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ABSTRACT  
Genomic privacy is receiving much attention with the unprecedented increase in the breadth and depth 

of biomedical datasets. Moreover, considering the legislative plans for encouraging public data sharing 

in biomedical research fields, privacy will be the key consideration in designing data sharing 

mechanisms. Most studies on genomic privacy are focused on protection of variants in personal 

genomes. Molecular phenotype datasets, like functional genomics datasets, can also contain substantial 

amount of sensitive information. Although there is no explicit genotypic information in them, subtle 

phenotype-genotype correlations can be used to statistically link the phenotype datasets and genotype 

datasets, which may characterize their sensitive phenotypes. Here, we develop a formalism for 

quantification and analysis of potential individual characterizing information leakage in a linking attack. 

We analyze the tradeoff between the predictability of the genotypes and the amount of leaked 

information that can be used in linking and individual characterization. Then we show how one could 

practically instantiate an attack focusing on the most commonly available data sets, those of RNA-seq 

and eQTL.  We develop a three step procedure showing how an attacker would select eQTLs, statistically 

predict the genotypes, and then perform linking based on the predicted genotypes which can be very 

accurate considering the high dimensionality of phenotypes. The linking attack becomes particularly 

easy to perform when one deals with outlier gene expression levels. To study this, we developed a 

particular realization of this attack for the outlier cases and quantified the amount of information 

leakage. 
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1 BACKGROUND 
The decreasing cost of DNA sequencing [1] has rendered a massive increase in the amount of high-

dimensional personalized biomedical data [2]. Molecular phenotype datasets, when generated in a high-

throughput manner, substantially grow the list of the quasi-identifiers (such as birth date, ZIP code, 

gender [3]) for participating individuals, which can be used by an adversary for re-identification of the 

identities. Moreover, with the recent announcement of Precision Medicine Initiative [4], a large body of 

these datasets is to be generated and shared among researchers [5]. Following this, National Institutes 

of Health recently released the plans to encourage public access to biomedical datasets from scientific 

studies [5–7]. Considering the fact that one does not need many identifiers to uniquely pinpoint an 

individual [3, 8, 9], these datasets have the potential to exacerbate the risk of privacy breach.  

Many consortia, like GTex [10], ENCODE [11], 1000 Genomes [12], and TCGA [13], are generating large 

amount of personalized biomedical datasets. Coupled with the generated data, sophisticated analysis 

methods are being developed to discover correlations between genotypes and phenotypes, some of 

which can contain sensitive information like disease status. Although these correlations could be useful 

for discovering how genotypes and phenotypes interact, they could also be utilized by an adversary in a 

linking attack for matching the entries in datasets where genotypes and phenotypes are stored. For 

example, when phenotype dataset is available, the adversary can utilize the phenotype-genotype 

correlations to statistically predict the genotypes, compare the predicted genotypes with the entries in 

another dataset that contains genotypes. For the entries that are correctly matching, he/she can reveal 

sensitive phenotypes of the individuals and characterize them. Even when the strength of each 

phenotype-genotype correlation is not high, the availability of a large number of phenotype-genotype 

correlations increases the accuracy of correct linking. In fact, an adversary can perform correct linking 

with relatively small number of genotypes [14, 15]. 

Many different aspects of privacy have been intensely studied. Recently, genomic privacy is receiving 

much attention as a result of the deluge of datasets that are being generated. Different aspects of 

genomic privacy has been addressed in previous studies. Several studies have demonstrated the 

possibility of individual identification under specific scenarios. In [16], authors propose a novel statistical 

analysis methodology for testing whether an individual is in a pool of samples, where only the allele 

frequencies are known. In [17], the authors identify the identities of several male participants of 1000 

Genomes Project [12] by using the short tandem repeats on Y-chromosome as an individual identifying 

biomarker. A detailed review can be found [18]. In addition, different formalisms for protecting sensitive 

information have been proposed and applied to genomic privacy. These censor or hide information, or 

aim at ensuring statistical indistinguishability of individuals in the released data. For example, 

differential privacy [19] involves building data release mechanisms that have guaranteed bounds on the 

leakage of sensitive information. The release mechanisms track how much information is leaked and 

stops release when the estimated leakage is above a predetermined threshold. Although this approach 

is theoretically very appealing, studies showed that it can substantially decrease the utility of the 

biological data [20]. In addition, the release mechanism must keep track of all the queries, which can 

cause complications in data sharing [21]. Homomorphic encryption [22] enables performing operations 

on encrypted data directly. Complete protection of sensitive information is guaranteed as the data 
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processors never interact with the unencrypted sensitive information. The drawback, however, is high 

computational and storage requirements. Another well-established formalism is k-anonymization [23, 

24]. Before releasing the dataset, it is anonymized by data perturbation techniques for ensuring that no 

combination of features in the dataset can be shared by less than k individuals. In this approach the 

anonymization process has, however, excessive computational complexity and is not practical for high 

dimensional biomedical datasets [25]. Several variants have been proposed for extending k-anonymity 

framework [26, 27]. Majority of these studies aim at protecting the genomic variants and identities of 

individuals in databases. Different aspects of genomic privacy, pertaining linkability of high dimensional 

phenotype datasets to genotypes are yet to be explored.  

In this paper, we focus on characterizability of the individuals’ sensitive information in the context of 

linking attacks, where the adversary exploits the phenotype-genotype correlations to reveal sensitive 

information. In the linking attack, there are three datasets: The first dataset contains the measurement 

of a series of phenotypes for a set of individuals. We assume that the dataset contains measurements 

for many phenotypes, so as to highlight the high dimensionality of the dataset. The phenotypes can 

include physical traits (like gender, eye color, body mass index) and also molecular traits, e.g., gene 

expression levels, blood metabolite levels, and also clinical information like autism, diabetes, and cancer 

diagnosis. The last set of phenotypes, if not all of them, are potentially sensitive information. Thus, the 

dataset is de-identified by removal of names and is released publicly. The second dataset contains the 

genotype measurements for another set of individuals at a large set of variants. Since genotype 

information can reliably identify individuals, this access to this dataset is protected. We assume that the 

adversary gains access to both of these datasets. He then aims at characterizing the individuals in the 

genotype dataset by predicting the genotypes from the phenotypes and matching the predicted 

genotypes to the genotype dataset. For prediction, he utilizes a third dataset, where correlations 

between the genotypes and phenotypes are reported. Many quantitative phenotypes can be linked to 

genotypes using public quantitative trait loci (QTL) datasets. Some quantitative traits and corresponding 

QTLs can be gene expression levels (eQTLs), protein levels (pQTLs [28, 29]), DNase hypersensitivity 

(dsQTLs [30]), and also higher order traits like network modularity (modQTLs [31]). Although the 

genotype prediction may not be very high, the adversary will utilize high number of correlations to 

increase the accuracy of linking. 

Among all the datasets, the most abundant and well-studied phenotype-genotype correlation dataset is 

expression quantitative trait loci (eQTL) datasets. These datasets are generated by genome-wide 

screening for correlations between the variant genotypes and gene expression levels usually through 

RNA sequencing or expression arrays [32–34]. The eQTL datasets are especially useful in the context of 

linking attacks since there is a large and growing compendium of public eQTL datasets [35]. [For 

example, GTex Project hosts a sizeable set of eQTL dataset from multiple studies where the users can 

view in detail how the genotypes and expression levels are associated [10, 31]. In order to demonstrate 

our results and build the formulations in a specific context, we will focus on eQTL datasets and linking of 

gene expression and genotype datasets. It is, however, worth noting that most of the results and 

analyses can be trivially generalizeable to other types of phenotype-to-genotype correlations. 
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One publication that relates to our study is [36], where the authors demonstrate that an adversary can 

build a model for predicting genotypes for eQTLs using gene expression levels. The authors show that 

given the model, individuals can be identified with high accuracy. Our study follows [36] and generalizes 

the results in two ways: First we study quantification of characterizing information leakage that can be 

generalized to other types of genotype-to-phenotype correlations. Secondly, we show that the linking 

can be performed in a much simplified genotype prediction approach by just utilizing the outliers in the 

data. For this, we introduce a new simple metric extremity and show that this metric can be utilized in 

genotype prediction. When large set of eQTLs are used, linking can be done with very high accuracy. 

The paper is organized as follows: We first analyze the genotype predictability and evaluate the tradeoff 

between the amount of information leakage and correct predictability of the genotypes. Next we 

present the 3 step individual characterization framework and study different aspects of vulnerability 

using the framework. In the last section, to illustrate a practicality of the attack scenario, we present a 

simple and generally applicable genotype prediction method and evaluate the fraction of 

characterizable individuals on the representative dataset. 
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2 RESULTS 

2.1 Overview of the Individual Characterization Scenario by Linking Attacks 
Figure 1a illustrates the general privacy breaching scenario that is considered. There are three datasets 

in the context of the breach. First dataset contains the phenotype information for a set of individuals. 

The phenotypes can include sensitive information such as disease status in addition to several molecular 

phenotypes such as gene expression levels, blood cholesterol levels, and other metabolite levels. The 

second dataset contains the genotypes and the identities for another set of individuals.  The third 

dataset contains a correlations between one or more of the phenotypes in the phenotype dataset and 

the genotypes. In this dataset, each entry contains a phenotype, a variant, and the degree to which 

these values are correlated. In order to formulate and demonstrate the results, we will focus on the 

gene expression dataset as the phenotype dataset. As explained earlier, the abundance of gene 

expression-genotype correlation (eQTL) datasets makes these datasets most suitable for linking attacks.  

Figure 1b illustrates the eQTL, expression, and genotype datasets. The eQTL dataset is composed of a list 

of gene-variant pairs such that the gene expression levels and variant genotypes are significantly 

correlated. We will denote the number of eQTL entries with 𝑞. The eQTL (gene) expression levels and 

eQTL (variant) genotypes are stored in 𝑞 × 𝑛𝑒 and 𝑞 × 𝑛𝑣 matrices 𝑒 and 𝑣, respectively, where 𝑛𝑒 and 

𝑛𝑣 denotes the number of individuals in gene expression dataset and individuals in genotype dataset.  

𝑘𝑡ℎ row of 𝑒, 𝒆𝒌, contains the gene expression values for 𝑘𝑡ℎ eQTL entry and 𝑒𝑘,𝑗 represents the 

expression of the 𝑘𝑡ℎ gene for 𝑗𝑡ℎ individual. Similarly, 𝑘𝑡ℎ row of 𝑣, 𝒗𝒌, contains the genotypes for 𝑘𝑡ℎ 

eQTL variant and 𝑣𝑘,𝑗 represents the genotype (𝑣𝑘,𝑗 ϵ {0,1,2}) of 𝑘 variant for 𝑗𝑡ℎ individual.  We assume 

that the variant genotypes and gene expression levels for the 𝑘𝑡ℎ eQTL entry are distributed randomly 

over the samples in accordance with random variables (RVs) which we denote with 𝑉𝑘 and  𝐸𝑘, 
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respectively. We denote the correlation between the RVs with ρ(𝐸𝑘, 𝑉𝑘). In most of the eQTL studies, 

the value of the correlation is reported in the eQTL dataset. The absolute value of ρ(𝐸𝑘, 𝑉𝑘) indicates 

the strength of association between the eQTL genotype and the eQTL expression level. The sign of 

ρ(𝐸𝑘, 𝑉𝑘) represents the direction of association, i.e., which homozygous genotype corresponds to 

higher expression levels. This forms the basis for correct predictability of the eQTL genotypes using eQTL 

expression expression levels: The homozygous genotypes associate with the extremes of the gene 

expression levels and the heterozygous genotypes associate with moderate levels of expression. The 

eQTL studies utilize linear models to identify the gene and variant pairs whose expressions and 

genotypes that are significantly correlated.  

Given this knowledge, the adversary aims at reversing this operation so as to predict genotypes for each 

individual, using the respective gene expression levels and the phenotype-genotype correlation. For 

brevity, we will refer to this posterior prediction process simply as genotype prediction. For general 

applicability of the analysis, we assume that he/she utilizes a prediction model that estimates correctly 

the a posteriori distribution of the eQTL genotypes given the eQTL expression levels, i.e., 𝑝(𝑉𝑘|𝐸𝑘). This 

enables us to perform the analysis independent of the prediction methodology that the attacker utilizes 

without making any assumptions on the prediction model that is utilized by the attacker. 

2.2 Quantification of Tradeoff between Correct Predictability of Genotypes 

and Leakage of Individual Characterizing Information  
We assume that the attacker will behave in a way that maximizes his/her chances of characterizing the 

most number of individuals. Thus, he/she will try and predict the genotypes, using the phenotype 

measurements, for the largest set of variants that he believes are he can predict correctly. The most 

obvious way that the attacker does this is by first sorting the phenotype-genotype pairs with respect to 

decreasing strength of correlation as illustrated in Fig 2a. He will then predict the genotypes starting 

from the top phenotype-genotype pair. As he/she predicts more genotypes, he/she increases his/her 

chances of characterizing more individuals. As the attacker goes down the list, however, the correct 

predictability of the genotypes diminish, i.e., the strength of phenotype-genotype correlation decreases. 

Thus, each time he/she predicts a new genotype, he/she will encounter a tradeoff between the number 

of genotypes that can be predicted correctly versus the cumulative correctness of the all the predicted 

genotypes. This tradeoff can also be viewed as the tradeoff between precision (correct predictability of 

the genotypes) and recall (what fraction of the individuals can be characterized by correctly predicted 

genotypes). In this section we will propose two measures to quantify this tradeoff.  

In the context of the linking attack introduced in Section 2.1, the attacker aims to correctly characterize 

𝑛𝑒 individuals in the expression dataset among 𝑛𝑣 individuals in the genotype dataset whose disease 

states are known. In order to correctly characterize an individual, he/she should select a set of eQTLs 

that he/she believes he/she can predict correctly. Next, given the individual’s expression levels, the 

attacker should predict the genotypes for the selected eQTLs correctly such that the predicted set of 

genotypes are not shared by more than 1 individual, i.e., the predicted genotypes can be matched to the 

correct individual. In other words, the frequency of the set of predicted genotypes for the selected 

eQTLs should be at most 
1

𝑛𝑣
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Given the genotypes of an individual, if the attacker can correctly predict a subset of genotypes that 

contain log2(𝑛𝑣) bits of information, the individual is vulnerable to characterization of their disease 

state. It should be noted that, assuming the independence of the genotypes for different eQTLs, we can 

decompose the quantity of individual characterizing information that is leaked for a set of 𝑛 correctly 

predicted eQTL genotypes:  

𝐼𝐶𝐼({𝑉1 = 𝑔1, 𝑉2 = 𝑔2, … , 𝑉𝑛 = 𝑔𝑛}) = ∑ −log(𝑝(𝑉𝑘 = 𝑔𝑘))⏟            
Convert the genotype 

frequency to number of bits
that can be used to characterize

individual

𝑛

𝑘=1

⏞                    

Sum individual characterizing 
information for all variants

 

where 𝑉𝑘 is the RV that corresponds to the genotypes for the kth  eQTL, 𝑔𝑘 is a specific genotype (Refer 

to Methods Section 3.1 for more details), and 𝑝(𝑉𝑘 = 𝑔𝑘) denote the genotype frequency of 𝑔𝑘 within 

the population, and ICI denotes the total individual characterizing information. Evaluating the above 

formula, ICI increases as the frequency of the variant’s genotype 𝑔𝑘 decreases. In other words, the more 

rare genotypes contribute higher to ICI compared to the more common ones. Thus, individual linking 

information can be interpreted as a quantification of how rare the predicted genotypes are. The 

attacker aims to predict as many eQTLs as possible such that ICI for the predicted genotypes is at least 

log(𝑛𝑣).  

In order to maximize the amount of ICI, the attacker will aim at correctly predicting as many eQTL 

genotypes as possible. The (correct) predictability of the eQTL genotypes from expression levels, 

however, varies over the eQTL dataset as some of the eQTL genotypes are more highly correlated (i.e., 

more correctly predictable) with the expression levels compared to others, given in |ρ(𝐸𝑘 , 𝑉𝑘)|. Thus, 

the attacker will try to select the eQTLs whose genotypes are the most correctly predictable to maximize 

ICI leakage. Although ρ(𝐸𝑘, 𝑉𝑘) is a measure of predictability, it is computed differently in different 

studies. In addition, there is no easy way to combine these correlation values when we would like to 

estimate jointly the predictability of multiple eQTL genotypes. In order to uniformly quantify the joint 

predictability of the eQTL genotypes using the expression levels, we use an information theoretic 

measure. We use the exponential of the entropy of the conditional distribution of genotype given gene 

expression level as a measure of predictability. Given the expression levels for  𝑗𝑡ℎ individual, we 

compute the predictability of the 𝑘𝑡ℎ eQTL genotypes as 

𝜋(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗) = exp (−1 × 𝐻(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗)⏞          

Randomness left in 𝑉𝑘
given 𝐸𝑘=𝑒𝑘,𝑗

)⏟                    
Convert the entropy to 
average probability

 

where 𝜋 denotes the predictability of 𝑉𝑘 given the gene expression level 𝑒𝑘,𝑗. 𝜋 can be interpreted as 

the average probability (over sampling of individuals from the population) that the attacker can 

correctly predict the eQTL genotype given the expression level. In the above equation for 𝜋, the 



 

 

conditional entropy of the genotypes given the gene expression level is a measure for the randomness 

that is left in genotype distribution when the expression level is known. In the case of high predictability, 

the conditional entropy is close to 0, and there is little randomness left in the genotype distribution. 

Taking the exponential of negative of the entropy converts the entropy to average probability of correct 

prediction of the genotype. In the most predictable case (conditional entropy close to 0), 𝜋 is close to 1, 

indicating very high predictability. (Refer to Methods Section 4.1 for more details). 

We first considered each eQTL and evaluated the predictability of the genotype given phenotype versus 

the characterizing information. For this, we computed, for each eQTL, average 𝜋 and average ICI, which 

is plotted Fig 2b. It can be observed that for the eQTLs with highly predictable genotypes, there is lower 

leakage of ICI and vice versa for eQTLs with lower predictable genotypes. 

The risk of characterizability increases substantially when the adversary utilizes multiple genotype 

predictions at once. We will now use ICI and 𝜋 to evaluate how predictability changes with increasing 

leakage when multiple genotypes are utilized. We will use the GEUVADIS dataset as a representative 

dataset. As discussed earlier, the attacker will aim at predicting the largest number of eQTL genotypes 

given the expression levels to maximize his characterization power. For this, we assume the attacker will 

sort the eQTLs with respect to the absolute value of correlation then predict the eQTL genotypes 

starting from the first eQTL. In order to evaluate the tradeoff between the characterizing information of 

the top predictable eQTLs and their predictabilities, we plotted average ICI versus average 𝜋 for top 

genotype predictions.  For this, we first sorted the eQTLs with respect to the reported correlation, 

|ρ(𝐸𝑘, 𝑉𝑘)|. Then for top n=1,2,3,…,20 eQTLs, we estimated mean 𝜋 and mean ICI over all the samples. 

We then plotted mean 𝜋 versus mean ICI for each n which is shown in Fig 2c.  

The results can be interpreted by evaluating the results at different predictability levels. For example, at 

20% predictability, there is approximately 8 bits of ICI leakage. At this level of leakage, the adversary can 

correctly link all individuals, on average with 20% chance, in a sample of size 2^8=256 individuals. In a 

larger individual set of N, the adversary would require log(N)-8 extra bits of information to correctly link 

all the individuals. At 5% predictability, however, the predictability 11 bits of leakage, the 

characterizable sample size is 2^11=2048 individuals, which can be interpreted as a higher risk of 

characterizability. On the representative dataset, these results illustrate that there is substantial amount 

of leakage at significant levels of predictability.  

2.3 A General Framework for Analysis of Individual Characterization 
In this section, we present a 3 step framework for individual characterization in the context of linking 

attacks. Figure 3a summarizes the steps in the individual characterization for each individual. The input 

is the gene expression levels for jth individual in the expression dataset, 𝑒𝑗. The aim of the attacker is to 

correctly link the disease state of the individual to the correct identity in the genotype dataset. In the 

first step, the attacker selects the eQTLs (among 𝑛𝑞 eQTLs) that will be used in linking jth individual. The 

selection of eQTLs can be based on different criteria. As described in the previous section, the most 

accessible criterion is selecting the eQTLs for which absolute value of the reported correlation 

coefficient, |ρ(𝐸𝑘, 𝑉𝑘)|, is greater than a predefined threshold. In our analysis, we evaluate the effect of 

changing correlation coefficient. Another criterion is to use the estimated conditional entropy of the 
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genotype given the gene expression level, which is a measure of the predictability of the eQTL genotype. 

The second step is genotype prediction for the selected eQTLs using a prediction model. For general 

applicability of our analysis we are assuming that the attacker’s prediction model can reliably construct 

the posterior probability distribution of the genotypes given the gene expression levels. The attacker 

then uses the posterior probabilities of the genotypes to identify the maximum a posteriori (MAP) 

genotype for each eQTL. In this prediction, the attacker assigns the genotype that has the highest a 

posteriori probability given the expression level (Refer to Methods Section 4.3).  

The third and final step of individual characterization is comparison of the predicted genotypes to the 

genotypes of the  𝑛𝑣 individuals in genotype dataset to identify the individual that matches best to the 

predicted genotypes. In this step, the attacker links the predicted genotypes to the individual in the 

genotype dataset with the smallest number of mismatches compared to the predicted genotypes (Refer 

to Methods Section 4.4). 

2.3.1 Fraction of Vulnerable Individuals with MAP Genotype Prediction 

To illustrate the results of linking attack, we evaluate the fraction of individuals that are vulnerable to 

characterization using gene expression and genotype data in GEUVADIS Project. We assume that the 

attacker uses the absolute value of the reported correlation between the variant genotypes and gene 

expression levels to select the eQTLs for characterization. The genotypes for the selected eQTLs are 

predicted using MAP prediction (Refer to Methods Section 4.3). Figure 4a shows, for each correlation 

threshold, the number of selected eQTLs and the fraction correctly predicted genotypes.  

Using the list of predicted eQTL genotypes selected at each absolute correlation cutoff, the attacker 

performs the 3rd step in the attack and links the predicted genotypes to the genotype dataset to identify 

individuals (Refer to Methods Section 4.4). Each individual in expression dataset, who is linked to the 

right individual are flagged as vulnerable. Figure 5a shows the fraction of vulnerable individuals. The 

fraction of vulnerable individuals increase as the absolute correlation threshold increases and fraction is 

maximized at around 0.35. At this value, 95% of the individuals are vulnerable. This behavior can be 

explained by the increase in characterizing information leakage as the accuracy of the predicted 

genotypes increase while there is a balancing decrease in the characterizing information leakage with 

decreasing number of eQTL genotypes predicted.  

We also evaluate the scenario when the attacker gains access to auxiliary information. As the sources of 

auxiliary information, we use the gender and population information that is available for all the 

participants of 1000 Genomes Project on the project web site. We assume that the attacker either gains 

access to or predicts the gender and/or the population of the individuals and uses the information in the 

3rd step of the attack (Refer to Methods Section 4.4). Figure 5a shows the fraction of vulnerable 

individuals when the auxiliary information is available. When the auxiliary information is available, more 

than 95% of the individuals are vulnerable to characterization for all the eQTL selections up to when the 

absolute correlation threshold is 0.6. These results show that a significant fraction of individuals are 

vulnerable for most of the correlation thresholds that the attacker can choose. 
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2.4 Individual Characterization using Extremity based Genotype Prediction 
In the previous section, we presented a general framework for analysis of vulnerability. For the general 

applicability of the framework in different genotype prediction scenarios, we assumed that the attacker 

can correctly reconstruct the a posteriori distribution of genotypes given the gene expression levels, 

which is then used to estimate the MAP genotype. In general, correct reconstruction of the a posteriori 

distribution of the genotypes given expression levels may not be possible because the knowledge of only 

the phenotype-genotype correlation coefficient is not enough to regenerate the a-posteriori distribution 

of genotypes given the expression levels. 

In this section, we present a simple approach for estimating the a posteriori distribution of eQTL 

genotypes given the expression levels. For this, the attacker exploits the knowledge that the eQTL 

genotypes and expression levels are linearly correlated with each other and therefore extremes of the 

gene expression levels (highest and smallest expression levels) coincide with  extremes of the genotypes 

(homozygous genotypes). Therefore, given the gradient of association, the attacker can very roughly 

estimate coarsely the joint distribution of the genotypes and expression levels. This idea is illustrated Fig 

5a. Using the joint distribution estimate, the attacker can compute the a posteriori distribution of 

genotypes given gene expression levels. To quantify the extremeness of expression levels, we use a 

statistic we termed 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦. For the gene expression levels for 𝑘𝑡ℎ eQTL, 𝒆𝒌, 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 of the jth 

individual with expression level 𝑒𝑘,𝑗 is defined as 

𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦(𝑒𝑘,𝑗) =
rank of 𝑒𝑘,𝑗in {𝑒𝑘,1, 𝑒𝑘,2, … , 𝑒𝑘,𝑛𝑒}

𝑛𝑒
− 0.5. 

Extremity is bounded between -0.5 and 0.5. Figure S4 shows the mean absolute extremity distribution of 

all the gene expression levels for all the individuals. The posterior distribution of kth eQTL genotypes can 

be formulated as 

𝑃(𝑉𝑘 = 0  | 𝐸𝑘 = 𝑒𝑘,𝑗) = {
0 if 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦(𝑒𝑘,𝑗) × ρ(𝐸𝑘, 𝑉𝑘) > 0  

1 otherwise                                                
 

𝑃(𝑉𝑘 = 2  | 𝐸𝑘 = 𝑒𝑘,𝑗) = {
1 if 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦(𝑒𝑘,𝑗) × ρ(𝐸𝑘, 𝑉𝑘) > 0  

0 otherwise                                                
 

𝑃(𝑉𝑘 = 1  | 𝐸𝑘 = 𝑒𝑘,𝑗) = 0. 

From the a posteriori probabilities, when the sign of the extremity and the reported correlation are the 

same, the attacker assigns the genotype value 2, and otherwise, genotype value 0. Finally, the genotype 

value 1 is never assigned in this prediction method, i.e., the a posteriori probability is zero. Using these 

probabilities, we utilized extremity based prediction and assessed the accuracy. Figure 5b shows the 

accuracy of genotype predictions with changing correlation threshold. As expected, the accuracy of 

genotype predictions increases with increasing correlation threshold. 

We next utilized the extremity based prediction in the 2nd step of the individual characterization 

framework (Fig 3) and evaluated the fraction of characterizable individuals in the GEUVADIS dataset. We 
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utilized the correlation based eQTL selection in step 1, then extremity based genotype prediction in step 

2. In step 3 the individual is assigned as the individual whose genotype matches closest to the predicted 

genotypes. Fig XX shows the fraction of vulnerable individuals. More than 95% of the individuals are 

vulnerable for most of the parameter selections. In addition, when the gender and/or population 

information is present as auxiliary information (red and green plots), the fraction of vulnerable 

individuals increases to 100% for most of the eQTL selections. These results show that linking attack 

with extremity based genotype prediction, although technically simple, can be extremely effective in 

characterizing individuals. 

3 CONCLUSION AND DISCUSSION 
With the current pace of data generation coupled with the policies to encourage genomic data sharing, 

genomic privacy will be a topic of hot debate. In the analysis of genomic privacy, however, it is necessary 

to consider the basic premise of sharing any type of personal information: There is always an amount of 

leakage in the sensitive information [37].  In addition, as shown by previous studies, we often cannot 

propose black-and-white solutions to problems in privacy, thanks to the multifaceted nature of privacy. 

We believe these makes it necessary for the genomic data sharing and publishing mechanisms to 

incorporate statistical quantification methods before the datasets are released. Moreover, legislative 

decision making processes should incorporate the quantified risk estimates of leakage as an objective 

factor. The quantification methodology and the analysis frameworks presented in this study can be 

applied for analysis of the information leakage in the datasets where the correlative relations between 

datasets can be exploited for performing linking attacks.  

The analysis of tradeoff between predictability and leakage of ICI can be generalized in two ways in 

future studies: First, the information theoretic measures that we proposed for measuring predictability 

versus the ICI leakage can be utilized for analyzing the tradeoff in other biomedical datasets where 

correlations can be exploited in linking attacks. Second, the analysis that we performed can be used to 

extrapolate the number of vulnerable individuals at different predictability levels. For example, in Figure 

2c, at 1% predictability, there is 17.5 bits of ICI, which can be used to characterize on average 

approximately 185,000 individuals.  

[[Make sure we are not writing something wrong above]] 

Depending on the risk of leakage that can be tolerated, the predictability versus ICI leakage can be 

utilized to assess whether the dataset can be released to public access or not. It is also worth noting that 

one limitation of this quantification is that we are not accounting for dependency between the variant 

genotypes; i.e., we assume that the genotypes of different SNPs are independent, which may not hold 

true for variants that are in a linkage disequilibrium (LD) block. This can be addressed in future studies 

by incorporating population based panels to account for effects of LD.  

We introduced a simple yet effective genotype prediction method that utilizes the simple extremity  

statistic. This approach capitalizes on the fact that an individual who is an outlier for a phenotype will 

most likely harbor a homozygous genotype. When employed in the individual identification framework, 
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this simple approach renders a very significant number of individuals vulnerable. This illustrates the 

viability of individual characterization from gene expression datasets.  

Compared to other formalisms, our study aims to develop and build on other studies for quantifying the 

information leakage and help setup a framework for analysis of the leakage of individual characterizing 

information. Differential privacy, for example, aims at proposing release mechanisms for statistical 

databases where the mechanism guarantees that queries return results such that the probability of 

identifying a specific individual’s contribution to the result is vanishingly small. In order to maximize the 

utility of the biological data, however, it is necessary to analyze the sources of sensitive information 

leakage so that one can design the utility maximizing release mechanisms [38].  The metrics that we 

presented can be used to analyze the correlative structures as the sources and quantify the risk and 

amount of leakage associated with these sources. 

4 METHODS 

4.1 Quantification of Individual Characterizing Information and 

Predictability 
To quantify the individual characterizing information, we use surprisal, measured in terms of self-

information of the genotypes: 

𝐼𝐶𝐼(𝑉𝑘 = 𝑔𝑘,𝑗) = 𝐼(𝑉𝑘 = 𝑔𝑘,𝑗) = −log (𝑝(𝑉𝑘 = 𝑔𝑘,𝑗)) 

where 𝑉𝑘 is the RV that represents the k^th eQTL genotype and 𝑔 (𝑔𝜖{0,1,2}) is a specific genotype for 

𝐺, 𝑝(𝐺 = 𝑔) is the probability (frequency) of the genotype in the sample set and 𝐼𝐶𝐼 denotes the 

individual characterizing information.  Assessing this relation, the genotypes that have low frequencies 

have high characterizing information, as expected. Given multiple eQTL genotypes, assuming that they 

are independent, the total individual characterizing information is simply summation of those: 

𝐼𝐶𝐼({𝑉1 = 𝑣1,𝑗 , 𝑉2 = 𝑣2,𝑗 , … , 𝑉𝑁 = 𝑣𝑁,𝑗}) = −∑ log (𝑝(𝑉𝑘 = 𝑣𝑘,𝑗))

𝑁

𝑘=1

. 

We measure the predictability of eQTL genotypes using an entropy based measure. Given the genotype 

RV, 𝑉𝑘, and the correlated gene expression RV, 𝐸𝑘, 

𝜋(𝑉𝑘|𝐸𝑘 = 𝑒) = exp (−𝐻(𝑉𝑘|𝐸𝑘 = 𝑒)) 

where 𝜋 denotes the predictability of  𝑉𝑘 given the gene expression level 𝑒, and 𝐻 denotes the entropy 

of 𝑉𝑘 given gene expression level 𝑒 for 𝐸𝑘 . The extension to multiple eQTLs is straightforward. For the 

𝑗𝑡ℎ individual, given the expression levels  𝑒𝑘,𝑗 for all the eQTLs, the total predictability is computed as  

𝜋({𝑉𝑘}, {𝐸𝑘 = 𝑒𝑘,𝑗}) = exp(−𝐻({𝑉𝑘} | {𝐸𝑘 = 𝑒𝑘,𝑗})) 
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= exp (−∑𝐻(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗)

𝑘

) 

In addition, this measure is guaranteed to be between 0 and 1 such that 0 represents no predictability 

and 1 representing perfect predictability. The measure can be thought as mapping the prediction 

process to a uniform random guessing where the average correct prediction probability is measured by 

𝜋. 

4.2 Estimation of Genotype Entropy  
We estimate the genotype entropy using the Shannon’s entropy [39]: 

𝐻(𝑉𝑘) = − ∑ 𝑝(𝑉𝑘 = 𝑣) × log (𝑝(𝑉𝑘 = 𝑣))

𝑣∈{0,1,2}

 

Where 𝑉𝑘 represents the RV for k^th eQTL variant genotypes and 𝑝(𝑉𝑘 = 𝑣) represents the probability 

that 𝑉𝑘 takes the value 𝑣. This probability can be also interpreted as the population frequency of the 

genotype 𝑣 at the 𝑘𝑡ℎ eQTL’s variant locus. These probabilities are estimated from the distribution of 

genotypes over all the samples. As the genotypes are discrete valued, the above formula can be 

computed in a straightforward way by the summation after the probabilities are estimated. 

In the formulation for conditional predictability of genotypes given expression levels, we also use the 

conditional specific entropies [39] of the genotypes given the gene expression levels. For this, we use 

the following formulation:  

𝐻(𝑉𝑘|𝐸𝑘 = 𝑒𝑘,𝑗) = − ∑ 𝑝(𝑉𝑘 = 𝑣|𝐸𝑘 = 𝑒𝑘,𝑗) × log (𝑝(𝑉𝑘 = 𝑣 |𝐸𝑘 = 𝑒𝑘,𝑗))

𝑣∈{0,1,2}

 

where 𝑝(𝑉𝑘 = 𝑣|𝐸𝑘 = 𝑒𝑘,𝑗) represents the conditional probability that 𝑉𝑘 takes the value 𝑣 under the 

condition that the RV representing gene expression level for 𝑘𝑡ℎ eQTLs (𝐸𝑘) is 𝑒𝑘,𝑗. Since the gene 

expression levels are continuous, to estimate the conditional probabilities of genotypes given expression 

levels; we start with the joint distribution of 𝐸𝑘 and 𝑉𝑘, then bin the gene expression levels. For this, we 

use Sturges’ rule [40] to choose the number of bins. This rule states that the number of bins should be 

selected as: 

𝑛𝑏𝑖𝑛𝑠 = ⌈log(𝑛𝑒)⌉ + 1 = ⌈log(426)⌉ + 1 = 10 

The binning is done for each gene by first sorting the expression levels for all the individuals, then the 

range of gene expression levels are divided into 𝑛𝑏 = 10 bins of equal size and each expression level is 

mapped to a value between 1 and 𝑛𝑏. The expression level of 𝑘𝑡ℎ gene in 𝑗𝑡ℎ individual, 𝑒𝑘,𝑗, is mapped 

to  

𝑒̃𝑘,𝑗 = ⌈
(𝑒𝑘,𝑗 −min(𝒆𝒌)) × 𝑛𝑏

max(𝒆𝒌) − min(𝒆𝒌)
⌉ 
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Where min(𝒆𝒌) and max(𝒆𝒌) represents the minimum and maximum values, respectively, for the 𝑘𝑡ℎ 

expression level over all the samples and 𝑒̃𝑘,𝑗  represents the binned expression level. After the gene 

expression levels are binned, we use the binned expression levels and compute the conditional 

distribution of the variant genotypes at each binned gene expression level using the histograms: 

𝑝(𝑉𝑘 = 𝑣|𝐸̃𝑘 = 𝑒̃𝑘,𝑗) =
∑ 𝐼(𝑒̃𝑘,𝑖 = 𝑒̃𝑘,𝑗 , 𝑉𝑘,𝑖 = 𝑣)𝑖

∑ 𝐼(𝑒̃𝑘,𝑖 = 𝑒̃𝑘,𝑗)𝑖
 

where  

𝐼(𝑒̃𝑘,𝑖 = 𝑒̃𝑘,𝑗 , 𝑉𝑘,𝑖 = 𝑣) = {
1;  if 𝑒̃𝑘,𝑖 = 𝑒̃𝑘,𝑗 , 𝑉𝑘,𝑖 = 𝑣

0;                     otherwise
 

Finally, we utilize the probabilities estimated from histograms to compute the condition specific 

genotype entropies. 

4.3 Maximum a posteriori (MAP) Genotype Prediction 
While assigning the genotypes, the attacker assigns to 𝑉𝑘 the genotype that maximizes the estimated 

conditional probability: 

MAP(𝑉𝑘 |𝐸̃𝑘 = 𝑒̃𝑘,𝑗) = argmax
𝑣

(𝑝(𝑉𝑘 = 𝑣|𝐸̃𝑘 = 𝑒̃𝑘,𝑗)) 

where the conditional probabilities are estimated as in Methods Section 4.2. 

4.4 Linking of the Predicted Genotypes to Genotype Dataset 
The linking is the 3rd and last step of the linking attack. The aim is to compare the predicted genotypes 

from the phenotype dataset to the genotypes in the genotype dataset so as to match the samples in the 

phenotype dataset to those in genotype dataset. We will use the linking approach that evaluates the 

minimal distance between the compared genotypes but different methods can be used for genotype 

comparison. Given a set of predicted eQTL genotypes for individual 𝑗, 𝑣̃∙,𝑗 = {𝑣̃𝑙,𝑗}, the attacker links the 

predicted genotypes to the individual whose genotypes have the smallest distance to the predicted 

genotypes: 

𝑝𝑟𝑒𝑑𝑗 = argmin
𝑎

{𝑑(𝑣̃∙,𝑗 , 𝑣∙,𝑎)} . 

𝑝𝑟𝑒𝑑𝑗 denotes the index for the linked individual and 𝑑(𝑣̃∙,𝑗 , 𝑣∙,𝑎) represents the distance between the 

predicted eQTL genotypes and the genotypes of the a^th individual: 

𝑑(𝑣̃∙,𝑗 , 𝑣∙,𝑎) = ∑(1 − 𝐼(𝑣̃𝑘,𝑗 , 𝑣𝑘,𝑗))

𝑛𝑞

𝑘=1

 

where 𝐼(𝑣̃𝑘,𝑗 , 𝑣𝑘,𝑗) is the match indicator: 
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𝐼(𝑣̃𝑘,𝑗 , 𝑣𝑘,𝑗) = {
1 if 𝑣̃𝑘,𝑗 = 𝑣𝑘,𝑗  

0 otherwise
 

Finally, 𝑗𝑡ℎ individual is vulnerable if 𝑝𝑟𝑒𝑑𝑗 = 𝑗. When auxiliary information is available, the attacker 

constrains the set of individuals while computing 𝑑(𝑣̃∙,𝑗 , 𝑣∙,𝑎) to the individuals with matching auxiliary 

information. For example, if the gender of the individual is known, the attacker excludes the individuals 

whose gender does not match while computing 𝑑(𝑣̃∙,𝑗 , 𝑣∙,𝑎). This way the auxiliary information 

decreases the search space of the attacker. 

5 DATASETS 
The normalized gene expression levels for 462 individuals and the eQTL dataset are obtained from 

gEUVADIS mRNA sequencing project [41]. The genotype, gender, and population information datasets 

for 1092 individuals are obtained from 1000 Genomes Project [12]. For 421 individuals, both the 

genotype data and gene expression levels are available.  
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