ChIP-seq Metrics – 2013 modENCODE (Bridge)

E. Jay Rehm Lijia Ma Kevin P. White 2.14.2013

Dataset Quality Metrics

- Consistency among/within replicates of a dataset IDR Consistency IDR Self-consistency
- 2. Individual replicate quality Cross correlation analysis
- 3. Alignment stats samtools

Cross Correlation

SPP CC Outputs: 11 tab delimited columns

COL1: Filename

COL2: numReads: effective sequencing depth

COL3: estFragLen: fragment length (ChIP peak) cross-correlation peak(s)

COL4: corr_estFragLen: strand cross-correlation value(s) in decreasing order

COL5: phantomPeak: Read length/phantom peak strand shift

COL6: corr_phantomPeak: Correlation value at phantom peak

COL7: argmin_corr: strand shift at which cross-correlation is lowest

COL8: min_corr: minimum value of cross-correlation

COL9: Normalized strand cross-correlation coefficient (NSC) = COL4 / COL8

COL10: Relative strand cross-correlation coefficient (RSC) = (COL4 - COL8) / (COL6 - COL8)

COL11: QualityTag: Quality tag based on thresholded RSC (codes: -2:veryLow, -1:Low, 0:Medium, 1:High, 2:veryHigh)

Note: RSC not helpful with worm datasets.

SPP CC Outputs: 11 tab delimited columns

COL1: Filename:	DAF-16_L4_XE1464_a-GFP_Rep0.tagAlign.gz
COL2: numReads:	8,721,920
COL3: estFragLen:	165
COL4: corr_estFragLen:	0.486472876
COL5: phantomPeak:	40
COL6: corr_phantomPeak:	0.4447579
COL7: argmin_corr:	600
COL8: min_corr:	0.4108828
COL9: (NSC) = COL4 / COL8:	1.18397
COL10: (RSC) = (COL4 - COL8) / (COL6 - COL8):	2.231438
COL11: QualityTag:	2

COL1: Filename: COL2: numReads:	AMA-1_YA_YL489_a-GFP_Rep0.tagAlign.gz 4,919,928
COL3: estFragLen:	120, 145, 170
COL4: corr_estFragLen:	0.439305514381849, 0.439158556907702, 0.438443808017683
COL5: phantomPeak:	35
COL6: corr_phantomPeak:	0.432114
COL7: argmin_corr:	575
COL8: min_corr:	0.4270727
COL9: (NSC) = COL4 / COL8:	1.028643
COL10: (RSC) = (COL4 - COL8) / (COL6 - COL8):	2.426529
COL11: QualityTag:	2

Example CC Plots -- worm

Example CC Plots -- fly

Nugen library prep

Nextera library prep

Peak ranks – decreasing significance

<u>3 classes of consistency measured:</u>

- 1. Replicate consistency:
- 2. Replicate self-consistency:
- 3. Pooled self-consistency:

REP1/REP2 REP1 pr1/REp1 pr2 & REp2 pr1/REp2 pr2

REPO_PR1/REPO_PR2 (REPO = REP1 U REP2)

IDR

Low-stringency Peak calls (SPP set to 30,000):

(8 peak calls required for 2 replicates -- 11 for 3 replicates)

- 1) Rep1/input
- 2) Rep2/input
- 3) REP1_PR1/INPUT
- 4) Rep1_pr2/input
- 5) Rep2_pr1/input
- 6) Rep2_pr2/input
- 7) REPO_PR1/INPUT
- 8) Rep0_pr2/input

Flagging datasets for low consistency:

If N2/N1 > 2 <u>AND</u> Np/Nt > 2 → FLAGGED or

If N2/N1 >> 2 <u>OR</u> Np/Nt >> 2 → FLAGGED

IDR

<u>3 classes of consistency measured:</u>

- 1. Replicate consistency: REP1/REP2
- 2. Replicate self-consistency: Rep1_pr1/Rep1_pr2 AND Rep2_pr1/Rep2_pr2
- 3. Pooled self-consistency: REP0_PR1/REP0_PR2 (REP0 = REP1 U REP2)

Landt SG et al. 2012. Genome Res.

4 IDR outputs:

Nt N1, N2 Np

IDR outputs:

Replicate consistency: 1.

3.

- Replicate self-consistency: 2. Pooled self-consistency:
 - N1, N2 Np

Nt

"numPeaks_Rep1_Rep2" "numPeaks_Rep1_pr" & "numPeaks_Rep2_pr" "numPeaks_Rep0_pr"

			Self-consistency flags	Np/Nt	Batch	Comments
IPs:	DAF-16 L4 XE1464 a-GFP Rep1	DAF-16 L4 XE1464 a-GFP Rep2	ŭ		20130129	
Inputs:	DAF-16_L4_XE1464_Input_Rep0.tagAlign.gz				20130129	
numPeaks_Rep1_pr	5493				20130129	
numPeaks_Rep1_Rep2	4092				20130129	
numPeaks_Rep2_pr	5144				20130129	
numPeaks_Rep0_pr	6611			1.62	20130129	
optThresh	6611				20130129	
conThresh	4092				20130129	
IPs:	EFL-1_YA_YL479_a-GFP_Rep1	EFL-1_YA_YL479_a-GFP_Rep2			20130129	
Inputs:	EFL-1_YA_YL479_Input_Rep0.tagAlign.gz				20130129	
numPeaks_Rep1_pr	1471				20130129	
numPeaks_Rep1_Rep2	1600				20130129	
numPeaks_Rep2_pr	1064				20130129	
numPeaks_Rep0_pr	1886			1.18	20130129	
optThresh	1886				20130129	
conThresh	1600				20130129	
IPs:	AMA-1_YA_YL489_a-GFP_Rep1	AMA-1_YA_YL489_a-GFP_Rep2			20130129	
Inputs:	AMA-1_YA_YL489_Input_Rep0.tagAlign.gz				20130129	
numPeaks_Rep1_pr	183		Rep1_pr/Rep2_pr		20130129	double-flag
numPeaks_Rep1_Rep2	169				20130129	
numPeaks_Rep2_pr	407				20130129	
numPeaks_Rep0_pr	524			3.10	20130129	double-flag
optThresh	524				20130129	
conThresh	169				20130129	

Conservative and Optimal final peak calls:

- Optimal threshold = MAX[numPeaks_Rep1_Rep2, numPeaks_Rep0_pr]
- Conservative threshold = numPeaks Rep1 Rep2

			Self-consistency flags	Np/Nt	Batch	Comments
IPs:	DAF-16_L4_XE1464_a-GFP_Rep1	DAF-16_L4_XE1464_a-GFP_Rep2			20130129	
Inputs:	DAF-16_L4_XE1464_Input_Rep0.tagAlign.gz				20130129	
numPeaks_Rep1_pr	5493				20130129	
numPeaks_Rep1_Rep2	4092				20130129	
numPeaks_Rep2_pr	5144				20130129	
numPeaks_Rep0_pr	6611			1.62	20130129	
optThresh	6611				20130129	
conThresh	4092				20130129	
IPs:	AMA-1_YA_YL489_a-GFP_Rep1	AMA-1_YA_YL489_a-GFP_Rep2			20130129	
Inputs:	AMA-1_YA_YL489_Input_Rep0.tagAlign.gz				20130129	
numPeaks_Rep1_pr	183		Rep1_pr/Rep2_pr		20130129	double-flag
numPeaks_Rep1_Rep2	169				20130129	
numPeaks_Rep2_pr	407				20130129	
numPeaks_Rep0_pr	524			3.10	20130129	double-flag
optThresh	524				20130129	
conThresh	169				20130129	

A final word: Nextera and Nugen...

Both datasets pass IDR.

However, Nugen results in **2.5x** more peaks than Nextera

	SPP peak calls	MACS2 peak calls	Np/Nt (SPP)	Np/Nt (MACS2)
IDR-filtered SPP/MACS2 myc-				
GFP_WA_myc_S2 (nugen libraries:pooled				
ChIPs)				
	2012-1512_121109_SN1070	2012-1513_121109_SN1070		
IPs:	_0094_BD1F1FACXX_6_sequence	_0094_BD1F1FACXX_1_sequence		
	myc-GFP_WA_myc_			
Inputs:	S2_Input_Rep0.tagAlign.gz			
numPeaks_Rep1_pr	3902	5781		
numPeaks_Rep1_Rep2	3698	4766		
numPeaks_Rep2_pr	4172	6582		
numPeaks_Rep0_pr	5364	6104	1.45	5 1.28
optThresh	5364	6104		
conThresh	3698	4766		
IDR-filtered SPP/MACS2 myc-GFP_WA_myc-				
NE_S2 (nextera libraries:pooled ChIPs)				
	2012-1451_121031_SN1070	2012-1452_121031_SN1070		
IPs:	_0093_BD1F3RACXX_1_sequence	_0093_BD1F3RACXX_1_sequence		
	myc-GFP_WA_myc-			
Inputs:	NE_S2_Input_Rep0.tagAlign.gz			
numPeaks_Rep1_pr	391	2015		
numPeaks_Rep1_Rep2	815	2468		
numPeaks_Rep2_pr	402	2209		
numPeaks_Rep0_pr	705	2193		0.89
optThresh	815	2468		
conThresh	815	2468		

A final word: Nextera and Nugen...

- 1. Anshul's document on Thresholding ChIPseq datasets using SPP and IDR: <u>https://sites.google.com/site/anshulkundaje/projects/idr</u>
- 2. Anshul's "phantompeakqualtools" documentation for using cross-correlation analysis to assess the quality of ChIP-seq datasets: https://code.google.com/p/phantompeakqualtools/
- 3. Official ENCODE quality metrics (not always appropriate for fly/worm): <u>http://genome.ucsc.edu/ENCODE/qualityMetrics.html#chipSeq</u>
- Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012 Sep;22(9):1813–31.
- Li Q, Brown JB, Huang H, Bickel PJ. Measuring reproducibility of high-throughput experiments. The Annals of Applied Statistics. Institute of Mathematical Statistics; 2011 Sep 1;5(3):1752–79.
- 3. Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol. 2008 Dec;26(12):1351–9.
- 4. Furey TS. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet. 2012 Oct 23.