘heritability’ allows the estimation of (additive) genetic 
contribution to a certain trait. The population genetics definition of ‘heritability’ in a parent-
offspring setting is described by the slope, β, of a regression (Y=βX + α), with the dependent 
variable being the child’s trait value (Y) and the independent variable (X) being the average trait 
values of the father and the mother (‘midparent’).62 This is a population-based measure typically 
performed on a large set of trios for a particular trait (e.g. height) and β is not necessarily bound 
between 0 and 1.  
 
Given we have only a single trio, we adapt the definition of ‘heritability’ to quantify allele-
specific inheritance for each TF. For each TF and parent-child comparison, we consider ASB 
SNVs from two scenarios: (1) when an allele-specific SNV is heterozygous in all three 
individuals but common to the two individuals being compared, and (2) when an allele-specific 
SNV is heterozygous in two individuals and homozygous (reference or alternate) in the third. We 
define the allelic ratio as the ‘trait’, which is a continuous value and computed as the proportion 
of reads that align to the reference allele with respect to the total number of reads mapped to 
either allele of a particular site. We perform the analyses separately for father-child and mother-
child pair to maximize statistics, since a midparent calculation will require that a SNV is allele-
specific in all three individuals (Scenario 1).  
 
Given that Pearson’s correlation coefficient, r, always gives a value between 0 and 1, we use r 
instead of β, as our measure of ‘heritability’. We also compute and include β values in 
Supplementary Table 2. The parent-parent comparison is provided as a source of comparison for 
two unrelated individuals with shared ancestry. For parent-parent β, the maternal allelic ratio is 
chosen arbitrarily to be the independent variable. 
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Genomic annotations 
Categories of gene elements from Figure 5, such as promoters, CDS regions and UTRs, and 
19,257 autosomal protein-coding gene annotations (HGNC symbols) are obtained from 
GENCODE version 17.31 Promoter regions are set as 2.5kbp upstream of all transcripts 
annotated by GENCODE.  
 
Gene annotations also include 2.5kbp upstream of the start of gene. 708 categories of non-coding 
annotations are obtained from ENCODE Integrative release,25 which includes broad categories 
such as TF binding sites and annotations such as distal binding sites of particular TFs, e.g. 
ZNF274. The details of TF family classification is first described in Vaquerizas et al.63 and then 
also in Gerstein et al.64 Note that these TF binding sites are separate from those sites in promoter 
regions in Figure 5, which are based on the 44 TFs and peaks from the ChIP-seq experiments 
used in our pipeline. 
 
The olfactory receptor gene list is from the HORDE database29; immunoglobulin, T cell receptor 
and MHC gene lists are from IMGT database65. Imprinted genes are merged from the Catalog of 
Parent-of-origin Effects (http://igc.otago.ac.nz/home.html),66 the GeneImprint website67 and also 
Lo et al.68 We performed enrichment analyses on a number of enhancer lists, which are derived 
using the ChromHMM and Segway algorithms (Ernst and Kellis (2012)69, Hoffman et. al. 
(2013)70), and data from distal regulatory modules from Yip et al. (2012)71. The result for the 
enhancers in Figure 5 is based on the union of these lists. The lists can be found at 
http://info.gersteinlab.org/Encode-enhancers. An additional enhancer list for experimentally 
validated enhancers is obtained from VISTA enhancer browser database72 
(http://enhancer.lbl.gov/). Housekeeping gene list is obtained from Eisenberg and Levanon 
(2013) (http://www.tau.ac.il/~elieis/HKG/)73. 
 
All enrichment analyses results with respect to these annotations are provided in the 
supplementary files, which are provided for download on the AlleleDB website 
(http://alleledb.gersteinlab.org/download/). 
 
Enrichment analyses 
Enrichment analyses were performed in two ways: ‘collapsed’ and ‘expanded’ (Figure 4b). In 
both cases we use the Fisher’s exact test to calculate the odds ratio and the hypergeometric p 
value, to test for the enrichment of allele-specific SNVs compared to accessible non-specific 
SNVs. Accessible SNVs are heterozygous, and they exceed the minimum number of reads 
detectable statistically by the beta-binomial test for each dataset. This is an additional criterion 
imposed, on top of the minimum threshold of 6 reads used in the AlleleSeq pipeline. The 
minimum number of reads varies with the pooled size (coverage) of the ChIP-seq or RNA-seq 
dataset. Given a fixed FDR cutoff, for a larger dataset, the beta-binomial p-value threshold is 
typically lower, making the minimum number of reads (N) that will produce the corresponding 
p-value, larger. This alleviates a bias in the enrichment test for including SNVs that do not have 
sufficient reads in the first place. Considering an extreme allelic imbalance case where all the 
reads are found on one allele (all successes or all failures, i.e. allelic ratio is 0 or 1), this 
minimum N can be obtained from a table of expected two-tailed beta-binomial probability 
density function, such that accessible SNVs are all SNVs with number of reads, n = max(6,N). 
By considering only cases with the largest effect size, we underestimate the number of control 
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SNVs and this provides a conservative approximation of the statistical significance of the 
enrichment (or depletion). In the ‘collapsed’ enrichment analysis, each accessible or allele-
specific SNV is counted once uniquely, as long as it occurs in at least one individual in 
AlleleDB. The ‘expanded’ analysis is performed in a population-aware manner, where each 
accessible or allele-specific SNV is counted once for each occurrence in an individual. To use 
the Fisher’s exact test for enrichment analyses in each genomic annotation, we further exclude 
the respective ASB or ASE SNVs from the control binding or expression SNVs (accessible and 
non-allele-specific) in the corresponding annotations. P-values are Bonferroni-corrected and 
considered significant if ≤ 0.05. 
 
‘Allele-specific’ and ‘balanced’ autosomal protein-coding genes, enhancers and transcription 
factor binding motifs are defined based on statistically significant (Bonferroni-corrected p value 
≤ 0.05) enrichments (odds ratio ≥ 1.5) or depletions (odds ratio < 1.5) respectively, as obtained 
from the ‘expanded’ enrichment analysis; the rest of the elements with non-significant odds 
ratios are considered ‘indeterminate’. 
 
Analysis of ASB SNVs found in TF motifs  
We obtain a list of all TF motifs and their corresponding position weight matrices (PWMs) from 
Kheradpour and Kellis74 (http://compbio.mit.edu/encode-motifs/), using the 2013 version. This 
set of motifs and PWMs is derived from the ENCODE project and include motifs from 
TRANSFAC and JASPAR. We then take two approaches to find the effects of ASB SNVs. (1) 
For all ASB SNV positions in the motifs detected by Kheradpour and Kellis, we obtain the 
occurrence (frequency) of their reference and alternate allele in the respective PWMs. This first 
approach is only able to find motif-breaking events that disrupt existing motifs in the reference 
genome. The PWMs of motifs are defined based on the ENCODE project. (2) Our second 
approach attempts to include both motif-breaking and motif-gaining events caused by ASB 
SNVs in AlleleDB. Based on each PWM, we further scan a 59-bp window around the ASB SNV 
(± 29 bp of the SNV) separately for both the reference and alternate alleles for potential motifs. 
For each candidate motif, we compute the sequence score using the tool TFM-Pvalue75, where 
sequence score is defined by summing up the log likelihoods of each position of the PWM. A 
motif is identified when the P value on its sequence score ≤ 1e-6.  
 
We then merge the results from both approaches. The allelic ratio is defined as before, i.e. the 
ratio of number of reference reads to the total number of reads, thus when the ratio > 0.5, there 
are more reads that align to the reference allele, signifying more binding to the motif with the 
reference allele. We compute the difference in occurrence between the reference and alternate 
allele (occurrence of reference allele minus occurrence of alternate allele) based on the PWM of 
the motif, thus a positive value indicates that the reference allele is favored (i.e. less disruptive). 
The Pearson’s correlation is calculated between this difference and the allelic ratio.  
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Figure and table legend 
 
Figure 1. Workflow for uniform processing of data from 382 individuals and construction 
of AlleleDB. For each of the 382 individuals, (1) a diploid personal genome is first constructed 
using the variants from the 1000 Genomes Project. Next, reads from individual (2a) and pooled 
(2b) ChIP-seq or RNA-seq datasets are mapped onto each of the haploid genome of the diploid 
genome. In (2a), overdispersion (OD) is measured for each dataset and used to segregate highly 
overdispersed datasets. (2b) The resultant datasets are pooled and the overdispersion parameter is 
estimated based on the pooled datasets. To determine if a heterozygous SNV is allele-specific 
(allele-specific), the numbers of reads that map to either allele is being compared. A statistical 
significance is computed (after multiple hypothesis test correction) based on the beta-binomial 
test using the ‘pooled’ overdispersion parameter in Step 2b to account for overdispersion. All the 
candidate allele-specific variants are then deposited in AlleleDB database. Additional 
information, such as raw read counts of both accessible non-allele-specific and allele-specific 
variants, can be downloaded for further analyses.  
 
Figure 2. Comparing the effects of the binomial and beta-binomial tests in datasets with 
low and intermediate level of overdispersion. The grey bars represent the empirical allelic 
ratio distribution, while the red and blue lines represent the expected allelic ratio distribution 
using the binomial and beta-binomial tests respectively. Figure 2A shows the empirical and 
expected distributions for one of the individual RNA-seq datasets for the individual HG00096. It 
has a low overdispersion parameter, ρ=0.0205. The empirical distribution does not have heavy 
tails and the binomial and beta-binomial tests give very similar results. This differs from Figure 
2B, which shows the empirical and expected distributions for one of the individual RNA-seq 
datasets for the individual NA11894. Overdispersion is higher at ρ=0.1234, and the beta-
binomial null distribution provides a better fit to the empirical allelic ratio distribution than the 
binomial distribution. The empirical distribution (grey bars) also show heavier tails, signifying 
more SNVs with allelic imbalance. 
 
Figure 3. Inheritance of allele-specific behavior. The left panel shows plots for the TF CTCF 
(top row) and ASE (bottom row) being examined for inheritance in the CEU trio (Father: 
NA12891, blue; Mother: NA12892, red; Child: NA12878, green). Each point on the plot 
represents the allelic ratio of a common ASB SNV between the parent (x-axis) and the child (y-
axis), by computing the proportion of reads mapping to the reference allele at that SNV. High 
Pearson’s correlations, r, observed in both parent-child comparisons for CTCF (r ≥ 0.77) signify 
strong heritability in allele-specific behavior. ASE also shows considerably strong evidence of 
heritability but has comparatively lower r values. The table at the top right panel presents the r 
values for ASB in two TFs and ASE in our analyses.  
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Figure 4. (a) ASB and ASE SNVs in allele-specific gene ZNF331 (chromosome 19, position 
54,041,333-54,083,523). From AlleleDB, we can observe the ASB SNVs (filled red bars with 
the name of the transcription factor (TF) above the bars) and ASE SNVs (filled black bars) found 
in each individual (row) and genomic positions (columns) along the ZNF331 gene. We can see 
that many of these SNVs are sparsely distributed across a single individual. By collapsing or 
combining information from multiple individuals, we can identify genomic regions or elements 
that are enriched for allele-specific activity. Unfilled black and red bars denote accessible SNVs 
are heterozygous SNVs that have enough reads to be tested but are non-allele-specific. (b) Two 
approaches for enrichment analyses are performed for each genomic element. (1) The 
‘expanded’ enrichment is performed in a population-aware fashion, in which each occurrence of 
allele-specific or accessible non-allele-specific SNV in each individual is counted. (2) The 
‘collapsed’ enrichment conflates all occurrences over multiple individuals into a single unique 
SNV position as long as an allele-specific or accessible non-allele-specific SNV occurs in least 
one individual. 
 
Figure 5. The ‘expanded’ enrichment analysis is population-aware and shows that some 
genomic regions are more inclined to allele-specific regulation. We map variants associated 
with allele-specific binding (ASB; green) and expression (ASE; blue) to various categories of 
genomic annotations, such as coding DNA sequences (CDS), untranslated regions (UTRs), 
enhancer and promoter regions, to survey the human genome for regions more enriched in allelic 
behavior.  Using the accessible non-allele-specific SNVs as the expectation, we compute the log 
odds ratio for ASB and ASE SNVs separately, via Fisher’s exact tests. The number of asterisks 
depicts the degree of significance (Bonferroni-corrected): *, p<0.05; **, p<0.01; ***, p<0.001. 
For each transcription factor (TF) in AlleleDB, we also calculate the log odds ratio of ASB 
SNVs in promoters, providing a proxy of allele-specific regulatory role for each available TF. 
Genes known to be mono-allelically expressed such as imprinted and MHC genes (CDS regions) 
are highly enriched for both ASB and ASE SNVs. The actual log odds ratio of ASB SNVs in 
imprinted genes, both ASB and ASE SNVs in immunoglobulin genes and ASE SNVs for 
3’UTR, MHC and olfactory receptor genes are indicated on the bars.  
 
Figure 6. A considerable fraction of allele-specific variants are rare but do not form the 
majority. A lower proportion of allele-specific SNVs than non-allele-specific SNVs are rare, 
suggesting less selective constraints in allele-specific SNVs. The minor allele frequency 
(MAF) spectra of ASB (green filled circle), accessible non-ASB SNVs (green open circle), ASE 
(blue filled circle) and accessible non-ASE SNVs (blue open circle) are plotted at a bin size of 
100. The peaks are in the bin for MAF ≤ 0.5%. The inset zooms in on the histogram at MAF ≤ 
2.5%. The proportion of rare variants in descending order: ASE- > ASE+ > ASB+ > ASB-. 
Comparing ASE+ to ASE- gives an odds ratio of 0.2 (Bonferroni-corrected hypergeometric p < 
2.2e-16), while comparing ASB+ to ASB-, gives an odds ratio of 1.4 (p=0.08), signifying 
statistically significant depletion of ASE SNVs but statistically insignificant enrichment of ASB 
SNVs relative to the respective non-allele-specific accessible SNVs. Statistically significant 
depletion in ASE suggests that ASE SNVs are under less purifying selection. 
 
Table 1. Breakdown of SNVs in each ethnic population: heterozygous (HET), accessible 
(ACC) and ASE SNVs in Table 1A and ASB SNVs in Table 1B for 381 unrelated individuals. 
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Table 1C shows the same HET, ACC and both ASE and ASB SNVs detected in a single 
individual, NA12878, who is also part of the trio family. For each of the last 3 columns, each 
category of HET, ACC and allele-specific SNVs is further stratified by the population minor 
allele frequencies: common (MAF > 0.05), rare (MAF ≤ 0.01) and very rare (MAF ≤ 0.005). The 
number of allele-specific SNVs is given as a percentage of the ACC SNVs. Table 1 also provides 
the number of individuals from each ethnic population with RNA-seq and ChIP-seq data 
available for the ASE and ASB analyses respectively. 
 
Supplementary Figure 
 
Supplementary Figure 1 
This figure shows the results for the ‘collapsed’ enrichment analysis. We map variants associated 
with allele-specific binding (ASB; green) and expression (ASE; blue) to various categories of 
genomic annotations, such as coding DNA sequences (CDS), untranslated regions (UTRs), 
enhancer and promoter regions, to survey the human genome for regions more enriched in allelic 
behavior.  Using the accessible non-allele-specific SNVs as the expectation, we compute the log 
odds ratio for ASB and ASE SNVs separately, via Fisher’s exact tests. The number of asterisks 
depicts the degree of significance (Bonferroni-corrected): *, p<0.05; **, p<0.01; ***, p<0.001. 
For each transcription factor (TF) in AlleleDB, we also calculate the log odds ratio of ASB 
SNVs in promoters, providing a proxy of allele-specific regulatory role for each available TF. 
Genes known to be mono-allelically expressed such as imprinted and MHC genes (CDS regions) 
are highly enriched for both ASB and ASE SNVs. The actual log odds ratio of ASB SNVs in 
imprinted genes, both ASB and ASE SNVs in immunoglobulin genes and ASE SNVs for MHC 
genes are indicated on the bars. 
 
Supplementary Table 
 
Supplementary Table 1 
This table shows the inconsistencies of the eight studies performing allele-specific analyses using 
different tools and parameters, e.g. read mapping with a range of read aligners, alignment to 
different reference genomes and variations of statistical tests in detecting the allele-specific 
variants. We uniformly processed the tools and parameters in AlleleDB. 
 
Supplementary Table 2 
This table shows the number of individual datasets being flagged and segregated due to 
insufficient reads and due to having an “overdispersed” allelic ratio distribution.  
 
*We define an “overdispersed” ChIP-seq dataset as those with ρ ≥ 0.3, while an “overdispersed” 
RNA-seq dataset is defined more strictly by ρ ≥ 0.125, which is one standard deviation more 
than the mean overdispersion in the RNA-seq datasets in our processing. 
 
Supplementary Table 3 
This table shows the slope and Pearson’s correlation results for two DNA-binding proteins, PU.1 
and CTCF, and ASE for parent-child and parent-parent comparisons. 
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Supplementary File 1 
This Excel file contains results from our allele-specific analyses for 708 categories from 
ENCODE, including the Fisher’s exact test odds ratios, p-values (original and Bonferroni-
corrected), the number of allele-specific SNVs and accessible non-allele-specific SNVs found in 
each category. The results for five gene element categories from GENCODE and 16 enhancer 
categories are also included. ‘NA’ is marked in categories where odds ratio cannot be calculated 
due to insufficient numbers in non-allele-specific SNVs. These are tabulated for ASB, ASE and 
allele-specific SNVs; the latter is the results for the combined unique number of ASB and ASE 
SNVs. 
 
Supplementary File 2 
This Excel file contains results from our allele-specific analyses for the 19,257 autosomal 
protein-coding genes (HGNC symbols) from GENCODE, including the Fisher’s exact test odds 
ratios, p-values (original, Bonferroni-corrected), the number of allele-specific SNVs and 
accessible non-allele-specific SNVs found in the gene region and the promoter region (upstream 
2500bp). The results for housekeeping genes and 5 monoallelically-expressed gene categories 
are also included. ‘NA’ is marked in categories where odds ratio cannot be calculated due to 
insufficient numbers in non-allele-specific SNVs. These are tabulated for ASB, ASE and allele-
specific SNVs; the latter is the combined unique number of ASB and ASE SNVs. 
 
Supplementary File 3 
This Excel file contains the ASB enrichment in promoter regions for 44 TFs used in our 
database, including the Fisher’s exact test odds ratios, p-values (original, Bonferroni-corrected), 
the number of ASB SNVs, accessible non-allele-specific SNVs both found and not found in the 
gene region. ASB SNVs for each TF are contributed by different individuals. If either of the 
parents in the CEU trio is involved, ASB SNVs for NA12878 are not included. Those TFs with 
only ASB SNVs from NA12878 are annotated ‘1’ under the column ‘NA12878 only’. ‘NA’ is 
marked in categories where odds ratio cannot be calculated due to insufficient numbers in any of 
the last three columns. 
 
Supplementary File 4 
This Excel file contains the ASB SNVs that reside in TF motifs described in Kheradpour and 
Kellis74. Under the column ‘motif’, the information is delimited by “#” in this order: motif 
identifier (as defined in Kheradpour and Kellis), start position of motif (0-based), end position of 
motif (1-based), strand and position of SNV in motif. Allelic ratios at each SNV position are 
defined above, i.e. ratio of number of reference reads to number of alternate reads. 
 
Supplementary File 5 
This Word file contains the R pseudocode for the bisection method that is used to estimate the 
overdispersion parameter. 
 
Supplementary File 6 
This Excel file contains sets of more confident ASB and ASE SNVs. For the more confident 
2,394 ASE SNVs, they are identified because at least 38 individuals (column ‘indCount’ ≥ 38) 
possess each of them. At the same time, for each of the SNV, the allele that has more reads for 
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each individual (columns ‘winningAllele’ and ‘alleleCounts’) are consistently found in 80% of 
the individuals (column ‘freq’ ≥ 0.8) that possess this ASE SNV. The more confident 183 ASB 
SNVs are defined by having ≥ two individuals possessing that ASB SNV, regardless of the 
identities of TFs (columns ind_TF and indCount ≥ 3). Also, the allele that has more reads for 
each ind_TF (columns ‘winningAllele’ and ‘alleleCounts’) are found in 80% of ind_TF (column 
‘freq’ ≥ 0.8).  Deleted: ¶
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(grouped by individual and TF).
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