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ABSTRACT 

It recent years, there has been a growing appreciation of the role that allostery plays in 

protein behavior, and it has been proposed that allostery is at play in virtually all proteins. 

The identification of subsets of residues that mediate allosteric signals is fundamental to 

gaining a fuller understanding of protein function, whereby a signal at one site affects the 

behavior at a remote site. The resolved structures of proteins in alternative conformations 

provide valuable information regarding the energetic landscapes explored, and the 

dynamic nature of these landscapes is reflective of the mechanisms that underlie a given 

protein’s allosteric regulation. Herein, we describe a workflow developed to automate the 

identification the structures that occupy alternative energetic minima, and apply this 

framework to the wealth of data available in the PDB. We employ two complementary 

approaches in attempting to identify the key residues that likely mediate allostery. One is 

a refinement of the binding leverage concept introduced by (Mitternacht et al, 2011), and 

the second is a network-based approach employing models of conformational transitions. 

In sum, this work is a database-scale analysis for predicting allosteric sites on both the 

surface, as well as the interior residues that may join such surface sites. Notably, the 

complementary methods of predicting allosteric residues on the surface and interior are 

mechanistic in nature, in contrast to relying on conservation or biophysical properties of 

the individual residues. Finally, we provide a user-friendly interface to perform these 

predictions on submitted protein structures. 

 

INTRODUCTION 
In its early years, the PDB largely served to provide information on individual 

protein structures. In that only one or very few structures were available for a given 

protein, the data provided was static in nature. However, with the growing number of 

deposited structures and the concomitant saturation in the number of folds (Supp. Fig. 1), 

there is an increasing degree of structural redundancy, thereby expanding the opportunity 

from investigating macromolecular architecture to conformational heterogeneity – a 

priori, X-ray crystal structures constitute proteins in energetic wells, and may thus 

provide snapshots of alternative conformations. As the volume of crystal structures 

continues to expand, there is a growing need and opportunity to leverage this data to 
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identify alternative conformations, and to thus more comprehensively study their 

energetic landscapes.  

Coincident with these trends, the mechanisms responsible for allostery and 

conformational change in general have been given greater attention. Identifying and 

discriminating between alternative conformations aids in selecting many of the proteins 

that are most likely to employ allostery as fundamental mechanisms of their regulation 

[[cite]]. Global conformational changes are often used as a primary mechanism of 

propagating allosteric signals through a protein. This may be the case, for instance, when 

the closed, inactive state of an enzyme is rendered more stable upon the binding of an 

inhibitor at a site that is distant from the active center. 

Motivated by these ideas, we develop and apply a framework to identify instances 

of alternative conformations, and apply this method to the entire PDB. The repertoire of 

proteins that are determined to exhibit likely conformational transitions provide a rich 

source of raw material for investigating allosteric behavior. We emphasize that, while 

individual proteins have been successfully studied with methods such as molecular 

dynamics[[cite]] and NMR[[cite]], our protocol may be easily implemented on a 

database-level scale across thousands of available crystal structures in a straightforward 

manner, thereby more readily enabling systems-wide analyses. Notably, such a database-

scale approach is much easier to exploit in studies focused on large networks of protein-

protein interactions, and it may also be applied to explore the general principles and 

mechanisms at play in many allosteric systems once. In addition, the investigation of 

many proteins simultaneously also provides an means of better characterizing the large 

number of variants that have been shown to be deleterious through next-generation 

sequencing initiatives, thereby shedding light on the mechanisms at play for certain 

disease variants. 

After identifying the conformations that occupy alternative energetic minima, we 

determine sites on the protein that could potentially affect the thermodynamic stability of 

these conformational states. This knowledge may be used to identify proteins for which 

drugs may be engineered, as well as instances in which sequence variation is likely to 

have the greatest impact by modifying the relative populations of different states. In 

addition to employing a mechanistic approach for identifying surface residues that may 



	
   3	
  

be allosterically significant, we apply a networks-based community analysis to identify 

residues that may be essential for transmitting allosteric information, most of which are 

internal to the protein. 

 

RESULTS 
High-Throughput Identification of Structures in Distinct Energetic Wells 

Although not all allosteric proteins undergo conformational change [[cite 

Rodgers, Nussinov]] and not all conformational changes are associated with allostery 

[[cite]], it is frequently the case that allosteric behavior is accompanied by substantial 

shifts in configurational space. The elucidation of allosteric behavior in the context of 

such shifts has traditionally been obtained through experiments on proteins that are 

limited in number, size, or both. Such studies [[cite Ranganathan, maybe also MD 

studies, others]] achieve high accuracy and yield valuable insights, but the limitations in 

scope and applicability of in-vitro studies on individual systems have made the 

systematic study across thousands of proteins infeasible. Working with many structures 

under a unified framework allows us to investigate the principles that are general to a 

diverse array of proteins at once. 

Thus, we have constructed a high-confidence dataset of proteins in alternative 

conformations. A database of allosteric proteins, Allosteric Database (ASD), has been 

described previously [[cite]]. We checked the overlap of our predicted set of allosteric 

PDBs with those that appear in the ASD. Given that the total number of structures in the 

PDB was 82114 (as of 2012-06-15, which was around the time ASD was released and 

updated), and that there are 9611 PDBs in ASD (as of July 2014), ASD PDBs constitute 

11.7% of the entire PDB. In total, our protein-based analysis predicted 976 allosteric 

PDBs. Of these, 131 also appear in ASD, relative to the expected number of matches, 

114. 

There are several reasons for the relatively poor overlap between our database and 

those described by Huang et al. We emphasize that ASD was built using literature 

curation rather than direct considerations of the physical properties of the proteins 

themselves. Many of the conformational changes are very subtle. In addition, the data in 

ASD is highly heterogeneous in nature, in that the structures vary considerably in terms 
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of resolution and experimental origin. Our focus is on a more confident set of lager-scale 

conformational changes with minimized noise. 

To build the high-confidence dataset of conformational changes, we use a 

generalized approach to leverage the wealth of data in the PDB for systematically 

identifying proteins that occupy alternative energetic wells. It may be that a subset of 

these proteins do not exhibit allosteric behavior as part of their native functionality within 

cells, but the multiple energetic minima captured in their crystal structures may 

nevertheless be exploited for protein engineering [[cite C.J. Wilson, others]] or in 

pharmaceutical contexts [[cite]] (see proceeding discussion). 

As a first step toward culling a high-confidence set of alternative conformations, 

we perform multiple structure alignments (MSAs) across sequence-identical domains as 

well as proteins, with these structures having been filtered by resolution and other metrics 

to ensure quality (see Methods and Figure 1 for details). We first worked with domains to 

probe for intra-domain conformational changes of functional significance. In addition, 

better structure alignments are generally possible at the domain level. The filtered dataset 

of domains contains 79% of all available crystal structures in the PDB (as of December 

2013). PDB-wide MSAs across sequence-similar groups reveal that, in agreement with 

expectation, average pairwise root-mean-square deviation (RMSD) values increase at 

lower levels of sequence identity, as do QH values (QH, an alternative metric to RMSD, 

quantifies the degree to which residue-residue distances differ between two 

conformations, and is detailed in [[cite]] and Methods, Supp. Fig. 2). 

After performing MSAs for each sequence-identical group of proteins, we use the 

resultant pairwise RMSD values to infer distinct conformational states. This is a non-

trivial task, as considerable noise is inherent in the MSA of each protein (sources of noise 

may lie in either experimental limitations or the biology itself; examples include limited 

resolution and the fact that small differences in conformation occur within a single 

energetic well). Thus, in order to reduce false positives and confidently automate the 

identification of biologically relevant and truly distinct energetic wells, we apply a 

modified k-means clustering algorithm in order to assign each structure to a particular 

well within an MSA; structures that cluster together (i.e., exhibit low pairwise RMSD) 

constitute a given well (Fig. 2B).  
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This algorithm (termed K-means clustering with the gap statistic) identifies the 

ideal number of clusters (i.e., K) to describe a dataset in an automated way by 

comparison with a randomized null dataset. Intuitively, the parameter being optimized 

(i.e., the “gap”) is the improvement conferred by using a given K value relative to this 

randomized null (a high gap value for a particular choice of K means that the dataset is 

well-described using K clusters). The algorithm is further detailed in methods and in 

(Tibsherani, 2001). Briefly, the K values obtained using this algorithm, which we take to 

represent the number of distinct energetic wells, is used to reduce the noise associated 

with limited crystallographic resolution and the potential for a protein to exhibit subtle 

conformational heterogeneity within a single well. The K values for MSAs, as well as the 

motivating conceptual framework, are summarized in Fig 2.  

About 3000 different domains had a K-value of 1 (i.e., one conformation 

identified), whereas the K-values of close to 2000 domains exceed 1 (these exhibit 

multiple conformations). For proteins, close to 8000 had a K-value of 1, and about 1000 

proteins had K values that exceed 1. When performing K-means clustering with the gap 

statistic, very similar results were obtained when clustering structures on the basis of 

pairwise RMSD or pairwise QH (Supp. Fig. 3), so we use RMSD in our downstream 

analyses. 

To validate the output generated by this clustering algorithm, we manually 

annotated the MSAs of several well-studied canonical allosteric systems. The gap statistic 

performed well in discriminating crystal structures that were manually determined to 

constitute alternative biological states. Some of the key systems we manually annotated 

include proteins that have been very well-studied and characterized in the literature, such 

as tyrosine phosphatase (Wiesmann et al, 2004), DNA polymerase I (Xiang et al, 2006), 

adenylate kinase (Arora et al, 2007), Hsp ATPase (Liu et al, 2010), phosphoglycerate 

dehydrogenase (Grant et al, 1996), phosphofructokinase (Laurent et al, 1984), 

phosphotransferase (Kohl et al, 2005), and alanyl-tRNA synthetase (Dignam et al, 2011). 

For each of these cases, we manually determined that there were two main biological 

states (for example, with and without bound ligand, Supp. Fig 4). The gap statistic 

correctly determined that the appropriate K value for these cases was two. 
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Allosteric signals are often transmitted through inter-domain mechanisms. In 

some respects, proteins are preferable to domains in that a given protein often spans more 

than one domain. We confirmed the performance of the gap statistic on several high-

scoring proteins, and the corresponding dendrograms (as well associated K values and 

fraction of times that the assigned K value appears out of 1000 simulations) is provided 

in the supplementary materials. 

The processed output of this scheme for identifying high-confidence alternative 

conformations is provided as a flat text file in the Supplementary content (Supp. File 1). 

For each protein, this comprehensively annotated dataset includes the number of 

energetic wells (i.e., the identified number of clusters, or K), metrics to quantify both the 

confidence of the obtained K value and the assignment of proteins to different clusters 

(wells), as well as the corresponding PDB IDs and inter-cluster RMSDs. This dataset 

may thus be useful in many other research contexts focused on large-scale 

conformational changes present in the PDB. 

 

Modified Binding Leverage for the Prediction of Allosteric Binding Sites 

We use the high-confidence set of alternative conformations described above as 

the input to two complementary methods for predicting the residues that are most 

important in allosteric regulation and activity. In the first, binding sites on the protein 

surface (some of which may act as latent ligand binding sites) are identified using a 

modified version of the “binding leverage” framework for ligand binding site prediction 

developed by (Mitternacht et al, 2011, also detailed in Methods). Briefly, this method 

first entails using a series of Monte Carlo simulations to probe the protein surface (with 

the protein being represented with all heavy atoms) with an artificial ligand, thereby 

generating a series of candidate sites. Each candidate site is then scored on the basis of 

the degree to which the occlusion (with the artificial ligand) disrupts the large-scale 

motions of the protein (Fig. 1, bottom left). Finally, we introduce a formalism to set a 

cutoff for identifying the high-confidence sites from the top of the ranked list of scored 

sites. This approach results in finding an average of ~2 distinct binding sites per domain 

(Supp. Fig 5a; see Methods for the details on defining distinct sites).  
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In order to evaluate the effectiveness of this framework, we determined the extent 

to which this method captures known ligand-binding sites in a set of 12 well-studied 

systems for which the crystal structures of both the holo and apo states are available 

(Supp. Table 1).  

We find that, out of the 12 canonical systems studied, we positively identify an 

average of 60% of the known ligand-binding sites. It has previously been shown that it is 

especially difficult to identify the sites in asparate transcarbamoylase (Mitternbach et al, 

2011); excluding asparate transcarbamoylase from this analysis results in finding an 

average of  65% of known ligand-binding sites. We note that these statistics are achieved 

by coving an average of 15% of proteins’ residues (Supp Table 2). For most proteins, 

selecting 15% of the residues is conservative -- more than 15% of the proteins’ residues 

are involved in ligand binding for most proteins (Supp. Table 3). 

We note that, for those sites that constitute false positives (sites which we predict 

to be important for allostery, but which nevertheless do not meet the thresholds needed 

for defining a known ligand binding sites), such sites still exhibit strong overlap with 

sites of biological interest – slightly reducing the thresholds needed for defining a 

positive hit substantially improves the fraction of true positives (Supp. Table 4). We also 

emphasize that our high-scoring sites which do not correspond to known biological 

ligand-binding sites may nevertheless correspond to latent sites (Bowman et al, 2015): 

even if no known biological function is assigned to such regions, the occlusion of such 

sites may still disrupt large-scale motions. 

Such latent allosteric pockets may be useful in the context of drug development and 

targeting. 

 Residues that lie in our prioritized sites tend to be more conserved, on average, 

than other residues of the same protein with the same degree of burial (Fig. 3C). (Here, 

the degree of each residue, representing the number of other residues with which that 

residue interacts, is used to characterize burial). The conservation is evaluated using 

ConSurf scores (Glaser et al, 2003; Landau et al, 2005; Ashkenazy et al, 2010; Celniker 

et al 2013), and these results constitute the distribution of ConSurf scores for proteins in 

our entire dataset. Here, BL-critical residues had an average score of -0.131, whereas 

non-critical residues with the same degree distribution (i.e., same degree of burial within 
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the protein) had an average score of +0.059. The significance of the disparity was < 2.2e-

16 (using a Wilcoxon rank sum test). 

 

Dynamical Network Analysis 
The binding leverage framework described above captures hotspot regions close 

to or at the surface of the protein, but the Monte Carlo search employed is a priori 

excluded from the protein interior[[cite Ranganathan et al, Nussinov et al]]. Thus, 

motivated by previous studies focused on individual proteins, such as tRNA synthetase 

(Sethi et al, 2009), essential metabolic enzymes (Manley et al, 2013), and the HIV 

envelope glycoprotein (Sethi et al, 2013), we apply communities-based network analyses 

to the protein complexes of our dataset to identify such residues, in addition to residues 

that may be closer to the surface. 

Here, the nodes of the network represent individual residues, and edges between 

these nodes are drawn between residues that lie within a mutual proximity of 4.5 

Angstroms. The first step in this analysis is to define the communities within the network. 

A given “community” refers to a group of residues that are highly inter-connected, but 

which have minimal edges to residues outside the community (see Methods). We have 

applied both an information-theory based method, termed “Infomap”, (Lancichinetti et al, 

2009) and the classical Girvan-Newman (GN) formalism (Girvan et al, 2002) to 

decompose networks of interacting protein residues into communities (see Methods). In 

order to recapitulate the contributions of various edges to information flow over the 

course of conformational changes, edges are weighted on the basis of the correlated 

movements using anisotropic network models, and a residue is deemed to be critical for 

allosteric signal transmission if it is involved in a highest-betweenness edge connecting 

two communities (see Methods). For instance, applying this method to threonine synthase 

results in the community partition and associated critical residues highlighted in Supp. 

Fig. 6. 

Perhaps surprisingly, even though both methods achieve similar modularity (see 

Methods), we find that Infomap produces at least twice the number of communities 

relative to that of GN, and it thus generates many more critical residues (Supp. Table 5). 

For the canonical set of proteins, GN and Infomap generated an average of 12.0 and 36.8 
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communities, respectively (corresponding to an average of 44.8 and 201.4 critical 

residues, respectively). Thus, given that GN produces a more selective set of residues for 

each protein, the focus of our analyses is based on GN (corresponding results for Infomap 

are available in the in the Supplement). 

Although the critical residues identified by GN do not always correspond to those 

identified by Infomap, the mean fraction of GN-identified critical residues that match 

Infomap-identified residues is 0.30 (the expected mean is 0.21, p-value=0.058), which 

further justifies our decision to focus on GN). Furthermore, we observe that obvious 

structural communities are detected when applying both methods (i.e., a community 

generated by GN is often the same as that generated by Infomap, and in other cases, a 

community generated by GN is often composed of sub-communities generated by 

Infomap). 

As noted, the modularity from the network partitions generated by GN and 

Infomap are very similar (for the 12 canonical systems, the mean modularity for GN and 

Infomap is 0.73 and 0.68, respectively). Presumably, GN modularity values are 

consistently at least as high as those in Infomap because GN explicitly optimizes 

modularity in partitioning the network, whereas Infomap does not. 

Residues which function as essential allosteric conduits of information in 

mediating signal transduction from one site of a protein to another are likely to be more 

conserved, on average, than residues which lie outside of such channels. Thus, as for the 

case with BL critical residues, as a validation of our method, we use the ConSurf server 

to evaluate conservation of residues identified as critical by GN, and compare these 

conservation scores to those of non-critical residues with the same degree (Fig. 3F). GN 

critical residues are generally found to be more conserved than non-critical residues with 

the same burial: the average ConSurf score for GN critical residues across our dataset of 

structures is -0.179, whereas that for non-critical residues with the same degree is -0.102 

(the p-value of this disparity is 3.67e-11, using a Wilcoxon rand sum test).  

 

HGMD & 1000 Genomes Analyses 
Within our dataset of high-confidence alternative conformations, there are 176 

distinct human proteins for which transcript IDs are available. Within this set of 176 
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distinct proteins, we identify 21 distinct proteins that are hit by known disease mutations, 

as collected from HGMD (Fig. 4A) [[cite]]. Many of these proteins have been studied for 

their important biomedical significance. Examples include hemoglobin, phenylalanine 

hydroxylase, p53, and Ras (a full list of the affected PDBs, along with the afflicted 

residues, are provided as a Supp. Files 2 and 3).  

For 15 of this set of 21 proteins, the sites of HGMD mutations coincide with 

residues which lie in prioritized binding leverage sites. An example is Ras, shown in Fig. 

4B; residues in red comprise the only prioritized binding leverage site for this complex, 

and those in orange are the sites of HGMD mutations).  Likewise, 10 proteins have 

critical GN residues that overlap with sites of HGMD mutations. An example of such a 

system is p53, shown in Fig. 4C. The lists of proteins for which prioritized binding sites 

or GN residues are affected by HGMD are provided in Supp. Files 4 and 5. 

In addition to capturing residues that are known to be essential in the context of 

disease, the residues we identify as critical are shown to be under negative selection in 

the context of modern-day humans. Specifically, our analyses of variants identified from 

The 1000 Genomes shows that GN residues occur at sites with significantly lower DAF 

values (Fig. 3E). Although this trend of rare alleles coinciding with critical residues also 

holds for the BL-identified critical residues, the trend is not significant at the level of 0.05 

(Fig. 3B). The lack of significance may partly be a consequence of the limited number of 

proteins (44) of our dataset that are hit by 1000 Genomes SNPs. In addition, we note that 

the long tail extending to lower allele frequencies may be indicative of the possibility that 

only a subset of residues in our prioritized binding sites are essential for ligand binding 

(i.e., each one of our sites has 10 residues, but there may only be a small subset of these 

10 which are important allosterically, thus explaining the long tail toward lower DAF 

values in Fig. 3B). 

Using different DAF cutoffs (0.05% and 0.01%) to define rare alleles, we also 

examined the fraction of rare alleles (defined as the ratio of the number of low-DAF 

SNPs to all SNPs in a given protein) in critical residues and non-critical residues for 

those proteins for which at least 1 critical residue is hit by a 1000 Genomes SNP. The 

results for BL residues are summarized in Supp Fig. 7, and those for GN residues are 

summarized in Supp Fig. 8. In both cases, critical residues generally tend to be more 
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enriched in low-DAF variants, which is consistent with their potentially important roles 

in protein function. 

 

METHODS 
 An overview of our pipeline is provided in Fig. 1, and we refer to this outline in 

the appropriate pipeline modules throughout. In brief, we perform MSAs for thousands of 

SCOP domains, with each alignment consisting of sequence-similar and sequence-

identical domains. Within each alignment, we cluster the domains using structural 

similarity to determine the distinct conformational states. We then implement two 

complementary approaches for identifying likely allosteric residues: coarse-grained 

models of protein motions are used to primarily identify allosteric sites on the protein 

surface, and a dynamical network approach is used to primarily identify allosteric 

residues internal to the protein. 

 
Database-Wide Multiple Structure Alignments 
 FASTA files of all SCOP domains were downloaded from the SCOP website 

(version 2.03) [[cite]]. In order to better ensure that large structural differences between 

sequence-identical or sequence-similar domains are a result of differing biological states 

(such as holo vs. apo, phosphorylated vs. unphosphorylated, etc.), and not an artifact of 

missing coordinates in X-ray crystal structures, the FASTA sequences used were those 

corresponding to the ATOM records of their respective PDBs. In total, this set comprises 

162,517 FASTA sequences. 

BLASTClust [[cite]] was downloaded from the NCBI database and used to 

organize these FASTA sequences into sequence-similar groups at seven levels of 

sequence identity (100%, 95%, 90%, 70%, 50%, 40%, and 30%). Thus, for instance, 

running BLASTClust with a parameter value of 100 provides a list of FASTA sequence 

groups such that each sequence within each group is 100% sequence identical, and in 

general, running BLASTClust with any given parameter value provides sequence groups 

such that each member within a group shares at least that specified degree of sequence 

identity with any other member of the same group (see top of Fig. 1). 
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To ensure that the X-Ray structures used in our downstream analysis are of 

sufficiently high quality, we removed all of those domains corresponding to PDB files 

with resolution values poorer than 2.8, as well as any PDB files with R-Free values 

poorer than 0.28. The question of how to set these quality thresholds is an important 

consideration, and was guided here by a combination of the thresholds conventionally 

used in other studies which rely on large datasets of structures [[cite Kosloff 2008, Burra 

2009, others]], as well as the consideration that many interesting allosteric-related 

conformational changes may correlate with physical properties that sometimes render 

very high resolution values difficult (such as localized disorder or order-disorder 

transitions). As a result of applying these filters, 45,937 PDB IDs out of a total of 58,308 

unique X-Ray structures (~79%) were kept for downstream analysis. 

For each sequence-similar group at each of the seven levels of sequence identity, 

we performed multiple structure alignment (MSA) using only those domain structures 

that satisfy the criteria outlined above. Thus, the MSAs were generated only for those 

groups containing a minimum of two domains which pass the filtering criteria. The 

STAMP[[cite]] and MultiSeq [[cite]] plugins of VMD[[cite]] were used to generate the 

MSAs. Heteroatoms were removed from each domain prior to performing the alignments. 

The quality of the resultant MSA for each sequence-similar group depends on the 

root structure used in the alignment. To obtain the optimal MSA for each group of N 

domains, we generated N MSAs, with each alignment using a different one of the N 

domains as the root structure. The best MSA generated (as measured by STAMP’s “sc” 

score[[cite]]) was taken as the MSA for that group. Note that, in order to aid in 

performing the MSAs, MultiSeq was used to generate sequence alignments for each 

group. 

Finally, for each of the N MSAs generated, MultiSeq was used calculate two 

measures of structural similarity between each pair of domains within a group: RMSD 

and QH. A fuller description of QH is provided in the Supplementary text. 

For each group of sequence-similar domains, the final output of the structure 

alignment is a symmetric matrix representing all pairwise RMSD values (as well as a 

separate matrix representing all pairwise QH values) within that group. The matrices for 

all MSAs are then used as input to the K-means module. 
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We note that the pipeline above has been applied not only to SCOP domains, but 

also to individual proteins, with the only difference that only sequence-identical proteins 

were examined in this analysis. 

 

Identifying Distinct Conformations in an Ensemble of Structures 
 For each MSA produced in the previous step, the corresponding matrix of 

pairwise RMSD values describes the degree and nature of structural heterogeneity among 

the crystal structures for a particular domain. The objective is to use this data in order to 

identify the biologically distinct conformations represented by an ensemble of structures. 

For a particular domain, there may be many available crystal structures. In total, these 

structures may actually represent only a small number of distinct biological states and 

conformations. For instance, there may be several crystal structures in which the domain 

is bound to its cognate ligand, while the remaining structures are in the apo state. Our 

framework for predicting the number of distinct conformational states in an ensemble of 

structures relies on a modified version of the K-means clustering algorithm. 

A priori, performing K-means clustering assumes prior knowledge of the number 

of clusters (ie, “K”) to describe a dataset. The purpose of K-means clustering with the 

gap statistic (Tibshirani et al, 2001) is to identify the optimal number of clusters intrinsic 

to a complex or noisy set of data points (which lie in N-dimensional space). 

Given multiple resolved crystal structures for a given domain, this method (i.e., 

K-means with the gap statistic) estimates the number of conformational states represented 

in the ensemble of crystal structures (with these states presumably occupying different 

wells within the energetic landscape), thereby identifying proteins which are likely to 

undergo conformational change as part of their allosteric behavior. 

As a first step toward clustering the structure ensemble represented by the RMSD 

matrix, it is necessary to convert this RMSD matrix (which explicitly represents only the 

relationships between distinct domains) into a form in which each domain is given its 

own set of coordinates. This step is necessary because the K-means algorithm acts 

directly on individual data points, rather than the distances between such points. Thus, we 

use multidimensional scaling [[ref Gower 1966 and Mardia, 1978]] to convert an N-by-N 

matrix (which provides all RMSD values between each pair of domains within a group of 



	
   14	
  

N structures) into a set of N points, with each point representing a domain in (N-1)-

dimensional space. The values of the N-1 coordinates assigned to each of these N points 

are such that the Euclidean distance between each pair of points are the same as the 

RMSD values in the original matrix. For an intuition into why N points must be mapped 

to (N-1)-dimensional space, consider an MSA between two structures. The RMSD 

between these two structures can be used to map the two domains to one-dimensional 

space, such that the distance between the points is the RMSD value. Similarly, an MSA 

of 3 domains may be mapped to 2-dimensional space in such a way that the pairwise 

distances are preserved; 4 domains may be mapped to 3-dimensional space, etc. The 

output of this multidimensional scaling is used as input to the K-means clustering with 

the gap statistic. We refer the reader to the work by Tibshirani et al for details governing 

how we perform K-means clustering with the gap statistic. 

Once the optimal K value was determined for each of the N MSAs, we confirmed 

that these values accurately reflect the number of clusters by visual inspection of several 

randomly-selected MSAs, as well as several MSAs corresponding of domain groups 

known to constitute distinct conformations (we also visually inspected several negative 

controls, such as CAP, an allosteric protein which does not undergo conformational 

change [[ref]]). This visual inspection is carried using the RMSD values to generate 

dendrograms for each of the selected MSAs. The dendrograms are constructed using the 

hierarchical clustering algorithm built into R, hclust [[ref Murtagh 1985]], with 

UPGMA (mean values) used as the chosen agglomeration method[[ref Sokal et al, 

1958]]. 

The next step is to assign each unique domain to its respective cluster in the 

alignment. Using the optimal K values assigned to each group/MSA, we carry out 

standard K-means clustering (Lloyd’s algorithm) to determine domain-cluster 

assignments. For each sequence group, we perform 1000 K-means clustering simulations 

on the MDS coordinates, and take the most common partition generated in these 

simulations to assign each protein to its respective cluster.  

We then select a representative domain from each of the assigned clusters. The 

representative member for each cluster is the member with the lowest Euclidean distance 

to the cluster mean, using the coordinates obtained by multidimensional scaling (see 
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description above). These cluster representatives are then taken as the distinct 

conformations for this protein, and are used for the binding leverage calculations and 

networks analyses (below). 

 

Modified Binding Leverage Framework 
With the objective of identifying allosteric residues (specifically those on the 

protein surface), we employed a modified version of the binding leverage method for 

predicting likely ligand binding sites (Fig. 1, bottom-left), as described previously by 

Mitternacht et al. This method is motivated by the observation that allosteric signals may 

be transmitted over large distances by a mechanism in which the allosteric ligand has a 

global affect on a protein’s functionally important motions. For instance, introducing a 

bulky ligand into the site of an open pocket may disrupt large-scale motions if those 

motions normally entail that the pocket become completely collapsed in the apo protein. 

Such a modulation of the global motions may affect activity within sites that are distant 

from the allosteric ligand-binding site. 

We refer the reader to the work by Mitternacht et al for details regarding the 

binding leverage method, though a general overview of the approach is given here. 

Hundreds or thousands of candidate allosteric sites are generated by simulations in which 

a simple ligand (comprising 2 to 8 atoms linked by bonds with fixed lengths but variable 

bond and dihedral angles) explores the protein’s surface through many Monte Carlo 

steps. (Apo structures were used when probing protein surfaces for putative ligand 

binding sites). A simple square well potential was used to model the attractive and 

repulsive energy terms associated with the ligand’s interaction with the surface. These 

energy terms depend only on the ligand atoms’ distance to alpha carbon atoms in the 

protein, and they are blind to other heavy atoms or biophysical properties. Once these 

candidate sites have been produced, normal mode analysis is applied is generate a model 

of the apo protein’s low-frequency motions. Each of the candidate sites is then scored 

based on the degree to which deformations in the site couple to the low-frequency modes; 

that is, those sites which are heavily deformed as a result of the normal mode fluctuations 

receive a high score (termed the binding leverage for that site), whereas sites which 

undergo minimal change over the course of a mode fluctuation receive a low binding 



	
   16	
  

leverage score. The list of candidate sites is then processed to remove redundancy, and 

then ranked based on this score. The model stipulates that the high-scoring sites are those 

which are more likely to be binding sites. Using knowledge of the experimentally-

determined binding sites (ie, from holo structures), the processed list of ranked sites is 

then used to evaluate predictive performance (see below). 

Our approach and set of applications differ from those outlined by Mitternacht et 

al in several key ways. When running Monte Carlo simulations to probe the protein 

surface and generate candidate binding sites, we used all heavy atoms in the protein when 

evaluating a ligand’s affinity for each location. By including heavy atoms in this way (ie, 

as oppose to using the protein’s alpha carbon atoms exclusively), our hope is to generate 

a more realistic set of candidate ligand binding sites. Indeed, the exclusion of other heavy 

atoms leaves ‘holes’ in the protein which do not actually exist in the context of the dense 

topology of side chain atoms. Thus, by including all heavy atoms, we hope to reduce the 

number of false positive candidate sites, as well as more realistically model ligand 

binding affinities in general. 

In the framework originally outlined by Mitternacht et al., an interaction between 

a ligand atom and an alpha carbon atom in the protein contributes -0.75 to the binding 

energy if the interaction distance is within the range of 5.5 to 8 Angstroms. Interaction 

distances greater than 8 Angstroms do not contribute to the binding energy, but distances 

in the range of 5.0 to 5.5 are repulsive, and those between 4.5 to 5.0 Angstroms are 

strongly repulsive (distances below 4.5 Angstroms are not permitted).  

However, given the much higher density of atoms interacting with the ligand in 

our all-heavy atom model of each protein, it is necessary to accordingly change the 

energy parameters associated with the ligand’s binding affinity. In particular, we varied 

both the ranges of favorable and unfavorable interactions, as well as the attractive and 

repulsive energies themselves (that is, we varied both the square well’s width and depth 

when evaluating the ligand’s affinity for a given site). 

For well depths, we employed models using attractive potentials ranging from -

0.05 to -0.75, including all intermediate factors of 0.05. For potential well widths, we 

tried performing the ligand simulations using the cutoff distances originally used by 

Mitternacht et al. (attractive in the range of 5.5 to 8.0 Angstroms, repulsive in the range 
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of 5.0 to 5.5, and strongly repulsive in the range of 4.5 to 5.0). However, these cutoffs, 

which were originally devised to model the ligand’s affinity to the alpha carbon atom 

skeleton alone, were observed to be inappropriate when including all heavy atoms. Thus, 

we also performed the simulations using a revised set of cutoffs, with attractive 

interactions in the range of 3.5 to 4.5 Angstroms, repulsive interactions in the range of 

3.0 to 3.5 Angstroms, and strongly repulsive interactions in the range of 2.5 to 3.0 

Angstroms. 

In order to identify the optimal set of parameters for defining the potential 

function, we determined which combination of parameters best predicts the known 

binding sites for several well-annotated ligand-binding proteins. This benchmark set of 

proteins comprised threonine synthase, phosphoribosyltransferase, tyrosine phosphatase, 

arginine kinase, and adenylate kinase. The structures for these five proteins were those 

provided as the biological assemblies associated with the PDB IDs 1E5X, 1XTT, 2HNP, 

3JU5, 4AKE, respectively. Using this approach, an attractive term of -0.35 for ligand-

protein atom interactions within the range of 3.5 to 4.5 Angstroms was determined to be 

the best overall.  

The biological assembly files (as well as individual proteins and standard PDBs) 

for several well-annotated allosteric and ligand-binding proteins [[list]] were downloaded 

from the Protein Data Bank (PDB). These proteins were chosen on the basis of literature 

curation. Analyzed more proteins as gold standard (from several refs). Results are 

provided on server. 

 

Network Analysis 
Many algorithms have been devised to extract the community structure of 

networks. In a comprehensive study comparing different algorithms (Lancichinetti et al, 

2009), an information-theory based approach (Rosvall et al, 2007), was shown to be one 

of the strongest. However, we found that, when applied to protein structures, this 

formalism tends to result in a very large number of small communities. Thus, in order to 

define community structure, we implemented the classical Girvan-Newman algorithm. 

Under this framework, edges between residues within a protein structure are 

drawn between any two residues which have at least one heavy atom within a distance of 
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4.5 Angstroms (excluding adjacent residues in sequence, which are not considered to be 

in contact). Network edges are weighted on the basis of their correlated motions, with the 

motions provided by anisotropic network models. This weighting scheme is the same as 

that implemented by Sethi et al (see Sethi et al, 2009 for details), with the notable 

difference arising in the use of ANMs as an alternative to MD. We emphasize that, 

although the use of ANMs is more coarse-grained that ANMs, our use of ANMs is 

motivated by their much faster computational efficiency relative to MD. This added 

efficiency is a required feature for our database-scale analysis. 

Specifically, the weight wij between residues i and j is set to −log(∣Cij∣). After 

weights are assigned, the betweenness for each edge is calculated. Residues that are 

involved in the highest-betweenness interactions connecting pairs of interacting 

communities are assigned to be in the class GN-critical residues. Edge betweenness is 

defined as the total sum of shortest paths in which that edge is involved, with path lengths 

equal to the sum of edge weights (see Sethi et al, 2009 for a more detailed discussion). 

 

1000 Genomes and HGMD Mapping & Analyses 
All SNPs hitting protein-coding regions that result in amino acids changes (i.e., 

nonsynonymous SNPs) were collected from The 1000 Genomes Project (phase 3 release) 

[[cite]]. VCF files containing the annotated variants were generated using VAT [[cite]]. 

For nonsynonymous SNPs, the VCF files included the residue ID of the affected residue, 

as well as additional information (such as the corresponding allele frequency and residue 

type). To map the 1000 Genomes SNPs on to protein structures, FASTA files 

corresponding to the translated chain(s) of the respective transcript ID(s) were obtained 

using BioMart [[cite]]. FASTA files for each of the PDB structures associated with these 

transcript IDs (the PDB ID-transcript ID correspondence was also obtained using 

BioMart) were generated based on the ATOM records of the PDB files. For each given 

protein chain, BLAST was used to align the FASTA file obtained from BioMart with that 

generated from the PDB structure. The residue-residue correspondence obtained from 

these alignments was then used in order to map each SNP to specific residues within the 

PDB. As a quality assurance mechanism, we confirmed that the residue type reported in 

the VCF file matched that specified in the PDB file. 
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HGMD was used in order to identify any known disease-causing variants that hit 

the proteins in our dataset, and the SNPs in HGMD were mapped to all protein structures 

using the same formalism as that used in mapping 1000 Genomes variants. Given a 

particular set of PDBs (for example, the set of PDBs for which GN critical residues 

overlap with HGMD variant loci), the number of distinct proteins represented in this set 

was obtained by ensuring that no protein shares more than 90% sequence identity with 

any other protein in the set. (For instance, a set of 20 PDBs would actually constitute 17 

distinct proteins if there exist 3 pairs of PDBs that are highly similar in sequence). 

Finally, we note that our set of 238 distinct HGMD proteins are those for which PDB 

structures are available, with the PDB structures satisfying the structure quality criteria 

outlined above. 

 

DISCUSSION & CONCLUSION 
 Understanding allosteric signal transmission inevitably entails a consideration of 

the dynamic properties that generally accompany and are required for such allosteric 

behavior. Though a small number of examples in which allostery can occur without 

conformational changes have been discussed (Tsai et al, 2009; Nussinov et al, 2015), the 

fact that these specific systems have been highlighted underscores the important role 

played by conformational change in the vast majority of well-studied proteins, many of 

which have been investigated as a result of their significance in disease. 

Molecular dynamics and NMR are some of the most common means of studying 

dynamic behavior. However, these methods have limitations when studying large and 

diverse protein datasets. Notably, molecular dynamics is computationally very expensive, 

and is thus impractical when studying large numbers of proteins. Like MD, NMR yields 

important insights, but NMR structures constitutes a relatively small fraction of the 

available structures in the PDB (currently about 10%). 

The PDB has grown considerably since its inception. Though originally focused 

on finding structures for new proteins, there is now a great deal of redundancy in folds 

and proteins, and a concomitant greater degree of heterogeneity from a functional point 

of view (i.e., more models for a given protein in different biological states). 
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Herein, we leverage this redundancy in order to investigate protein 

conformational heterogeneity on a database-level scale. Motivated by the idea that large 

differences in shape correspond to distinct conformations that occupy different energetic 

wells (Fig. 2), we describe and implement a pipeline for the identification of structures in 

distinct conformations, using on a statistical formalism that, to our knowledge, has never 

previously been applied in the context of protein structures. In doing so, we integrate data 

from the large number of X-ray crystal structures in the PDB, and simultaneously avoid 

the use of computationally expensive processes. The distinct conformations culled in this 

analysis are manually determined to correspond to proteins known to be in distinct 

functional states, such as active and inactive, or holo and apo. 

These different conformations are used as the raw material for the identification 

of residues that may be important in the context of their allosteric behavior. In the first of 

two complementary approaches for identifying such residues, we describe a modified 

version of the binding leverage method developed by Mitternacht et al. We introduce 

information about the heavy atoms when searching the protein surface for candidate sites 

in which the introduction of a ligand could strongly perturb the conformational changes 

of a protein, thereby finding sites that that more closely reflect cavities in the protein 

topology. Secondly, after the candidate sites are ranked by their ability to perturb the 

motions derived through anisotropic network models, we use a formalism originally used 

in the context of protein folding, the energy gap [[cite]], in order to define a threshold for 

selecting the high-confidence prioritized sites. We demonstrate that the set of high-

confidence sites correspond to known ligand binding sites for a set of well-studied 

canonical allosteric systems. Furthermore, in the context of human polymorphism data, 

we show that nonsynonymous SNPs hitting these prioritized sites exhibit slightly lower 

allele frequencies than do SNPs that lie outside these sites. 

In our second approach for finding allosteric residues, we employ a dynamical 

network-based analysis to search for sets of residues that may act as bottlenecks between 

communities in the protein structure, with these communities being defined with the GN 

formalism, with edge weights reflecting the dynamic properties of the protein. This 

network-based analysis finds residues which are both internal and in protein loops. 
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To evaluate the ability of this method to identify residues that may be important 

for allosteric behavior, we investigate their conservation in both an inter-species and 

intra-human genomes context. The residues identified using the dynamical network 

analysis are found to be conserved relative to other residues in the protein. More notably, 

the critical residues identified are tend to be more conserved than residues with the same 

degree distribution (i.e., number of neighboring) within protein structures. In addition, 

this greater conservation is also reflected in the genomes of modern-day humans: non-

synonymous SNPs hit these critical residues with much lower frequency than do other 

non- synonymous SNPs hitting the same protein, suggesting that amino acid changes at 

these critical sites may be more deleterious than changes in other parts of the protein. We 

also find that several known disease SNPs, as culled from HGMD, hit the residues which 

we identify as being critical for allostery. 

Allostery has previously been studied in the context of individual proteins. Such 

studies generally entail difficult and time-consuming experimental assays. There are 

several notable implications of our database-scale analysis. That we achieved compelling 

results suggests that the level of coarse graining (i.e., in x-ray crystal structures and using 

ANMs instead of MD) was low enough to still recapitulate biologically interesting 

findings. That this pipeline can be applied en masse also suggests avenues for future 

applications, including applications to PPIs, guiding experimental studies to prioritize 

residues that are candidates for allosteric behavior (cite Rama Ranganathan, others), the 

simultaneous characterization of many disease variants in a diverse set of proteins 

(HGMD), and drug development pipelines/screens in which a drug is targeted to groups 

of functionally related proteins (such as those related to a particular signaling cascade or 

functional module) rather than to specific individual structures.  

 

FIGURE CAPTIONS 
Figure 1 

Pipeline for identifying distinct conformational states. Top to bottom: a) BLAST-CLUST 

is applied to the sequences corresponding to a filtered set of protein domains, thereby 

providing a large number of “sequence groups”, with each group being characterized by a 

high degree of sequence homology. b) For each sequence group, a multiple structure 
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alignment of the domains is performed using STAMP (the example shown here is 

adenylate kinase. The SCOP IDs of the cyan domains, which constitute the holo 

structure, are d3hpqb1, d3hpqa1, d2eckb1, d2ecka1, d1akeb1, and d1akea1. The IDs of 

the apo domains, in red, are d4akea1 and d4akeb1). c) Using the pairwise RMSD values 

in this structure alignment, the structures are clustered using the UPGMA algorithm, K-

means with the gap statistic (δ) is performed to identify the number of distinct 

conformations (2 in this example; more detailed descriptions of the graph are provided in 

the text and in Fig X). d) The domains which exhibit multiple structural clusters (i.e., 

those with a δ > X and K > 1) are then probed for the presence of strong allosteric sites, 

using the complementary methods of binding leverage and dynamical network analysis 

(see Methods). 

 

Figure 2 

K-means clustering algorithm with the gap statistic. a) A schematized rendering of the k-

means clustering algorithm; b) An example dendrogram and respective structures of a 

multiple-structure alignment, with similarity measured by RMSD. The example shown is 

for phosphotransferase, and the K-means algorithm with the gap statistic identifies K=2 

different conformational states (manually determined to represent the holo and apo states 

of phosphotransferase); c)Histograms representing the k-values obtained across the 

database of SCOP domains and d) across PDB chains. 

 

Figure 3 

Conservation of predicted allosteric residues. a) Image of phosphfructokinase (pdb ID 

3PFK), with red denoting sites with high binding leverage scores, and blue denoting sites 

with low scores. Known biological ligands are shown in white VDW rendering; b) 

Database-wide distributions of derived allele frequency (DAF) values of BL critical 

residues (red) and non-critical residues (blue); c) Corresponding distributions of ConSurf 

scores for BL critical residues (red) and non-critical residues (blue) d) Rendering of 

phosphfructokinase with GN critical residues highlighted as red spheres; e) Database-

wide distributions of DAF values of GN critical residues (red) and non-critical residues 
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(blue) f) Corresponding distributions of ConSurf scores for GN critical residues (red) and 

non-critical residues (blue). 

 

Figure 4 

HGMD Analyses. a) Venn diagram illustrating the number of distinct proteins in various 

categories; b) Ras (PDB ID 1NVV) is an example of a protein for which HGMD 

locations coincide with prioritized BL sites. BL residues are shown as red spheres, and 

HGMD locations are in orange; c) p53 (PDB ID 2VUK) is an example of a protein for 

which HGMD locations coincide with GN residues. GN residues (red) and HGMD 

(orange). 
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