
B.  Significance 
B-1  Non-coding variants are significant for disease but less well-studied than coding ones 
Numerous studies have been conducted on the mutations that lie in coding regions5-8. Not as much has been 
done on non-coding ones. However, several initial studies suggest that variants in non-coding regions can 
significantly influence an organism’s phenotype9, and they are often implicated in diseases10,11. Many non-
coding variants impact regulatory elements. Such variation in the human genome can modulate gene 
expression12, and changes in this expression have been implicated in cancer and other diseases13-18. 
B-2  Rare variants are important for disease but have received less attention than common ones 
There have been a large number of GWAS studies19-23, which have primarily focused on associating common 
genetic variants with diseases. However, growing evidence suggests that rare genetic variants may have strong 

effects in many human diseases, including cancers24. 
Increased disease susceptibility is often attributed to the 
cumulative effect produced by multiple rare variants25 – 
e.g., rare germline variants in the CHEK2 and HBOX genes 
were associated with breast and prostate cancer, 
respectively26, 27. 
B-3  Recent progress in annotating non-coding regions 
of the genome provides new opportunities for variant 
interpretation 
Annotating non-coding regions is essential for investigating 
genome evolution28, understanding important biological 
functions (including gene regulation and RNA processing)29, 
and for elucidating how SNPs and structural variation may 
influence disease30. The Encyclopedia of DNA Elements 
(ENCODE) and the model organism ENCODE 
(modENCODE) Project provide extensive comparative 
genomic annotation of human, mouse, fly and worm 
genomes31-33. Furthermore, regulatory variations in the 
human genome have been investigated by large-scale mRNA 
and miRNA sequencing34-37. Recently, large-scale efforts 
(e.g., the Epigenome Roadmap and GTEx projects) have also 
been directed toward annotating human epigenomic data38-

42, as well as understanding the influence of genomic variation on the gene expression profiles43-47 . These 
Expression Quantitative Trait Loci (eQTL) can further be utilized to investigate disease mechanisms48.  
C.  Innovation 
Our method will combine various large-scale genomics data to interpret rare non-coding variants associated 
with increased cancer risk. Currently, no computational pipeline exists with focused analysis for rare germline 
variants associated with increased risk. Moreover, large-scale consortia, such as The 1000 Genomes Project 
and ENCODE, have produced data that have been used in other genomic studies. However, these resources 
have not been fully exploited to understand the functional implications of variants associated with cancer risk. 
The integration of these data would be an important innovative component of our approach. The specific 
innovative components of our approach are listed below. 
C-1 Interpreting the impact of rare non-coding variants, consistently for TF binding & ncRNAs, using 
population-scale polymorphism data 
While common variants associated with disease are contained within the GWAS catalog, very few studies 
attempt to identify rare disease-associated variants. Currently, no standard methods exist to functionally 
interpret such variants, especially in non-coding regions. Herein, we propose a consistent approach to 
prioritize rare variants associated with disease over all the non-coding regions in the genome, i.e, rare variants 
in the regulatory regions and ncRNAs will be prioritized using a consistent scoring scheme that utilizes the 
natural polymorphism data within healthy humans. 
C-2  Prioritizing variants based on elements enriched in allelic activity 
Previous studies have identified specific variants with allele-specific activity36, 49. However, there has not been a 
scheme that allows us to prioritize variants based on this, especially rare variants that do not usually overlap 
with identified variants. In the proposed work, we will prioritize variants based on their presence within allelic 
elements or regions of the genome.  

 

Fig 1: ENCODE Regulatory Network Analysis 



C-3  Developing a weighting system for variant prioritization & a plan for tuning its parameters by 
multiple rounds of high-throughput experimental characterization 
An innovative aspect of this proposal is a parameter weighting scheme for variant prioritization and iterative 
tuning of it. In the first iteration, we will implement a weighted scoring scheme by assigning weights to various 
features based on publicly available polymorphism data. Each variant will be assigned a score based on the 
weights of individual features associated with that particular variant. In the second iteration of this workflow, 
we will apply a Bayesian learning strategy to tune weights based on experimental observations. Subsequently, 
these updated weights will be assigned to prioritize rare variants. 
C-4  Clone-seq: massively-parallel site-directed mutagenesis pipeline leveraging next-gen. sequencing 
Current protocols for site-directed mutagenesis require the selection of individual colonies and subsequent 
sequencing of each colony using Sanger sequencing, which makes them labor intensive, expensive and 
unscalable for genome-wide surveys. Using Clone-seq, we can generate clones for ~3,000 mutations in one 
lane of an Illumina HiSeq run and decrease the cost by more than 10-fold1. Clone-seq is entirely different from 
previously described random mutagenesis approaches50-53: each mutant clone has a separate stock. Different 
clones can therefore be used separately for completely different downstream assays. 
D.  Approach 
D-1  Approach Aim 1 - Convert & extend the FunSeq somatic variant pipeline for germline prioritization 
D-1-a  Preliminary results for Aim 1 
D-1-a-i  We have experience in annotating non-coding regions of the genome, including both TF-
binding sites and non-coding RNAs 
Our proposed work is based on our past experience in non-coding annotation, as part of our 10-year history 
with the ENCODE and modENCODE projects. Our TF work includes the developing new machine learning 
techniques to define the binding peaks of TFs and predict TF target genes54-56. Furthermore, we developed 
methods that integrate ChIP-seq, chromatin, conservation, sequence and gene annotation data to identify 
gene-distal enhancers57, which we have partially validated58. We also constructed linear and non-linear models 
that utilize TF binding and histone modification signals to accurately predict the transcriptional output of a 
gene in different cell types of several organisms including yeast, worm, fly, and human33, 59-62. We have also 
constructed regulatory networks for human and model organisms63, 64, and completed many analyses on them 
(Fig 1)33, 58, 63, 65-77. Furthermore, we have conducted large-scale multi-organism regulatory and co-expression 
network comparisons, along with transcriptome and pseudogene lineage analyses77-81. Finally, we have 
experience conducting integrated analyses of RNA-Seq datasets generated by the ENCODE, modENCODE, 
BrainSpan and exRNA consortia31, 33, 82-84. In particular, we developed RSEQtools and IQseq for gene model 
creation and transcript quantification85, 86. We also developed tools that specifically analyze features of 
ncRNAs, including incRNA and ncVAR for finding and characterizing these elements87, 88. 
D-1-a-ii  We have experience in allelic analyses 
A specific class of regulatory variants are those associated with allele-specific binding (ASB), particularly of 
transcription factors or DNA-binding proteins, and with allele-specific expression (ASE)89, 90. We have 
previously developed a tool, AlleleSeq76, for the detection of candidate variants associated with ASB and ASE. 
Using this we have generated comprehensive lists of allelic variants for ENCODE and 1000 Genomes and 
found that allelic variants are under differential selection from non-allelic ones63, 63, 74, 82. By constructing 
regulatory networks based on ASB of TFs and ASE of their target genes, we further revealed substantial 
coordination between allele-specific binding and expression63. Finally, we have constructed a personal diploid 
genome and transcriptome of NA12878 91. 
D-1-a-iii  We have experience in relating annotation to variation: the FunSeq pipeline 
We have extensively analyzed patterns of variation in non-coding regions, along with their coding targets58,63,88. 
We used metrics, such as diversity and fraction of rare variants, to characterize selection on various classes and 
subclasses of functional annotations88. In addition, we have also defined variants that are disruptive to a TF-
binding motif in a regulatory region31. Further studies showed relationships between selection and protein 
network topology (eg, quantifying selection in hubs relative to proteins on the network periphery73, 75). In 
recent studies4, 74, we have integrated and extended these methods to develop a prioritization pipeline called 
FunSeq (Fig 2). It identifies sensitive and ultra-sensitive regions (i.e., those annotations under strong selective 
pressure, as determined using genomes from many individuals from diverse populations). FunSeq links each 
non-coding mutation to target genes, and prioritizes such variants based on scaled network connectivity. It 
identifies deleterious variants in many non-coding functional elements, including TF binding sites, enhancer 
elements, and regions of open chromatin corresponding to DNase I hypersensitive sites. 



It also detects their disruptiveness in TF binding sites 
(both loss-of and gain-of function events). FunSeq was 
developed as part of the 1000 Genomes Functional 
Interpretation Group (FIG) and represents a 
collaboration between that group and that of a cancer 
genomics research (Dr Rubin). In particular, 
integrating large-scale data from various resources 
(including ENCODE and 1000 Genomes) with cancer 
data, FunSeq is able to prioritize the known TERT 
promoter driver mutations, and it scores somatic 
recurrent mutations higher than those that are non-
recurrent. Moreover, we identified ~100 non-coding 
candidate drivers in ~90 WGS medulloblastoma, breast 
and prostate cancer samples 74. We have also applied 
our method to investigate non-coding mutation 
patterns in subtypes of gastric cancer92. Drawing on this 
experience, we are currently co-leading ICGC PCAWG-
2 (Pan-cancer Analysis Working Group #2: Analysis of 
Mutations in Regulatory Regions).   
D-1-b  Research plan for Aim 1 
We plan to convert and extend the current FunSeq 
prototype from its focus on somatic variants to allow 
the identification of rare germline variants associated 
with high functional impact (Fig 3). Our new pipeline is 
called eleVar. It will have several key features: 1) 
identifying functional sites among the conserved 
regions of the human genome and ncRNA regulatory 
elements; 2) investigating the allelic elements; and 3) 
taking into account network connectivity. 
D-1-b-i  Consistently prioritizing non-coding 
elements from polymorphism data 
In order to define rare variants with highly impactful 
events, we will use both intra-human variation data 
(from The 1000 Genomes Project) as well as cross-

species evolutionary conservation (using classical measures such as the GERP score93). 
We will first update the TF binding non-coding elements from the original FunSeq approach. Here, we 

will use the better enhancer definition provided by the Epigenome Roadmap94-96, and more recently from 
ENCODE. In particular, we will develop a new machine-learning framework that utilizes pattern recognition 
within the signal of various epigenomic features and the transcription of enhancer RNAs (eRNAs) to predict 
active enhancers across different tissues.  

Second, RNA regulatory elements will be added as prioritization features in a way that is consistent with 
the approach taken for TF binding sites. Specifically, we will mine RNA interactions with proteins/miRNAs 
from publicly available data, such as CLIP-Seq, CLASH and computational predictions (TargetScan) to create a 
compendium of biochemical interactions with RNA97-101. Our initial analyses indicate that some binding sites 
are even more sensitive to variation than coding sequences. In addition, we will incorporate aspects of RNA 
3D-structure. Our initial survey indicates that more rigid RNA structures, such as stems, are under higher 
selective pressure than other RNA regions, and that those variants that cause a larger free energy change in 
terms of structure are rarer in human populations. We will define sensitive regions based on folding free energy 
and folding z-score cutoffs that are enriched for rare genetic variants. 
D-1-b-ii  Identifying high-impact mutations: breaking & creating motifs 
For impactful events at TF binding sites, we will use motif breakers and formers to define loss-of- and gain-of-
function events, respectively, as these events are more likely to have deleterious consequences14, 15, 74, 88, 102-104. 
Variants altering the position-weight matrix (PWM) scores for TF binding sites could potentially either 
decrease (loss-of-function) or increase (gain-of-function) the binding strength of TFs. A key improvement is to 
employ ancestral alleles to get a more accurate determination of these events. 
 

Fig 2: Filtering of somatic variants from a prostate 
cancer sample leading to identification of 
candidate drivers 



 
In a way that is consistent with our means of 
searching for motif-breaking variants in TF 
binding sites, we will identify motif-breakers in 
specific RNA binding motifs. Studies of RNA 
processing and function have identified key 
motifs associated with events ranging from RNA 
splicing to chemical RNA base modifications105. 
We have found that intron-exon junctions, 
polyadenylation sites, and intron lariat 
structures are much more sensitive to mutation 
than other genomic regions, particularly for 
motif-breaking variants. For miRNA/protein 
bindings sites, we will likewise use the specific 
binding sites of the microRNAs and whether the 
respective mutation moves closer to or further 
from the canonical pattern.  
D-1-b-iii  Variant prioritization based on allelic 
activity  
Allele-specific variants potentially provide a 
most direct readout of the functional impact of a 
variant. For example, if we can associate the 
differential binding effect of a particular 
transcription factor with different alleles, then 
we can identify loci that have potential 
functional impacts in regulation. However, 
because allelic variants are enriched for rare 
variants34, it will be difficult to match the 
specific variants in a personal genome of 

interest to prioritize against those earlier determined to be allelic in a functional genomics experiment on a cell 
line. Hence, instead of prioritizing by the direct overlap of allelic variants, we need to prioritize by the presence 
of allelic variants within 'allelic elements', or allelic regions in the genome (Fig 4). 

We derive allelic elements by first identifying allelic variants from hundreds of individuals. These 
individuals will be amassed from The 1000 Genomes Project106. We will match them with their corresponding 
RNA-Seq and ChIP-seq experiments from multiple disparate studies, such as gEUVADIS34 and ENCODE31. 
Because these separate studies typically have inconsistencies in terms of tools and parameters used in 
processing their data, we have to reprocess and harmonize the heterogeneous data and detect allelic variants in 
a uniform fashion. Also, while the conventional way to detect allelic variants is using the binomial test, previous 
studies have found that the distributions of the allelic ratios in ChIP-seq and RNA-seq experiments have been 
empirically observed to give a broader, or an ‘overdispersed’, distribution than a binomial distribution107-109. To 
identify and remove problematic "outlier" datasets and to account for overdispersion of read distributions, we 
will extend our detection pipeline (AlleleSeq) to include the calculation of an overdispersion parameter for each 
ChIP-seq and RNA-seq dataset; the beta-binomial test (which parametrizes the overdispersion) will be used to 
detect allelic variants instead of the binomial test. 

Subsequently, allelic variants (rare and common) identified across hundreds of genomes can be 
aggregated into ‘allelic genomic elements’. Each element will be assigned an ‘allelicity’ score based on not only 
its enrichment of allelic variants within the element (in comparison to accessible variants within the elements 
and having sufficient coverage to make an allelic activity call), but also across the number of individuals having 
allelic variants in a consistent allelic direction. The scoring system by element is useful in two ways: (1) it allows 
continuous ranking of genomic elements based on its allelic impact across multiple individuals (as opposed to 
defining a threshold to make a binary decision of whether an element is ‘allelic’) and (2) it enables 
incorporation of ASE and ASB into the main prioritization scheme; input variants (even those which are rare, 
but lie in highly-ranked allelic genomic elements) will be up-weighted according to their scores. 

Fig 3: Description of eleVAR workflow & data context 



D-1-b-iv  Identifying likely target genes for distal 
regulatory elements & assessing the impact of variants 
on network connectivity 
To interpret the likely functional consequences of non-
coding variants, we will comprehensively define 
associations between many non-coding regulatory 
elements and their target protein-coding genes. The 
correlation between enhancer and promoter activity across 
the ENCODE cell-lines and different tissues will be used to 
identify significant associations between regulatory 
elements and candidate target genes, as done by Yip et al57. 
A single regulatory variant may affect the expression of 
multiple genes, either because it directly them or because 
the target gene is itself a regulatory factor. 

We will use the regulatory element-target gene 
pairs to connect the non-coding variants into a variety of 
networks -- e.g., regulatory network, metabolic pathways, 
etc. We will examine their network centralities (eg hubs, 
bottlenecks and hierarchy tops), as we know that 
disruption of highly connected genes or their regulatory 
elements is more likely to be deleterious73,75. For RNA 
regulatory elements, we will also use protein/miRNA 
biochemical interactions to interpret the network context 
of our variants, using RNA molecules as nodes and RNA-
protein and miRNA-RNA interactions as edges. We will 
prioritize variants that are bound by multiple factors, and 
those within RNAs that are bound by many proteins. 
D-1-b-v  We will use a unified weighted scoring 
scheme for combining all eleVAR features to prioritize 
variants 
To integrate the various features mentioned above, we plan 
to elaborate the weighting system in FunSeq.4. Constrained 
by selective pressure, common variations tend to arise in 
functionally unimportant regions. Thus, features that are 
enriched with common polymorphisms are less likely to 

contribute to the deleteriousness of variants and are weighted less. In general, features can be classified into 
two classes: discrete (e.g., within or outside of a given functional annotation) and continuous (e.g., the PWM 
change in ‘motif-breaking’). We will weight these two sets of features with different strategies.  

For each discrete feature 𝑑, we calculate the probability 𝑝! that it overlaps with common 
polymorphisms. We then calculate the information content to denote its weighted value 𝑤! = 1 + 𝑝! ∗ 𝑙𝑜𝑔!𝑝! +
(1 − 𝑝!)   ∗ 𝑙𝑜𝑔!(1 − 𝑝!).  

The situation is more complex for continuous features, as different feature values have different 
probabilities of being observed in natural polymorphisms. Thus, one weight cannot suffice for varied feature 
values. For a continuous feature 𝑐, which is associated with a score 𝑣!, we will calculate feature weights for 
each  𝑣!. In particular, we discretize at each value and compute 𝑤!

!!. Then we fit a smooth curve for all 𝑣! to 
obtain continuous 𝑤!

!! = 1 + 𝑝!
!!! ∗ 𝑙𝑜𝑔!𝑝!

!!! + (1 − 𝑝!
!!!)   ∗ 𝑙𝑜𝑔!(1 − 𝑝!

!!!). When we evaluate the continuous 
feature for a particular variant, we calculate its weighted value using the fitted function.  

We score each variant by summing up the weighted values of all its features  𝑠 = 𝑤!! + 𝑤!
!!

! . We will 
also consider the feature dependency structure when calculating the scores (e.g., removing redundant features 
or performing dimension reduction techniques). 
D-2  Approach Aim 2: Implement an efficient eleVAR pipeline & develop a workflow for tuning model 
parameters & assessing performance 
D-2-a  Overall workflow for the project in relation to Aim 2 
As shown in the timeline (Fig 6), we will take our features and weighting scheme (from Aim 1) and construct a 
practical software pipeline that can be applied on many genomic variants in a high-throughput fashion. We will 
then collect genomic variants from the existing cancer genomics data. We will run the pipeline on these 

Fig. 4: Workflow for generating allelic variants 
and elements 



variants to prioritize many of them. We will then compare the prioritization of the variants to publicly 
accessible validated variants and elements to readjust the parameters in our prioritization scheme. Finally, we 
will compare the newly-prioritized variants after this first round with the results of our high-throughput 
experimental characterization. Finally, we will perform an unbiased testing and pick a number of variants for 
in-depth validation. 
D-2-b  Research plan for Aim 2 
D-2-b-i  Statistical framework for parameter tuning using Bayesian updates 

The initial feature weights 𝑾 (𝑤!,𝑤!,… ,𝑤!) (given 𝑚 number of features) assigned in D-1-b-v will be 
further optimized with newly available “gold standard” datasets. We plan to tune these parameters using an 
incremental Bayesian learning strategy. For a variant 𝑣, given feature values 𝑭!  (𝑓!,!, 𝑓!,!, . . . , 𝑓!,!), 𝑾can be 
rewritten as (𝑡! 𝑓!,! , 𝑡! 𝑓!,! , . . . , 𝑡!(𝑓!,!)), where functions 𝑻 depict the relationship between 𝑾and 𝑭. This 
could, for instance, be a simple linear relationship with a single proportionality parameter or a more complex 
non-linear relationship with multiple parameters. In any event, all parameters in 𝑻 are the same for all 
variants. Given the eleVAR score 𝑠 (equation 3 in D-1-b-v), the probability that 𝑣 is functional (𝑦! = 1 
designates a positive result, whereas 𝑦! = 0 denotes a negative result) follows a logistic function 𝑃(𝑦! = 1|𝑠) =
   !
!  !  !"#(!!  ∗  (!!!))

 (𝑘, 𝑎 are scaling parameters). To update 𝑾 (more specifically, the parameters in functions 𝑻) 
with training data 𝒀, we implement Bayes’ rule:  𝑃(𝑻|𝒀,𝑭𝑽)   ∝   𝑃(𝒀|𝑻,𝑭𝑽)𝑃(𝑻). The probability of observing 𝑻 
(given 𝒀 and feature values 𝑭𝑽  corresponding to variants in 𝒀) is proportional to the probability of observing 𝒀 
given 𝑻 and 𝑭𝑽, multiplied by the prior probability of 𝑻. Assuming independency between data points in 𝒀, 
which can be achieved by proper training data construction, 
𝑃(𝒀|𝑻,𝑭𝑽)𝑃(𝑻) = 𝑃!

!!! (𝑦!|𝑡!, 𝑡!, . . . , 𝑡! , 𝑓!,!, 𝑓!,!, . . . , 𝑓!,!)𝑃(𝑡!, 𝑡!, . . . , 𝑡!)  , given 𝑛 observations in 𝒀. 
Using the training data, we will maximize this function to find the most probable functions 𝑻, and these 

will be used as our updated parameters. The updated 𝑻 will then be used as tuned parameters in eleVAR to 
prioritize variants. The procedure will be iterated in several rounds. In the first round of tuning, feature 
weights obtained in D-1-b-v will be used to construct priors 𝑃(𝑻). In subsequent rounds, the updated weights 
will be set as new priors. 
D-2-b-ii  Software implementation using an explicit data context & dependency graph 
We will develop an efficient, robust and yet flexible software suite for eleVAR for users to parameterize and 
customize for their own research projects. As our software uses features coming from large-scale genomic 
datasets, calculating scores is very time-consuming, space-inefficient and probably computationally intractable 
for some researchers. To address this problem, we will first provide pre-calculated scores for all possible 
variants in the genome. Also, we will analyze and optimize data flow in our model, aiming to eliminate data 
dependencies and to modularize the calculating process. We will recognize critical inter-procedural interfaces 
(e.g., intersections in which multiple flows merge) that are likely to get updated and save intermediate data 
files to facilitate fast rebuilding and recovery. After updating some data sources or partial corruption of 
runtime data files, our software will use a data flow map to identify the flow paths that require rebuilding. All 
other unperturbed paths will use the nearest intermediate data files and do minimal recalculation. By carefully 
removing data dependencies, mapping data flow paths and localizing the rebuilding after updating, we will give 
users the ability to customize and constantly update our model and software at minimal cost. We will also use 
NoSQL databases, such as MongoDB to maximize our data model flexibility. In particular, users will be able 
slightly perturb the data context with the addition of a single targeted functional genomics experiment. 

We will host our software on a user-friendly web server for researchers to query interactively. 
Researchers will also be able to download this software and install it on their local machines or deploy it on the 
cloud. We will provide a downloadable version that has been configured in a Docker container to minimize 
portability issues. We will publish the source code on Github, aiming to distribute the software to the entire 
research community and ensure the reproducibility of our results. Finally, from our planned project website 
(elevar.gersteinlab.org) we will also make available the results of all the validation experiments (described 
below), so users can re-tune the eleVAR parameters as they want.  
D-2-b-iii  Generating an initial list of prioritized variants & then running them through eleVAR 
The PCAWG-8 group will be generating high-quality germline call sets (comprising SNPs, Indels, and SVs) for 
relatively high-coverage whole-genome datasets. The germline SNP call sets will be generated by four of the 
most state-of-the-art variant callers, including the GATK HaplotypeCaller110, which is run by the Broad 
Institute, and Caveman111, which is run by the Wellcome Trust Sanger Institute. These call sets will then be 
integrated with the tool FreeBayes92, which will generate the final call set for further downstream analyses. As 
we will be focusing on prostate cancer, we will add to this list a number of other whole-genome sequences of 



prostate cancers (tumor and normal)112, 113. We will call the variants in these genomes in a way that is 
consistent with what is done in PCAWG. At the start of the project, we estimate that we will have at least a total 
of 250 prostate cancer genomes. We will call this set of genomes and variants the “prostate compendium.” 

We will run eleVAR on the rare variants resulting from our variant calling on both PCAWG and on the 
prostate compendium whole-genome sequences. During this process, we will add biological context to the 
general scoring scheme in eleVAR, as this could help prioritize variants that lead to tissue-specific phenotypic 
effects114. In particular, we will build a tissue-specific protein-protein interaction network (based on proteins 
that are expressed in prostate tissue), as well as a tissue-specific gene regulatory network (histone modification 
to define active promoters and enhancers, as well as scoring the change in PWM for motifs affecting binding 
sites of TFs and RNAs expressed in prostate tissue).  
D-2-b-iv  Round 1 of tuning based on publicly available datasets  
To perform the initial round of performance assessment and parameter tuning, we plan to use publicly 
available datasets from various resources. These datasets include known disease-causing mutations from 
molecular studies, high-throughput reporter assays on enhancer activities and recurrence of cancer rare 
mutations in the region of interest involving germline and potentially somatic variants. 

The Human Gene Mutation Database (HGMD)115 and ClinVar116 catalogue large numbers of regulatory 
disease-causing mutations discovered in molecular studies. Several high-throughput technologies have also 
been developed to test the phenotypic impacts of non-coding genomic variants. For example, Kwasnieski et al 
used CRE-seq117 to assay over 1,000 single- and double-nucleotide mutations in promoter regions. Kheradpour 
et al102 used MPRA to test variants affecting regulatory motifs in over 2,000 human enhancers. We will utilize 
these datasets to perform comparisons with other variant prioritization methods, such as CADD118, to obtain a 
preliminary evaluation of method performance. We will then tune our parameters using the scheme described 
above. 

We will further compare the germline mutation burden of healthy individuals with those suffering from 
cancer. Specifically, we will use over 2,500 normal samples from The 1000 Genomes Project as the control 
data, and run a mutation burden test using available software such as SKAT119. (If it is necessary to expand the 
controls for rarer variants, we could use deeply sequenced trios from the 1000 Genomes Project120, 500 
individuals with Complete Genomics sequencing also from 1000 Genomes121 and healthy individual from the 
UK10K project122.) In contrast to the binning process generally used in burden testing, which is relatively ad 
hoc, we will aggregate rare mutations in each regulatory element in our updated sensitive feature list to 
evaluate the cumulative effects of rare variants in cancer patients. As a result, a list of heavily mutated 
regulatory elements in cancer patients (but missing in healthy controls) will be reported as candidate regions 
and would be up-weighted during the tuning process. In addition, since the validation work is done in prostate 
cancer cell lines, we would further focus on our compendium of prostate cancer WGS (see above) to investigate 
the germline mutation burden on the non-coding regulatory elements.  

The interplay between germline and somatic variants may increase cancer risk, but they are not 
frequently analyzed in cancer studies. For example, germline and somatic mutations in the promoter regions of 
some genes have been associated with particular cancers (e.g., telomerase reverse transcriptase (TERT) 
promoter mutations in cutaneous melanoma15, 123, 124). In our study, we will also analyze the somatic mutation 
burden in our feature list. Different from the germline mutation burden test, our computational framework is 
used to directly evaluate the somatic mutation burden in cancer samples. It incorporates a comprehensive list 
of confounding covariates, which includes replication timing, histone modification marks, chromosome 
accessibility, and GC content, to precisely calculate a local background mutation rate for somatic burden 
evaluation. Accordingly, it provides a list of heavily mutated non-coding regulatory regions, and we will 
compare these results with the germline mutation burden test. Regions that are heavily mutated by both 
germline and somatic variants should be upweighted in eleVAR. 
D-2-b-v  Round 2 of tuning using high-throughput experiments done in this project 
Based on the results from 1000 Genomes, we expect ~40K rare germline variants per genome106. Since they 
rarely recur at the exact same position, we anticipate a prioritized list of ~8M variants (=40K * 250 genomes, 
based on the size of the prostate compendium). We will select 500 functional regions of appreciable size that 
contain highly ranked variants. Assuming ~8M variants are distributed evenly across the human genome, 
taking an average element size of 3kb, the expected number of variants per element will be ~4. Variants on the 
same element will have different functional impacts. For each element, we will prioritize at least one of these 
variants to be of high impact, and the remaining variants to be of lower impact. Specifically, we will have a total 
of 1000 variants (500 with a high impact and 500 with a low impact). Subsequent tuning and refinement of the 
eleVAR parameters will be based on further experimental characterization of these 1000 variants. We will 



validate these variants through functional genomic screens using the Clone-seq technology coupled with high-
throughput luciferase reporter assays. Overall, this refinement will be accomplished in two rounds, one round 
per year, as detailed in Aim 3 and the timeline (Fig 6). Finally, during the last year of the proposed work, we 
will perform a careful assessment of our model. We will again prioritize our full list of variants and select a final 
set of 200 top ranked variants for an unbiased validation. This will allow us to construct a precise ROC curve in 
order to quantitatively evaluate eleVAR.  

D-3  Approach Aim 3: High-throughput experimental characterization of the prioritized variants 
We will use our massively parallel Clone-seq pipeline and high-throughput luciferase reporter assays to clone 
and examine 1,200 SNVs in 600 regulatory elements to experimentally characterize their impact on gene 
regulation to fine tune and validate the eleVAR pipeline.  
D-3-a  Preliminary results related to experimental characterization 
D-3-a-i  Performance, throughput, and cost of our Clone-seq pipeline 
To set up our Clone-seq pipeline (Fig 5), we attempted to generate clones for 1,034 mutations on 223 genes, 
including 40 mutations for MLH1. We picked 4 colonies for each mutation (4,106 in all). After sequencing 
these colonies using one lane of a 1×100 bp Illumina HiSeq run, we were able to identify at least 1 colony 
containing the intended mutation with no unwanted ones for each allele (100% success rate), including all 40 
MLH1 mutations. Normally 100× sequencing coverage is sufficient for even a conservative variant calling 

pipeline to identify 
mutations with high 
confidence106, 125. The 
average coverage of 
these 1,034 alleles is > 
300×. Therefore, our 
Clone-seq pipeline has 
the capacity to generate 
> 3,000 mutations in 
one full lane of a HiSeq 
run, drastically 
improving the 
throughput and 
decreasing overall 
sequencing costs by at 
least 10-fold1.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

   Fig. 6: Our massively parallel Clone-seq pipeline. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  Fig. 5: Timeline & overall grant workflow. 



One major advantage of our Clone-seq pipeline is that it allows us to carefully examine whether other 
unwanted mutations have been inadvertently introduced during PCR-mutagenesis in comparison with the 
corresponding wild-type alleles, since we obtain reads spanning the entire gene. This is highly important 
because there is a ~0.013% error rate in our mutagenesis PCRs, in agreement with previous studies126. The 
detection of unwanted mutations, especially those distant from the mutation of interest, is achieved in 
traditional site-directed mutagenesis pipelines by Sanger sequencing through the gene of interest. This is costly 
and labor-intensive, especially because multiple sequencing runs and internal primers are needed for long 
genes.  

In total, we have used the Clone-seq pipeline to successfully generate 1,034 clones with the desired 
mutant alleles. The results confirm the scalability, accuracy, and throughput of our Clone-seq pipeline. 
Through careful considerations, we are confident that this approach can successfully generate the ~1200 SNVs 
as proposed.  
D-3-a-ii  Experience with luciferase reporter assays confirming validity of predicted TF binding sites 

We have a great amount of experience with 
developing reporter assays for TF binding 
127, 128, 129. In particular, we have done an 
earlier study where we have used luciferase 
reporter assays to demonstrate the 
transcriptional regulation of several 
prostate cancer genes by ERα and the long 
non-coding RNA, NEAT1127. We have also 
done validation for the FunSeq prototype 
pipeline through collaborations among 
Gerstein, Yu, and Rubin groups. This was 
an outgrowth of the FunSeq development 
work that was part of the 1000 Genomes 
FIG group (see above). It is similar to what 
will be done here but was for somatic rather 
than germline variants. The Yu group 
generated three mutations on WASP and 
examined their impact on WASP’s 
interaction with six other proteins. The 
Rubin group examined a mutation in the 

RET promoter predicting a gain of an AP1 motif that was determined using the in silico FunSeq pipeline. Using 
the luciferase reporter assay, the Rubin group studied the promoter activity of the WT and mutant RET 
promoter in the DU145 cell line. Luciferase activity confirmed that the mutant promoter was 1.2-1.3 fold more 
active than the WT promoter (Fig 7). 
D-3-b  Research plan related to validation 
D-3-b-i  Overview of validation strategy 
Because of the throughput of our Clone-seq and luciferase reporter assays, we will perform iterative learning 
and validation in three rounds. In each of the first two rounds, we will select and clone 250 enhancer or 
promoter elements and two variants on each element that have high and low eleVAR scores, respectively (500 
variants total per round). Based on the reporter assay results, we will fine-tune the parameters of the learning 
algorithm (as described in Aim 2), and then perform the predictions again. In the third round, we will select 
and clone another 100 elements and one high scoring and one low scoring variant on each element to confirm 
the performance of our algorithm. Top candidate SNVs that are shown to significantly alter gene expression 
will be selected for further in vivo validations, as described in Aim 4. 
D-3-b-i-(1)  High-throughput cloning of ~600 WT regulatory elements 
WT enhancer or promoter elements will be amplified using human genomic DNA as template with forward and 
reverse sequence-specific primers that are combined with attB1 and attB2 sequences, respectively130. We will 
perform large-scale Gateway BP reactions to clone each PCR product into a pDONR223 vector. High-
throughput E. coli transformation will be carried out with 5 µL of BP reaction products using the Tecan robot. 
The cells are then spread out in plates through vigorous shaking with glass beads. The plates are incubated 
overnight at 37 °C. The next day, four colonies per allele are picked for Illumina sequencing.  
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Fig. 7: Identification of a somatic mutation resulting in a motif 
gain in the Ret promoter by FunSeq. Luciferase reporter assays 
demonstrating transcriptional activity of the WT Ret promoter  
(-440 to +65) as compared to the same promoter containing the 
A291C mutation in DU145 cells. Results shown are the average 
of three independent experiments ±SD, and statistical 
significance was determined by t-test. 



D-3-b-i-(2)  Illumina library preparation & HiSeq sequencing 
E. coli cells for all four colonies of all WT alleles are individually cultured in 96-well deepwell plates overnight 
to the same OD600. 200 µL cells for one colony of each allele are mixed and maxiprepped for DNA plasmids. 
Four libraries representing one colony of each allele are generated according to Illumina protocols and labeled 
with distinct barcodes. These four libraries are then mixed into one pool for one 1×100 bp HiSeq run. Correct 
clones without any unwanted mutations are identified using our customized variant calling software. 
D-3-b-i-(3)  High-throughput cloning of ~1,200 mutant elements using Clone-seq 
Primers for site-directed mutagenesis are designed by our automated web tool131. 50 µL mutagenesis PCR 
reactions are set up on ice in 96-well PCR plates using Phusion polymerase. DpnI-digested PCR products are 
used for E. coli transformation (see above). The next day, four colonies per allele are picked for sequencing. 
D-3-b-i-(4)  Functional consequences evaluated by high-throughput luciferase reporter assays 
Reporter assays that employ either luciferase or next-generation reporter vectors can provide direct insight into 
the functional relevance of SNPs on target genes. We use a Gateway-compatible version of the firefly luciferase 
reporter vector, pGL4.23-GW (Addgene 60323). All WT and mutant constructs will be cloned into pGL4.23-
GW through large-scale Gateway LR reactions. After E. coli transformation, individual DNA plasmids for all 
WT and mutant clones are mini prepped using our fully automated 96-well miniprep pipeline. 

We will use prostate cancer as a model for the validation but we expect that the results will be 
generalizable to a number of cancers. AR+ LnCaP cells and AR- PC3 cells will be seeded in 96-well plates and 
transfected with WT and mutant enhancer/promoter constructs. 48 hrs after transfection, element activity will 
be measured following the manufacturer’s instructions (Promega E2940). Assay values will be normalized 
using internal renilla luciferase as a control. Our expectation is that in vitro luciferase assays will inform us if a 
particular mutation had any effect on transcription. 
D-4  Detailed validation of specific variants  
We strive to examine in detail 6 variants that we find as positives through the high-throughput experimental 
characterization. The luciferase assays in Aim 3 are often considered as in vitro characterizations. In Aim 4, the 
goal is to understand the molecular basis for the observed impact of the variants and how changes in gene 
expression caused by these variants might lead to disease. We first describe our preliminary results in 
screening against a large cohort for genetic validation and in applying CRISPR/Cas-9 for in vivo experiments. 
Then we describe how we will carry this out for the 6 variants culled. We will choose 6 representative variants 
from positives of the 1,200 tested in Aim 3. These will be variants with high eleVAR scores that also scored 
positive in luciferase assays. Through the detailed validation experiments in this aim, we will not only further 
confirm the validity of our eleVAR pipeline, but also significantly improve our understanding of cancer. 
D-4-a  Preliminary results related to detailed validation 

D-4-a-i  We have experience with prostate cancer 
cohorts 
We have much experience with prostate cancer 
cohorts. Relevant to this our group recently performed 
a large scale profiling study for 2,000 individuals from 
the Tyrol Early Prostate Cancer Detection Program132, 

133cohort. This cohort is part of a population-based 
prostate cancer-screening program started in 1993 and 
intended to evaluate the utility of intensive PSA 
screening in reducing prostate cancer specific death. 
We are also involved in the Early Detection Research 
Network (EDRN)134 prostate cancer cohort. This 

includes men enrolled at three sites as part of the 
Prostate Cancer Clinical Validation Center that 
prospectively enrolls individuals at risk for prostate 
cancer at Beth Israel Deaconess Medical Center 
(Harvard), at the University of Michigan and at Weill 
Cornell Medical College. Cases are defined as men 
diagnosed with prostate cancer and controls are men 
who have undergone prostate needle biopsy without 
any detectable prostate cancer and no prior history of 
prostate cancer. Together, these two cohorts provide 
us with samples from thousands of prostate cancer 

Fig. 8: The selected locus 1 and locus 2 regulatory 
regions act as AR-dependent enhancers in the MCF7 
cell line. MCF7 cells were co-transfected with pCMV 
AR vector along with pGL4.26 locus 1 or locus 2 
reporters. 24hr post-transfection cells were treated for 
16 hrs with E2, DHT or the combination of the 2 
compounds to stimulate respectively ER- or AR-
dependent transcription. WT and SNPs rs2242193 or 
rs9521825 (both, dashed- or plain-white bars) 
containing constructs were tested. Indicated is the 
percentage value of relevant differences (t-test). 



patients and normal controls.  
D-4-a-ii  We have experience in the detailed validation of SNVs within regulatory elements 
In order to study the potential role of inherited genetic variants within regulatory elements in the context of 
hormone dependent human tumors, we recently performed an unbiased computational search for AR/ERα 

bound enhancers elements containing SNVs followed 
by in vitro characterization of two selected variants 
135. After a series of filters, two were selected for in 
vitro characterization (on 1q21.3, rs2242193 
MAF=0.038 and 13q34, rs9521825 MAF=0.235), 
here referred to as Locus 1 and Locus 2.  

Selected loci were cloned in pGL4.26 plasmid 
(plasmid with alternative allele was also generated) 
and then validated and characterized in vitro by 
luciferase assay with and without DHT treatment in 
MCF7 cells. Both constructs reached high 
responsiveness to DHT treatment hinting at their 
strong enhancer role. Moreover, the SNP variant on 

1q21.3, rs2242193, demonstrated a role in the 
transcriptional regulation (p=0.028, t-test) (Fig 8).  
Further, ChIP (chromatin immuno-precipitation) 
assays with AR antibody (or with normal IgG as a 
control) using MCF7 cells that are heterozygous at 
rs2242193 in Locus 1, but homozygous for the 
reference allele at Locus 2, showed AR binding to 
both selected loci in MCF7 cells transiently over-

expressing AR (Fig 9). Moreover, to assess whether AR showed allele-specific DNA binding at rs2242193, we 
amplified AR-enriched Locus 1 region by standard PCR followed by double-strand direct DNA sequencing 
analysis 135. 

Altogether, our results show that unbiased genome-wide search for polymorphic regulatory regions 
(PRRs) is an efficient methodology to discover new functional cis-elements relevant to hormone driven 
diseases and beyond by providing experimental evidence for selected variants mapping to regulatory regions. 
D-4-a-iii  We have experience modeling mutations in cell lines using the CRISPR/Cas-9 system 
We have successfully used the CRISPR/Cas-9 system to generate mutations and deletions in genes. We 
detected a somatic mutation in the MAP3K7 gene in hypertrophic keloid patients. In order to determine the 
functionality of the mutation we used the CRISPR/Cas-9 system to generate the mutation in cell lines. We 
successfully introduced the cancer-specific MAP3K7 mutation in HEK 293 cells using the CRISPR/Cas-9 
system. Sequencing of cell lines confirmed the mutation (data not shown). Another example is the deletion of 
the FANCA gene evidenced in 16% of localized prostate adenocarcinomas (11 of 69 cases) and 14% of advanced 

prostate cancers (4 of 29 cases). In some patients deletion of FANCA 
was associated with increased cisplatin sensitivity. We used the 
CRISPR/Cas-9 system to generate FANCA deletion in prostate cancer 
cell line 22RV1. Briefly, the CRISPR/Cas-9 plasmid (Px459) was 
obtained from Addgene (Cambridge,MA). Using a previously 
published protocol 136 we determined a FANCA CRISPR DNA target 
sequence using publicly available algorithms 137. The oligonucleotides 
were cloned into Px459 vector. Western blot analysis confirmed 
complete absence of FANCA protein. The deletion of FANCA in 22 RV1 
cells leads to increased cisplatin sensitivity138 (Fig 10). 
D-4-b  Approach to detailed validation 
D-4-b-i  Approach to perform genetic validation in cohorts 
We will determine which of the 6 variants selected based on 
successful validation in Aim 3 are associated with cancer. We will 
achieve this by studying the specific variant in test cohorts. We will 
use both the Tyrol and EDRN134 cohorts with thousands of prostate 
cancer individuals as well as normal controls (described above). 

Fig. 9: Both locus 1 and locus 2 are directly bound by 
AR.  ChIP-qPCRs were performed in MCF7 cells 
(heterozygous for SNP rs2242193 within locus 2) to 
determine AR chromatin binding at locus 1 and locus 2 
regions (presented as black and grey- bars, 
respectively). Mean ±s.d. of 3 technical replicates were 
plotted. (*p<0.05, .**p<0.01,  ***p<0.005, t-test). 

Fig. 10: Cisplatin sensitivity in 22Rv1 
cells following editing of FANCA (KO1) 
or a control sequence by CRISPR. 
Inset: Western blot of FANCA & GAPDH 
expression in indicated cell lines. 



TaqMan assays for these 6 variants will be performed on ~4,000 cases to see if the precise variants recur in a 
larger cohort. Then, we will follow up for detailed functional screening, to be discussed below. For controls, we 
will utilize deeply sequenced control cohorts (individuals with no cancer) that are already available (see above). 
Superior allelic discrimination is achieved in these assays as they utilize TaqMan minor groove-binding (MGB) 
probes. This technique generates a low signal to noise ratio and affords a greater flexibility. The Taqman probes 
are functionally tested to first ensure assay amplification and optimization for amplification conditions. 

Methods: Genomic DNA will be extracted from the blood cellular-EDTA samples in a high-throughput 
fashion using the QIAamp 96 DNA Blood Kit (Qiagen). All DNAs will be evaluated by NanoDrop 
spectrophotometer (NanoDrop, Thermo Scientific) and gel electrophoresis (2% agarose). For TaqMan Real-
Time Quantitative PCR, each DNA sample will be diluted to 10 ng/ml with nuclease-free water. 
D-4-b-ii  Evaluation of molecular consequence of variants 
D-4-b-ii-(1)  Impact on gene expression: real-time quantitative PCR  
Real-time quantitative PCR analysis of the genes downstream of the 6 selected variants will be performed on 
individuals that have been identified as recurrent for the variants and a similar sized group of non-recurrent 
individuals. We will look for perturbed gene expression in the target genes. This analysis will inform us if a SNP 
(in non-coding regulatory regions) has any effect on transcription of the target gene. Recurrent rare SNPs will 
be further validated by PCR assays using primers that can amplify the genomic region encompassing the SNP. 
PCR will be followed by direct sequencing of the amplicon using an ABI 3730 DNA Sequence Analyzer on a 
subset of tumor-normal pairs to verify the individual promoter/enhancer mutations for further confirmation. 
D-4-b-ii-(2)  Functional consequences: CRISPR/Cas-9 system 
We will utilize the newly discovered CRISPR/Cas-9 system139-141 to generate endogenous mutations in TF 
binding sites in a panel of prostate cancer cell lines (VCaP, LnCaP, DU145 and PC3). This unique system will 
provide us an opportunity to directly modulate endogenous genes and minimize artifacts due to the 
transfection based reporter assays. Using CRISPR/Cas-9-mediated genome-engineering method142 we will 
directly generate mutations within promoter/enhancers of target genes. Theoretically we will generate 6 
individual SNPs in each cell line and will study functional relevance of these changes compared to WT. 
Mutations within regulatory regions such as promoters and enhancers might contribute to one or more 
biological effects as described in Fig. 11.  

The mutant and WT cell lines generated using CRISPR/Cas-9 system will be monitored for (a) 
perturbed expression of genes downstream of the variants using qPCR, (b) phenotypic changes by confocal 
microscopy and actin staining to determine effects of mutation on cytoskeletal reorganization, (c) influence on 
proliferation by MTT and CellTiter-Glo® Luminescent Cell Viability Assay (Promega), (d) influence on 
invasive and migratory potential using, matrigel coated invasion and boyden chambers in 24 well format, (e) 
senescence by β-gal staining and (f) apoptosis by tunnel assay. 
D-4-b-ii-(3)  Effect of the mutation on TF binding 
In vitro EMSAs will confirm specific binding to WT or mutant sequence by a particular TF. Computational 

predictions for motif disruption or 
gain (see above, Aim 1) due to the 
variant will be validated using EMSA 
gel shift assays. EMSA 
(electrophoretic mobility shift assay) 
is a common technique employed to 
study protein-DNA interactions. We 
will use the WT and the MT sequences 
to determine binding of the TF 
predicted to be present at the site of 
mutation. ChIP assays for TFs 
overlapping the variant will be 
conducted to determine if the variant 
can distort TF binding in vivo. This 
would help validate the variants that 
are predicted to be motif breakers. 
Alternatively, for the SNVs predicted 
to create a new motif, ChIP 
experiments will help validate 
binding. 

Fig. 11: In vivo generation of key SNPs using CRISPR/CAS-9 
genome-engineering tools. WT is the parental cell line, while MT1 & 
MT2 are mutant cell lines harboring specific SNPs. Single or multiple 
effects of SNPs between the 3 cell lines will be evaluated. 


