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Preface

I don’t like to think I have many regrets, but it’s hard to believe anything good came out
of a particular lazy moment in 2011 when I was looking into how to best distribute tough
discrete optimization problems over clusters of computers. My advisor explained this
newfangled Spark thing he had heard of, and I basically wrote off the concept as too
good to be true and promptly got back to writing my undergrad thesis in MapReduce.
Since then, Spark and I have both matured a bit, but one of us has seen a meteoric rise
that’s nearly impossible to avoid making “ignite” puns about. Cut to two years later, and
it has become crystal clear that Spark is something worth paying attention to.

Spark’s long lineage of predecessors, running from MPI to MapReduce, make it possible
to write programs that take advantage of massive resources while abstracting away the
nitty-gritty details of distributed systems. As much as data processing needs have mo‐
tivated the development of these frameworks, in a way the field of big data has become
so related to these frameworks that its scope is defined by what these frameworks can
handle. Spark’s promise is to take this a little further - to make writing distributed pro‐
grams feel like writing regular programs.

Spark will be great at giving ETL pipelines huge boosts in performance and easing some
of the pain that feeds the MapReduce programmer’s daily chant of despair “why?
whyyyyy?” to the Hadoop gods. But the exciting thing for me about it has always been
what it opens up for complex analytics. With a paradigm that supports iterative algo‐
rithms and interactive exploration, Spark is finally an open source framework that al‐
lows a data scientist to be productive with large datasets.

I think the best way to teach data science is by example. To that end, my colleagues and
I have put together a book of applications, trying to touch on the interactions between
the most common algorithms, datasets, and design patterns in large scale analytics. This
book isn’t meant to be read cover to cover. Page to a chapter that looks like something
you’re trying to accomplish. Or simply ignites your interest.

-Sandy
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What’s in this Book
The first chapter will place Spark within the wider context of data science and big data
analytics. After that, each chapter will comprise a self-contained analysis using Spark.
The second chapter will introduce the basics of data-processing in Spark and Scala
through a use case in data cleansing. The next few chapters will delve into the meat and
potatoes of machine learning with Spark, applying some of the most common algo‐
rithms in canonical applications. The remaining of the chapters are a bit more of a grab
bag and apply Spark in slightly more exotic applications. For example, querying Wiki‐
pedia through latent semantic relationships in the text or analyzing genomics data.
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CHAPTER 1

Analyzing Big Data

Sandy Ryza

• Build a model to detect credit card fraud using thousands of features and billions
of transactions.

• Intelligently recommend millions of products to millions of users.
• Estimate financial risk through simulations of portfolios including millions of in‐

struments.
• Easily manipulate data from thousands of human genomes to detect genetic asso‐

ciations with disease.

These are tasks that simply could not be accomplished five or ten years ago. When people
say that we live in an age of “big data”, they mean that we have tools for collecting, storing,
and processing information at a scale previously unheard of. Sitting behind these ca‐
pabilities is an ecosystem of open source software that can leverage clusters of com‐
modity computers to chug through massive amounts of data. Distributed systems like
Apache Hadoop have found their way into the mainstream and see widespread deploy‐
ment at organizations in nearly every field.

But just as chisel and a block of stone do not make a statue, there is a gap between having
access to these tools and all this data, and doing something useful with it. This is where
“data science” comes in. As sculpture is the practice of turning tools and raw material
into something relevant to non-sculptors, data science is the practice of turning tools
and raw data into something that non-data scientists might care about.

Often “doing something useful” means placing a schema over it and using SQL to answer
questions like “of the gazillion users who made it to the third page in our registration
process, how many are over 25?”. The field of how to structure a data warehouse and
organize information to make answering these kinds of questions easy is a rich one, but
we will mostly avoid its intricacies in this book.
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Sometimes, “doing something useful” takes a little extra. SQL still may be core to the
approach, but to work around idiosyncrasies in the data or perform complex analysis,
one needs a programming paradigm that’s a little bit more flexible, a little closer to the
ground, and with richer functionality in areas like machine learning and statistics. These
are the kinds of analyses we are going to talk about in this book.

For a long time, open source frameworks like R, the PyData stack, and Octave have
made rapid analysis and model building viable over small datasets. With less than 10
lines of code, one can throw together a machine learning model on half a dataset and
use it to predict labels on the other half. With a little more effort, one can impute missing
data, experiment with a few models to find the best one, or use the results of a model
as inputs to fit another. What should an equivalent look like that can leverage clusters
of computers to achieve the same outcomes on huge datasets?

The right approach might be to simply extend these frameworks to run on multiple
machines, to retain their programming models and rewrite their guts to play well in
distributed settings. However, the challenges of distributed computing require us to
rethink many of the basic assumptions that we rely on in single node systems. For
example, as data must be partitioned across many nodes on a cluster, algorithms that
have wide data dependencies will suffer from the fact that network transfer rates are
orders of magnitude slower than memory accesses. As the number of machines working
on a problem increases, the probability of a failure increases. These facts require a pro‐
gramming paradigm that is sensitive to the characteristics of the underlying system:
that discourages poor choices and makes it easy to write code that will execute in a highly
parallel manner.

Of course, single-machine tools like PyData and R that have come to recent prominence
in the software community are not the only tools used for data analysis. Scientific fields
like genomics that deal with large datasets have been leveraging parallel computing
frameworks for decades. Most people processing data in these fields today are familiar
with a cluster-computing environment called HPC (high performance computing).
Where the difficulties with PyData and R lie in their inability to scale, the difficulties
with HPC lie in its relatively low level of abstraction and difficulty of use. For example,
to process a large file full of DNA sequencing reads in parallel, one must manually split
it up into smaller files and submit a job for each of those files to the cluster scheduler.
If some of these fail, the user must detect the failure and take care of manually resub‐
mitting them. If the analysis requires all-to-all operations like sorting the entire dataset,
the large data set must be streamed through a single node, or the scientist must resort
to lower-level distributed frameworks like MPI, which are difficult to program without
extensive knowledge of C and distributed/networked systems. Tools written for HPC
environments often fail to decouple the in-memory data models from the lower-level
storage models. For example, many tools only know how to read data from a POSIX
file system in a single stream, making it difficult to make tools naturally parallelize, or
to use other storage backends, like databases. Recent systems in the Hadoop ecosystem
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provide abstractions that allow users to treat a cluster of computers more like a single
computer - to automatically split up files and distribute storage over many machines,
to automatically divide work into smaller tasks and execute them in a distributed man‐
ner, and to recover from failures automatically. The Hadoop ecosystem can automate a
lot of the hassle of working with large data sets, and is far cheaper than HPC to boot.

The Challenges of Data Science
A few hard truths come up so often in the practice of data science that evangelizing
these truths has become a large role of the data science team at Cloudera. For a system
that seeks to enable complex analytics on huge data to be successful, it needs to be
informed by, or at least not conflict with, these truths.

First, the vast majority of work that goes into conducting successful analyses lies in
preprocessing data. Data is messy, and cleaning, munging, fusing, mushing, and many
other verbs are prerequisites to doing anything useful with it. Large datasets in partic‐
ular, because they are not amenable to direct examination by humans, can require com‐
putational methods to even discover what preprocessing steps are required. Even when
it comes time to optimize model performance, a typical data pipeline requires spending
far more time in feature engineering and selection than in choosing and writing algo‐
rithms.

For example, when building a model attempting to detect fraudulent purchases on a
website, the data scientist must choose from a wide variety of potential features: any
fields that users are required to fill out, IP location info, login times, click logs as users
navigate the site. Each of these comes with its own challenges in converting to vectors
fit for machine learning algorithms. A system needs to support more flexible transfor‐
mations than turning a 2D array of doubles into a mathematical model.

Second, iteration is a fundamental part of the data science. Modeling and analysis typ‐
ically require multiple passes over the same data. One aspect of this lies within machine
learning algorithms and statistical procedures. Popular optimization procedures like
stochastic gradient descent and expectation maximization involve repeated scans over
their inputs to reach convergence. Iteration also matters within the data scientist’s own
workflow. When initially investigating and trying to get a feel for a dataset, usually the
results of a query inform the next query that should run. When building models, data
scientists do not try to get it right in one try. Choosing the right features, picking the
right algorithms, running the right significance tests, and finding the right hyperpara‐
meters all require experimentation. A framework that requires reading the same dataset
from disk each time it is accessed adds delay that can slow down the process of explo‐
ration and limit the number of things one gets to try.

Third, the task isn’t over when a well-performing model has been built. If the point of
data science is making data useful to non-data scientists, then a model stored as a list
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of regression weights in a text file on the data scientist’s computer has not really ac‐
complished this goal. Uses of data recommendation engines and real-time fraud detec‐
tion systems, culminate in data applications. In these, models become part of a pro‐
duction service and may need to be rebuilt periodically or even in real time.

For these situations, it is helpful to make a distinction between analytics in the lab and
analytics in the factory. In the lab data scientists engage in exploratory analytics. They
try to understand the nature of the data they are working with. They visualize it and
test wild theories. They experiment with different classes of features and auxiliary sour‐
ces they can use to augment it. They cast a wide net of algorithms in the hopes that one
or two will work. In the factory, in building a data application, data scientists engage in
operational analytics. They package their models into services that can inform real-
world decisions. They track their models’ performance over time and obsess about how
they can make small tweaks to squeeze out another percentage point of accuracy. They
care about SLAs and uptime. Historically, exploratory analytics typically occurs in lan‐
guages like R, and when it comes time to build production applications, the data pipe‐
lines are rewritten entirely in Java or C+\+.

Of course, everybody could save time if the original modeling code could be actually
used in the app its written for, but languages like R are slow and lack integration with
most planes of production infrastructure stack, and languages like Java and C++ are
just poor tools for exploratory analytics. They lack REPL (Read-Evaluate-Print-Loop)
environments for playing with data interactively and require large amounts of code to
express simple transformations. A framework that makes modeling easy but is also a
good fit for production systems is a huge win.

Introducing Apache Spark
Enter Apache Spark, an open source framework that combines an engine for distrib‐
uting programs across clusters of machines with an elegant model for writing programs
atop it. Spark, which originated at the UC Berkeley AMPLab and has since been con‐
tributed to the Apache Software Foundation, is arguably the first open source software
that makes distributed programming truly accessible to data scientists.

One illuminating way to understand Spark is in terms of its advances over its prede‐
cessor, MapReduce. MapReduce revolutionized computation over huge datasets by of‐
fering a simple model for writing programs that could execute in parallel across hun‐
dreds to thousands of machines. The MapReduce engine achieves near linear scalability
- as the data size increases, one can throw more computers at it and see jobs complete
in the same amount of time - and is resilient to the fact that failures that occur rarely
on a single machine occur all the time on clusters of thousands. It breaks up work into
small tasks and can gracefully accommodate task failures without compromising the
job to which they belong.
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Spark maintains MapReduce’s linear scalability and fault tolerance, but extends it in a
few important ways. First, rather than relying on a rigid map-then-reduce format, its
engine can execute a more general directed acyclic graph (DAG) of operators. This
means that, in situations where MapReduce must write out intermediate results to the
distributed filesystem, Spark can pass them directly to the next step in the pipeline. In
this way, it is similar to Dryad, a descendant of MapReduce that originated at Microsoft
Research. It complements this capability with a rich set of transformations that allow
users to express computation more naturally. It has a strong developer focus and
streamlined API that can represent complex pipelines in a few lines of code.

Finally, Spark extends its predecessors with in-memory processing. Its Resilient Dis‐
tributed Dataset (RDD) abstraction enables developers to materialize any point in a
processing pipeline into memory across the cluster, meaning that future steps that want
to deal with the same dataset need not recompute it or reload it from disk. This capability
opens up use cases that distributed processing engines could not previously approach.
Spark is well suited for highly iterative algorithms that require multiple passes over a
dataset, as well as reactive applications that quickly respond to user queries by scanning
large in-memory datasets.

Perhaps most importantly, Spark fits well with the aforementioned hard truths of data
science, acknowledging that the biggest bottleneck in building data applications is not
CPU, disk, or network, but analyst productivity. It perhaps cannot be overstated how
much collapsing the full pipeline, from preprocessing to model evaluation, into a single
programming environment can speed up development. By packaging an expressive
programming model with a set of analytic libraries under a REPL, it avoids the round
trips to IDEs required by frameworks like MapReduce and the challenges of subsam‐
pling and moving data back and forth from HDFS required by frameworks like R. The
more quickly analysts can experiment with their data, the higher likelihood they have
of doing something useful with it.

With respect to the pertinence of munging and ETL, Spark strives to be something closer
to the Python of big data than the Matlab of big data. As a general purpose computation
engine, its core APIs provide a strong foundation for data transformation independent
of any functionality in statistics, machine learning, or matrix algebra. Its Scala and
Python APIs allow programming in expressive general purpose languages, as well as
access to existing libraries.

Spark’s in-memory caching makes it ideal for iteration both at the micro and macro
level. Machine learning algorithms that make multiple passes over their training set can
cache it in memory. When exploring and getting a feel for a dataset, a data scientist can
keep it in memory while they run queries, and easily cache transformed versions of it
as well without suffering a trip to disk.

Last, Spark spans the gap between systems designed for exploratory analytics and sys‐
tems designed for operational analytics. It is often quoted that a data scientist is someone
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who is better at engineering than most statisticians and better at statistics than most
engineers. At the very least, Spark is better at being an operational system than most
exploratory systems and better for data exploration than the technologies commonly
used in operational systems. It is built for performance and reliability from the ground
up. Sitting atop the JVM, it can take advantage of many of the operational and debugging
tools built for the Java stack.

It boasts strong integration with the variety of tools in the Hadoop ecosystem. It can
read and write data in all of the data formats supported by MapReduce, allowing it to
interact with the formats commonly used to store data on Hadoop like Avro and Parquet
(and good old CSV). It can read from and write to NoSQL databases like HBase and
Cassandra. Its stream processing library, Spark Streaming can ingest data continuously
from systems like Flume and Kafka. Its SQL library, SparkSQL, can interact with the
Hive Metastore, and a project that is in-progress at the time of this writing seeks to
enable Spark to be used as an underlying execution engine for Hive, as an alternative
to MapReduce. It can run inside YARN, Hadoop’s scheduler and resource manager,
allowing it to share cluster resources dynamically and managed with the same policies
as other processing engines like MapReduce and Impala.

Of course, Spark isn’t all roses and petunias. While its core engine has progressed in
maturity even during the span of this book being written, it is still young compared to
MapReduce and hasn’t yet surpassed it as the workhorse of batch processing. Its speci‐
alized subcomponents for stream processing, SQL, machine learning, and graph pro‐
cessing lie at different stages of maturity and are undergoing large API upgrades. For
example, MLlib’s pipelines and transformer API model is in progress while this book is
being written. Its statistics and modeling functionality comes nowhere near that of single
machine languages like R. Its SQL functionality is rich, but still lags far behind that of
Hive.

About This Book
The rest of this book is not going to be about Spark’s merits and disadvantages. There
are a few other things that it will not be either. It will introduce the Spark programming
model and Scala basics, but it will not attempt to be a Spark reference or provide a
comprehensive guide to all its nooks and crannies. It will not try to be a machine learn‐
ing, statistics, or linear algebra reference, although many of the chapters will provide
some background on these before using them.

Instead, it will try to help the reader get a feel for what it’s like to use Spark for complex
analytics on large datasets. It will cover the entire pipeline: not just building and eval‐
uating models, but cleaning, preprocessing and exploring data, with attention paid to
turning results into production applications. We believe that the best way to teach this
is by example, so, after a quick chapter describing Spark and its ecosystem, the rest of
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the chapters will be self-contained illustrations of what it looks like to use Spark for
analyzing data from different domains.

When possible, we will attempt not to just provide a “solution”, but to demonstrate the
full data science workflow, with all of its iteration, dead ends, and restarts. This book
will be useful for getting more comfortable with Scala, more comfortable with Spark,
and more comfortable with machine learning and data analysis. However, these are in
service of a larger goal, and we hope that most of all, this book will teach how to approach
tasks like those described in the first words of this chapter. Each chapter, in about twenty
measly pages, will try to get as close as possible to demonstrating how to build one of
these pieces of data applications.
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CHAPTER 2

Introduction to Data Analysis with Scala
and Spark

Josh Wills

If you are immune to boredom, there is literally nothing you cannot accomplish.
— David Foster Wallace

Data cleansing is the first step is any data science project, and often the most important.
Many clever analyses have been undone because the data analyzed had fundamental
quality problems or underlying artifacts that biased the analysis or led the data scientist
to see things that weren’t really there.

Despite its importance, most textbooks and classes on data science either don’t cover
data cleansing or only give it a passing mention. The explanation for this is simple:
cleaning data is really boring. It is the tedious, dull work that you have to do before you
can get to the really cool machine learning algorithm that you’ve been dying to apply
to a new problem. Many new data scientists tend to rush past it to get their data into a
minimally acceptable state, and only discover that the data has major quality issues after
they apply their (potentially computationally-intensive) algorithm and get a nonsense
answer as output.

Everyone has heard the saying “garbage in, garbage out.” But there is even something
more pernicious: getting reasonable looking answers from a reasonable looking data
set that has major (but not obvious at first glance) quality issues. Drawing significant
conclusions based on this kind of mistake is the sort of thing that gets data scientists
fired.

One of the most important talents that you can develop as a data scientist is the ability
to discover interesting and worthwhile problems in every phase of the data analytics
lifecycle. The more skill and brainpower that you can apply early on in an analysis
project, the stronger your confidence will be in your final product.
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Of course, it’s easy to say all that; it’s the data science equivalent of telling a child to eat
their vegetables. It’s much more fun to play with a new tool like Spark that lets us build
fancy machine learning algorithms, develop streaming data processing engines, and
analyze web-scale graphs. So what better way to introduce you to working with data
using Spark and Scala than a data cleansing exercise?

Scala for Data Scientists
Most data scientists have a favorite tool, like R or Python, for performing interactive
data munging and analysis. Although they’re willing to work in other environments
when they have to, data scientists tend to get very attached to their favorite tool, and are
always looking to find a way to carry out whatever work they can using it. Introducing
them to a new tool that has a new syntax and a new set of patterns to learn can be
challenging under the best of circumstances.

There are libraries and wrappers for Spark that allow you to use it from R or Python.
The Python wrapper, which is called PySpark, is actually quite good, and we’ll cover
some recipes that involve using it in one of the later chapters in the book. But the vast
majority of our recipes will be written in Scala, because we think that learning how to
work with Spark in the same language that the underlying framework is written in has
a number of advantages for you as a data scientist:

1. No impedance mismatch. Whenever we’re running an algorithm in R or Python
on top of a JVM-based language like Scala, we have to do some work to pass code
and data across the different environments, and often times, things can get lost in
translation. When you’re writing your data analysis algorithms in Spark with the
Scala API, you can be far more confident that your program will run as intended.

2. Get access to the latest and greatest. All of Spark’s machine learning, stream pro‐
cessing, and graph analytics libraries are written in Scala, and the Python and R
bindings can get support for this new functionality much later. If you want to take
advantage of all of the features that Spark has to offer (without waiting for a port
to other language bindings), you’re going to need to learn at least a little bit of Scala,
and if you want to be able to extend those functions to solve new problems you
encounter, you’ll need to learn a little bit more.

3. It will help you understand the Spark philosophy. Even when using Spark from
Python or R, the APIs reflects the underlying philosophy of computation that Spark
inherited from the language it was developed in- Scala. If you know how to use
Spark in Scala, even if you primarily use it from other languages, you’ll have a better
understanding of the system and will be in a better position to “think in Spark.”

There is another advantage to learning how to use Spark from Scala, but it’s a bit more
difficult to explain because of how different it is from any other data analysis tool. If
you’ve ever analyzed data that you pulled from a database in R or Python, you’re used
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to working with languages like SQL to retrieve the information you want, and then
switching into R or Python in order to manipulate and visualize the data you’ve re‐
trieved. You’re used to using one language (SQL) for retrieving and manipulating lots
of data stored in a remote cluster and another language (Python/R) for manipulating
and visualizing information stored on your own machine. If you’ve been doing it for
long enough, you probably don’t even think about it anymore.

With Spark and Scala, the experience is different, because you’re using the same language
for everything. You’re writing Scala to retrieve data from the cluster via Spark. You’re
writing Scala to manipulate that data locally on your own machine. And then — and
this is the really neat part — you can send Scala code into the cluster so that you can
perform the exact same transformations that you performed locally on data that is still
stored in the cluster. It’s difficult to express how transformative it is to do all of your
data munging and analysis in a single environment, regardless of where the data itself
is stored and processed. It’s the sort of thing that you have to experience for yourself to
understand, and we wanted to be sure that our recipes captured some of that same magic
feeling that we felt when we first started using Spark.

The Spark Programming Model
Spark programming starts with a dataset or few, usually residing in some form of dis‐
tributed, persistent storage like the Hadoop Distributed File System (HDFS). Writing a
Spark program typically consists of a few related things:

• Defining a set of transformations on input datasets.
• Invoking actions that output the transformed datasets to persistent storage or return

results to the driver’s local memory.
• Running local computations that operate on the results computed in a distributed

fashion. These can help decide what transformations and actions to undertake next.

Understanding Spark means understanding the intersection between the two sets of
abstractions the framework offers: storage and execution. Spark pairs these abstractions
in an elegant way that essentially allows any intermediate step in a data processing
pipeline to be cached in memory for later use.

Record Linkage
The problem that we’re going to study in this chapter goes by a lot of different names
in the literature and in practice: entity resolution, record deduplication, merge-and-
purge, and list washing. Ironically, this makes it difficult to find all of the research papers
on this topic across the literature in order to get a good overview of solution techniques;
we need a data scientist to de-duplicate the references to this data cleansing problem!
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For our purposes in the rest of this chapter, we’re going to refer to this problem as record
linkage.

The general structure of the problem is something like this: we have a large collection
of records from one or more source systems, and it is likely that some of the records
refer to the same underlying entity, such as a customer, a patient, or the location of a
business or an event. Each of the entities has a number of attributes, such as a name, an
address, or a birthday, and we will need to use these attributes to find the records that
refer to the same entity. Unfortunately, the values of these attributes aren’t perfect: values
might have different formatting, or typos, or missing information that means that a
simple equality test on the values of the attributes will cause us to miss a significant
number of duplicate records. For example, let’s compare the following business listings:

Table 2-1. The challenge of record linkage
Name Address City State Phone

Josh’s Coffee Shop 1234 Sunset Boulevard West Holly

wood

CA (213)-555-1212

Josh Cofee 1234 Sunset Blvd West Hollywood CA 555-1212

Coffee Chain #1234 1400 Sunset Blvd #2 Hollywood CA 206-555-1212

Coffee Chain Region

al Office

1400 Sunset Blvd

Suite 2

Hollywood Califor

nia

206-555-1212

The first two entries in this table refer to the same small coffee shop, even though a data
entry error makes it look as if they are in two different cities (West Hollywood vs.
Hollywood.) The second two entries, on the other hand, are actually referring to dif‐
ferent business locations of the same chain of coffee shops that happen to share a com‐
mon address: one of the entries refers to an actual coffee shop, and the other one refers
to a local corporate office location. Both of the entries give the official phone number
of corporate headquarters in Seattle.

This example illustrates everything that makes record linkage so difficult: even though
both pairs of entries look similar to each other, the criteria that we use to make the
duplicate/not-duplicate decision is different for each pair. This is the kind of distinction
that is easy for a human to understand and identify at a glance, but is difficult for a
computer to learn.

Getting Started: The Spark Shell and SparkContext
We’re going to use a sample data set from the UC Irvine Machine Learning Repository,
which is a fantastic source for a variety of interesting (and free) data sets for research
and education. The data set we’ll be analyzing was curated from a record linkage study
that was performed at a German hospital in 2010, and it contains several million pairs
of patient records that were matched according to several different criteria, such as the
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patient’s name (first and last), their address, and their birthday. Each matching field was
assigned a numerical score from 0.0 to 1.0 based on how similar the strings were, and
the data was then hand labeled to identify which pairs represented the same person and
which did not. The underlying values of the fields themselves that were used to create
the data set were removed to protect the privacy of the patients, and numerical identi‐
fiers, the match scores for the fields, and the label for each pair (match vs. non-match)
were published for use in record linkage research.

From the shell, let’s pull the data from the repository:

$ mkdir linkage
$ cd linkage/
$ curl -o donation.zip https://archive.ics.uci.edu/ml/machine-learning-databases/00210/donation.zip
$ unzip donation.zip
$ unzip 'block*.zip'

If you have a Hadoop cluster handy, you can create a directory for the block data in
HDFS and copy the files from the data set there:

$ hadoop fs -mkdir linkage
$ hadoop fs -put block*csv linkage

Now we’re ready to launch the spark-shell, which is a REPL (read-eval-print loop) for
the Scala language that also has some Spark-specific extensions. If you’ve never seen the
term REPL before, you can think of it as something similar to the R environment: it’s a
place where you can define functions and manipulate data in the Scala programming
language.

If you have a Hadoop cluster that runs a version of Hadoop that supports YARN, you
can launch the Spark jobs on the cluster by using the value of yarn-client for the Spark
master:

$ spark-shell --master yarn-client

However, if you’re just running these examples on your personal computer, you can
launch a local Spark cluster by specifying local[N], where N is the number of threads
to run, or * to match the number of cores available on your machine. For example, to
launch a local cluster that uses 8 threads on an 8-core machine:

$ spark-shell --master local[*]

The examples will work the same way locally. You will simply pass paths to local files,
rather than paths on HDFS beginning with hdfs://.

The rest of the examples in this book will not show a --master argument to spark-
shell, but you will typically need to specify this argument as appropriate for your en‐
vironment.

You may need to specify additional arguments to make the Spark shell fully utilize your
resources. For example, when running with a local master, you can use --driver-
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memory 2g to let the single local process use 2 gigabytes of memory. YARN memory
configuration is more complex, and relevant options like --executor-memory are ex‐
plained in the Spark on YARN documentation.

After running one of these commands, you will see a lot of log messages from Spark as
it initializes itself, but you should also see a bit of ASCII art, followed by some additional
log messages and a prompt:

Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.2.0
      /_/
Using Scala version 2.10.4
  (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_67)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc.
scala>

If this is your first time using the Spark shell (or any Scala REPL, for that matter), you
should run the :help command to list available commands in the shell. :history
and :h? can be helpful for finding the names that you gave to variables or functions that
you wrote during a session but can’t seem to find at the moment. :paste can help you
correctly insert code from the clipboard — something you may well want to do while
following along with the book and its accompanying source code.

In addition to note about :help, the Spark log messages indicated that “Spark context
available as sc.” This is a reference to the SparkContext, which coordinates the execution
of Spark jobs on the cluster. Go ahead and type sc at the command line:

sc
...
res0: org.apache.spark.SparkContext =
  org.apache.spark.SparkContext@DEADBEEF

The REPL will print the string form of the object, and for the SparkContext object, this
is simply its name plus the hexadecimal address of the object in memory (DEADBEEF
is a placeholder; the exact value you see here will vary from run to run.)

It’s good that the sc variable exists, but what exactly do we do with it? SparkContext is
an object, and as an object, it has methods associated with it. We can see what those
methods are in the Scala REPL by typing the name of a variable, followed by a period,
followed by tab:

sc.[\t]
...
accumulable                accumulableCollection
accumulator                addFile
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addJar                     addSparkListener
appName                    asInstanceOf
broadcast                  cancelAllJobs
cancelJobGroup             clearCallSite
clearFiles                 clearJars
clearJobGroup              defaultMinPartitions
defaultMinSplits           defaultParallelism
emptyRDD                   files
getAllPools                getCheckpointDir
getConf                    getExecutorMemoryStatus
getExecutorStorageStatus   getLocalProperty
getPersistentRDDs          getPoolForName
getRDDStorageInfo          getSchedulingMode
hadoopConfiguration        hadoopFile
hadoopRDD                  initLocalProperties
isInstanceOf               isLocal
jars                       makeRDD
master                     newAPIHadoopFile
newAPIHadoopRDD            objectFile
parallelize                runApproximateJob
runJob                     sequenceFile
setCallSite                setCheckpointDir
setJobDescription          setJobGroup
startTime                  stop
submitJob                  tachyonFolderName
textFile                   toString
union                      version
wholeTextFiles

The SparkContext has a long list of methods, but the ones that we’re going to use most
often allow us to create Resilient Distributed Datasets, or RDDs. An RDD is Spark’s
fundamental abstraction for representing a collection of objects that can be distributed
across multiple machines in a cluster. There are two ways to create an RDD in Spark:

• Using the SparkContext to create an RDD from an external data source, like a file
in HDFS, a database table via JDBC, or from a local collection of objects that we
create in the Spark shell.

• Performing a transformation on one or more existing RDDs, like filtering records,
aggregating records by a common key, or joining multiple RDDs together.

RDDs are a convenient way to describe the computations that we want to perform on
our data as a sequence of small, independent steps.

Resilient Distributed Datasets
An RDD is laid out across the cluster of machines as a collection of partitions, each
including a subset of the data. Partitions define the unit of parallelism in Spark. The
framework processes the objects within a partition in sequence, and processes multiple
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partitions in parallel. One of the simplest ways to create an RDD is to use the parallel
ize method on SparkContext with a local collection of objects:

val rdd = sc.parallelize(Array(1, 2, 2, 4), 4)
...
rdd: org.apache.spark.rdd.RDD[Int] = ...

The first argument is the collection of objects to parallelize. The second is the number
of partitions. When the time comes to compute the objects within a partition, Spark
fetches a subset of the collection from the driver process.

To create an RDD from a text file or directory of text files residing in a distributed file
system like HDFS, we can pass the name of the file or directory to the textFile method:

val rdd2 = sc.textFile("hdfs:///some/path.txt")
...
rdd2: org.apache.spark.rdd.RDD[String] = ...

When running Spark in local mode, the textFile can access paths that reside on the local
filesystem. If Spark is given a directory instead of an individual file, it will consider all
of the files in that directory as part of the given RDD. Finally, note that no actual data
has been read by Spark or loaded into memory yet, either on our client machine or the
cluster. When the time comes to compute the objects within a partition, Spark reads a
section (also known as a split) of the input file, and then applies any subsequent trans‐
formations (filtering, aggregation, etc.) that we defined via other RDDs.

Our record linkage data is stored in a text file, with one observation on each line. We
will use the textFile method on SparkContext to get a reference to this data as an
RDD:

val rawblocks = sc.textFile("linkage")
...
rawblocks: org.apache.spark.rdd.RDD[String] = ...

There are a few things happening on this line that are worth going over. First, we’re
declaring a new variable called rawblocks. As we can see from the shell, the raw
blocks variable has a type of RDD[String], even though we never specified that type
information in our variable declaration. This is a feature of the Scala programming
language called type inference, and it saves us a lot of typing when we’re working with
the language. Whenever possible, Scala figures out what type a variable has based on its
context. In this case, Scala looks up the return type from the textFile function on the
SparkContext object, sees that it returns an RDD[String], and assigns that type to the
rawblocks variable.

Whenever we create a new variable in Scala, we must preface the name of the variable
with either val or var. Variables that are prefaced with val are immutable, and may not
be changed to refer to another value once they are assigned, while variables that are
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prefaced with var may be changed to refer to different objects of the same type. Watch
what happens when we execute the following code:

rawblocks = sc.textFile("linkage")
...
<console>: error: reassignment to val

var varblocks = sc.textFile("linkage")
varblocks = sc.textFile("linkage")

Attempting to re-assign the linkage data to the rawblocks val threw an error, but re-
assigning the varblocks var is fine. Within the Scala REPL, there is an exception to the
re-assignment of vals, because we are allowed to re-declare the same immutable variable,
like the following:

val rawblocks = sc.textFile("linakge")
val rawblocks = sc.textFile("linkage")

In this case, no error is thrown on the second declaration of rawblocks. This isn’t typ‐
ically allowed in normal Scala code, but it’s fine to do in the shell, and we will make
extensive use of this feature throughout the recipes in the book.

The REPL and Compilation
In addition to its interactive shell, Spark also supports and compiled applications. We
typically recommend using Maven for compiling and managing dependencies. The code
samples included with this book hold a self-contained Maven project setup under the
simplesparkproject/ directory to help with getting started.

With both the shell and compilation as options, which should one use when testing out
and building a data pipeline? It is often useful to start working entirely in the REPL. This
enables quick prototyping, faster iteration, and less lag time between ideas and results.
However, as the program builds in size, maintaining a monolithic file of code become
more onerous, and Scala interpretation eats up more time. This can be exacerbated by
the fact that, when dealing with massive data, it is not uncommon for an attempted
operation to cause a Spark application to crash or otherwise render a SparkContext
unusable. Meaning that any work and code typed in so far becomes lost. At this point,
it is often useful to take a hybrid approach. Keep the frontier of development in the
REPL, and, as pieces of code harden, move them over into a compiled library. The
compiled jar can be made available to spark-shell by passing it to the --jars property.
When done right, the compiled jar only needs to be rebuilt infrequently, and the REPL
allows for fast iteration on code and approaches that still need ironing out.
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Bringing Data from the Cluster to the Client
RDDs have a number of methods that allow us to read data from the cluster into the
Scala REPL on our client machine. Perhaps the simplest of these is first, which returns
the first element of the RDD into the client:

rawblocks.first
...
res: String = "id_1","id_2","cmp_fname_c1","cmp_fname_c2",...

The first method can be useful for sanity checking a data set, but we’re generally
interested in bringing back larger samples of an RDD into the client for analysis. When
we know that an RDD only contains a small number of records, we can use the col
lect method to return all of the contents of an RDD to the client as an array. Since we
don’t know how big the linkage data set is just yet, we’ll hold off on doing this right now.

We can strike a balance between first and collect with the take method, which allows
us to read a given number of records into an array on the client. Let’s use take to get
the first ten lines from the linkage data set:

val head = rawblocks.take(10)
...
head: Array[String] = Array("id_1","id_2","cmp_fname_c1",...

head.length
...
res: Int = 10

Actions
The act of creating a RDD does not cause any distributed computation to take place on
the cluster. Rather, RDDs define logical datasets that are intermediate steps in a com‐
putation. Distributed computation occurs upon invoking an action on an RDD. For
example, the count action returns the number of objects in an RDD.

rdd.count()
14/09/10 17:36:09 INFO SparkContext: Starting job: count at <console>:15
...
14/09/10 17:36:09 INFO SparkContext: Job finished: count at <console>:15, took 0.18273803 s
res0: Long = 4

The collect action returns an Array with all the objects from the RDD. This Array
resides in local memory, not on the cluster.

rdd.collect()
14/09/29 00:58:09 INFO SparkContext: Starting job: collect at <console>:17
...
14/09/29 00:58:09 INFO SparkContext: Job finished: collect at <console>:17, took 0.531876715 s
res2: Array[(Int, Int)] = Array((4,1), (1,1), (2,2))
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Actions need not only return results to the local process. The saveAsTextFile action
saves the contents of an RDD to persistent storage like HDFS.

rdd.saveAsTextFile("hdfs:///user/ds/mynumbers")
14/09/29 00:38:47 INFO SparkContext: Starting job: saveAsTextFile at <console>:15
...
14/09/29 00:38:49 INFO SparkContext: Job finished: saveAsTextFile at <console>:15, took 1.818305149 s

The action creates a directory and writes out each partition as a file within it. From the
command line outside of the Spark shell:

hadoop fs -ls /user/ds/mynumbers

-rw-r--r--   3 ds supergroup          0 2014-09-29 00:38 myfile.txt/_SUCCESS
-rw-r--r--   3 ds supergroup          4 2014-09-29 00:38 myfile.txt/part-00000
-rw-r--r--   3 ds supergroup          4 2014-09-29 00:38 myfile.txt/part-00001

Remember that textFile can accept a directory of text files as input, meaning that a
future Spark job could refer to mynumbers as an input directory.

The raw form of data that is returned by the Scala REPL can be somewhat hard to read,
especially for arrays that contain more than a handful of elements. To make it easier to
read the contents of an array, we can use the foreach method in conjunction with
println to print each value in the array out on its own line:

head.foreach(println)
...
"id_1","id_2","cmp_fname_c1","cmp_fname_c2","cmp_lname_c1","cmp_lname_c2","cmp_sex","cmp_bd","cmp_bm","cmp_by","cmp_plz","is_match"
37291,53113,0.833333333333333,?,1,?,1,1,1,1,0,TRUE
39086,47614,1,?,1,?,1,1,1,1,1,TRUE
70031,70237,1,?,1,?,1,1,1,1,1,TRUE
84795,97439,1,?,1,?,1,1,1,1,1,TRUE
36950,42116,1,?,1,1,1,1,1,1,1,TRUE
42413,48491,1,?,1,?,1,1,1,1,1,TRUE
25965,64753,1,?,1,?,1,1,1,1,1,TRUE
49451,90407,1,?,1,?,1,1,1,1,0,TRUE
39932,40902,1,?,1,?,1,1,1,1,1,TRUE

The foreach(println) pattern is one that we will frequently use in this book. It’s an
example of a common functional programming pattern, where we pass one function
(println) as an argument to another function (foreach) in order to perform some
action. This kind of programming style will be familiar to data scientists who have
worked with R and are used to processing vectors and lists by avoiding for loops and
instead using higher-order functions like apply and lapply. Collections in Scala are
similar to lists and vectors in R in that we generally want to avoid for loops and instead
process the elements of the collection using higher-order functions.

Immediately, we see a couple of issues with the data that we need to address before we
begin our analysis. First, the CSV files contain a header row that we’ll want to filter out
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from our subsequent analysis. We can use the presence of the “id_1” string in the row
as our filter condition, and write a small Scala function that tests for the presence of that
string inside of the line:

def isHeader(line: String) = line.contains("id_1")
isHeader: (line: String)Boolean

Like Python, we declare functions in Scala using the keyword def. Unlike Python, we
have to specify the types of the arguments to our function; in this case, we have to indicate
that the line argument is a String. The body of the function, which uses the con
tains method for the String class to test whether or not the characters “id_1” appear
anywhere in the string, comes after the equals sign. Even though we had to specify a
type for the line argument, note that we did not have to specify a return type for the
function, because the Scala compiler was able to infer the type based on its knowledge
of the String class and the fact that the contains method returns true or false.

Sometimes, we will want to specify the return type of a function ourselves, especially
for long, complex functions with multiple return statements, where the Scala compiler
can’t necessarily infer the return type itself. We might also want to specify a return type
for our function in order to make it easier for someone else reading our code later to
be able to understand what the function does without having to re-read the entire
method themselves. We can declare the return type for the function right after the
argument list, like this:

def isHeader(line: String): Boolean = {
  line.contains("id_1")
}
isHeader: (line: String)Boolean

We can test our new Scala function against the data in the head array by using the filter
method on Scala’s Array class and then printing the results:

head.filter(isHeader).foreach(println)
...
"id_1","id_2","cmp_fname_c1","cmp_fname_c2","cmp_lname_c1",...

It looks like our isHeader method works correctly; the only result that was returned
from the result of applying it to the head array via the filter method was the header
line itself. But of course, what we really want to do is get all of the rows in the data except
the header rows. There are a few ways that we can do this in Scala. Our first option is
to take advantage of the filterNot method on the Array class:

head.filterNot(isHeader).length
...
res: Int = 9

We could also use Scala’s support for anonymous functions to negate the isHeader
function from inside of filter:
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head.filter(x => !isHeader(x)).length
...
res: Int = 9

Anonymous functions in Scala are somewhat like Python’s lambda functions. In this
case, we defined an anonymous function that takes a single argument called x and passes
x to the isHeader function and returns the negation of the result. Note that we did not
have to specify any type information for the x variable in this instance; the Scala compiler
was able to infer that x is a String from the fact that head is an Array[String].

There is nothing that Scala programmers hate more than typing, so Scala has lots of
little features that are designed to reduce the amount of typing they have to do. For
example, in our anonymous function definition, we had to type the characters x � in
order to declare our anonymous function and give its argument a name. For simple
anonymous functions like this one, we don’t even have to do that; Scala will allow us to
use an underscore, _, to represent the argument to the anonymous function, so that we
can save four characters:

head.filter(!isHeader(_)).length
...
res: Int = 9

Sometimes, this abbreviated syntax makes the code easier to read as it avoids duplicating
obvious identifiers. Sometimes, this shortcut just makes the code cryptic. The code
listings use one or the other according to our best judgment.

Shipping Code from the Client to the Cluster
We just saw a wide variety of ways to write and apply functions to data in Scala. All of
the code that we executed was done against the data inside of the head array, which was
contained on our client machine. Now we’re going to take the code that we just wrote
and apply it to the millions of linkage records contained in our cluster and represented
by the rawblocks RDD in Spark.

Here’s what the code looks like to do this; it should feel eerily familiar to you.

val noheader = rawblocks.filter(x => !isHeader(x))

The syntax that we used to express the filtering computation against the entire data set
on the cluster is exactly the same as the syntax we used to express the filtering compu‐
tation against the array of data in head on our local machine. We can use the first
method on the noheader RDD to verify that the filtering rule worked correctly:

noheader.first
...
res: String = 37291,53113,0.833333333333333,?,1,?,1,1,1,1,0,TRUE
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This is incredibly powerful. It means that we can interactively develop and debug our
data munging code against a small amount of data that we sample from the cluster, and
then ship that code to the cluster to apply it to the entire data set when we’re ready to
transform the entire data set, using the same code and syntax that we used locally, and
we never had to leave the shell to do it. There really isn’t another tool that gives you this
kind of experience.

In the next several sections, we’ll use this mix of local development and testing and
cluster computation to perform more munging and analysis of the record linkage data,
but if you need to take a moment to drink in the new world of awesome that you have
just entered, we certainly understand.

Structuring Data with Tuples and Case Classes
Right now, the records in the head array and the noheader RDD are all strings of comma-
separated fields. In order to make it a bit easier to analyze this data, we’ll need to parse
these strings into a structured format that converts the different fields into the correct
data type, like an integer or double.

If we look at the contents of the head array, both the header line and the records them‐
selves, we can see the following structure in the data:

1. The first two fields are integer IDs that represent the patients that were matched in
the record.

2. The next nine values are (possibly missing) double values that represent match
scores on different fields of the patient records, such as their names, birthdays, and
location.

3. The last field is a boolean value (TRUE or FALSE) indicating whether or not the
pair of patient records represented by the line was a match or not.

Like Python, Scala has a built-in tuple type that we can use to quickly create pairs, triples,
and larger collections of values of different types as a simple way to represent records.
For the time being, let’s parse the contents of each line into a tuple with four values: the
integer ID of the first patient, the integer ID of the second patient, an array of nine
doubles representing the match scores (with NaN values for any missing fields), and a
boolean field that indicates whether or not the fields matched.

Unlike Python, Scala does not have a built-in method for parsing comma-separated
strings, so we’ll need to do a bit of the legwork ourselves. We can experiment with our
parsing code in the Scala REPL. First, let’s grab one of the records from the head array:

val line = head(5)
val pieces = line.split(',')
...
pieces: Array[String] = Array(36950, 42116, 1, ?,...
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Note that we accessed the elements of the head array using parenthesis instead of brack‐
ets; in Scala, accessing array elements is a function call, not a special operator. Scala
allows classes to define a special function named apply that is called when we treat an
object as if it was a function, so head(5) is the same thing as head.apply(5).

We broke the components of line up using the split function from Java’s String class,
returning an Array[String] that we named pieces. Now we’ll need to convert the
individual elements of pieces to the appropriate type using Scala’s type conversion
functions:

val id1 = pieces(0).toInt
val id2 = pieces(1).toInt
val matched = pieces(11).toBoolean

Converting the id variables and the matched boolean variable is pretty straightforward
once we know about the appropriate toXYZ conversion functions. Unlike the con
tains method and split method that we worked with earlier, the toInt and toBoo
lean methods aren’t defined on Java’s String class. Instead, they are defined in a Scala
class called StringOps that uses one of Scala’s more powerful (and arguably somewhat
dangerous) features: implicit type conversion. Implicits work like this: if you call a meth‐
od on a Scala object, and the Scala compiler does not see a definition for that method
in the class definition for that object, then the compiler will try to convert your object
to an instance of a class that does have that method defined. In this case, the compiler
will see that Java’s String class does not have a toInt method defined, but the String
Ops class does, and that the StringOps class has a method that can convert an instance
of the String class into an instance of the StringOps class. The compiler silently per‐
forms the conversion of our String object into a StringOps object, and then calls the
toInt method on the new object.

Developers who write libraries in Scala (including the core Spark developers) really like
implicit type conversion; it allows them to enhance the functionality of core classes like
String that are otherwise closed to modification. As a user of these tools, implicit type
conversions are more of a mixed bag, because they can make it difficult to figure out
exactly where a particular class method is defined. Nonetheless, we’re going to encounter
implicit conversions throughout our recipes, so it’s best that we get used to them now.

We still need to convert the double-valued score fields- all nine of them. To convert
them all at once, we can use the slice method on the Scala Array class to extract a
contiguous subset of the array, and then use the map higher-order function to convert
each element of the slice from a String to a Double:

val rawscores = pieces.slice(2, 11)
rawscores.map(s => s.toDouble)
...
java.lang.NumberFormatException: For input string: "?"
  at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:1241)
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  at java.lang.Double.parseDouble(Double.java:540)
  ...

Oops! We forgot about the “?” entry in the rawscores array, and the toDouble method
in StringOps didn’t know how to convert it to a Double. Let’s write a function that will
return a NaN value whenever it encounters a “?”, and then apply it to our rawscores
array:

def toDouble(s: String) = {
  if ("?".equals(s)) Double.NaN else s.toDouble
}
val scores = rawscores.map(toDouble)
scores: Array[Double] = Array(1.0, NaN, 1.0, 1.0, ...

There. Much better. Let’s bring all of this parsing code together into a single function
that returns all of the parsed values in a tuple:

def parse(line: String) = {
  val pieces = line.split(',')
  val id1 = pieces(0).toInt
  val id2 = pieces(1).toInt
  val scores = pieces.slice(2, 11).map(toDouble)
  val matched = pieces(11).toBoolean
  (id1, id2, scores, matched)
}
val tup = parse(line)

We can retrieve the values of individual fields from our tuple by using the positional
functions, starting from _1, or via the productElement method, which starts counting
from 0. We can also get the size of any tuple via the productArity method:

tup._1
tup.productElement(0)
tup.productArity

Although it is very easy and convenient to create tuples in Scala, addressing all of the
elements of a record by position, instead of by a meaningful name, can make our code
difficult to understand. What we would really like is a way of creating a simple record
type that would allow us to address our fields by name, instead of by position. Fortu‐
nately, Scala provides a convenient syntax for creating these records, called case
classes. A case class is a simple type of immutable class that comes with implementations
of all of the basic Java class methods, like toString, equals, and hashCode, which makes
them very easy to use. Let’s declare a case class for our record linkage data:

case class MatchData(id1: Int, id2: Int,
  scores: Array[Double], matched: Boolean)

Now we can update our parse method to return an instance of our MatchData case class,
instead of a tuple:

def parse(line: String) = {
  val pieces = line.split(',')
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  val id1 = pieces(0).toInt
  val id2 = pieces(1).toInt
  val scores = pieces.slice(2, 11).map(toDouble)
  val matched = pieces(11).toBoolean
  MatchData(id1, id2, scores, matched)
}
val md = parse(line)

There are two things to note here: first, we do not need to specify the keyword new in
front of MatchData when we create a new instance of our case class (another example
of how much Scala developers hate typing.) Second, note that our MatchData class has
a built-in toString implementation that calls toString on each of the fields, which
works great for everything except for the scores, which uses the toString method for
Java double arrays.

We can access the fields of the MatchData case class by their names now:

md.matched
md.id1

Now that we have our parsing function tested on a single record, let’s apply it to all of
the elements in the head array, except for the header line:

val mds = head.filter(x => !isHeader(x)).map(x => parse(x))

Yep, that worked. Now, lets apply our parsing function to the data in the cluster by calling
the map function on the noheader RDD:

val parsed = noheader.map(line => parse(line))

Remember that unlike the mds array that we generated locally, the parse function has
not actually been applied to the data on the cluster yet. Once we make a call to the parsed
RDD that requires some output, the parse function will be applied to convert each
String in the noheader RDD into an instance of our MatchData class. If we make an‐
other call to the parsed RDD that generates a different output, then the parse function
will be applied to the input data again.

This isn’t an optimal use of our cluster resources; once the data has been parsed once,
we’d like to save the data in its parsed form on the cluster so that we don’t have to re-
parse it every time we want to ask a new question of the data. Spark supports this use
case by allowing us to signal that a given RDD should be cached in memory after it is
generated by calling the cache method on the instance. Let’s do that now for the parsed
RDD:

parsed.cache()
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Caching
While the contents of RDDs are transient by default, Spark provides a mechanism per‐
sisting the data in an RDD. After the first time an action requires computing such an
RDD’s contents, they are stored in memory or disk across the cluster. The next time an
action depends on the RDD, it need not be recomputed from its dependencies. Its data
is returned from the cached partitions directly.

cached.cache()
cached.count()
cached.take(10)

The call to cache indicates that the RDD should be stored the next time it’s computed.
The call to count computes it initially. The take action returns the first 10 elements the
RDD as a local Array. When take is called, it accesses the cached elements of cached
instead of recomputing them from their dependencies.

Spark defines a few different mechanisms, or StorageLevel s, for persisting RDDs.
rdd.cache() is shorthand for rdd.persist(StorageLevel.MEMORY), which stores the
RDD as unserialized Java objects. When Spark estimates that a partition will not fit in
memory, it simply will not store it, and it will be recomputed the next time it’s needed.
This level makes the most sense when the objects will be referenced frequently and/or
require low-latency access, as it avoids any serialization overhead. Its drawback is that
it takes up larger amounts of memory than its alternatives. Also, holding on to many
small objects puts pressure on Java’s garbage collection, which can result in stalls and
general slowness.

Spark also exposes a MEMORY_SER storage level, which allocates large byte buffers in
memory and serializes the RDD contents into them. When using the right format (more
on this below), serialized data usually takes up two to five times less space than its raw
equivalent.

Spark can use disk for caching RDDs as well. The MEMORY_AND_DISK and MEMO
RY_AND_DISK_SER are similar to the MEMORY AND MEMORY_SER storage levels respectively.
For the latter two, if a partition will not fit in memory, it is simply not stored, meaning
that it must be recomputed from its dependencies the next time an action uses it. For
the former, Spark spills partitions that will not fit in memory to disk.

Deciding when to cache data can be an art. The decision typically involves tradeoffs
between space and speed, with the specter of garbage collecting looming overhead to
occasionally confound things further. In general, RDDs should be cached when they are
likely to be referenced by multiple actions and are expensive to regenerate.
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Aggregations
Thus far in the chapter, we’ve focused on the similar ways that we process data that is
on our local machine as well as on the cluster using Scala and Spark. In this section,
we’ll start to explore some of the differences between the Scala APIs and the Spark ones,
especially as they relate to grouping and aggregating data. Most of the differences are
about efficiency: when we’re aggregating large data sets that are distributed across mul‐
tiple machines, we’re more concerned with transmitting information efficiently than
we are when all of the data that we need is available in memory on a single machine.

To illustrate some of the differences, let’s start by performing a simple aggregation over
our MatchData on both our local client and on the cluster with Spark in order to calculate
the number of records that are matches vs. the number of records that are not. For the
local MatchData records in the mds array, we’ll use the groupBy method to create a Scala
Map[Boolean, Array[MatchData]], where the key is based on the matched field in the
MatchData class:

val grouped = mds.groupBy(md => md.matched)

Once we have the values in the grouped variable, we can get the counts by calling the
mapValues method on grouped, which is like a map method that only operates on the
values in the Map object, and get the size of each array:

grouped.mapValues(x => x.size).foreach(println)

As we can see, all of the entries in our local data are matches, so the only entry returned
from the map is the tuple (true,9). Of course, our local data is just a sample of the
overall data in the linkage data set; when we apply this grouping to the overall data, we
expect to find lots of non-matches.

When we are performing aggregations on data in the cluster, we always have to be
mindful of the fact that the data we are analyzing is stored across multiple machines,
and so our aggregations will require moving data over the network that connects the
machines. Moving data across the network requires a lot of computational resources:
including determining which machines each record will be transferred to, serializing
the data, compressing it, sending it over the wire, decompressing and then serializing
the results, and finally performing computations on the aggregated data. In order to do
this quickly, it is important that we try to minimize the amount of data that we move
around; the more filtering that we can do to the data before performing an aggregation,
the faster we will get an answer to our question.

Creating Histograms
Lets start out by creating a simple histogram to count how many of the MatchData
records in parsed have a value of true or false for the matched field. Fortunately, the
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RDD[T] class defines an action called countByValue that performs this kind of compu‐
tation very efficiently and returns the results to the client as a Map[T,Long]. Calling
countByValue on a projection of the matched field from MatchData will execute a Spark
job and return the results to the client:

val matchCounts = parsed.map(md => md.matched).countByValue()

Whenever we create a histogram or other grouping of values in the Spark client, espe‐
cially when the categorical variable in question contains a large number of values, we
want to be able to look at the contents of the histogram sorted in different ways, such
as by the alphabetical ordering of the keys, or by the numerical counts of the values in
ascending or descending order. Although our matchCounts Map only contains the keys
true and false, let’s take a brief look at how to order its contents in different ways.

Scala’s Map class does not have methods for sorting its contents on the keys or the values,
we can convert a Map into a Scala Seq type, which does provide support for sorting.
Scala’s Seq is similar to Java’s List interface, in that it is an iterable collection that has a
defined length and the ability to look up values by index.

val matchCountsSeq = matchCounts.toSeq

Scala Collections
Scala has an extensive library of collections, including lists, sets, maps, and arrays. You
can easily convert from one collection type to another using methods like toList,
toSet, and toArray.

Our matchCountsSeq sequence is made up of elements of type (String, Long), and
we can use the sortBy method to control which of the indices we use for sorting:

matchCountsSeq.sortBy(_._1).foreach(println)
...
(false,5728201)
(true,20931)

matchCountsSeq.sortBy(_._2).foreach(println)
...
(true,20931)
(false,5728201)

By default, the sortBy function sorts numeric values in ascending order, but it’s often
more useful to look at the values in a histogram in descending order. We can reverse
the sort order of any type by calling the reverse method on the sequence before we
print it out:

matchCountsSeq.sortBy(_._2).reverse.foreach(println)
...

28 | Chapter 2: Introduction to Data Analysis with Scala and Spark



(false,5728201)
(true,20931)

When we look at the match counts across the entire data set, we see a significant im‐
balance between positive and negative matches; less than 0.4% of the input pairs actually
match. The implication of this imbalance for our record linkage model is profound: it’s
likely that any function of the numeric match scores we come up with will have a sig‐
nificant false positive rate, i.e., many pairs of records will look like matches even though
they actually are not.

Summary Statistics For Continuous Variables
Spark’s countByValue action is a great way to create histograms for relatively low car‐
dinality categorical variables in our data. But for continuous variables, like the match
scores for each of the fields in the patient records, we’d like to be able to quickly get a
basic set of statistics about their distribution, like the mean, standard deviation, and
extremal values like the maximum and minimum.

For instances of RDD[Double], the Spark APIs provide an additional set of actions via
implicit type conversion, in the same way we saw that the toInt method is provided for
the String class. These implicit actions allow us to extend the functionality of an RDD
in useful ways when we have additional information about how to process the values it
contains.

Pair RDDs
In addition to the RDD[Double] implicit actions, Spark supports implicit type conversion
for the RDD[Tuple2[K, V]] type that provide methods for performing per-key aggre‐
gations like groupByKey and reduceByKey, as well as methods that enable joining mul‐
tiple RDDs that have keys of the same type.

One of the implicit actions for RDD[Double], stats, will provide us with exactly the
summary statistics about the values in the RDD that we want. Let’s try it now on the
first value in the scores array inside of the MatchData records in the parsed RDD:

parsed.map(md => md.scores(0)).stats()
StatCounter = (count: 5749132, mean: NaN, stdev: NaN, max: NaN, min: NaN)

Unfortunately, the missing NaN values that we are using as placeholders in our arrays
are tripping up Spark’s summary statistics. Even more unfortunate, Spark does not cur‐
rently have a nice way of excluding and/or counting up the missing values for us, so we
have to filter them out manually using the isNaN function from Java’s Double class:
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import java.lang.Double.isNaN
parsed.map(md => md.scores(0)).filter(!isNaN(_)).stats()
StatCounter = (count: 5748125, mean: 0.7129, stdev: 0.3887, max: 1.0, min: 0.0)

If we were so inclined, we could get all of the statistics for the values in the scores array
this way, using Scala’s Range construct to create a loop that would iterate through each
index value and compute the statistics for the column, like so:

val stats = (0 until 9).map(i => {
  parsed.map(md => md.scores(i)).filter(!isNaN(_)).stats()
})

stats(1)
...
StatCounter = (count: 103698, mean: 0.9000, stdev: 0.2713, max: 1.0, min: 0.0)

stats(8)
...
StatCounter = (count: 5736289, mean: 0.0055, stdev: 0.0741, max: 1.0, min: 0.0)

Creating Reusable Code For Computing Summary
Statistics
Although this approach gets the job done, it’s pretty inefficient; we have to re-process
all of the records in the parsed RDD nine times in order to calculate all of the statistics.
As our data sets get larger and larger, the cost of re-processing all of the data over and
over again goes up and up, even when we are caching intermediate results in memory
to save on some of the processing time. When we’re developing distributed algorithms
with Spark, it can really payoff to invest some time in figuring out how we can compute
all of the answers we might need in as few passes over the data as possible. In this case,
let’s figure out a way to write a function that will take in any RDD[Array[Double]] we
give it and return to us an array that includes both a) the count of missing values for
each index and b) a StatCounter object with the summary statistics of the non-missing
values for each index.

Whenever we expect that some analysis task we need to perform will be useful again
and again, it’s worth spending some time to develop our code in a way that makes it
easy for other analysts to use the solution we come up in their own analyses. To do this,
we can write Scala code in a separate file that we can then load into the Spark shell for
testing and validation, and we can then share that file with others once we know that it
works.

This is going to require a jump in code complexity. Instead of dealing in individual
method calls and functions of a line or two, we need to create proper Scala classes and
APIs, and that means using more complex language features.
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For our missing value analysis, our first task is to write an analogue of Spark’s Stat
Counter class that correctly handles missing values. In a separate shell on your client
machine, open a file named StatsWithMissing.scala, and copy the following class
definitions into the file. We’ll walk through the individual fields and methods defined
here below.

import org.apache.spark.util.StatCounter

class NAStatCounter extends Serializable {
  val stats: StatCounter = new StatCounter()
  var missing: Long = 0

  def add(x: Double): NAStatCounter = {
    if (java.lang.Double.isNaN(x)) {
      missing += 1
    } else {
      stats.merge(x)
    }
    this
  }

  def merge(other: NAStatCounter): NAStatCounter = {
    stats.merge(other.stats)
    missing += other.missing
    this
  }

  override def toString = {
    "stats: " + stats.toString + " NaN: " + missing
  }
}

object NAStatCounter extends Serializable {
  def apply(x: Double) = new NAStatCounter().add(x)
}

Our NAStatCounter class has two member variables: an immutable StatCounter in‐
stance named stats, and a mutable Long variable named missing. Note that we’re
marking this class as Serializable because we will be using instances of this class inside
of Spark RDDs, and our job will fail if Spark cannot serialize the data contained inside
of an RDD.

The first method in the class, add, allows us to bring a new Double value into the statistics
tracked by the NAStatCounter, either by recording it as missing if it is NaN or adding it
to the underlying StatCounter if it is not. The merge method incorporates the statistics
that are tracked by another NAStatCounter instance into the current instance. Both of
these methods return this so that they may be easily chained together.
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Finally, we override the toString method on our NAStatCounter class so that we can
easily print its contents out in the Spark shell. Whenever we override a method from a
parent class in Scala, we need to prefix the method definition with the override key‐
word. Scala allows a much richer set of method override patterns than Java does, and
the override keyword helps Scala keep track of which method definition should be
used for any given class.

Along with the class definition, we define a companion object for NAStatCounter. Scala’s
object keyword is used to declare a singleton that can provide helper methods for a
class, analogous to the static method definitions on a Java class. In this case, the apply
method provided by the companion object creates a new instance of the NAStatCount
er class and adds the given Double value to the instance before returning it. In Scala,
apply methods have some special syntactic sugar that allows you to call then without
having to type them out explicitly; for example, these two lines do exactly the same
thing:

val nastats = NAStatCounter.apply(17.29)
val nastats = NAStatCounter(17.29)

Now that we have our NAStatCounter class defined, let’s bring it into the Spark shell by
closing and saving the StatsWithMissing.scala file and using the load command:

:load StatsWithMissing.scala
...
Loading StatsWithMissing.scala...
import org.apache.spark.util.StatCounter
defined class NAStatCounter
defined module NAStatCounter
warning: previously defined class NAStatCounter is not a companion to object NAStatCounter.
Companions must be defined together; you may wish to use :paste mode for this.

We get a warning about our companion object not being valid in the incremental com‐
pilation mode that the shell uses, but we can verify that a few examples work as we
expect:

val nas1 = NAStatCounter(10.0)
nas1.add(2.1)
val nas2 = NAStatCounter(Double.NaN)
nas1.merge(nas2)

Lets use our new NAStatCounter class to process the scores in the MatchData records
within the parsed RDD. Each MatchData instance contains an array of scores of type
Array[Double]. For each entry in the array, we would like to have an NAStatCounter
instance that tracked how many of the values in that index were NaN along with the
regular distribution statistics for the non-missing values. Given an array of values, we
can use the map function to create an array of NAStatCounter objects:

val arr = Array(1.0, Double.NaN, 17.29)
val nas = arr.map(d => NAStatCounter(d))
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Every record in our RDD will have its own Array[Double], which we can translate into
an RDD where each record is an Array[NAStatCounter]. Let’s go ahead and do that
now against the data in the parsed RDD on the cluster:

val nasRDD = parsed.map(md => {
  md.scores.map(d => NAStatCounter(d))
})

We now need an easy way to aggregate multiple instances of Array[NAStatCounter]
into a single Array[NAStatCounter]. Two arrays of the same length can be combined
using zip. This produces a new Array of the corresponding pairs of elements in the two
arrays. Think of a zipper pairing up two corresponding strips of teeth into one fastened
strip of interlocked teeth. This can be followed by a map method that uses the merge
function on the NAStatCounter class to combine the statistics from both objects into a
single instance:

val nas1 = Array(1.0, Double.NaN).map(d => NAStatCounter(d))
val nas2 = Array(Double.NaN, 2.0).map(d => NAStatCounter(d))
val merged = nas1.zip(nas2).map(p => p._1.merge(p._2))

We can even use Scala’s case syntax to break the pair of elements in the zipped array
into nicely named variables, instead of using the _1 and _2 methods on the Tuple2 class:

val merged = nas1.zip(nas2).map { case (a, b) => a.merge(b) }

To perform this same merge operation across all of the records in a Scala collection, we
can use the reduce function, which takes an associative function that maps two argu‐
ments of type T into a single return value of type T and applies it over and over again to
all of the elements in a collection to merge all of the values together. Since the merging
logic we wrote above is associative, we can apply it with the reduce method to a col‐
lection of Array[NAStatCounter] values:

val nas = List(nas1, nas2)
val merged = nas.reduce((n1, n2) => {
  n1.zip(n2).map { case (a, b) => a.merge(b) }
})

The RDD class also has a reduce action that works the same way as the reduce method
we used on the Scala collections, only applied to all of the data that is distributed across
the cluster, and the code we use in Spark is identical to the code we just wrote for the
List[Array[NAStatCounter]]:

val reduced = nasRDD.reduce((n1, n2) => {
  n1.zip(n2).map { case (a, b) => a.merge(b) }
})
reduced.foreach(println)
...
stats: (count: 5748125, mean: 0.7129, stdev: 0.3887, max: 1.0, min: 0.0) NaN: 1007
stats: (count: 103698, mean: 0.9000, stdev: 0.2713, max: 1.0, min: 0.0) NaN: 5645434
stats: (count: 5749132, mean: 0.3156, stdev: 0.3342, max: 1.0, min: 0.0) NaN: 0
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stats: (count: 2464, mean: 0.3184, stdev: 0.3684, max: 1.0, min: 0.0) NaN: 5746668
stats: (count: 5749132, mean: 0.9550, stdev: 0.2073, max: 1.0, min: 0.0) NaN: 0
stats: (count: 5748337, mean: 0.2244, stdev: 0.4172, max: 1.0, min: 0.0) NaN: 795
stats: (count: 5748337, mean: 0.4888, stdev: 0.4998, max: 1.0, min: 0.0) NaN: 795
stats: (count: 5748337, mean: 0.2227, stdev: 0.4160, max: 1.0, min: 0.0) NaN: 795
stats: (count: 5736289, mean: 0.0055, stdev: 0.0741, max: 1.0, min: 0.0) NaN: 12843

Let’s encapsulate our missing value analysis code into a function in the StatsWithMiss
ing.scala file that allows us to compute these statistics for any RDD[Array[Double]]
by editing the file to include this block of code:

import org.apache.spark.rdd.RDD

def statsWithMissing(rdd: RDD[Array[Double]]): Array[NAStatCounter] = {
  val nastats = rdd.mapPartitions((iter: Iterator[Array[Double]]) => {
    val nas: Array[NAStatCounter] = iter.next().map(d => NAStatCounter(d))
    iter.foreach(arr => {
      nas.zip(arr).foreach { case (n, d) => n.add(d) }
    })
    Iterator(nas)
  })
  nastats.reduce((n1, n2) => {
    n1.zip(n2).map { case (a, b) => a.merge(b) }
  })
}

Note that instead of calling the map function to generate an Array[NAStatCounter] for
each record in the input RDD, we’re calling the slightly more advanced mapParti
tions function, which allows us to process all of the records within a partition of the
input RDD[Array[Double]] via an Iterator[Array[Double]]. This allows us to create
a single instance of Array[NAStatCounter] for each partition of the data and then up‐
date its state using the Array[Double] values that are returned by the given iterator,
which is a more efficient implementation. Indeed, our statsWithMissing method is
now very similar to how the Spark developers implemented the stats method for in‐
stances of type RDD[Double].

Simple Variable Selection and Scoring
With the statsWithMissing function, we can analyze the differences in the distribution
of the arrays of scores for both the matches and the non-matches in the parsed RDD:

val statsm = statsWithMissing(parsed.filter(_.matched).map(_.scores))
val statsn = statsWithMissing(parsed.filter(!_.matched).map(_.scores))

Both the statsm and statsn arrays have identical structure, but they describe different
subsets of our data: statsm contains the summary statistics on the scores array for
matches, while statsn does the same thing for non-matches. We can use the differences
in the values of the columns for matches and non-matches as a simple bit of analysis to
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help us come up with a scoring function for discriminating matches from non-matches
purely in terms of these match scores.

statsm.zip(statsn).map { case(m, n) =>
  (m.missing + n.missing, m.stats.mean - n.stats.mean)
}.foreach(println)
...
(1007,0.2854529057466858)
(5645434,0.09104268062279874)
(0,0.6838772482597568)
(5746668,0.8064147192926266)
(0,0.03240818525033484)
(795,0.7754423117834044)
(795,0.5109496938298719)
(795,0.7762059675300523)
(12843,0.9563812499852178)

A good feature has two properties: it tends to have significantly different values for
matches and non-matches (so the difference between the means will be large) and it
occurs often enough in the data that we can rely on it to be regularly available for any
pair of records. By this measure, Feature 1 isn’t very useful: it’s missing a lot of the time,
and the difference in the mean value for matches and non-matches is relatively small
— 0.09, for a score that ranges from 0 to 1. Feature 4 also isn’t particularly helpful. Even
though it’s available for any pair of records, the difference in means is just 0.03.

Features 5 and 7, on the other hand, are excellent: they almost always occur for any pair
of records, and there is a very large difference in the mean values (over 0.77 for both
features.) Features 2, 6, and 8 also seem beneficial: they are generally available in the
data set and the difference in mean values for matches and non-matches are substantial.

Features 0 and 3 are more of a mixed bag: Feature 0 doesn’t discriminate all that well
(the difference in the means is only 0.28), even though it’s usually available for a pair of
records, while Feature 3 has a large difference in the means, but it’s almost always miss‐
ing. It’s not quite obvious under what circumstances we should include these features
in our model based on this data.

For now, we’re going to use a simple scoring model that ranks the similarity of pairs of
records based on the sums of the values of the obviously good features: 2, 5, 6, 7, and 8.
For the few records where the values of these features are missing, we’ll use 0 in place
of the NaN value in our sum. We can get a rough feel for the performance of our simple
model by creating a RDD of scores and match values and evaluating how well the score
discriminates between matches and non-matches at various thresholds:

def naz(d: Double) = if (Double.NaN.equals(d)) 0.0 else d
case class Scored(md: MatchData, score: Double)
val ct = parsed.map(md => {
  val score = Array(2, 5, 6, 7, 8).map(i => naz(md.scores(i))).sum
  Scored(md, score)
})
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Using a high threshold value of 4.0, meaning that the average of the five features was
0.8, we filter out almost all of the non-matches while keeping over 90% of the matches:

ct.filter(s => s.score >= 4.0).map(s => s.md.matched).countByValue()
...
Map(false -> 637, true -> 20871)

Using the lower threshold of 2.0, we can ensure that we capture all of the known match‐
ing records, but at a substantial cost in terms of false positives:

ct.filter(s => s.score >= 2.0).map(s => s.md.matched).countByValue()
...
Map(false -> 596414, true -> 20931)

Even though the number of false positives is higher than we would like, this more gen‐
erous filter still removes 90% of the non-matching records from our consideration while
including every positive match. Even though this is pretty good, it’s possible to do even
better; see if you can find a way to use some of the other values from the scores array
(both missing and not) to come up with a scoring function that successfully identifies
every true match at the cost of less than one hundred false positives.

Where To Go From Here
If this chapter was your first time carrying out data preparation and analysis with Scala
and Spark, we hope that you got a feel for what a powerful foundation these tools pro‐
vide. If you have been using Scala and Spark for awhile, we hope that you will pass this
chapter along to your friends and colleagues as a way of introducing them to the power
as well.

Our goal for this chapter was to provide you with enough Scala knowledge to be able
to understand and carry out the rest of the recipes in this book. If you are the kind of
person who learns best by practical examples, your next step is to continue on to the
next set of chapters, where we will introduce you to MLlib, the machine learning library
designed for Spark.

As you become a seasoned user of Spark and Scala for data analysis, it’s likely that you
will reach a point where you begin to build tools and libraries that are designed to help
other analysts and data scientists apply Spark to solve their own problems. At that point
in your development, it would be helpful to pick up additional books on Scala, like
Programming Scala by Dean Wampler and Alex Payne, and The Scala Cookbook by
Alvin Alexander.
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CHAPTER 3

Recommending Music and the
Audioscrobbler data set

Sean Owen

De gustibus non est disputandum. (There’s no accounting for taste.)

When somebody asks what it is I work on for a living, the direct answer of “data science”
or “machine learning” sounds impressive but usually draws a blank response. Fair
enough; even actual data scientists seem to struggle to define what these mean — storing
lots of data, computing, predicting something? Inevitably, I jump straight to a relatable
example:

“OK, you know how Amazon will tell you about books like the ones you bought? Yes? Yes!
It’s like that.”

Empirically, the recommender engine seems to be an example of large-scale machine
learning that everyone already understands. And, most people have seen Amazon’s. It
is a common denominator, because recommender engines are everywhere, from social
networks to video sites to online retailers. We can also directly observe them in action.
We’re aware that a computer is picking tracks to play on Spotify, in a way we don’t
necessarily notice that Gmail is deciding whether inbound email is spam.

The output of a recommender is more intuitively understandable than other machine
learning algorithms. It’s exciting, even. For all that we think that musical taste is so
personal and inexplicable, recommenders do a surprisingly good job of identifying
tracks we didn’t know we would like.

Finally, for domains like music or movies where recommenders are usually deployed,
it’s comparatively easy to reason about why a recommended piece of music fits with
someone’s listening history. Not all clustering or classification algorithms match that
description. For example, a support vector machine classifier is a set of coefficients, and
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it’s hard even for practitioners to articulate what it is the numbers mean when they make
predictions.

So, it seems fitting to kick off the next three chapters, which will explore key machine
learning algorithms on Spark, with a chapter built around recommender engines, and
recommending music in particular. It’s an accessible way to introduce real-world use of
Spark and MLlib, and some basic machine learning ideas that will be developed in
subsequent chapters.

Data Set
This example will use a data set published by Audioscrobbler. Audioscrobbler was the
first music recommendation system for last.fm, one of the first internet streaming radio
sites, founded in 2002. Audioscrobbler provided an open API for “scrobbling”, or re‐
cording listeners’ plays of artists’ songs. last.fm used this information to build a powerful
music recommender engine. The system reached millions of users because third-party
apps and sites could provide listening data back to the recommender engine.

At that time, research on recommender engines was mostly confined to learning from
rating-like data. That is, recommenders were usually viewed as tools that operated on
input like, “Bob rates Prince 3.5 stars”.

The Audioscrobbler data set is interesting because it merely records plays: “Bob played
a Prince track”. A play carries less information than a rating. Just because Bob played
the track doesn’t mean he actually liked it. You or I may occasionally play a song by an
artist we don’t care for, or even play an album and walk out of the room.

However, listeners rate music far less frequently than they play music. A data set like
this is therefore much larger, covers more users and artists, and contains more total
information than a rating data set, even if each individual data point carries less infor‐
mation. This type of data is often called implicit feedback data since the user-artist con‐
nections are implied as a side-effect of other actions, and not given as explicit ratings
or thumbs-up.

A snapshot of a data set distributed by last.fm in 2005 can be found online at http://
www-etud.iro.umontreal.ca/~bergstrj/audioscrobbler_data.html as a compressed
archive. Download the archive, and find within it several files. The main data set is in
the file user_artist_data.txt. It contains about 141,000 unique users, and 1.6 million
unique artists. About 24.2 million users’ plays of artists’ are recorded, along with their
count.

The data set also gives the names of each artist by their IDs in the file artist_da
ta.txt. Note that when plays are scrobbled, the client application submits the name of
the artist being played. This name could be misspelled or nonstandard, and this may
only be detected later. For example, “The Smiths”, “Smiths, The”, and “the smiths” may
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appear as distinct artist IDs in the data set, even though they are plainly the same. So,
the data set also includes artist_alias.txt, which maps artist IDs that are known
misspellings or variants to the canonical ID of that artist.

The Alternating Least Squares Recommender Algorithm
We need to choose a recommender algorithm that is suitable for this implicit feedback
data. The data set consists entirely of interactions between users and artists’ songs. It
contains no information about the users, or about the artists other than their names.
We need an algorithm that learns without access to user or artist attributes. These are
typically called collaborative filtering algorithms. For example, deciding that two users
may share similar tastes because they are the same age is not an example of collaborative
filtering. Deciding that two users may like the same song since they play many of the
same other songs is an example.

This data set looks large, because it contains tens of millions of play counts. But in a
different sense, it is small and skimpy, because it is sparse. On average, each user has
played songs from about 171 artists — out of 1.6 million. Some users have listened to
only 1 artist. We need an algorithm that might provide decent recommendations to even
these users. After all, at some point, every user starts out with just one play at some
point!

Finally, we need an algorithm that scales, both in its ability to build large models, and
to create recommendations quickly. Recommendations are typically required in near-
real-time, within a second, not tomorrow.

This example will employ a member of a broad class of algorithms called latent-factor
models. They try to explain observed interactions between large numbers of users and
products through a relatively small number of unobserved, underlying reasons. It is
analogous to explaining why millions of people buy a particular few of thousands of
possible albums by describing users and albums in terms of tastes for perhaps tens of
genres, tastes which are not directly observable or given as data.

More specifically, this example will use a type of matrix factorization model. Mathe‐
matically, these algorithms treat the user and product data as if it were a large, sparse
matrix A, where the entry at row i and column j exists if user i has played artist j. They
factor A as the matrix product of two smaller matrices, X and Y. They are very skinny
— both have many rows because A has many rows and columns, but both have just a
few columns (k). The k columns correspond to the latent factors that are being used to
explain the interaction data.

The factorization can only be approximate because k is small, as shown in Figure 3-1:
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Figure 3-1. Matrix Factorization

These algorithms are sometimes called matrix completion algorithms, because the orig‐
inal matrix A may be quite sparse, but the approximate product X Y T  is completely
dense. It is a model in the sense that it produces a value for every entry of A, even the
many that are missing in the original A.

This is a case where, happily, the linear algebra maps directly and elegantly to intuition.
These two matrices contain row for each user, and each artist, respectively. The rows
have few values — k. Each value corresponds to a latent feature in the model. So the
rows express how much users and artists associate with these latent features, which
might correspond to tastes or genres. And it is simply the product of a user-feature and
feature-artist matrix that yields a complete estimation of the entire, dense user-artist
interaction matrix.

The bad news is that A = X Y T  generally has no solution at all, since X and Y aren’t
large enough (technically speaking, too low rank) to perfectly represent A. This is ac‐
tually a good thing. A is just a tiny sample of all interactions that could happen. In a way,
we believe A is a terribly spotty, and therefore hard-to-explain, view of a simpler un‐
derlying reality that is well explained by just some small number of factors, k of them.
Think of a jigsaw puzzle depicting a cat: the final puzzle is simple to describe — a cat.
When holding just a few pieces, however, the picture you see is quite difficult to describe.

X Y T  should still be as close to A as possible. After all, its all we’ve got to go on as a
guide. It will not and should not reproduce it exactly. The bad news again is that this
can’t be solved directly for both the best X and best Y at the same time. The good news
is that it’s trivial to solve for the best X if Y is known, and vice versa. But, of course, the
point is that neither is known beforehand!
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Fortunately, there are algorithms that can escape this catch-22 and find a decent solution.
More specifically still, the example in this chapter will use the Alternating Least
Squares (ALS) algorithm to compute X and Y. This type of approach was popularized
around the time of the Netflix Prize by papers like Collaborative Filtering for Implicit
Feedback Datasets and Large-scale Parallel Collaborative Filtering for the Netflix
Prize. In fact, Spark MLlib’s ALS implementation draws on ideas from both of these
papers.

Y isn’t known, but, it can be initialized to a matrix full of randomly-chosen row vectors,
and it turns out that a random solution is a fine enough place to start. Then simple linear
algebra gives the best solution for X. In fact, it’s trivial to compute each row i of X
separately as a function of Y and of one row of A. This is show in Equation 3-1. Because
it can be done separately it can be done in parallel, and that is an excellent property for
a large-scale computation.

Equation 3-1. ALS Normal Equation

AiY (Y T Y )-1 = X i

Again, equality can’t be achieved exactly, so in fact the goal is to minimize
| AiY (Y T Y )-1 - X i| , or the squared differences between the two. This is where the
“least squares” in the name comes from. Furthermore, in practice this is never solved
by actually computing inverses, but via faster and more direct methods involving meth‐
ods like the QR decomposition. Equation 3-1 simply elaborates the theory of how the
row vector is computed.

The same thing can be done to compute each Y j from X. And again to compute X from
Y again and so on. This is where the “alternating” part comes from. There’s just one
small problem: Y was made up, and random! X was computed optimally, yes, but given
a bogus solution for Y. Fortunately, if this process is repeated, X and Y do eventually
converge to decent solutions.

When used to factor a matrix representing implicit data, there is a little more complexity
to the ALS factorization. It is not factoring the input matrix A directly, but a matrix P
of 0s and 1s, containing 1 where A contains a positive value. The values in A are incor‐
porated later as weights. This detail is beyond the scope of this book, but is not necessary
to understand to use the algorithm.

Finally, the ALS algorithm can take advantage of the sparsity of the input data as well.
This, and its reliance on simple, optimized linear algebra, and its data-parallel nature
make it very fast at large scale. This is much of the reason it is the topic of this chap‐
ter. — that, and the fact that ALS is the only recommender algorithm currently imple‐
mented in Spark MLlib!
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Preparing the Data
All three data files should be copied into HDFS. This chapter will assume that the files
are available at /user/ds/. Start spark-shell. Note that this computation will take an
unusually large amount of memory. If you are running locally, rather than on a cluster,
for example, you will likely need to specify --driver-memory 6g to have enough mem‐
ory to complete these computations.

The first step in building a model is to understand the data that is available, and parse
or transform it into forms that are useful for analysis in Spark.

One small limitation of Spark MLlib’s ALS implementation is that it requires numeric
IDs for users and items, and further requires them to be nonnegative 32-bit integers.
This means that IDs larger than about Integer.MAX_VALUE, or 2147483647, can’t be
used. Does this data set conform to this requirement already? Access the file as an RDD
of Strings in Spark with SparkContext’s textFile method:

val rawUserArtistData = sc.textFile("hdfs:///user/ds/user_artist_data.txt")

By default, the RDD will contain one partition for each HDFS block. Because this file
consumes about 400MB on HDFS, It will split into about 3 to 6 partitions given typical
HDFS block sizes. This is normally fine, but, machine learning tasks like ALS are likely
to be more compute-intensive than simple text processing. It may be better to break the
data into smaller pieces — more partitions — for processing. This can let Spark put
more processor cores to work on the problem at once. You can supply second argument
to this method to specify a different and larger number of partitions. This might be set
to match the number of cores in your cluster for example.

Each line of the file contains a user ID, an artist ID, and a play count, separated by spaces.
To compute statistics on the user ID, we split the line by space, and the first (0-indexed)
value is parsed as a number. The stats() method returns an object containing statistics
like maximum and minimum. And likewise for the artist IDs:

rawUserArtistData.map(_.split(' ')(0).toDouble).stats()
rawUserArtistData.map(_.split(' ')(1).toDouble).stats()

The computed statistics that are printed reveal that the maximum user and artist IDs
are 2443548 and 10794401, respectively. These are comfortably smaller than
2147483647. No additional transformation will be necessary to use these IDs.

It will shortly be useful to know the artist names corresponding to the opaque numeric
IDs. This information is contained in artist_data.txt. This time, it contains artist ID
and name separated by a tab. However, a straightforward parsing of the file into
(Int,String) tuples will fail:

val rawArtistData = sc.textFile("hdfs:///user/ds/artist_data.txt")
val artistByID = rawArtistData.map { line =>
  val (id, name) = line.span(_ != '\t')
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  (id.toInt, name.trim)
}

Here, span() splits the line by its first tab by consuming characters that aren’t tabs. It
then parses the first portion as the numeric artist ID, and retains the rest as the artist
name (with whitespace — the tab — removed). A small number of the lines appear to
be corrupted. They don’t contain a tab, or, inadvertently include a newline character.
These lines cause a NumberFormatException, and ideally, they would not map to any‐
thing at all.

However the map() function must return exactly one value for every input, so it can’t
be used. It’s possible remove the lines that don’t parse with filter(), but this would
duplicate the parsing logic. However, the flatMap() function is appropriate when each
element maps to zero, one or more results, since it simply “flattens” these zero or more
results from each input into one big RDD. It works with Scala collections, but also works
Scala’s Option class. Option represents a value that might only optionally exist. It is like
a simple collection of 1 or 0 values, corresponding to its Some and None subclasses. So,
while the function in flatMap below could as easily return an empty List, or List of
one element, this is a reasonable place to instead use the simpler and clearer Some and
None:

val artistByID = rawArtistData.flatMap { line =>
  val (id, name) = line.span(_ != '\t')
  if (name.isEmpty) {
    None
  } else {
    try {
      Some((id.toInt, name.trim))
    } catch {
      case e: NumberFormatException => None
    }
  }
}

The file artist_alias.txt maps artist IDs that may be misspelled or nonstandard to
the ID of the artist’s canonical name. It contains two IDs per line, separated by a tab.
This file is relatively small, containing about 200,000 entries. It will be useful to collect
it as a Map, mapping “bad” artist IDs to “good” ones, instead of just using it as an RDD
of pairs of artist IDs. Again, some lines are missing the first artist ID, for some reason,
and are skipped.

val rawArtistAlias = sc.textFile("hdfs:///user/ds/artist_alias.txt")
val artistAlias = rawArtistAlias.flatMap { line =>
  val tokens = line.split('\t')
  if (tokens(0).isEmpty) {
    None
  } else {
    Some((tokens(0).toInt, tokens(1).toInt))
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  }
}.collectAsMap()

The first entry, for instance, maps ID 6803336 to 1000010. These can be looked up from
the RDD containing artist names:

artistByID.lookup(6803336).head
artistByID.lookup(1000010).head

This entry evidently maps “Aerosmith (unplugged)” to “Aerosmith”.

Building a First Model
Although the data set is in nearly the right form for use with Spark MLlib’s ALS imple‐
mentation, it requires two small extra transformations. First, the aliases data set should
be applied to convert all artist IDs to a canonical ID, if one exists. Second, the data should
be converted into Rating objects, which is the implementation’s abstraction for user-
product-value data. Despite the name, Rating is suitable for use with implicit data. Note
also that MLlib refers to “products” throughout its API, and so will this example, but
the “products” here are artists. The underlying model is not at all specific to recom‐
mending products, or for that matter, to recommending things to people.

import org.apache.spark.mllib.recommendation._

val bArtistAlias = sc.broadcast(artistAlias)

val trainData = rawUserArtistData.map { line =>
  val Array(userID, artistID, count) = line.split(' ').map(_.toInt)
  val finalArtistID =
    bArtistAlias.value.getOrElse(artistID, artistID) 
  Rating(userID, finalArtistID, count)
}.cache()

Get artist’s alias if it exists, else original artist

The artistAlias mapping created earlier can be referenced directly in an RDD’s map()
function, even though it is a local Map on the driver. This works, as it will be copied
automatically with every task. However, it is not tiny, consuming about 15 megabytes
in memory and at least several megabytes in serialized form. Since many tasks execute
in one JVM, it’s wasteful to send and store so many copies of the data.

Instead, a broadcast variable called bArtistAlias is created for artistAlias. This
makes Spark send and hold in memory just one copy for each executor in the cluster.
When there are thousands of tasks, and many execute in parallel on each executor, this
can save significant network traffic and memory.
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Broadcast Variables
When Spark runs a stage, it creates a binary representation of all the information needed
to run tasks in that stage, called the closure of the function that needs to be executed.
This closure includes all the data structures on the driver referenced in the function.
Spark distributes it to every executor on the cluster.

Broadcast variables are useful in situations where many tasks need access to the same
(immutable) data structure. They extend normal handling of task closures to enable:

• Caching data as raw Java objects on each executor, so they need not be deserialized
for each task

• Caching data across multiple jobs and stages

For example, consider a natural language processing application that relies on a large
dictionary of English words. Broadcasting the dictionary allows transferring it to every
executor once only:

val dict = ...
val bDict = sc.broadcast(dict)
...
def query(path: String) = {
  sc.textFile(path).map(l => score(l, bDict.value))
  ...
}

The call to cache() suggests to Spark that this RDD should be temporarily stored after
being computed, and furthermore, kept in memory in the cluster. This is helpful, be‐
cause the ALS algorithm is iterative, and will need to access this data 10 times or more,
typically. Without this, the RDD could be repeatedly recomputed from the original data
each time it is accessed! The Storage tab in the Spark UI will show how much of the
RDD is cached and how much memory it uses, as shown in Figure 3-2. This one con‐
sumes almost 900MB across the cluster.

Figure 3-2. Storage Tab in Spark UI, showing cached RDD memory usage

Finally, a model can be built:

val model = ALS.trainImplicit(trainData, 10, 5, 0.01, 1.0)
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This constructs model as a MatrixFactorizationModel. The operation will likely take
minutes or more depending on your cluster. Compared to some machine learning
models, whose final form may consist of just a few parameters or coefficients, this type
of model is huge. It contains a feature vector of 10 values for each user and product in
the model, and this case there are over 1.7 million of them. The model contains these
large user-feature and product-feature matrices as RDDs of their own.

To see some feature vectors, try the following. Note that the feature vector is an Array
of 10 numbers, and arrays don’t naturally print in a readable form. This translates the
vectors to readable form with mkString(), a method commonly used in Scala to join
elements of collection into a delimited string.

model.userFeatures.mapValues(_.mkString(", ")).first

...
(4293,-0.3233030601963864, 0.31964527593541325,
   0.49025505511361034, 0.09000932568001832, 0.4429537767744912,
   0.4186675713407441, 0.8026858843673894, -0.4841300444834003,
  -0.12485901532338621, 0.19795451025931002)

The values in your results will be somewhat different. The final mod‐
el depends on a randomly-chosen initial set of feature vectors.

The other arguments to trainImplicit() are hyperparameters whose value can affect
the quality of the recommendations that the model makes. These will be explained later.
The more important first question is, is the model any good? Does it produce good
recommendations?

Spot Checking Recommendations
We should first see if the artist recommendations make any intuitive sense, by examining
a user, his or her plays, and recommendations for that user. Take, for example, user
2093760. Extract the IDs of artists that this user has listened to and print their names.
This means searching the input for artist IDs for this user, and then filtering the set of
artists by these IDs in order to collect and print the names in order:

val rawArtistsForUser = rawUserArtistData.map(_.split(' ')).
  filter { case Array(user,_,_) => user.toInt == 2093760 } 

val existingProducts =
  rawArtistsForUser.map { case Array(_,artist,_) => artist.toInt }.
  collect().toSet 

artistByID.filter { case (id, name) =>
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  existingProducts.contains(id)
}.values.collect().foreach(println) 

...
David Gray
Blackalicious
Jurassic 5
The Saw Doctors
Xzibit

Find lines whose user is 2093760
Collect unique artists
Filter in those artists, get just artist, and print

The artists look like a mix of mainstream pop and hip-hop. A Jurassic 5 fan? Remember,
it’s 2005. In case you’re wondering, The Saw Doctors are a very Irish rock band popular
in Ireland.

Something similar can be done to make 5 recommendations for this user:

val recommendations = model.recommendProducts(2093760, 5)
recommendations.foreach(println)

...
Rating(2093760,1300642,0.02833118412903932)
Rating(2093760,2814,0.027832682960168387)
Rating(2093760,1037970,0.02726611004625264)
Rating(2093760,1001819,0.02716011293509426)
Rating(2093760,4605,0.027118271894797333)

The result consists of Rating objects with a (redundant) user ID, artist ID, and numeric
value. Although also in a field called rating, it is not an estimated rating. For this type
of ALS algorithm, it is an opaque value normally between 0 and 1, where higher values
mean a better recommendation. It is not a probability, but can be though of as estimate
of a 0/1 value indicating whether the user won’t, or will, interact with the artist respec‐
tively.

After extracting the artist IDs for the recommendations, similarity, the artist names can
be looked up:

val recommendedProductIDs = recommendations.map(_.product).toSet

artistByID.filter { case (id, name) =>
  recommendedProductIDs.contains(id)
}.values.collect().foreach(println)

...
Green Day
Linkin Park
Metallica
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My Chemical Romance
System of a Down

The result is a mix of pop punk and metal. This doesn’t look like a great set of recom‐
mendations, at first glance. While these are generally popular artists, they don’t appear
personalized to this user’s listening habits.

Evaluating Recommendation Quality
Of course, that’s just one subjective judgment about one user’s results. It’s hard for any‐
one but that user to quantify how good the recommendations are. Moreover, it’s infea‐
sible to have any human manually score even a small sample of the output to evaluate
the results.

It’s reasonable to assume that users tend to play songs from artists that are appealing,
and not play songs from artists that aren’t appealing. So, the plays for a user give a partial
picture of what “good” and “bad” artist recommendations are. This is a problematic
assumption, but about the best that can be done without any other data. For example,
presumably user 2093760 likes many more artists than the five listed above, and that
among the 1.7 million other artists not played, a few are of interest and not all are “bad”
recommendations.

What if a recommender were evaluated on its ability to rank good artists high in a list
of recommendations? This is one of several generic metrics that can be applied to a
system that ranks things, like a recommender. The problem is that “good” is defined as
“artists the user has listened to”, and the recommender system has already received all
of this information as input. It could trivially return the users previously-listened artists
as top recommendations and score perfectly. This is not useful, especially as the rec‐
ommender’s role is to recommend artists that the user has never listened to.

To make this meaningful, some of the artist play data can be set aside and hidden from
the ALS model building process. Then, this held-out data can be interpreted as a col‐
lection of “good” recommendations for each user, but one that the recommender has
not already been given. The recommender is asked to rank all items in the model, and
the rank of the held-out artists are examined. Ideally the recommender places all of
them at or near the top of the list.

The recommender’s score can then be computed by comparing all held-out artists’ ranks
to the rest. (In practice, this is computed by examining only a sample of all such pairs,
since there are a potentially huge number of such pairs). The fraction of pairs where the
held-out artist is ranked higher is its score. 1.0 is perfect, 0.0 is the worst possible score,
and 0.5 is the expected value achieved from randomly ranking artists.

This metric is directly related to an information retrieval concept, the Receiver Oper‐
ating Characteristic (ROC) curve. The metric above equals the area under this ROC
curve, and is indeed known as AUC, for Area Under the Curve. AUC may be viewed as
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the probability that a randomly-chosen “good” artist ranks above a randomly-chosen
“bad” artist.

The AUC metric is also used in evaluation of classifiers. It is implemented, along with
related methods, in the MLlib class BinaryClassificationMetrics. For recommen‐
ders, we will compute AUC per user and average the result. The resulting metric is
slightly different, and might be called “mean AUC”.

Other evaluation metrics that are relevant to systems that rank things are implemented
in RankingMetrics. These include metrics like precision, recall, and mean average pre‐
cision (MAP). MAP is also frequently used and focuses more narrowly on the quality
of the top recommendations. However, AUC will be used here as a common and broad
measure of the quality of the entire model output.

In fact, the process of holding out some data to select a model and evaluate its accuracy
is common practice in all of machine learning. Typically, data is divided into three
subsets: training, cross-validation (CV), and test sets. For simplicity in this initial ex‐
ample, only two sets will be used: training and CV. This will be sufficient to choose a
model. In the following chapter, this idea will be extended to include the test set.

Computing AUC
An implementation of AUC is provided in the source code accompanying this book. It
is complex and not reproduced here, but is explained in some detail in comments in
the source code. It accepts the CV set as the “positive” or “good” artists for each user,
and a prediction function. This function translates each user-artist pair into a prediction
as a Rating containing the user, artist and a number wherein higher values means higher
rank in the recommendations.

In order to use it, the input data must be split into a train and CV set. The ALS model
will be trained on the train data set only, and the CV set used to evaluate the model.
Here, 90% of the data is used for training and the remaining 10% for cross-validation:

def areaUnderCurve(
    positiveData: RDD[Rating],
    bAllItemIDs: Broadcast[Array[Int]],
    predictFunction: (RDD[(Int,Int)] => RDD[Rating])) = {
  ...
}

val allData = buildRatings(rawUserArtistData, bArtistAlias) 
val Array(trainData, cvData) = allData.randomSplit(Array(0.9, 0.1))
trainData.cache()
cvData.cache()

val allItemIDs = allData.map(_.product).distinct().collect() 
val bAllItemIDs = sc.broadcast(allItemIDs)
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val model = ALS.trainImplicit(trainData, 10, 5, 0.01, 1.0)
val auc = areaUnderCurve(cvData, bAllItemIDs, model.predict)

This function is defined in accompanying source code
Remove duplicates, and collect to driver

Note that areaUnderCurve() accepts a function as its third argument. Here, the pre
dict() method from MatrixFactorizationModel is passed in, but it will shortly be
swapped out for an alternative.

The result is about 0.96. Is this good? It’s certainly higher than the 0.5 that is expected
from making recommendations randomly. It’s close to 1.0, which is the maximum pos‐
sible score. Generally, an AUC over 0.9 would be considered high.

This evaluation could be repeated with a different 90% as the training set. The resulting
AUC values’ average might be a better estimate of the algorithm’s performance on the
data set. In fact, one common practice is to divide the data into k subsets of similar size,
use k-1 subsets together for training, and evaluate on the remaining subset. This can be
repeated k times, using a different set of subsets each time. This is called k-fold cross
validation. This won’t be implemented in examples here, for simplicity.

It’s helpful to benchmark this against a simpler approach. For example, consider rec‐
ommending the globally most-played artists to every user. This is not personalized, but
is simple and may be effective. Define this simple prediction function and evaluate its
AUC score:

def predictMostListened(
    sc: SparkContext,
    train: RDD[Rating])(allData: RDD[(Int,Int)]) = {

  val bListenCount = sc.broadcast(
    train.map(r => (r.product, r.rating)).
      reduceByKey(_ + _).collectAsMap()
  )
  allData.map { case (user, product) =>
    Rating(
      user,
      product,
      bListenCount.value.getOrElse(product, 0.0)
    )
  }
}

val auc = areaUnderCurve(
  cvData, bAllItemIDs, predictMostListened(sc, trainData))

This is another interesting demonstration of Scala syntax, where the function appears
to be defined to take two lists of arguments. Calling the function and supplying the first
two arguments creates a partially-applied function, which itself takes an argument

50 | Chapter 3: Recommending Music and the Audioscrobbler data set

http://en.wikipedia.org/wiki/Cross-validation_%28statistics%29#k-fold_cross-validation
http://en.wikipedia.org/wiki/Cross-validation_%28statistics%29#k-fold_cross-validation


(allData) in order to return predictions. The result of predictMostListened(sc,
trainData) is a function.

The result is about 0.93. This suggests that non-personalized recommendations are
already fairly effective according to this metric. It is good to see that the model built so
far beats this simple approach. Can it be made better?

Hyperparameter Selection
So far, the hyperparameter values used to build the MatrixFactorizationModel were
simply given without comment. They are not learned by the algorithm, and must be
chosen by the caller. The arguments to ALS.trainImplicit() were:

• rank = 10: the number of latent factors in the model, or equivalently, the number
of columns k in the user-feature and product-feature matrices. In non-trivial cases,
this is also their rank.

• iterations = 5: the number of iterations that the factorization runs. More iterations
take more time but may produce a better factorization.

• lambda = 0.01: a standard overfitting parameter. Higher values resist overfitting,
but values that are too high hurt the factorization’s accuracy.

• alpha = 1.0: controls the relative weight of observed versus unobserved user-
product interactions in the factorization.

rank, lambda and alpha can be considered hyperparameters to the model. (iterations is
more of a constraint on resources used in the factorization.) These are not values that
end up in the matrices inside the MatrixFactorizationModel — those are simply its
parameters, and are chosen by the algorithm. These hyperparameters are instead pa‐
rameters to the process of building itself.

The values used above are not necessarily optimal. Choosing good hyperparameter
values is a common problem in machine learning. The most basic way to choose values
is to simply try combinations of values and evaluate a metric for each of them, and
choose the combination that produces the best value of the metric.

Below, for example, 8 possible combinations are tried: rank = 10 or 50, lambda = 1.0 or
0.0001, and alpha = 1.0 or 40.0. These values are still something of a guess, but are chosen
to cover a broad range of parameter values. The results are printed in order by top AUC
score:

val evaluations =
  for (rank   <- Array(10,  50);
       lambda <- Array(1.0, 0.0001);
       alpha  <- Array(1.0, 40.0)) 
    yield {
      val model = ALS.trainImplicit(trainData, rank, 10, lambda, alpha)
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      val auc = areaUnderCurve(cvData, bAllItemIDs, model.predict)
      ((rank, lambda, alpha), auc)
    }

evaluations.sortBy(_._2).reverse.foreach(println) 

...
((50,1.0,40.0),0.9776687571356233)
((50,1.0E-4,40.0),0.9767551668703566)
((10,1.0E-4,40.0),0.9761931539712336)
((10,1.0,40.0),0.976154587705189)
((10,1.0,1.0),0.9683921981896727)
((50,1.0,1.0),0.9670901331816745)
((10,1.0E-4,1.0),0.9637196892517722)
((50,1.0E-4,1.0),0.9543377999707536)

Read as a triply-nested for loop
Sort by second value (AUC), descending, and print

The for syntax here is a way to write nested loops in Scala. It is as if
a loop over alpha is inside a loop over lambda, inside a loop over rank.

Interestingly, the parameter alpha seems consistently better at 40 than 1. (For the curi‐
ous, 40 was a value proposed as a default in one of the original ALS papers above.) This
can loosely be interpreted as indicating that the model is better off focusing far more
on what the user did listen to, than what he or she did not listen to.

A higher lambda looks slightly better too. This suggests the model is somewhat sus‐
ceptible to overfitting, and so needs a higher lambda to resist trying to fit the sparse
input given from each user too exactly. Overfitting will be revisited in more detail in the
following chapter.

The number of features doesn’t make a clear difference. 50 appears in both the highest
and lowest-scoring combinations, although the scores do not vary by much in absolute
terms anyway. This could indicate that the right number of features is actually higher
than 50, and that these values are alike in being too small.

Of course, this process can be repeated for different ranges of values, or more values. It
is a brute-force means of choosing hyperparameters. However, in a world where clusters
with terabytes of memory and hundreds of cores are not uncommon, and with frame‐
works like Spark that can exploit parallelism and memory for speed, it becomes quite
feasible.
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It is not strictly required to even understand what the hyperparameters mean, although
it is helpful to know what normal ranges of values are like in order to start the search
over a parameter space that is neither too large nor too tiny.

Making Recommendations
Proceeding for the moment with the best set of hyperparameters above, what does a
new model recommend for user 2093760?

50 Cent
Eminem
Green Day
U2
[unknown]

Anecdotally, this makes a bit more sense, with two hip-hop artists. [unknown] is plainly
not an artist. Querying the original data set reveals that it occurs 429,447 times, putting
it nearly in the top 100! This is some default value for plays without an artist, maybe
supplied by a certain scrobbling client. It is not useful information and should be dis‐
carded from the input, before starting again. It’s an example of how the practice of data
science is often iterative, with discoveries about the data occurring at all stages of the
process.

This model can be used to make recommendations for all users. This could be useful in
a batch process that recomputes a model, and recomputes recommendations, for users
every hour or even less, depending on the size of the data and speed of the cluster.

At the moment, however, Spark MLlib’s ALS implementation does not support a method
to recommend to all users. It is possible to recommend to one user at a time, although
each will launch a short-lived distributed job that takes a few seconds. This may be
suitable for rapidly recomputing recommendations for small groups of users. Here,
recommendations are made to 100 users taken from the data, and printed as user →
artist1, artist2, …:

val someUsers = allData.map(_.user).distinct().take(100) 
val someRecommendations =
  someUsers.map(userID => model.recommendProducts(userID, 5)) 
someRecommendations.map(
  recs => recs.head.user + " -> " + recs.map(_.product).mkString(", ") 
).foreach(println)

Copy 100 (distinct) users to the driver
map() is a local Scala operation here
mkString joins a collection to a string with a delimiter

Here, the recommendations are just printed. They could as easily be written to an ex‐
ternal store like HBase, which provides fast lookup at runtime.

Making Recommendations | 53

http://hbase.apache.org


Interestingly, this entire process could also be used to recommend users to artists. This
could be used to answer questions like, “which 100 users are most likely to be interested
in the new album by artist X”? Doing so would only require swapping the user and artist
field when parsing the input:

rawUserArtistData.map { line =>
  ...
  val userID = tokens(1).toInt 
  val artistID = tokens(0).toInt 
  ...
}

Read artist as “user”
Read user as “artist”

Where To Go From Here
Naturally, it’s possible to spend more time tuning the model parameters, and finding
and fixing anomalies in the input like the [unknown] artist.

For example, a quick analysis of play counts reveals that user 2064012 played artist 4468
an astonishing 439,771 times! Artist 4468 is the implausibly successful alterna-metal
band System of a Down, who turned up earlier in recommendations. Assuming an
average song length of 4 minutes, this is over 33 years of playing hits like “Chop Suey!’
and “B.Y.O.B.” As the band started making records in 1998, this seems to require playing
4 or 5 tracks at once for 7 years. Even accounting for die-hard fans, this seems hard to
believe. It’s spam, or a data error, and another example of the types of real-world data
problems that a production system would have to address.

ALS is not the only possible recommender algorithm. At this time, however, it is the
only one supported by Spark MLlib. However, MLlib also supports a variant of ALS for
non-implicit data. Its use is identical, except that the model is built with the method
ALS.train(). This is appropriate when data is rating-like, rather than count-like. For
example, it is appropriate when the data set is user ratings of artists on a 1-5 scale. The
resulting rating field in Rating objects returned from the various recommendation
methods then really is an estimated rating.

Later, other recommender algorithms may be available in Spark MLlib or other libraries.

In production, recommender engines often need to make recommendations in real-
time, as they are used in contexts like e-commerce sites where recommendations are
requested frequently as customers browse product pages. Precomputing and storing
recommendations in a NoSQL store, as mentioned above, is a reasonable way to make
recommendations available at scale. One disadvantage of this approach is that it requires
precomputing recommendations for all users that might need recommendations soon,
which is potentially any of them. For example, if only 10,000 of 1 million users visit a
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site in a day, precomputing all 1 million users’ recommendations each day is 99% wasted
effort.

It would be nicer to compute recommendations on the fly, as needed. While recom‐
mendations can be computed for one user using the MatrixFactorizationModel, this
is necessarily a distributed operation that takes several seconds, since MatrixFactori
zationModel is uniquely large and therefore actually a distributed data set. This is not
true of other models, which afford much faster scoring. Projects like Oryx attempt to
implement real-time on-demand recommendations with libraries like MLlib by effi‐
ciently accessing the model data in memory.
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CHAPTER 4

Predicting Forest Cover with Decision Trees

Sean Owen

Prediction is very difficult, especially if it’s about the future.
— Niels Bohr

In the late 19th century, the English scientist Sir Francis Galton was busy measuring
things like peas and people. He found that large peas (and people) had, on average,
smaller offspring. This isn’t so surprising. Being an exceptionally large pea is quite rare,
and while the offspring of such a pea might be bigger than the average one, it is unlikely
to be even bigger than its already-large parent.

As almost a side effect of his study, he plotted child versus parent size and noticed there
was a roughly linear relationship between the two. Large parent peas had slightly smaller
children; small parents had slightly larger children on average. The line’s slope was
therefore less than 1, and Galton described this phenomenon as we do today, as regres‐
sion to the mean.

Although maybe not perceived this way at the time, this line was, to me, the beginnings
of making predictions from data. The line links the two values, and implies that the
value of one suggests a lot about the value of the other. Given the size of a new pea, this
relationship could lead to a more accurate estimate of its offsprings’ size than simply
assuming the offspring would be like the parent or like every other pea.

Fast Forward to Regression
More than a century of statistics later, and even since the advent of modern machine
learning and data science, we still talk about the idea of predicting a value from other
values as regression, even though it has nothing to do with slipping back towards a mean
value, or indeed moving backwards at all. Regression techniques also relate to classifi‐
cation techniques; generally, regression refers to predicting a numeric quantity like size
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or income or temperature, while classification refers to predicting a label or category,
like “spam” or “picture of a cat”.

The common thread linking regression and classification is that both involve predicting
one (or more) values given one (or more) other values. To do so, both require a body
of inputs and outputs to learn from. They need to be fed both questions and known
answers. For this reason they are known as types of supervised learning.

Classification and regression are the oldest and most well-studied types of predictive
analytics. Most algorithms you will likely encounter in analytics packages and libraries
are classification or regression techniques, like support vector machines, logistic re‐
gression, naïve Bayes, neural networks and deep learning. Recommenders, the topic of
the previous chapter, were comparatively more intuitive to introduce, but are also just
a relatively recent sub-topic within machine learning.

This chapter will focus on a popular and flexible type of algorithm for both classification
and regression: decision trees, and its extension, random decision forests. The exciting
thing about these algorithms is that, with respect to Mr. Bohr, they can help predict the
future — or at least, predict the things we don’t yet know for sure, like your likelihood
to buy a car based on your online behavior, whether an email is spam given its words,
or which acres of land are likely to grow the most crops given their location and chem‐
istry.

Vectors and Features
To explain the choice of the data set and algorithm featured in this chapter, and to begin
to explain how regression and classification operate, it is necessary to briefly define the
terms that describe their input and output.

Consider predicting tomorrow’s high temperature given today’s weather. There is noth‐
ing wrong with this idea, but “today’s weather” is a loose and casual concept, and requires
some structuring before it can be fed into a learning algorithm.

It is really certain features of today’s weather that may predict tomorrow’s temperature,
like:

• today’s high temperature
• today’s low temperature
• today’s average humidity
• whether it’s cloudy, rainy, or clear today
• the number of weather forecasters predicting a cold snap tomorrow

These features are also sometimes called dimensions or even just variables. Each of these
features can be quantified. For example, high and low temperatures are measured in
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degrees Celsius, humidity can be measured as a fraction between 0 and 1, and weather
type can be labeled cloudy, rainy or clear. A number of forecasters is, of course, an
integer count. Today’s weather might therefore be reduced to a list of values like
13.1,19.0,0.73,cloudy,1

These five features together, in order, are known as a feature vector, and can describe
any day’s weather. This usage bears some resemblance to use of the term vector in linear
algebra, except that a vector in this sense can conceptually contain non-numeric values,
and even lack some values.

These features are not all of the same type. The first two features are measured in degrees
Celsius, but the third is a unitless quantity, a fraction. The fourth is not a number at all,
and the fifth is a number that is always a nonnegative integer.

For purposes of discussion, this book will talk about features in two broad groups only:
categorical features, and numeric features. Numeric features, here, are those that can be
quantified by a number and have a meaningful ordering. For example, it’s meaningful
say that today’s high was 23C, and that this is larger than yesterday’s high of 22C. All of
the features above are numeric, except the weather type. Terms like clear are not num‐
bers, and have no ordering. It is meaningless to say that cloudy is larger than clear.
This is a categorical feature, which instead takes on one of several discrete values.

Training Examples
A learning algorithm needs to train on data in order to make predictions. It requires a
large number of inputs, and known correct outputs, from historical data. For example,
in this problem, the learning algorithm would be given that, one day, the weather was
between 12 and 16 degrees Celsius, with 10% humidity, clear, with no forecast of a cold
snap, and the following day, the high temperature was 17.2 degrees. With enough of
these examples, a learning algorithm might learn to predict the following day’s high
temperature with some accuracy.

Feature vectors provide an organized way to describe input to a learning algorithm
(here: 12.5,15.5,0.10,clear,0). The output, or target, of the prediction can also be
thought of as a feature, here a numeric feature: 17.2.

It’s not uncommon to simply include the target as another feature in the feature vector.
The entire training example above might be thought of as 12.5,15.5,0.10,clear,
0,17.2. The collection of all of these examples is known as the training set.

Note that regression problems are just those where the target is a numeric feature, and
classification problem are those where the target is categorical. Not every regression or
classification algorithm can handle categorical features, or categorical targets; some are
limited to numeric features.
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Decision Trees and Forests
It turns out that the family of algorithms known as decision trees can naturally handle
both categorical and numeric features. They can be built in parallel easily. They are
robust to outliers in the data, meaning that a few extreme and possibly erroneous data
points may not affect the tree at all. They can consume data of different types and on
different scales without the need for pre-processing or normalization, which is an issue
that will reappear in the next chapter.

Decision trees generalize into a more powerful algorithm, called random decision for‐
ests. Their flexibility makes these algorithms worthwhile to examine in this chapter,
where Spark MLlib’s DecisionTree and RandomForest implementation will be applied
to a data set.

Decision tree-based algorithms have the further advantage of being comparatively in‐
tuitive to understand and reason about. In fact, we all probably use the same reasoning
embodied in decision trees, implicitly, in everyday life. For example, I sit down to have
morning coffee with milk. Before I commit to that milk and add it to my precious brew,
I want to predict: is the milk spoiled? I don’t know for sure. I might check if the use-by
date has passed. If not, I predict no, it’s not spoiled. If the date has passed by more than
3 days, I predict yes it’s spoiled. Otherwise, I sniff the milk. If it smells funny, I predict
yes, otherwise no.
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Figure 4-1. Decision Tree: Is it spoiled?

This series of yes/no rules that lead to a prediction are precisely what decision trees
embody. Each decision lead to one of two results, which was either a prediction, or,
another decision, as shown in Figure 4-1. In this sense, it is natural to think of the
decision process above as a tree of decisions, where each internal node in the tree is a
decision, and each leaf node is a final answer.

The rules above were ones I learned to apply intuitively over years of bachelor life —
they seemed like rules that were both simple and also usefully differentiated cases of
spoiled and non-spoiled milk. These are also properties of a good decision tree.

That is a simplistic decision tree, and was not built with any rigor. To elaborate, consider
another example. A robot has taken a job in an exotic pet store. It wants to learn, before
the shop opens, which animals in the shop would make a good pet for a child. The owner
lists 9 pets that would and wouldn’t be suitable before hurrying off. The robot compiles
the information found in Table 4-1 from examining the animals:

Table 4-1. Exotic pet store “feature vectors”
Name Weight (kg) # Legs Color Good Pet?

Fido 20.5 4 Brown Yes

Mr. Slither 3.1 0 Green No

Nemo 0.2 0 Tan Yes
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Name Weight (kg) # Legs Color Good Pet?

Dumbo 1390.8 4 Grey No

Kitty 12.1 4 Grey Yes

Jim 150.9 2 Tan No

Millie 0.1 100 Brown No

McPigeon 1.0 2 Grey No

Spot 10.0 4 Brown Yes

Although a name is given, it will not be included as a feature. There is little reason to
believe the name alone is predictive; “Felix” could name a cat, or a poisonous tarantula,
for all the robot knows. So, there are two numeric features (weight, number of legs) and
one categorical (color) predicting a categorical target (is / is not a good pet for a child).

The robot might try to fit a simple decision tree to start, consisting of a single decision
based on weight, to this training data, as shown in Figure 4-2:

Figure 4-2. Robot’s first Decision Tree

The logic of the decision tree is easy to read off, and make some sense: 500kg pets are
certainly sound unsuitable as pets. This rule predicts the correct value in 5 of 9 cases. A
quick glance suggests that the rule could be improved by lowering the weight threshold
to 100kg. This gets 6 of 9 examples correct. The heavy animals are now predicted cor‐
rectly; the lighter animals are only partly correct.

So, a second decision can be constructed to further refine the prediction for examples
with weight less than 100kg. It would be good to pick a feature that changes some of the
incorrect Yes predictions to No. For example, there is one small green animal, sounding
suspiciously like a snake, that could be predicted correctly by deciding on color, as in
Figure 4-3:
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Figure 4-3. Robot’s next Decision Tree

Now, 7 of 9 examples are correct. Of course, decision rules could be added until all 9
were correctly predicted. The logic embodied in the resulting decision tree would prob‐
ably sound implausible when translated into common speech: “if the animal’s weight is
less than 100kg, and its color is brown instead of green, and it has less than 10 legs, then
yes it is a suitable pet.” While perfectly fitting the given examples, a decision tree like
this would fail to predict that a (small, brown, four-legged) wolverine is not a suitable
pet. Some balance is needed to avoid this phenomenon, known as overfitting.

This is enough of an introduction to decision trees in order to begin exploring them
with Spark. The remainder of the chapter will explore how to pick decision rules, how
to know when to stop, and how to gain accuracy by creating a whole forest of trees.

Covtype Data Set
The data set used in this chapter is the well-known Covtype data set, available online at
https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/ as a compressed
CSV-format data file, covtype.data.gz, and accompanying info file, covtype.info.

The data set records the types of forest covering parcels of land in Colorado, USA. Each
example contains several features describing each parcel of land, like its elevation, slope,
distance to water, shade, and soil type, along with the known forest type covering the
land. The forest cover type is to be predicted from the rest of the features, of which there
are 54 in total.
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This data set has been used in research, and even a Kaggle competition. It is an interesting
data set to explore in this chapter because it contains both categorical and numeric
features. There are 581,012 examples in the data set, which does not exactly qualify as
big data, but is large enough to be manageable as an example and still highlight some
issues of scale.

Preparing the Data
Thankfully, the data is already in a simple CSV format and does not require much
cleaning or other preparation to be used with Spark MLlib. Later, it will be of interest
to explore some transformations of the data, but it can be used as-is to start.

The covtype.data file should be extracted and copied into HDFS. This chapter will
assume that the file is available at /user/ds/. Start spark-shell.

The Spark MLlib abstraction for a feature vector is known as a LabeledPoint, which
consists of a Spark MLlib Vector of features, and a target value, here called the label.
The target is a Double value, and Vector is essentially an abstraction on top of many
Double values. This suggests that LabeledPoint is only for numeric features. It can be
used with categorical features, with appropriate encoding.

One such encoding is one-hot or 1-of-n encoding, in which one categorical feature that
takes on N distinct values becomes N numeric features, each taking on the value 0 or 1.
Exactly one of the N values has value 1, and the others are 0. For example, a categorical
feature for weather that can be cloudy, rainy or clear would become 3 numeric fea‐
tures, where cloudy is represented by 1,0,0, rainy by 0,1,0 and so on. These 3 numeric
features might be thought of as like is_cloudy, is_rainy, and is_clear features.

Another possible encoding simply assigns a distinct numeric value to each possible value
of the categorical feature. For example, cloudy may become 1.0, rainy 2.0 and so on.

Be careful when encoding categorical feature as a single numeric
feature. The original categorical values have no ordering, but when
encoded as a number, they appear to. Treating the encoded feature as
numeric leads to meaningless results as the algorithm is effectively
pretending that rainy is somehow greater than, and 2 times larger
than, cloudy. It’s OK as long as the encoding’s numeric value is not
used as a number.

All of the columns contain numbers, but, the Covtype data set does not consist solely
of numeric features, at heart. The covtype.info file says that 4 of the columns are
actually a one-hot encoding of a single categorical feature with 4 values, Wilder
ness_Type. Likewise 40 of the columns are really one Soil_Type categorical feature.
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The target itself is a categorical value encoded as the values 1 to 7. The remaining features
are numeric features in various units, like meters, degrees or a qualitative “index” value.

We see both types of encodings of categorical features, then. It would have, perhaps,
been simpler and more straightforward to not encode such features (and in two ways,
no less), and instead simply include their values directly like “Rawah Wilderness Area”.
This is maybe an artifact of history; the data set was released in 1998. For performance
reasons, or to match the format expected by libraries of the day, which were built more
for regression problems, data sets often contain data encoded in these ways.

A First Decision Tree
To start, the data will be used as-is. The DecisionTree implementation, like several in
Spark MLlib, requires input in the form of +LabeledPoint+s:

import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.regression._

val rawData = sc.textFile("hdfs:///user/ds/covtype.data")

val data = rawData.map { line =>
  val values = line.split(',').map(_.toDouble)
  val featureVector = Vectors.dense(values.init) 
  val label = values.last - 1 
  LabeledPoint(label, featureVector)
}

init returns all but last value; target is last column
DecisionTree needs labels starting at 0; subtract 1

In the previous chapter, we built a recommender model right away on all of the available
data. This created a recommender that could be sense-checked by anyone with some
knowledge of music: looking at a user’s listening habits, and recommendations, we got
some sense that it was producing good results. Here, that is not possible. We would have
no idea how to make up a new 54-feature description of a new parcel of land in Colorado,
or what kind of forest cover to expect from such a parcel.

Instead, it is necessary to jump straight to holding out some data for purposes of eval‐
uating the resulting model. Before, the AUC metric was used to assess the agreement
between held-out listening data and predictions from recommendations. The principle
is the same here, although the evaluation metric will be different: precision. This time,
the data will be split into the full three subsets: training, cross-validation (CV) and test.
80% of the data is used for training, and 10% each for cross-validation and test.

val Array(trainData, cvData, testData) =
  data.randomSplit(Array(0.8, 0.1, 0.1))
trainData.cache()
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cvData.cache()
testData.cache()

As with the ALS implementation, the DecisionTree implementation has several hyper‐
parameters to choose. So, as before, the training and CV set are used to choose a good
setting of these hyperparameters for this data set. Here, the third set, the test set, is then
used to produce an unbiased evaluation of the expected accuracy of a model built with
those hyperparameters. The accuracy of the model on just the cross-validation set tends
to be biased and slightly too optimistic. This chapter will take this extra step of evaluating
the final model on the test set.

But first, try building a DecisionTreeModel on the training set, with some default ar‐
guments, and compute some metrics about the resulting model using the CV set:

import org.apache.spark.mllib.evaluation._
import org.apache.spark.mllib.tree._
import org.apache.spark.mllib.tree.model._

def getMetrics(model: DecisionTreeModel, data: RDD[LabeledPoint]):
    MulticlassMetrics = {
  val predictionsAndLabels = data.map(example =>
    (model.predict(example.features), example.label)
  )
  new MulticlassMetrics(predictionsAndLabels)
}

val model = DecisionTree.trainClassifier(
  trainData, 7, Map[Int,Int](), "gini", 4, 100)

val metrics = getMetrics(model, cvData)

Here, the use of trainClassifier instead of trainRegressor suggests that the target
value within each LabeledPoint should be treated as a distinct category number, not a
numeric feature value. (trainRegressor works similarly for regression problems, and
will not be discussed separately in this chapter.)

At this time, we must specify the number of target values it will encounter: 7. The Map
holds information about categorical features; this will be discussed later along with the
meaning of “gini”, the maximum depth of 4 and the max bin count of 100.

MulticlassMetrics computes standard metrics that in different ways measure the
quality of the predictions from a classifier, which here has been run on the CV set.
Ideally, the classifier should predict the correct target category for each example in the
CV set. The metrics available here measure this sort of correctness, in different ways.

Its companion class, BinaryClassificationMetrics, contains similar evaluation met‐
ric implementations for the particular, common case of a categorical target with just
two values. It can’t be used directly here as the target takes on many values.
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It may be helpful to have a quick look at the confusion matrix first:

metrics.confusionMatrix

...
14019.0  6630.0   15.0    0.0    0.0  1.0   391.0
5413.0   22399.0  438.0   16.0   0.0  3.0   50.0
0.0      457.0    2999.0  73.0   0.0  12.0  0.0
0.0      1.0      163.0   117.0  0.0  0.0   0.0
0.0      872.0    40.0    0.0    0.0  0.0   0.0
0.0      500.0    1138.0  36.0   0.0  48.0  0.0
1091.0   41.0     0.0     0.0    0.0  0.0   891.0

Your values will be a little different. The process of building a deci‐
sion tree includes some random choices which can lead to slightly
different classifications.

Because there are 7 target category values, this is a 7-by-7 matrix, where each row cor‐
responds to an actual correct value, and each column to a predicted value, in order. The
entry at row i and column j counts the number of times an example with true category
i was predicted as category j. So, the correct predictions are the counts along the diag‐
onal, and incorrect predictions are everything else. Here it seems that, indeed, counts
are high along the diagonal, which is a good sign. However there are certainly a number
of misclassifications, and for example, category 5 is never predicted at all.

It’s helpful to summarize the accuracy with a single number. An obvious place to start
is to compute the fraction of all examples that were correctly predicted:

metrics.precision

...
0.7030630195577938

About 70% of examples were classified correctly, which sounds like a good start. This
is commonly called accuracy, but is called precision in Spark’s MulticlassMetrics. This
is a light overloading of the term.

Precision is actually a common metric for binary classification problems, where there
are 2 category values, not several. In a binary classification problem, where there is some
kind of positive and negative class, precision is the fraction of examples that the
classifier marked positive that are actually positive. It is often accompanied by the
metric recall. This is the fraction of all examples that are actually positive that the
classifier marked positive.
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For example, say there are 20 actually positive examples in a data set of 50 examples.
The classifier marks 10 of the 20 as positive, and of those 10, 4 are actually positive
(correctly classified). Precision is 4/10 = 0.4 and recall is 4/20 = 0.2 in this case.

These concepts can be applied to this multi-class problem by viewing each category
independently as the positive class, and all else as negative. For example, to compute
precision and recall for each category versus the rest:

(0 until 7).map( 
  cat => (metrics.precision(cat), metrics.recall(cat))
).foreach(println)

...
(0.6805931840866961,0.6809492105763744)
(0.7297560975609756,0.7892237892589596)
(0.6376224968044312,0.8473952434881087)
(0.5384615384615384,0.3917910447761194)
(0.0,0.0)
(0.7083333333333334,0.0293778801843318)
(0.6956168831168831,0.42828585707146427)

DecisionTreeModel numbers categories from 0

This shows that the accuracy for each class individually varies. For purposes here, there’s
no reason to think that one category’s accuracy is more important than another, so
examples will take the overall multi-class precision as a good, single measure of the
accuracy of predictions.

Although 70% accuracy sounds decent, it’s not immediately clear whether it is out‐
standing or poor accuracy. How well would a simplistic approach do, to establish a
baseline? For example, just as a broken clock is correct twice a day, randomly guessing
a classification for each example would also occasionally produce the correct answer.

Such a “classifier” could be constructed by picking a class at random in proportion to
its prevalence in the training set. Each classification would be correct in proportion to
the prevalence in the CV set. For example, a class that makes up 20% of the training set
and 10% of the CV set will contribute 20% of 10%, or 2%, to the overall accuracy. That
10% will be correctly “classified” 20% of the time by guessing. The accuracy can be
evaluated by summing these products of probabilities.

import org.apache.spark.rdd._

def classProbabilities(data: RDD[LabeledPoint]): Array[Double] = {
  val countsByCategory = data.map(_.label).countByValue() 
  val counts = countsByCategory.toArray.sortBy(_._1).map(_._2) 
  counts.map(_.toDouble / counts.sum)
}

val trainPriorProbabilities = classProbabilities(trainData)
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val cvPriorProbabilities = classProbabilities(cvData)
trainPriorProbabilities.zip(cvPriorProbabilities).map { 
  case (trainProb, cvProb) => trainProb * cvProb
}.sum

...
0.37737764750734776

Count (category,count) in data
Order counts by category and extract counts
Pair probability in train, CV set and sum products

Random guessing achieves 37% accuracy then, which makes 70% seem like a good result
after all. But this result was achieved with default arguments to DecisionTree.train
Classifier(). Naturally, we can do even better by exploring what these arguments —
these hyperparameters — mean for the tree building process.

Decision Tree Hyperparameters
In the preceding chapter, the ALS algorithm exposed several hyperparameters whose
values had to be chosen by building models with various combinations of values and
then assessing the quality of each result using some metric. The process is the same here,
although the metric is now multi-class accuracy instead of AUC, and the hyperpara‐
meters controlling how the tree’s decisions are chosen are different: maximum depth,
maximum bins, and impurity measure.

Maximum depth simply limits the number of levels in the decision tree. It is the maxi‐
mum number of chained decisions that the classifier will make to classify an example.
It is useful to limit this in order to avoid overfitting the training data, as illustrated above
in the pet store example.

The decision tree algorithm is responsible for coming up with potential decision rules
to try at each level, like the weight >= 100 or weight >= 500 decisions in the pet store
example. Decisions are always of the same form; for numeric features, of the form
feature >= value, and for categorical features, feature in (value1, value2, …).
So, the set of decision rules to try is really a set of values to plug into the decision rule.
These are referred to as “bins” in the Spark MLlib implementation. A larger number of
bins requires more processing time but may lead to finding a more optimal decision
rule.

What makes a decision rule good? Intuitively, a good rule would meaningfully distin‐
guish examples by target category value. For example, a rule that divides the Covtype
data set into examples with only categories 1-3 on the one hand, and 4-7 on the other,
would be excellent since it clearly separates some categories from the others. A rule that
resulted in about the same mix of all categories as are found in the whole data set doesn’t

Decision Tree Hyperparameters | 69



seem helpful; following either branch of such a decision leads to about the same distri‐
bution of possible target values, and so doesn’t really make progress towards a confident
classification.

Put another way, good rules divide the training data’s target values into relatively ho‐
mogeneous, or “pure”, subsets. Picking a best rule means minimizes the impurity of the
two subsets it induces. There are two commonly-used measures of impurity, Gini im‐
purity and entropy.

Gini impurity is directly related to the accuracy of the random-guess classifier above.
Within a subset, it is the probability that a randomly chosen classification of a randomly
chosen example (both according to the distribution of classes in the subset) is incor‐
rect. As above, this is the sum of products of proportions of classes, but with themselves,
and subtracted from 1. If a subset has N classes and pi is the proportion of examples of
class i, then its Gini impurity is given by Equation 4-1:

Equation 4-1. Gini Impurity equation

IG(p) = 1 - ∑
i=1

N
pi

2

If the subset contains only one class, this value is 0 as it is completely “pure”. When there
are N classes in the subset, this value is larger than 0 and is largest when the classes occur
the same number of times — maximally impure.

Entropy is another measure of impurity, borrowed from information theory. Its nature
is more difficult to explain, but it captures in a sense how much uncertainty the collection
of target values in the subset contains. A subset containing one class only is completely
certain, and has 0 entropy. Hence low entropy, like low Gini impurity, is a good thing.
Entropy is defined as in Equation 4-2.

Equation 4-2. Entropy

IE (p) = ∑
i=1

N
pi log ( 1

p ) = - ∑
i=1

N
pi log (pi)

Interestingly, uncertainty has units. Because the logarithm is the natural log (base e),
the units are nats, the base-e counterpart to more familiar bits (which can be obtained
by using log base 2 instead). It really is measuring information, and so it’s common to
talk about the information gain of a decision rule when using entropy with decision
trees.
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One or the other measure may be a better metric for picking decision rules in a given
data set. The default in Spark’s implementation is Gini impurity.

Some decision tree implementations will impose a minimum information gain, or de‐
crease in impurity, for candidate decision rules. Rules that do not improve the subsets
impurity enough are rejected, then. Like a lower maximum depth, this can help the
model resist overfitting, since decisions that barely help divide the training input may
in fact not helpfully divide future data at all. However, rules like minimum information
gain are not implemented in Spark MLlib yet.

Tuning Decision Trees
It’s not obvious from looking at the data which impurity measure leads to better accuracy,
or what maximum depth or number of bins is enough without being excessive. Fortu‐
nately, as in the previous chapter, it’s simple to let Spark try a number of combinations
of these values and report the results:

val evaluations =
  for (impurity <- Array("gini", "entropy");
       depth    <- Array(1, 20);
       bins     <- Array(10, 300)) 
    yield {
      val model = DecisionTree.trainClassifier(
        trainData, 7, Map[Int,Int](), impurity, depth, bins)
      val predictionsAndLabels = cvData.map(example =>
        (model.predict(example.features), example.label)
      )
      val accuracy =
        new MulticlassMetrics(predictionsAndLabels).precision
      ((impurity, depth, bins), accuracy)
    }

evaluations.sortBy(_._2).reverse.foreach(println) 

...
((entropy,20,300),0.9125545571245186)
((gini,20,300),0.9042533162173727)
((gini,20,10),0.8854428754813863)
((entropy,20,10),0.8848951647411211)
((gini,1,300),0.6358065896448438)
((gini,1,10),0.6355669661959777)
((entropy,1,300),0.4861446298673513)
((entropy,1,10),0.4861446298673513)

Again, read as a triply-nested for loop
Sort by second value (accuracy), descending, and print
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Clearly, maximum depth 1 is too small and produces inferior results. More bins helps
a little. The two impurity measures seem comparable (for reasonable settings of maxi‐
mum depth). This process could be continued to explore these hyperparameters. More
bins should never hurt, but will slow down the building process and increase memory
usage. Both impurity measures should be tried in all cases. More depth will help up to
a point.

So far, the code samples here have ignored the 10% of data held out as the test set. If the
purpose of the CV set was to evaluate parameters fit to the training set, then the purpose
of the test set is to evaluate hyperparameters that were “fit” to the CV set. That is, the
test set ensures an unbiased estimate of the accuracy of the final, chosen model and its
hyperparameters.

Above, the test suggests that entropy-based impurity, maximum depth 20 and 300 bins
is the best known hyperparameter settings so far, and achieves about 91.2% accuracy.
However, there’s always an element of randomness in how these models are built. By
chance, this model and evaluation could have turned out unusually well. The top model
and evaluation result is more likely than not to benefit from a bit of this luck, and so,
the accuracy estimate is likely to be optimistic, if it is overfit.

To really assess how well this best model is likely to perform on future examples, we
need to evaluate it on examples that were not used to train it, certainly. But we also need
to avoid examples in the CV set that were used to evaluate it. That is why a third subset,
the test set, was held out. As a final step, the hyperparameters can be used to build a
model on the train and CV sets together, and evaluate as before:

val model = DecisionTree.trainClassifier(
  trainData.union(cvData), 7, Map[Int,Int](), "entropy", 20, 300)

The result is about 91.6% accuracy, which is about the same, so the initial estimate
appears to have been reliable.

This is an interesting point to revisit the issue of overfitting. As discussed previously,
it’s possible to build a decision tree so deep and elaborate that it fits the given training
examples very well, but fails to generalize to other examples because it has fit the id‐
iosyncrasies and noise of the training data too closely. This is actually a problem com‐
mon to most machine learning algorithms, not just decision trees.

When a decision tree has overfit, it will exhibit high accuracy when run on the same
training data that it fit the model to, but low accuracy on other examples. The analysis
above suggests that the final model’s accuracy was about 91.6% on other, new examples.
Accuracy can as easily be evaluated over the same data that the model was trained on,
trainData.union(cvData). This gives an accuracy of about 95.3%.

The difference is not large, but suggests the decision tree has overfit the training data
to some extent. A lower maximum depth might be a better choice.
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Categorical Features Revisited
The code samples so far have included the argument Map[Int,Int]() without explan‐
ation. This parameter, like the 7, specifies the number of distinct values to expect for
each categorical feature in the input. The keys in this Map are indices of features in the
input Vector, and values are distinct value counts. At this time, the implementation
requires this information in advance.

The empty Map() actually indicates that all features should be treated as numeric. All of
the features are in fact numbers, but some represent categorical features, conceptually.
As mentioned earlier, it would be an error to treat a categorical feature that had simply
been mapped to distinct numbers as a numeric value, since the algorithm would be
trying to learn from an ordering which has no meaning.

Thankfully, the categorical features here are one-hot encoded as several binary 0/1 val‐
ues. Treating these individual features as numeric turns out to be fine, since any decision
rule on the “numeric” feature will choose thresholds between 0 and 1, and all are equiv‐
alent since all values are 0 or 1.

Of course, this encoding forces the decision tree algorithm to consider the values of the
underlying categorical feature individually. It is not limited in this way when learning
from “proper” categorical features. That is, with one 40-valued categorical feature, the
decision tree can create decisions based on groups of categories in one decision, which
may be more direct and optimal. On the other hand, having 40 numeric features rep‐
resent one 40-valued categorical feature also increases memory usage and slows things
down.

What about undoing the one-hot encoding? The following alternative parsing of the
input turns the two categorical features from one-hot encoding to a series of distinct
numeric values:

val data = rawData.map { line =>
  val values = line.split(',').map(_.toDouble)
  val wilderness = values.slice(10, 14).indexOf(1.0).toDouble 
  val soil = values.slice(14, 54).indexOf(1.0).toDouble 
  val featureVector =
    Vectors.dense(values.slice(0, 10) :+ wilderness :+ soil) 
  val label = values.last - 1
  LabeledPoint(label, featureVector)
}

Which of 4 “wilderness” features is 1
Similarly for following 40 “soil” features
Add derived features back to first 10
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We can repeat the same process of train/CV/test split and evaluation. This time, the
count of distinct values for the two new categorical features is given, which causes these
features to be treated as categorical, and not numeric. DecisionTree requires the num‐
ber of bins has to increase to at least 40, since the soil feature has 40 distinct values.
Given previous results, deeper trees are built, up to the maximum of depth 30 that
DecisionTree currently supports. Finally, both train and CV accuracy are reported:

val evaluations =
  for (impurity <- Array("gini", "entropy");
       depth    <- Array(10, 20, 30);
       bins     <- Array(40, 300))
    yield {
      val model = DecisionTree.trainClassifier(
        trainData, 7, Map(10 -> 4, 11 -> 40),
        impurity, depth, bins) 
      val trainAccuracy = getMetrics(model, trainData).precision
      val cvAccuracy = getMetrics(model, cvData).precision
      ((impurity, depth, bins), (trainAccuracy, cvAccuracy)) 
    }

...
((entropy,30,300),(0.9996922984231909,0.9438383977425239))
((entropy,30,40),(0.9994469978654548,0.938934581368939))
((gini,30,300),(0.9998622874061833,0.937127912178671))
((gini,30,40),(0.9995180059216415,0.9329467634811934))
((entropy,20,40),(0.9725865867933623,0.9280773598540899))
((gini,20,300),(0.9702347139020864,0.9249630062975326))
((entropy,20,300),(0.9643948392205467,0.9231391307340239))
((gini,20,40),(0.9679344832334917,0.9223820503114354))
((gini,10,300),(0.7953203539213661,0.7946763481193434))
((gini,10,40),(0.7880624698753701,0.7860215423792973))
((entropy,10,40),(0.78206336500723,0.7814790598437661))
((entropy,10,300),(0.7821903188046547,0.7802746137169208))

Specify value count for categorical features 10, 11
Return train and CV accuracy

If you run this on a cluster, you may notice that the tree building process completes
several times faster than before.

At depth 30, the training set is fit nearly perfectly; it is overfitting to some degree, but
still providing the best accuracy on the cross-validation set. Entropy, and a larger num‐
ber of bins, appear to help accuracy again. The accuracy on the test set is 94.5%. By
treating categorical features as actual categorical features, the classifier improved its
accuracy by almost 3%.
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Random Decision Forests
If you have been following along with the code examples, you may have noticed that
your results differ slightly from those presented in code listings in the book. That is
because there is an element of randomness in building decision trees, and the random‐
ness comes into play when deciding what data to use and what decision rules to explore.

The algorithm does not actually consider every possible decision rule at every level. To
do so could take an incredible amount of time. For a categorical feature over N values,
there are 2N - 2 possible decision rules (every subset except the empty set and set itself,
which are pointless to consider). For even moderately large N this would create billions
of candidate decision rules.

Instead, decision trees use several heuristics to be smarter about which few rules to
actually consider. The process of picking rules also involves some randomness; only a
few features picked at random are looked at each time, and only values from a random
subset of the training data. This trades a bit of accuracy for a lot of speed, but it also
means that the decision tree algorithm won’t build the same tree every time. This is a
good thing.

It’s good for the same reason that the “wisdom of the crowds” usually beats individual
predictions.

To illustrate, take this quick quiz: How many black taxis operate in London?

Don’t peek below; guess first.

I guessed 10,000 or so, which is well off the correct answer of about 25,000. Because I
guessed low, you’re a bit more likely to have guessed higher than I did, and so the average
of our answers will tend to be more accurate — there’s that regression to the mean again.
Averaged over all readers, the guess would probably be surprisingly close to 25,000, even
if the majority of guesses got it about as wrong as I did.

A key to this effect is that the guesses were independent and didn’t influence one another.
(You didn’t peek, did you?) The exercise would be useless if we had all agreed on and
used the same methodology to make a guess, because the guesses would have been the
same answer — the same potentially quite wrong answer. It would even have been dif‐
ferent and worse if I’d merely influenced you by stating my guess upfront.

It would be great to have not one tree, but many trees, each producing reasonable but
different and independent estimations of the right target value. Their collective average
prediction should fall close to the true answer, more than any individual tree’s does. It’s
the randomness in the process of building that helps create this independence. This is
the key to random decision forests.
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Through RandomForest, Spark MLlib can build random decision forests, which are, as
the name suggests, collections of independently-built decision trees. The invocation is
virtually the same:

val forest = RandomForest.trainClassifier(
  trainData, 7, Map(10 -> 4, 11 -> 40), 20,
  "auto", "entropy", 30, 300)

Two new parameters appear, compared to DecisionTree.trainClassifier(). First is
a number of trees to build, of course: here 20. This model building process may take
significantly longer than before, because 20 times more trees are being built.

Second is a strategy for choosing which features to evaluate at each level of the tree,
which is here set to "auto". The random decision forest implementation will actually
not even consider every feature as the basis of a decision rule, but only a subset of all
features. This parameter controls how it picks the subset. Checking only a few features
is of course faster, and speed is helpful now that so many more trees are being con‐
structed.

However it also makes the individual trees decisions more independent, and makes the
whole forest as a whole less prone to overfitting. If a particular feature contains noisy
data, or is deceptively predictive only in the training set, then most trees will not have
considered this problem feature, most of the time. Most trees will not have fit the noise
and will tend to “outvote” the ones that have in the forest.

In fact, when building a random decision forest, each tree will not even necessarily see
all of the training data. They may be fed a randomly-chosen subset of it instead, for
similar reasons.

The prediction of a random decision forest is simply a weighted average of the trees’
predictions. For a categorical target, this can be a majority vote, or the most-probable
value based on the average of probabilities produced by the trees. Random decision
forests, like decision trees, also support regression, and the forest’s prediction in this
case is the average of the number predicted by each tree.

The accuracy from this RandomForestModel model is 96.3% off the bat — about 2%
better already, although viewed another way, that’s a 33% reduction in the error rate
over the best decision tree built above, from 5.5% down to 3.7%.

Random decision forests are appealing in the context of big data because trees are sup‐
posed to be built independently, and, big-data technologies like Spark and MapReduce
inherently need data-parallel problems, where parts of the overall solution can be com‐
puted independently on parts of the data. The fact that trees can, and should, train on
only a subset of features or input data opens up a simple and easy way to parallelize
building of the trees.
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Although Spark MLlib does not yet support it directly, random decision forests can also
evaluate their own accuracy along the way, since often trees are built on just a subset of
all training data and can be internally cross-validated against the remaining data. This
means that the forest can even know which of its trees appear to be the most accurate
and weight accordingly.

This property also leads to a way to assess which features of the input are most helpful
in predicting the target, and thus help with the problem of feature selection. This is
beyond the scope of this chapter, and MLlib, at the moment.

Making Predictions
Building a classifier, while interesting and a nuanced process, is not the end goal. Of
course, the goal is to make predictions. This is the payoff, and it is comparatively quite
easy. The training set above consisted of LabeledPoint instances, each of which con‐
tained a Vector and a target value. These are an input and known output, respectively.
When making predictions — especially about the future, says Mr. Bohr — the output is
of course not known.

The results of the DecisionTree and RandomForest training shown so far are Deci
sionTreeModel and RandomForestModel objects, respectively. Both contain essentially
one method, predict(). It accepts a Vector, just like the feature vector portion of
LabeledPoint. So, a new example may be classified by converting it to a feature vector
in the same way and predicting its target class:

val input = "2709,125,28,67,23,3224,253,207,61,6094,0,29"
val vector = Vectors.dense(input.split(',').map(_.toDouble))
forest.predict(vector) 

Can also predict for a whole RDD at once

The result should be 4.0, which corresponds to class 5 (the original feature was 1-
indexed) in the original Covtype data set. The predicted cover type for the land described
in this example is “Aspen”. Obviously.

Where To Go From Here
This chapter introduced two related and important types of machine learning, classifi‐
cation and regression, along with some foundational concepts in building and tuning
models: features, vectors, training and cross-validation. It demonstrated how to predict
a type of forest cover from things like location and soil type, using the Covtype data set,
using decision trees and forests implemented in Spark MLlib.

As with recommenders in the previous chapter, it could be useful to continue exploring
the effect of hyperparameters on accuracy. Most decision tree hyperparameters trade
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time for accuracy: more bins and trees generally produce better accuracy, but hit a point
of diminishing returns.

The classifier here turned out to be very accurate; it’s unusual achieve over 95% accuracy.
In general further improvements in accuracy will be achieved by including more fea‐
tures, or, transforming existing features into a more predictive form. This is a common,
repeated step in iteratively improving a classifier model. For example, for this data set,
the two features encoding horizontal and vertical distance to surface water features
could produce a third feature: straight-line distance to surface water features. This might
turn out to be more useful than either original feature. Or, if it were possible to collect
more data, we might try adding new information like soil humidity in order to improve
classification.

Of course, not all prediction problems in the real world are exactly like the Covtype data
set. For example, some problems require predicting a continuous numeric value, not a
categorical value. Much of the same analysis and code applies to this type of regres‐
sion problem; the trainRegressor() method will be of use in this case instead of
trainClassifier().

Furthermore, decision trees and forests are not the only classification or regression
algorithm, and not the only ones implemented in Spark MLlib. For classification, it
includes implementations of:

• Naïve Bayes
• Support vector machines (SVMs)
• Logistic regression

Yes, logistic regression is a classification technique. Underneath the hood, it classifies
by predicting a continuous function of a class probability. This detail is not necessary
to understand.

Each of these algorithms operates quite differently from decision trees and forests.
However, many elements are the same: they accept an RDD of LabeledPoint as input,
and have hyperparameters that must be selected using train, cross-validation, and test
subsets of the input data. The same general principles, with these other algorithms, can
also be deployed to model classification and regression problems.

These have been examples of supervised learning. What happens when some, or all, of
the target values are unknown? The following chapter will explore what can be done in
this situation.
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CHAPTER 5

Anomaly Detection in Network Traffic with
K-means clustering

Sean Owen

There are known knowns; there are things that we know that we know. We also know
there are known unknowns; that is to say we know there are some things we do not know.
But there are also unknown unknowns, the ones we don’t know we don’t know.

— Donald Rumsfeld

Classification and regression are powerful, well-studied techniques in machine learn‐
ing. The previous chapter demonstrated a classifier as a predictor of unknown values.
There was, however, a catch: in order to predict unknown values for new data, we had
to know that target value for many previously-seen examples. Classifiers can only help
if we, the data scientists, know what we are looking for already, and can provide plenty
of examples where input produced a known output. These were collectively known as
supervised learning techniques, because their learning process is given the correct out‐
put value for each example in the input.

However, there are problems in which the correct output is unknown for some or all
examples. Consider the problem of dividing up an e-commerce site’s customers by their
shopping habits and tastes. The input features are their purchases, clicks, demographic
information, and more. The output should be groupings of customers. Perhaps one
group will represent fashion-conscious buyers, and another will turn out to correspond
to price-sensitive bargain hunters, and so on.

If you were asked to determine this target label for each new customer, you would
quickly run into a problem in applying a supervised learning technique like a classifier:
you don’t know a priori who should be considered fashion-conscious, for example. In
fact, you’re not even sure if “fashion-conscious” is a meaningful grouping of the site’s
customers to begin with!
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Fortunately, unsupervised learning techniques can help here. These techniques do not
learn to predict any target values, since none are available. They can however learn
structure in data, and find groupings of similar inputs, or learn what types of input are
likely to occur and what types are not. This chapter will introduce unsupervised learning
using clustering implementations in MLlib.

Anomaly Detection
The problem of anomaly detection is, as its name implies, that of finding unusual things.
If we already knew what “anomalous” meant for a data set, we could easily detect
anomalies in the data with supervised learning. An algorithm would receive inputs
labeled “normal” and “anomaly” and learn to distinguish the two. However, the nature
of anomalies are that they are unknown unknowns. Put another way, an anomaly that
has been observed and understood is no longer an anomaly.

Anomaly detection is often used to find fraud, detect network attacks, or discover prob‐
lems in servers or other sensor-equipped machinery. In these cases, it’s important to be
able to find new types of anomalies that have never seen before — new forms of fraud,
new intrusions, new failure modes for servers.

Unsupervised learning techniques are useful in these cases, because they can learn what
input data normally looks like, and therefore detect when new data is unlike past data.
Such new data are not necessarily attacks or fraud; they are simply unusual, and there‐
fore, the data worth further investigation.

K-means clustering
Clustering is the best-known type of unsupervised learning. Clustering algorithms try
to find natural groupings in data. Data points that are like one another, but dislike others,
are likely to represent a meaningful grouping, and so clustering algorithms try to put
such data into the same cluster.

K-Means clustering is maybe the most widely-used clustering algorithm. It attempts to
detect k clusters in a data set, where k is given by the data scientist. k is a hyperparameter
of the model, and the right value will depend on the data set. In fact, choosing a good
value for k will be a central topic of this chapter’s use case.

What does “like” mean when the data set contains information like customer activity?
or transactions? K-means requires a notion of distance between data points. It is com‐
mon to use simple Euclidean distance to measure distance between data points with K-
means, and as it happens, this is the only distance function supported by Spark MLlib
as of this writing. The Euclidean distance is defined for data points whose features are
all numeric. “Like” points are those whose intervening distance is small.
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To K-means, a cluster is simply a point: the center of all the points that make up the
cluster. These are in fact just feature vectors containing all numeric features, and can be
called vectors. It may be more intuitive to call them, and think of them, as points here,
since they are treated as points in a Euclidean space.

This center is called the cluster centroid, and is defined to be the arithmetic mean of the
points — hence the name K-means. To start, the algorithm intelligently picks some data
points as the initial cluster centroids. Then each data point is assigned to the nearest
centroid. Then for each cluster, a new cluster centroid is computed as the mean of the
data points just assigned to that cluster. This process is repeated.

Enough about K-means for now. Some more interesting details will emerge in the course
of the use case to follow.

Network Intrusion
So-called cyber attacks are increasingly visible in the news. Some attacks attempt to
flood a computer with network traffic to crowd out legitimate traffic. But in other cases,
attacks attempt to exploit flaws in networking software in order to gain unauthorized
access to a computer. While it’s quite obvious when a computer is being bombarded
with traffic, detecting an exploit can be like searching for a needle in an incredibly large
haystack of network requests.

Some exploit behaviors follow known patterns. For example, accessing every port on a
machine in rapid succession is not something any normal software program would need
to do. However, it is a typical first step for an attacker, who is looking for services running
on the computer that may be exploitable.

If you were to count the number of distinct ports accessed by a remote host in a short
time, you would have a feature that probably predicts a port-scanning attack quite well:
a handful is probably normal; hundreds indicates an attack. And so on for detecting
other types of attacks from other features of network connections — number of bytes
sent and received, TCP errors, and so forth.

But what about those unknown unknowns? The biggest threat may be the one that has
never yet been detected and classified. Part of detecting potential network intrusions is
detecting anomalies. These are connections that aren’t known to be attacks, but, do not
resemble connections that have been observed in the past.

Here, unsupervised learning techniques like K-means can be used to detect anomalous
network connections. K-means can cluster connections based on statistics about each
of them. The resulting clusters themselves aren’t interesting per se, but, they collectively
define types of connections that are like past connections. Anything not close to a cluster
could be anomalous. That is, the clusters are interesting insofar as they define regions
of normal connections; everything else outside is unusual and potentially anomalous.

Network Intrusion | 81



KDD Cup 1999 Data Set
The KDD Cup was an annual data mining competition organized by a special interest
group of the ACM. Each year, a machine learning problem was posed, along with a data
set, and researchers were invited to submit a paper detailing their best solution to the
problem. It was like Kaggle, before there was Kaggle. In 1999, the topic was network
intrusion. The data set is still available. This chapter will walk through building a system
to detect anomalous network traffic, using Spark, by learning from this data.

Don’t use this data set to build a real network intrusion system! The
data did not necessarily reflect real network traffic at the time, and in
any event it only reflects traffic patterns as of 15 years ago.

Fortunately, the organizers had already processed raw network packet data into sum‐
mary information about individual network connections. The data set is about 708MB
and contains about 4.9M connections. This is large, if not massive, but will be large
enough for purposes here. For each connection, the data set contains information like
the number of bytes sent, login attempts, TCP errors, and so on. Each connection is one
line of CSV-formatted data, containing 38 features, like this:

0,tcp,http,SF,215,45076,
0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,
0.00,0.00,0.00,0.00,1.00,0.00,0.00,0,0,0.00,
0.00,0.00,0.00,0.00,0.00,0.00,0.00,normal.

This connection, for example, was a TCP connection to an HTTP service. 215 bytes
were sent and 45706 bytes were received. The user was logged in, and so on. Many
features are counts, like num_file_creations in the 17th columns.

Many features take on the value 0 or 1, indicating the presence or absence of a behavior,
like su_attempted in the 15th column. They look like the one-hot encoded categorical
features from the previous chapter, but are not grouped and related in the same way.
Each is like a yes/no feature, and is therefore arguably a categorical feature. It is not
always valid to translate categorical features to numbers and treat them as if they had
an ordering. However, in the special case of a binary categorical feature, in most machine
learning algorithms, it will happen to work well to map these to a numeric feature taking
on values 0 and 1.

The rest are ratios like dst_host_srv_rerror_rate in the next-to-last column, and take
on values from 0.0 to 1.0, inclusive.

Interestingly, a label is given in the last field. Most connections are labeled normal., but
some have been identified as examples of various types of network attack. These would

82 | Chapter 5: Anomaly Detection in Network Traffic with K-means clustering

http://www.sigkdd.org/kddcup/index.php
http://www.kaggle.com/
http://www.sigkdd.org/kdd-cup-1999-computer-network-intrusion-detection
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


be useful in learning to distinguish a known attack from a normal connection, but the
problem here is anomaly detection, and finding potentially new and unknown attacks.

A First Take on Clustering
The data file kddcup.data.gz should be unzipped and copied into HDFS. This example,
like others, will assume the file is available at /user/ds/kddcup.data. Open the spark-
shell, and load the CSV data as an RDD of String:

val rawData = sc.textFile("hdfs:///user/ds/kddcup.data")

Begin by exploring the data set. What labels are present in the data, and how many are
there of each? The following code counts by label into label-count tuples, sorts them
descending by count, and prints the result:

rawData.map(_.split(',').last).countByValue().toSeq.
  sortBy(_._2).reverse.foreach(println)

A lot can be accomplished in a line in Spark and Scala! There are 23 distinct labels, and
the most frequent are smurf. and neptune. attacks:

(smurf.,2807886)
(neptune.,1072017)
(normal.,972781)
(satan.,15892)
...

Note that the data contains non-numeric features. For example, the second column may
be tcp, udp, or icmp, but K-means clustering requires numeric features. The final col‐
umn is also non-numeric. To begin, these will simply be ignored. The following Spark
code splits the CSV lines into columns, removes the 3 categorical value columns starting
from index 1, and removes the final column. The remaining values are converted to an
array of numeric values (+Double+s), and emitted with the final label column in a tuple:

import org.apache.spark.mllib.linalg._

val labelsAndData = rawData.map { line =>
  val buffer = line.split(',').toBuffer 
  buffer.remove(1, 3)
  val label = buffer.remove(buffer.length-1)
  val vector = Vectors.dense(buffer.map(_.toDouble).toArray)
  (label,vector)
}

val data = labelsAndData.values.cache()

toBuffer creates Buffer, a mutable list

K-means will operate on just the feature vectors. So, the RDD data contains just the
second element of each tuple, which in an RDD of tuples are accessed with values.
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Clustering the data with Spark MLlib is as simple as importing the KMeans implemen‐
tation and running it. The following code clusters the data to create a KMeansModel, and
then prints its centroids:

import org.apache.spark.mllib.clustering._

val kmeans = new KMeans()
val model = kmeans.run(data)

model.clusterCenters.foreach(println)

Two vectors will be printed, meaning K-Means was fitting k = 2 clusters to the data. For
a complex data set that is known to exhibit at least 23 distinct types of connection, this
is almost certainly not enough to accurately model the distinct groupings within the
data.

This is a good opportunity to use the given labels to get an intuitive sense of what went
into these two clusters, by counting the labels within each cluster. The following code
uses the model to assign each data point to a cluster, and counts occurrences of cluster
and label pairs, and prints them nicely:

val clusterLabelCount = labelsAndData.map { case (label,datum) =>
  val cluster = model.predict(datum)
  (cluster,label)
}.countByValue

clusterLabelCount.toSeq.sorted.foreach {
  case ((cluster,label),count) =>
    println(f"$cluster%1s$label%18s$count%8s") 
}

Format string interpolates and formats variables

The result shows that the clustering was not at all helpful. Only 1 data point ended up
in cluster 1!

0             back.    2203
0  buffer_overflow.      30
0        ftp_write.       8
0     guess_passwd.      53
0             imap.      12
0          ipsweep.   12481
0             land.      21
0       loadmodule.       9
0         multihop.       7
0          neptune. 1072017
0             nmap.    2316
0           normal.  972781
0             perl.       3
0              phf.       4
0              pod.     264
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0        portsweep.   10412
0          rootkit.      10
0            satan.   15892
0            smurf. 2807886
0              spy.       2
0         teardrop.     979
0      warezclient.    1020
0      warezmaster.      20
1        portsweep.       1

Choosing k
Two clusters are plainly insufficient. How many clusters are appropriate for this data
set? It’s clear that there are 23 distinct patterns in the data, so it seems that k could be at
least 23, or likely, even more. Typically, many values of k are tried to find the best one.
But what is “best”?

A clustering could be considered good if each data point were near to its closest centroid.
So, we define a Euclidean distance function, and a function which returns the distance
from a data point to its nearest cluster’s centroid:

def distance(a: Vector, b: Vector) =
  math.sqrt(a.toArray.zip(b.toArray).
    map(p => p._1 - p._2).map(d => d * d).sum)

def distToCentroid(datum: Vector, model: KMeansModel) = {
  val cluster = model.predict(datum)
  val centroid = model.clusterCenters(cluster)
  distance(centroid, datum)
}

You can read off the definition of Euclidean distance here by unpacking the Scala func‐
tion, in reverse: sum (sum) the squares (map(d � d * d)) of differences (map(p � p._1 -
p._2)) in corresponding elements of two vectors (a.toArray.zip(b.toArray)), and
take the square root (math.sqrt)

From this, it’s possible to define a function that measures the average distance to cent‐
roid, for a model built with a given k:

import org.apache.spark.rdd._

def clusteringScore(data: RDD[Vector], k: Int) = {
  val kmeans = new KMeans()
  kmeans.setK(k)
  val model = kmeans.run(data)
  data.map(datum => distToCentroid(datum, model)).mean()
}

Now, this can be used to evaluate values of k from, say, 5 to 40:
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(5 to 40 by 5).map(k => (k, clusteringScore(data, k))).
  foreach(println)

The (x to y by z) syntax is a Scala idiom for creating a collection of numbers between
a start and end (inclusive), with a given difference between successive elements. This is
a compact way to create the values “5, 10, 15, 20, 25, 30, 35, 40” for k, and then do
something with each.

The printed result shows that score decreases as k increases:

(5,1938.858341805931)
(10,1689.4950178959496)
(15,1381.315620528147)
(20,1318.256644582388)
(25,932.0599419255919)
(30,594.2334547238697)
(35,829.5361226176625)
(40,424.83023056838846)

Again, your values will be somewhat different. The clustering de‐
pends on a randomly-chosen initial set of centroids.

However, this much is obvious. As more clusters are added, it should always be possible
to make data points closer to a nearest centroid. In fact, if k is chosen to equal the number
of data points, the average distance will be 0, since every point will be its own cluster of
one!

Worse, in the results above, the distance for k = 35 is higher than for k = 30. This shouldn’t
happen, as higher k always permits at least as good a clustering as a lower k. The problem
is that K-means is not necessarily able to find the optimal clustering for a given k. Its
iterative process can converge from a random starting point to a local minimum, which
may be good but not optimal.

This is still true even when more intelligent methods are used to choose initial centroids.
K-means++ and K-means|| are variants with selection algorithms that are more likely
to choose diverse, separated centroids, and lead more reliably to a good clustering. Spark
MLlib in fact implements K-Means||. However, all still have an element of randomness
in selection, and can’t guarantee an optimal clustering.

The random starting set of clusters chosen for k = 35 perhaps led to a particularly
suboptimal clustering, or, it may have stopped early before it reached its local optimum.
This can be improved by running the clustering many times for a value of k, with a
different random starting centroid set each time, and picking the best clustering. The
algorithm exposes setRuns() to set the number of times the clustering is run for one k.
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It can also be improved by running the iteration longer. The algorithm has a threshold
via setEpsilon() which controls the minimum amount of cluster centroid movement
that is considered significant; lower values means the K-means algorithm will let the
centroids continue to move longer.

Run the same test again, but try larger values, from 30 to 100. In the following example,
the range from 30 to 100 is turned into a parallel collection in Scala. This causes the
computation for each k to happen in parallel in the Spark shell. Spark will manage the
computation of each at the same time. Of course, the computation of each k is also a
distributed operation on the cluster. It’s parallelism inside parallelism. This may increase
overall throughput by fully exploiting a large cluster, although at some point, submitting
a very large number of tasks simultaneously will become counterproductive.

...
kmeans.setRuns(10)
kmeans.setEpsilon(1.0e-6) 
...
(30 to 100 by 10).par.map(k => (k, clusteringScore(data, k))).
  toList.foreach(println)

Decrease from default of 1.0e-4

This time, scores decrease consistently:

(30,862.9165758614838)
(40,801.679800071455)
(50,379.7481910409938)
(60,358.6387344388997)
(70,265.1383809649689)
(80,232.78912076732163)
(90,230.0085251067184)
(100,142.84374573413373)

We still don’t know how to choose k, since larger values should still always tend to
produce better scores. We want to find a point past which increasing k stops reducing
the score much, or an “elbow” in a graph of k vs. score, which is generally decreasing
but eventually flattens out. Here, it seems to be decreasing notably past 100. The right
value of k may be past 100.

Visualization in R
At this point, it could be useful to look at a plot of the data points. Spark itself has no
tools for visualization. However, data may be easily exported to HDFS, and then read
into a statistical environment like R. This brief section will demonstrate using R to
visualize the data set.

While R provides libraries for plotting points in 2 or 3 dimensions, this data set is 38-
dimensional. It will have to be projected down into at most 3 dimensions. Further, R
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itself is not suited to handle large data sets, and this data set is certainly large for R. It
will have to be sampled to fit into memory in R.

To start, build a model with k = 100 and map each data point to a cluster number. Write
the features as lines of CSV text to a file on HDFS:

val sample = data.map(datum =>
  model.predict(datum) + "," + datum.toArray.mkString(",") 
).sample(false, 0.05)

sample.saveAsTextFile("/user/ds/sample")

mkString joins a collection to a string with a delimiter

sample() is used to select a small subset of all lines, so that it more comfortably fits in
memory in R. Here, 5% of the lines are selected (without replacement).

The R code below reads CSV data from HDFS. This can also be accomplished with
libraries like rhdfs, which can take some setup and installation. Here it just uses a locally-
installed hdfs command from a Hadoop distribution, for simplicity. This requires HA
DOOP_CONF_DIR to be set to the location of Hadoop configuration, with configuration
that defines the location of the HDFS cluster.

It creates a 3-dimensional data set out of a 38-dimensional data set by choosing 3 random
unit vectors and projecting the data onto these 3 vectors. This is a simple, rough-and-
ready form of dimension reduction. Of course, there are more sophisticated dimension
reduction algorithms, like Principal Component Analysis or the Singular Value De‐
composition. These are available in R, but take much longer to run. For purposes of
visualization in this example, a random projection achieves much the same result, much
faster.

The result is presented as an interactive 3D visualization. Note that this will require
running R in an environment that supports the rgl library and graphics. For example,
on Mac OS X, it requires X11 from Apple’s Developer Tools to be installed.

install.packages("rgl") # First time only
library(rgl)

clusters_data <-
  read.csv(pipe("hadoop fs -cat /user/ds/sample/*")) 
clusters <- clusters_data[1]
data <- data.matrix(clusters_data[-c(1)])
rm(clusters_data)

random_projection <- matrix(data = rnorm(3*ncol(data)), ncol = 3)
random_projection_norm <-
  random_projection /
    sqrt(rowSums(random_projection*random_projection)) 
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projected_data <- data.frame(data %*% random_projection_norm) 

num_clusters <- nrow(unique(clusters))
palette <- rainbow(num_clusters)
colors = sapply(clusters, function(c) palette[c])
plot3d(projected_data, col = colors, size = 10)

Read cluster and data with hdfs command
Create random unit vectors in 3D
Project

Figure 5-1. Random 3D projection

The resulting visualization in Figure 5-1 shows data points shaded by cluster number
in 3D space. Many points fall on top of one another, and the result is sparse and hard
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to interpret. However, the dominant feature of the visualization is its “L” shape. The
points seem to vary along two distinct dimensions, and little in other dimensions.

This makes sense, because the data set has two features that are on a much larger scale
than the others. Whereas most features have values between 0 and 1, the bytes-sent and
bytes-received features vary from 0 to tens of thousands. The Euclidean distance be‐
tween points is therefore almost completely determined by these two features. It’s almost
as if the other features don’t exist! So, it’s important to normalize away these differences
in scale in order to put features on near-equal footing.

Feature Normalization
Each feature can be normalized by converting it to a standard score. This means sub‐
tracting the mean of the feature’s values from each value, and dividing by the standard
deviation, as shown in Equation 5-1:

Equation 5-1. Standard score equation

normalizedi =
featurei - μi

σi

In fact, subtracting means has no effect on the clustering, because the subtraction ef‐
fectively shifts all of the data points by the same amount in the same directions. This
does not affect inter-point Euclidean distances. For consistency, however, the mean will
be subtracted anyway.

Standard scores can be computed from the count, sum and sum-of-squares of each
feature. This can be done jointly, with reduce operations used to add entire arrays at
once, and fold used to accumulate sums of squares from an array of zeroes:

val dataAsArray = data.map(_.toArray)
val numCols = dataAsArray.first().length
val n = dataAsArray.count()
val sums = dataAsArray.reduce(
  (a,b) => a.zip(b).map(t => t._1 + t._2))
val sumSquares = dataAsArray.fold(
    new Array[Double](numCols)
  )(
    (a,b) => a.zip(b).map(t => t._1 + t._2 * t._2)
  )
val stdevs = sumSquares.zip(sums).map {
  case(sumSq,sum) => math.sqrt(n*sumSq - sum*sum)/n
}
val means = sums.map(_ / n)

def normalize(datum: Vector) = {
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  val normalizedArray = (datum.toArray, means, stdevs).zipped.map(
    (value, mean, stdev) =>
      if (stdev <= 0) (value - mean) else (value - mean) / stdev
  )
  Vectors.dense(normalizedArray)
}

We can run the same test with normalized data, on a higher range of k:

val normalizedData = data.map(normalize).cache()
(60 to 120 by 10).par.map(k =>
  (k, clusteringScore(normalizedData, k))).toList.foreach(println)

This yields some evidence that k = 100 may be a reasonably good choice:

(60,0.0038662664156513646)
(70,0.003284024281015404)
(80,0.00308768458568131)
(90,0.0028326001931487516)
(100,0.002550914511356702)
(110,0.002516106387216959)
(120,0.0021317966227260106)

Another 3D visualization of the normalized data points reveals a richer structure, as
expected. Some points are spaced in regular, discrete intervals along a line; these are
likely projections of discrete dimensions in the data. With 100 clusters, it’s hard to make
out which points come from which clusters. One large cluster seems to dominate, and
many clusters correspond to small compact sub-regions (some of which are omitted
from this zoomed detail of the entire 3D visualization). The result, shown in
Figure 5-2, does not necessarily advance the analysis, but is an interesting sanity check:
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Figure 5-2. Random 3D projection of normalized data

Categorical Variables
Earlier, three categorical features were excluded, since non-numeric features can’t be
used with the Euclidean distance function that K-means uses in MLlib. This is in a sense
the reverse of the problem noted in the preceding chapter, where numeric features were
used to represent categorical values, but a categorical feature was desired.

The categorical features can translate into several binary indicator features using one-
hot encoding, which can be viewed as numeric dimensions. For example, the second
column contains the protocol type: tcp, udp or icmp. This feature could be thought of
as three features, perhaps is_tcp, is_udp, and is_icmp. The single feature value tcp
might become 1,0,0, udp might be 0,1,0 and so on. The accompanying source code
implements this transformation to replace these categorical values with a one-hot en‐
coding; it is not reproduced here.
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This new, larger data set can be normalized again, and clustered again, perhaps trying
larger k as well. Since the individual clustering jobs are getting large, it may be best to
remove the .par and return to computing one model at a time.

(80,0.038867919526032156)
(90,0.03633130732772693)
(100,0.025534431488492226)
(110,0.02349979741110366)
(120,0.01579211360618129)
(130,0.011155491535441237)
(140,0.010273258258627196)
(150,0.008779632525837223)
(160,0.009000858639068911)

These sample results suggest k = 150, although even with 10 runs each, at this size, k =
160 fails to produce a better clustering. There is still some uncertainty about these scores.

Using Labels with Entropy
Earlier, we used the given label for each data point to create a quick sanity check of the
quality of the clustering. This notion can be formalized further and used as an alternative
means of evaluating clustering quality, and therefore, of choosing k.

It stands to reason that a good clustering would create clusters that contain one or a few
types of the known attacks, and little of anything else. You may recall from the previous
chapter that we have metrics for homogeneity: Gini impurity and entropy. Entropy will
be used here for illustration.

A good clustering would have clusters whose collections of labels are homogeneous and
so have low entropy. A weighted average of entropy can therefore be used as a cluster
score:

def entropy(counts: Iterable[Int]) = {
  val values = counts.filter(_ > 0)
  val n: Double = values.sum
  values.map { v =>
    val p = v / n
    -p * math.log(p)
  }.sum
}

def clusteringScore(
    normalizedLabelsAndData: RDD[(String,Vector)],
     k: Int) = {
  ...

  val model = kmeans.run(normalizedLabelsAndData.values)

  val labelsAndClusters =
    normalizedLabelsAndData.mapValues(model.predict) 
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  val clustersAndLabels = labelsAndClusters.map(_.swap) 

  val labelsInCluster = clustersAndLabels.groupByKey().values 

  val labelCounts = labelsInCluster.map(
    _.groupBy(l => l).map(_._2.size)) 

  val n = normalizedLabelsAndData.count()

  labelCounts.map(m => m.sum * entropy(m)).sum / n 
}

Predict cluster for each datum
Swap keys/values
Extract collections of labels, per cluster
Count labels in collections
Average entropy weighted by cluster size

As before, this analysis can be used to obtain some idea of a suitable value of k. Entropy
will not necessarily decrease as k increases, so it is possible to look for a local minimum
value. Here again, results suggest k = 150 is a reasonable choice.

(80,1.0079370754411006)
(90,0.9637681417493124)
(100,0.9403615199645968)
(110,0.4731764778562114)
(120,0.37056636906883805)
(130,0.36584249542565717)
(140,0.10532529463749402)
(150,0.10380319762303959)
(160,0.14469129892579444)

Clustering in Action
Finally, with confidence, we can cluster the full normalized data set with k = 150. Again,
the labels for each cluster can be printed to get some sense of the resulting clustering.
Clusters do seem to contain mostly one label:

0             back.       6
0          neptune.  821239
0           normal.     255
0        portsweep.     114
0            satan.      31
...
90        ftp_write.       1
90       loadmodule.       1
90          neptune.       1
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90           normal.   41253
90      warezclient.      12
...
93           normal.       8
93        portsweep.    7365
93      warezclient.       1

Now, we can make an actual anomaly detector. Anomaly detection amounts to meas‐
uring a new data point’s distance to its nearest centroid. If this distance exceeds some
threshold, it is anomalous. This threshold might be chosen to be the distance of, say,
the 100th-farthest data point from among known data:

val distances = normalizedData.map(
  datum => distToCentroid(datum, model)
)
val threshold = distances.top(100).last

The final step is to apply this threshold to all new data points as they arrive. For example,
Spark Streaming can be used to apply this function to small batches of input data arriving
from sources like Flume, Kafka, or files on HDFS. Data points exceeding the threshold
might trigger an alert that sends an email or inserts into a database.

As an example here, we will apply it to the original data set, to see some of the data points
that are, we may believe, most anomalous within the input. In order to interpret the
results, we keep the original line of input with the parsed feature vector:

val model = ...
val originalAndData = ...
val anomalies = originalAndData.filter { case (original, datum) =>
  val normalized = normalizeFunction(datum)
  distToCentroid(normalized, model) > threshold
}.keys

For fun, the winner is the following data point, which is the most anomalous in the data,
according to this model:

0,tcp,http,S1,299,26280,
0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,15,16,
0.07,0.06,0.00,0.00,1.00,0.00,0.12,231,255,1.00,
0.00,0.00,0.01,0.01,0.01,0.00,0.00,normal.

A network security expert would be more able to interpret why this is or is not actually
a strange connection. It appears unusual at least because it is labeled normal., but,
involved over two hundred different connections to the same service in a short time,
and ended in an unusual TCP state, S1.

Where To Go From Here
The KMeansModel is, by itself, the essence of an anomaly detection system. The preceding
code demonstrated how to apply it to data to detect anomalies. This same code could
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be used within Spark Streaming to score new data as it arrives in near-real-time, and
perhaps trigger an alert or review.

MLlib also includes a variation called StreamingKMeans, which can update a clustering
incrementally as new data arrives in a StreamingKMeansModel. This could be used to
continue to learn, approximately, how new data affects the clustering, and not just assess
new data against existing clusters. It integrates with Spark Streaming as well.

This model is only a simplistic one. For example, Euclidean distance is used in this
example because it is the only distance function supported by Spark MLlib at this time.
In the future, it may be possible to use distance functions that can better account for
the distributions of and correlations between features, such as the Mahalanobis distance.

There are also more sophisticated cluster quality evaluation metrics that could be ap‐
plied, even without labels, to pick k, such as the Silhouette coefficient. These tend to
evaluate not just closeness of points within one cluster, but closeness of points to other
clusters.

Finally, different models could be applied too, instead of simple K-means clustering; for
example, a Gaussian mixture model or DBSCAN could capture more subtle relation‐
ships between data points and the cluster centers.

Implementations of these may become available in Spark MLlib or other Spark-based
libraries in the future.

Of course, clustering isn’t just for anomaly detection either. In fact, it’s more usually
associated with use cases where the actual clusters matter! For example, clustering can
also be used to group customers according to their behaviors, preferences and attributes.
Each cluster, by itself, might represent a usefully distinguishable type of customer. This
is a more data-driven way to segment customers rather than leaning on arbitrary, generic
divisions like “age 20-34” and “female”.
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CHAPTER 6

Understanding Wikipedia with Latent
Semantic Analysis

Sandy Ryza

Where are the Snowdens of yesteryear?
— Capt. Yossarian

Most of the work in data engineering consists of assembling data into some sort of
queryable format. Structured data can be queried with formal languages. Tabular data
in particular can be queried with SQL. While it is by no means an easy task in practice,
at a high level, the work of making tabular data accessible is often straightforward - pull
data from a variety of different data sources into a single table, perhaps cleaning or fusing
intelligently along the way. Unstructured text data presents a whole set challenges rarely
encountered in structured datasets. The process of preparing data into a format that
humans can interact with is not so much “assembly” as “indexing” in the nice case or
“coercion” when things get ugly. A standard search index permits finding the set of
documents containing a set of query terms. However, this kind of indexing often fails
to capture the latent structure in the text’s subject matter. Sometimes one wants to find
documents that relate to the concepts surrounding “algorithm” whether or not the
documents contain that specific word.

Latent Semantic Analysis (LSA) is a technique in natural language processing and in‐
formation retrieval that seeks to better understand a corpus of documents and the re‐
lationships between the words in those documents. It attempts to distill the corpus into
a set of relevant concepts. Each concept captures a thread of variation in the data and
often corresponds to a topic that the corpus discusses. Without yet delving into the
mathematics, each concept consists of three attributes: a level of affinity for each docu‐
ment in the corpus, a level of affinity for each term in the corpus, and an importance
score reflecting how useful the concept is in describing variance in the dataset. For
example, LSA might discover a concept with high affinity for the terms “Asimov” and
“robot”, and high affinity for the documents “Foundation series” and “Science Fiction”.
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By selecting only the most important concepts, LSA can describe the data with a simpler
representation that approximates it but throws away some irrelevant noise and merges
cooccurring strands.

The concise representation can aid in a variety of tasks. It can provide a scores of sim‐
ilarity between terms and other terms, between documents and other documents, and
between terms and documents. By encapsulating the patterns of variance in the corpus,
it can base these scores on a deeper understanding than simply counting occurrences
and co-occurrences of words. These similarity measures are ideal for tasks such as find‐
ing the set of documents relevant to query terms, grouping documents into topics, and
finding related words.

LSA discovers this lower-dimensional representation using a linear algebra technique
called Singular Value Decomposition (SVD). The Singular Value Decomposition can be
thought of as a more powerful version of the ALS factorization described in the earlier
chapter on recommender engines. It starts with a term-document matrix generated
through the counting word frequencies for each document. In this matrix, each docu‐
ment corresponds to a column, each term corresponds to a row, and each element
represents the importance of a word to a document. SVD then factorizes this matrix
into three matrices, one of which expresses concepts in regard to documents, one of
which expresses concepts in regard to terms, and one of which contains the importance
for each concept. The structure of these matrices is such that a low-rank approxima‐
tion of the original matrix can be achieved by removing a set of their rows and columns
corresponding to the least important concepts. That is, the matrices in this low-rank
approximation can be multiplied to produce a matrix close to the original, with in‐
creasing loss of fidelity as each concept is removed.

In this chapter, we will embark upon the modest task of enabling queries against the
full extent of human knowledge, based on its latent semantic relationships. More specif‐
ically, we will apply LSA to a corpus consisting of the full set of articles contained in
Wikipedia, about 46 GB of raw text. We will cover how to use Spark for preprocessing
the data: reading it, cleaning it, and coercing it into a numerical form. We will show
how to run the SVD statistical procedure and explain how to interpret and make use of
the results.

SVD has wide applications outside LSA. It appears in such diverse places as detecting
climatological trends (Michael Mann’s famous hockey-stick graph), face recognition,
and image compression. Spark’s implementation can perform the matrix factorization
on enormous datasets, which opens up the technique to a whole new set applications.

The Term-Document Matrix
Before performing any analysis, LSA requires transforming the raw text of the corpus
into a term-document matrix. In this matrix, each row represents a term that occurs in
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the corpus, and each column represents a document. Loosely, the value at each position
should correspond to the importance of the row’s term to the column’s document. A
few weighting schemes have been proposed, but by far the most common is term-
frequency times inverse document-frequency, commonly abbreviated as TF-IDF.

def termDocWeight(termFrequencyInDoc: Int, totalTermsInDoc: Int,
    termFreqInCorpus: Int, totalDocs: Int): Double = {
  val tf = termFrequencyInDoc.toDouble / totalTermsInDoc
  val docFreq = totalDocs.toDouble / termFreqInCorpus
  val idf = math.log(docFreq)
  tf * idf
}

TF-IDF captures two intuitions about the relevance of a term to a document. First, one
would expect that the more often a term occurs in a document, the more important it
is to that document. Second, not all terms are equal in a global sense. It is more mean‐
ingful to encounter a word that is occurs rarely in the entire corpus than a word that
appears in most of the documents, thus the metric uses the inverse of the word’s ap‐
pearance in documents in the full corpus.

The frequency of words in a corpus tends to be distributed exponentially. A common
word will often appear ten times as often as a mildly common word, which in turn might
appear ten or a hundred times as often as a rare word. Basing a metric on the raw inverse
document frequency would give rare words enormous weight and practically ignore the
impact of all other words. To capture this distribution, the scheme uses the log of the
inverse document frequency. This mellows the differences in document frequencies by
transforming the multiplicative gaps between them into additive gaps.

The model relies on a few assumptions. It treats each document as a “bag of words”,
meaning that it pays no attention to the ordering of words, sentence structure, or neg‐
ations. By representing each term once, the model has difficulty dealing with polysemy,
the use of the same word for multiple meanings. For example, the model can’t distinguish
between the use of band in “Radiohead is the best band ever” and “I broke a rubber
band”. If both sentences appears often in the corpus, it may come to associate Radio‐
head with rubber.

The corpus has ten million documents. Counting obscure technical jargon, the English
language contains about a million terms, some subset in the tens of thousands of which
is likely useful for understanding the corpus. As the corpus contains far more documents
than terms, it makes most sense to generate the term document matrix as a row matrix,
a collection of sparse vectors each corresponding to a document.

Getting from the raw Wikipedia dump into this form requires a set of preprocessing
steps. First, the input consists of a single enormous XML file with documents delimited
by <page> tags. This needs to be broken up to feed to the next step, turning Wiki-
formatting into plain text. The plain text then is split into tokens, which are reduced
from their different inflectional forms to a root term through a process called lemma‐
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tization. These tokens can then be used to compute term frequencies and document
frequencies. A final step ties these frequencies together and builds the actual vector
objects.

The first steps can be performed for each document fully in parallel (which in Spark
means as a set of map functions), but computing the inverse document frequencies
requires aggregation across all the documents. A number of useful general NLP and
Wikipedia-specific extraction tools exist that can aid in these tasks.

Getting The Data
Wikipedia makes dumps of all its articles available. The full dump comes in a single
large XML file. These can be downloaded from http://dumps.wikimedia.org/enwiki and
then placed on HDFS. For example:

$ wget http://dumps.wikimedia.org/enwiki/20140304/enwiki-20140304-pages-articles-multistream.xml.bz2
$ bzip2 -d enwiki-20140304-pages-articles-multistream.xml.bz2
$ hadoop fs -put enwiki-20140304-pages-articles-multistream.xml /user/ds

This will take a little while.

Parsing and Preparing the Data
Here’s a snippet at the beginning of the dump:

  <page>
    <title>Anarchism</title>
    <ns>0</ns>
    <id>12</id>
    <revision>
      <id>584215651</id>
      <parentid>584213644</parentid>
      <timestamp>2013-12-02T15:14:01Z</timestamp>
      <contributor>
        <username>AnomieBOT</username>
        <id>7611264</id>
      </contributor>
      <comment>Rescuing orphaned refs (&quot;autogenerated1&quot; from rev 584155010; &quot;bbc&quot; from rev 584155010)</comment>
      <text xml:space="preserve">{{Redirect|Anarchist|the fictional character|Anarchist (comics)}}
{{Redirect|Anarchists}}
{{pp-move-indef}}
{{Anarchism sidebar}}

'''Anarchism''' is a [[political philosophy]] that advocates [[stateless society|stateless societies]] often defined as [[self-governance|self-governed]] voluntary institutions,&lt;ref&gt;&quot;ANARCHISM, a social philosophy that rejects authoritarian government and maintains that voluntary institutions are best suited to express man's natural social tendencies.&quot; George Woodcock. &quot;Anarchism&quot; at The Encyclopedia of Philosophy&lt;/ref&gt;&lt;ref&gt;&quot;In a society developed on these lines, the voluntary associations which already now begin to cover all the fields of human activity would take a still greater extension so as to substitute themselves for the state in all its functions.&quot; [http://www.theanarchistlibrary.org/HTML/Petr_Kropotkin___Anarchism__from_the_Encyclopaedia_Britannica.html Peter Kropotkin. &quot;Anarchism&quot; from the Encyclopædia Britannica]&lt;/ref&gt;&lt;ref&gt;&quot;Anarchism.&quot; The Shorter Routledge Encyclopedia of Philosophy. 2005. p. 14 &quot;Anarchism is the view that a society without the state, or government, is both possible and desirable.
...

Let’s fire up the Spark shell. In this chapter, we rely on several libraries to make our lives
easier. The GitHub repo contains a Maven project that can be used to build a jar file that
packages all these dependencies together.
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$ cd lsa/
$ mvn package
$ spark-shell --jars target/lsa-1.0.0.jar

We’ve provided a class XmlInputFormat, derived from the Apache Mahout project, that
can split up the enormous Wikipedia dump into documents. To create an RDD with it:

import com.cloudera.datascience.common.XmlInputFormat
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.io._

val path = "hdfs:///user/ds/enwiki-20140304-pages-articles-multistream.xml"
val conf = new Configuration()
conf.set(XmlInputFormat.START_TAG_KEY, "<page>")
conf.set(XmlInputFormat.END_TAG_KEY, "</page>")
val kvs = sc.newAPIHadoopFile(path, classOf[XmlInputFormat],
  classOf[LongWritable], classOf[Text], conf)
val rawXmls = kvs.map(p => p._2.toString)

Turning the Wiki XML into the plain text of article contents could require a chapter of
its own, but, luckily, the Cloud9 project provides APIs that handle this entirely:

import edu.umd.cloud9.collection.wikipedia.language._
import edu.umd.cloud9.collection.wikipedia._

def wikiXmlToPlainText(xml: String): Option[(String, String)] = {
  val page = new EnglishWikipediaPage()
  WikipediaPage.readPage(page, xml)
  if (page.isEmpty) None
  else Some((page.getTitle, page.getContent))
}

val plainText = rawXmls.flatMap(wikiXmlToPlainText)

Lemmatization
With the plain text in hand, the next step is to turn it into a bag of terms. This step
requires care for a couple reasons. First, common words like the and is take up space
but at best offer no useful information to the model. Filtering out a list of stop words
can both save space and improve fidelity. Second, terms with the same meaning can
often take slightly different forms. For example, monkey and monkeys do not deserve
to be separate terms. Nor do nationalize and nationalization. Combining these different
inflectional forms into single terms is called stemming or lemmatization. Stemming
refers to heuristics-based techniques for chopping off characters at the ends of words,
while lemmatization refers to more principled approaches. For example, the former
might truncate drew to dr, while the latter might more correctly output draw. The Stan‐
ford Core NLP project provides an excellent lemmatizer with a Java API that Scala can
take advantage of. The following snippet takes the RDD of plain text documents and
both lemmatizes it and filters out stop words.
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import edu.stanford.nlp.pipeline._
import edu.stanford.nlp.ling.CoreAnnotations._

def plainTextToLemmas(text: String, stopWords: Set[String])
  : Seq[String] = {
  val props = new Properties()
  props.put("annotators", "tokenize, ssplit, pos, lemma")

  val pipeline = new StanfordCoreNLP(props)
  val doc = new Annotation(text)

  pipeline.annotate(doc)

  val lemmas = new ArrayBuffer[String]()
  val sentences = doc.get(classOf[SentencesAnnotation])
  for (sentence <- sentences;
       token <- sentence.get(classOf[TokensAnnotation])) {
    val lemma = token.get(classOf[LemmaAnnotation])
    if (lemma.length > 2 && !stopWords.contains(lemma)
        && isOnlyLetters(lemma)) { 
      lemmas += lemma.toLowerCase
    }
  }

  lemmas
}

val lemmatized = plainText.map(plainTextToLemmas(_, stopWords))

Specify some minimal requirements on lemmas to weed out garbage.

Computing the TF-IDFs
At this point, lemmatized refers to an RDD of arrays of terms, each corresponding to a
document. The next step is to compute the frequencies for each term within each docu‐
ment and for each term within the entire corpus. The following code builds up a map
of terms to occurrence counts for each document:

import scala.collection.mutable.HashMap

val docTermFreqs = lemmatized.map(terms => {
  val termFreqs = terms.foldLeft(new HashMap[String, Int]()) {
    (map, term) => {
      map += term -> (map.getOrElse(term, 0) + 1)
      map
    }
  }
  termFreqs
})
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The resulting RDD will be used at least twice after this point: to calculate the inverse
document frequencies and to calculate the final term-document matrix. So caching it
in memory is a good idea:

docTermFreqs.cache()

It is worth considering a couple approaches for calculating the document frequencies
(that is for each term, the number of documents it appears in within the entire corpus).
The first uses the aggregate action to build a local map of terms to frequencies at each
partition and then merge all these maps at the driver. aggregate accepts two functions:
a function for merging a record into the per-partition result object and a function for
merging two of these result objects together. In this case, each record is a map of terms
to frequencies within a document, and the result object is a map of terms to frequencies
within the set of documents. When the records being aggregated and the result object
have the same time (e.g. in a sum), reduce is useful, but when the types differ, as they
do here aggregate is a more powerful alternative.

val zero = new HashMap[String, Int]()
def merge(dfs: HashMap[String, Int], tfs: HashMap[String, Int])
  : HashMap[String, Int] = {
  tfs.keySet.foreach { term =>
    dfs += term -> (dfs.getOrElse(term, 0) + 1)
  }
  dfs
}
def comb(dfs1: HashMap[String, Int], dfs2: HashMap[String, Int])
  : HashMap[String, Int] = {
  for ((term, count) <- dfs2) {
    dfs1 += term -> (dfs1.getOrElse(term, 0) + count)
  }
  dfs1
}
docTermFreqs.aggregate(zero)(merge, comb)

Running this on the entire corpus spits out:

java.lang.OutOfMemoryError: Java heap space

What is going on? It appears that the full set of terms from all the documents cannot fit
into memory and is overwhelming the driver. Just how many terms are there?

docTermFreqs.flatMap(_.keySet).distinct().count()
...
res0: Long = 9014592

Many of these terms are garbage or appear only once in the corpus. Filtering out less
frequent terms can both improve performance and remove noise. A reasonable choice
is to leave out all but the top N most frequent words, where N is somewhere in the tens
of thousands. The following code computes the document frequencies in a distributed
fashion. This resembles the classic word count job widely used to showcase a simple
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MapReduce program. A key-value pair with the term and the number 1 is emitted for
each unique occurrence of a term in a document, and a reduceByKey sums these num‐
bers across the dataset for each term.

val docFreqs = docTermFreqs.flatMap(_.keySet).map((_, 1)).
  reduceByKey(_ + _)

The top action returns the N records with the highest values to the driver. A custom
Ordering is used to allow it to operate on term-count pairs.

val numTerms = 50000
val ordering = Ordering.by[(String, Int), Int](_._2)
val topDocFreqs = docFreqs.top(numTerms)(ordering)

With the document frequencies in hand, the inverse document frequencies can be com‐
puted. Calculating these on the driver instead of in executors each time a term is ref‐
erenced saves some redundant floating point math:

val idfs = docFreqs.map{
  case (term, count) => (term, math.log(numDocs.toDouble / count))
}.toMap

The term frequencies and inverse document frequencies constitute the numbers needed
to compute the TF-IDF vectors. However, there remains one final hitch: the data cur‐
rently resides in maps keyed by strings, but feeding these into MLlib requires trans‐
forming them into vectors keyed by integers. To generate the latter from the former,
assign a unique ID to each term:

val termIds = idfs.keys.zipWithIndex.toMap

Because the term ID map is fairly large and we’ll use it in a few different places, let’s
broadcast it.

val bTermIds = sc.broadcast(termIds).value

Finally, we tie it all together by creating a TF-IDF-weighted vector for each document.
Note that we use sparse vectors because each document will only contain a small subset
of the full set of terms. MLlib’s sparse vectors can be constructed by giving a size and a
list of index-value pairs.

import org.apache.spark.mllib.linalg.Vectors

val vecs = docTermFreqs.map(termFreqs => {
  val docTotalTerms = termFreqs.values().sum
  val termScores = termFreqs.filter {
    case (term, freq) => bTermIds.containsKey(term)
  }.map{
    case (term, freq) => (bTermIds(term),
      bIdfs(term) * termFreqs(term) / docTotalTerms)
  }.toSeq
  Vectors.sparse(bTermIds.size, termScores)
})
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Singular Value Decomposition
With the term-document matrix M in hand, the analysis can proceed to the factorization
and dimensionality reduction. MLlib contains an implementation of the singular value
decomposition (SVD) that can handle enormous matrices. The singular value decom‐
position takes a m x n matrix and returns three matrices that approximately equal it
when multiplied together.

M ≈ USV T

• U is an m x k matrix whose columns form an orthonormal basis for the document
space.

• S is a k x k diagonal matrix, each of whose entries correspond to the strength of one
of the concepts.

• V is a k x n matrix whose columns form an orthonormal basis for the term space.

In the LSA case, m is the number of documents and n is the number of terms. The
decomposition is parameterized with a number k, less than or equal to n, that indicates
how many concepts to keep around. When k = n, the product of the factor matrices
reconstitutes the original matrix exactly. When k < n, the multiplication results in a low-
rank approximation of the original matrix. k is typically chosen to be much smaller than
n. SVD ensures that the approximation will be the closest possible to the original matrix
(as defined by the L2 Norm, that is the sum of squares, of the difference), given the
constraint that it needs to be expressible in only k concepts.

To find the singular value decomposition of a matrix, simply wrap an RDD of row
vectors in a RowMatrix and call computeSVD:

import org.apache.spark.mllib.linalg.distributed.RowMatrix

termDocMatrix.cache()
val mat = new RowMatrix(termDocMatrix)
val k = 1000
val svd = mat.computeSVD(k, computeU=true)

The RDD should be cached in memory beforehand because the computation requires
multiple passes over the data. The computation requires O(nk) storage on the driver,
O(n) storage for each task, and O(k) passes over the data.

As a reminder, a vector in term space means a vector with a weight on every term, a
vector in document space means a vector with a weight on every document, and a vector
in concept space means a vector with a weight on every concept. Each term, document,
or concept defines an axis in their respective spaces, and the weight ascribed to the term,
document, or concept means a length along that axis. Every term or document vector
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can be mapped to a corresponding vector in concept space. Every concept vector has
possibly many term and document vectors that map to it, including a canonical term
and document vector that it maps to when transformed in the reverse direction.

V is a n x k matrix where each row corresponds to a term and each column corresponds
to a concept. It defines a mapping between term space (the space where each point is a
n-dimensional vector holding a weight for each term) and concept space (the space
where each point is a k-dimensional vector holding a weight for each concept).

Similarly, U is a m x k matrix where each row corresponds to a document and each
column corresponds to a concept. It defines a mapping between document space and
concept space.

S is a k x k diagonal matrix that holds the singular values. Each diagonal element in S
corresponds to a single concept (and thus a column in V and a column in U). The
magnitude of each of these singular values corresponds to the importance of that con‐
cept, its power in explaining the variance in the data. An (inefficient) implementation
of SVD could find the rank-k decomposition by starting with the rank-n decomposition
and throwing away the n - k smallest singular values until there are k left (along with
their corresponding columns in U and V). A key insight of LSA is that only a small
number of concepts are important to representing that data. The entries in the S matrix
directly indicate the importance of each concept. They also happen to be the square
roots of the eigenvalues of M M T .

Finding Important Concepts
So SVD outputs a bunch of numbers. How can these be inspected to verify they actually
relate to anything useful? The V matrix represents concepts through the terms that are
important to them. As discussed above, V contains a column for every concept and a
row for every term. The value at each position can be interpreted as the relevance of
that term to that concept. This means that the most relevant terms to each of the top
concepts can be found with something like this:

import scala.collection.mutable.ArrayBuffer

val v = svd.V
val topTerms = new ArrayBuffer[Seq[(String, Double)]]()
val arr = v.toArray
for (i <- 0 until numConcepts) {
  val offs = i * v.numRows
  val termWeights = arr.slice(offs, offs + v.numRows).zipWithIndex
  val sorted = termWeights.sortBy(-_._1)
  topTerms += sorted.take(numTerms).map{
    case (score, id) => (termIds(id), score)
  }
}
topTerms
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Note that V is a matrix in memory locally in the driver process, and the computation
occurs in a non-distributed manner. The relevant terms to each of the top concepts can
be found in a similar manner using U, but the code looks a little bit different because U
is stored as a distributed matrix.

def topDocsInTopConcepts(
    svd: SingularValueDecomposition[RowMatrix, Matrix],
    numConcepts: Int, numDocs: Int, docIds: Map[Long, String])
  : Seq[Seq[(String, Double)]] = {
  val u  = svd.U
  val topDocs = new ArrayBuffer[Seq[(String, Double)]]()
  for (i <- 0 until numConcepts) {
    val docWeights = u.rows.map(_.toArray(i)).zipWithUniqueId
    topDocs += docWeights.top(numDocs).map{
      case (score, id) => (docIds(id), score) 
    }
  }
  topDocs
}

While it’s not difficult, for continuity, we’ve elided how we create the doc ID
mapping. Refer to the repo for this.

Let’s inspect the first few concepts:

val topConceptTerms = topTermsInTopConcepts(svd, 4, 10, termIds)
val topConceptDocs = topDocsInTopConcepts(svd, 4, 10, docIds)
for ((terms, docs) <- topConceptTerms.zip(topConceptDocs)) {
  println("Concept terms: " + terms.map(_._1).mkString(", "))
  println("Concept docs: " + docs.map(_._1).mkString(", "))
  println()
}

Concept terms: summary, licensing, fur, logo, album, cover, rationale, gif, use, fair
Concept docs: File:Gladys-in-grammarland-cover-1897.png, File:Gladys-in-grammarland-cover-2010.png, File:1942ukrpoljudeakt4.jpg, File:Σακελλαρίδης.jpg, File:Baghdad-texas.jpg, File:Realistic.jpeg, File:DuplicateBoy.jpg, File:Garbo-the-spy.jpg, File:Joysagar.jpg, File:RizalHighSchoollogo.jpg

Concept terms: disambiguation, william, james, john, iran, australis, township, charles, robert, river
Concept docs: G. australis (disambiguation), F. australis (disambiguation), U. australis (disambiguation), L. maritima (disambiguation), G. maritima (disambiguation), F. japonica (disambiguation), P. japonica (disambiguation), Velo (disambiguation), Silencio (disambiguation), TVT (disambiguation)

Concept terms: licensing, disambiguation, australis, maritima, rawal, upington, tallulah, chf, satyanarayana, valérie
Concept docs: File:Rethymno.jpg, File:Ladycarolinelamb.jpg, File:KeyAirlines.jpg, File:NavyCivValor.gif, File:Vitushka.gif, File:DavidViscott.jpg, File:Bigbrother13cast.jpg, File:Rawal Lake1.JPG, File:Upington location.jpg, File:CHF SG Viewofaltar01.JPG

Concept terms: licensing, summarysource, summaryauthor, wikipedia, summarypicture, summaryfrom, summaryself, rawal, chf, upington
Concept docs: File:Rethymno.jpg, File:Wristlock4.jpg, File:Meseanlol.jpg, File:Sarles.gif, File:SuzlonWinMills.JPG, File:Rawal Lake1.JPG, File:CHF SG Viewofaltar01.JPG, File:Upington location.jpg, File:Driftwood-cover.jpg, File:Tallulah gorge2.jpg

Concept terms: establishment, norway, country, england, spain, florida, chile, colorado, australia, russia
Concept docs: Category:1794 establishments in Norway, Category:1838 establishments in Norway, Category:1849 establishments in Norway, Category:1908 establishments in Norway, Category:1966 establishments in Norway, Category:1926 establishments in Norway, Category:1957 establishments in Norway, Template:EstcatCountry1stMillennium, Category:2012 establishments in Chile, Category:1893 establishments in Chile

The documents in the first concept appear to all be image files, and the terms appear to
be related to image attributes and licensing. The second concept appears to be disam‐
biguation pages. It seems that perhaps this dump is not restricted to the raw Wikipedia
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articles and is cluttered by administrative pages as well discussion pages as well. In‐
specting the output of intermediate stages is useful for catching this kind of issue early.
Luckily, it appears that Cloud9 provides some functionality for filtering these out. An
updated version of the wikiXmlToPlainText method from above looks like:

def wikiXmlToPlainText(xml: String): Option[(String, String)] = {
  ...
  if (page.isEmpty || !page.isArticle || page.isRedirect ||
    page.getTitle.contains("(disambiguation)")) {
  } else {
    Some((page.getTitle, page.getContent))
  }
}

Rerunning the pipeline on the filtered set of documents yields a much more reasonable
result:

Concept terms: disambiguation, highway, school, airport, high, refer, number, squadron, list, may, division, regiment, wisconsin, channel, county
Concept docs: Tri-State Highway (disambiguation), Ocean-to-Ocean Highway (disambiguation), Highway 61 (disambiguation), Tri-County Airport (disambiguation), Tri-Cities Airport (disambiguation), Mid-Continent Airport (disambiguation), 99 Squadron (disambiguation), 95th Squadron (disambiguation), 94 Squadron (disambiguation), 92 Squadron (disambiguation)

Concept terms: disambiguation, nihilistic, recklessness, sullen, annealing, negativity, initialization, recapitulation, streetwise, pde, pounce, revisionism, hyperspace, sidestep, bandwagon
Concept docs: Nihilistic (disambiguation), Recklessness (disambiguation), Manjack (disambiguation), Wajid (disambiguation), Kopitar (disambiguation), Rocourt (disambiguation), QRG (disambiguation), Maimaicheng (disambiguation), Varen (disambiguation), Gvr (disambiguation)

Concept terms: department, commune, communes, insee, france, see, also, southwestern, oise, marne, moselle, manche, eure, aisne, isère
Concept docs: Communes in France, Saint-Mard, Meurthe-et-Moselle, Saint-Firmin, Meurthe-et-Moselle, Saint-Clément, Meurthe-et-Moselle, Saint-Sardos, Lot-et-Garonne, Saint-Urcisse, Lot-et-Garonne, Saint-Sernin, Lot-et-Garonne, Saint-Robert, Lot-et-Garonne, Saint-Léon, Lot-et-Garonne, Saint-Astier, Lot-et-Garonne

Concept terms: genus, species, moth, family, lepidoptera, beetle, bulbophyllum, snail, database, natural, find, geometridae, reference, museum, noctuidae
Concept docs: Chelonia (genus), Palea (genus), Argiope (genus), Sphingini, Cribrilinidae, Tahla (genus), Gigartinales, Parapodia (genus), Alpina (moth), Arycanda (moth)

Concept terms: province, district, municipality, census, rural, iran, romanize, population, infobox, azerbaijan, village, town, central, settlement, kerman
Concept docs: New York State Senate elections, 2012, New York State Senate elections, 2008, New York State Senate elections, 2010, Alabama State House of Representatives elections, 2010, Albergaria-a-Velha, Municipalities of Italy, Municipality of Malmö, Delhi Municipality, Shanghai Municipality, Göteborg Municipality

Concept terms: genus, species, district, moth, family, province, iran, rural, romanize, census, village, population, lepidoptera, beetle, bulbophyllum
Concept docs: Chelonia (genus), Palea (genus), Argiope (genus), Sphingini, Tahla (genus), Cribrilinidae, Gigartinales, Alpina (moth), Arycanda (moth), Arauco (moth)

Concept terms: protein, football, league, encode, gene, play, team, bear, season, player, club, reading, human, footballer, cup
Concept docs: Protein FAM186B, ARL6IP1, HIP1R, SGIP1, MTMR3, Gem-associated protein 6, Gem-associated protein 7, C2orf30, OS9 (gene), RP2 (gene)

The first two concepts remain disambiguation, but the rest appear to correspond to
meaningful categories. The third appears to be composed of locales in France, the fourth
and sixth of animal and bug taxonomies. The fifth concerns elections, municipalities,
and government. The articles in the seventh concern proteins, while some of the terms
also reference football, perhaps with a crossover of fitness of performance enhancing
drugs? While unexpected words appear in each, all the concepts exhibit some thematic
coherence.
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Querying and Scoring with the Low-Dimensional
Representation
How relevant is a term to a document? How relevant are two terms to each other? Which
documents most closely match a set of query terms? The original term-document matrix
provides a shallow way to answer these questions. A relevance score between two terms
can be achieved by computing the cosine similarity between their two column vectors
in the matrix. Cosine similarity measures the angle between two vectors. Vectors that
point in the same direction in the high-dimensional document space are thought to be
relevant to each other. It is computed as the dot product of the vectors divided by the
product of their lengths. Cosine similarity sees wide use as a similarity metric between
vectors of term and document weights in natural language and information retrieval
applications. Likewise, for two documents, a relevance score can be computed as the
cosine similarity between their two row vectors. A relevance score between a term and
a document can simply be the element in the matrix at the intersection of both.

However, these scores come from shallow knowledge about the relationships between
these entities, relying on simple frequency counts. LSA provides the ability to base these
scores on a deeper understanding of the corpus. For example, if the term artillery appears
nowhere in a document on the Normandy landings article, but it mentions howitzer
frequently, the LSA representation may be able to recover the relation between artille‐
ry and the article based on the co-occurrence of artillery and howitzer in other docu‐
ments.

The LSA representation also offers benefits from an efficiency standpoint. It packs the
important information into a lower-dimensional representation that can be operated
on instead of the original term-document matrix. Consider the task of finding the set
of terms most relevant to a particular term. The naive approach requires computing the
dot product between that term’s column vector and every other column vector in the
term-document matrix. This involves a number of multiplications proportional to the
number of terms times the number of documents. LSA can achieve the same by looking
up its concept-space representation and mapping it back into term space, requiring a
number of multiplications only proportional to the number of terms times k. The low-
rank approximation encodes the relevant patterns in the data so the full corpus need
not be queried.

Term-Term Relevance
LSA understands the relation between two terms as the cosine similarity between their
two columns in the reconstructed low-rank matrix, that is the matrix that would be
produced if the three approximate factors were multiplied back together. One of the
ideas behind LSA is that this matrix offers a more useful representation of the data. It
offers this in a few ways:
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• Accounting for synonymy by condensing related terms.
• Accounting for polysemy by placing less weight on terms that have multiple mean‐

ings.
• Throwing out noise.

However, this contents of this matrix need not actually be calculated to discover the
cosine similarity. Some linear algebra manipulation reveals that the cosine similarity
between two columns in the reconstructed matrix is exactly equal to the cosine similarity
between the corresponding columns in SV T . Consider the task of finding the set of
terms most relevant to a particular term. Finding the cosine similarity between a term
and all other terms is equivalent to normalizing each row in VS  to length 1 and then
multiplying the row corresponding to that term by it. Each element in the resulting
vector will contain a similarity between a term and the query term.

For the sake of brevity, the implementations of the methods that compute VS  and nor‐
malize its rows are omitted, but they can be found in the repository.

import breeze.linalg.{DenseVector => BDenseVector}
import breeze.linalg.{DenseMatrix => BDenseMatrix}

def topTermsForTerm(
    normalizedVS: BDenseMatrix[Double],
    termId: Int): Seq[(Double, Int)] = {
  val rowVec = new BDenseVector[Double](
    row(normalizedVS, termId).toArray) 

  val termScores = (normalizedVS * rowVec).toArray.zipWithIndex 

  termScores.sortBy(-_._1).take(10) 
}

val VS = multiplyByDiagonalMatrix(svd.V, svd.s)

val normalizedVS = rowsNormalized(VS)

def printRelevantTerms(term: String) {
  val id = idTerms(term)
  printIdWeights(topTermsForTerm(normalizedVS, id, termIds)
}

printRelevantTerms("algorithm")
...
(algorithm,1.000000000000002), (heuristic,0.8773199836391916), (compute,0.8561015487853708), (constraint,0.8370707630657652), (optimization,0.8331940333186296), (complexity,0.823738607119692), (algorithmic,0.8227315888559854), (iterative,0.822364922633442), (recursive,0.8176921180556759), (minimization,0.8160188481409465)

printRelevantTerms("radiohead")
...
(radiohead,0.9999999999999993), (lyrically,0.8837403315233519), (catchy,0.8780717902060333), (riff,0.861326571452104), (lyricsthe,0.8460798060853993), (lyric,0.8434937575368959), (upbeat,0.8410212279939793), (song,0.8280655506697948), (musically,0.8239497926624353), (anthemic,0.8207874883055177)

printRelevantTerms("tarantino")
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...
(tarantino,1.0), (soderbergh,0.780999345687437), (buscemi,0.7386998898933894), (screenplay,0.7347041267543623), (spielberg,0.7342534745182226), (dicaprio,0.7279146798149239), (filmmaking,0.7261103750076819), (lumet,0.7259812377657624), (directorial,0.7195131565316943), (biopic,0.7164037755577743)

Look up the row in VS corresponding to the given term ID.
Compute scores against every term
Find the terms with the highest scores

Document-Document Relevance
The same goes for computing relevance scores between documents. To find the simi‐
larity between two documents, compute the cosine similarity between u1

T S  and u2
T S ,

where ui is the row in U corresponding to term i. To find the similarity between a
document and all other documents, compute normalized(US) ut .

In this case, the implementation is slightly different because U is backed by an RDD,
not a local matrix.

import org.apache.spark.mllib.linalg.Matrices

def topDocsForDoc(normalizedUS: RowMatrix, docId: Long)
  : Seq[(Double, Long)] = {
  val docRowArr = row(normalizedUS, docId) 
  val docRowVec = Matrices.dense(docRowArr.length, 1, docRowArr)

  val docScores = normalizedUS.multiply(docRowVec) 

  val allDocWeights = docScores.rows.map(_.toArray(0)).
    zipWithUniqueId 

  allDocWeights.filter(!_._1.isNaN).top(10) 
}
val US = multiplyByDiagonalMatrix(svd.U, svd.s)

val normalizedUS = rowsNormalized(US)

def printRelevantDocs(doc: String) {
  val id = idDocs(doc)
  printIdWeights(topDocsForDoc(normalizedUS, id, docIds)
}

printRelevantDocs("Romania")
...
(Romania,0.9999999999999994), (Roma in Romania,0.9229332158078395), (Kingdom of Romania,0.9176138537751187), (Anti-Romanian discrimination,0.9131983116426412), (Timeline of Romanian history,0.9124093989500675), (Romania and the euro,0.9123191881625798), (History of Romania,0.9095848558045102), (Romania–United States relations,0.9016913779787574), (Wiesel Commission,0.9016106300096606), (List of Romania-related topics,0.8981305676612493)

printRelevantDocs("Brad Pitt")
...
(Brad Pitt,0.9999999999999984), (Aaron Eckhart,0.8935447577397551), (Leonardo DiCaprio,0.8930359829082504), (Winona Ryder,0.8903497762653693), (Ryan Phillippe,0.8847178312465214), (Claudette Colbert,0.8812403821804665), (Clint Eastwood,0.8785765085978459), (Reese Witherspoon,0.876540742663427), (Meryl Streep in the 2000s,0.8751593996242115), (Kate Winslet,0.873124888198288)

printRelevantDocs("Radiohead")
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...
(Radiohead,1.0000000000000016), (Fightstar,0.9461712602479349), (R.E.M.,0.9456251852095919), (Incubus (band),0.9434650141836163), (Audioslave,0.9411291455765148), (Tonic (band),0.9374518874425788), (Depeche Mode,0.9370085419199352), (Megadeth,0.9355302294384438), (Alice in Chains,0.9347862053793862), (Blur (band),0.9347436350811016)

Look up the row in US corresponding to the given doc ID.
Compute scores against every doc
Find the docs with the highest scores
Docs can end up with NaN score if their row in U is all zeros. Filter these out.

Term-Document Relevance
What about computing a relevance score between a term and a document? This is
equivalent to finding the element corresponding to that term and document in the
reduced-rank approximation of the term-document matrix. This is equal to ud

T Svt ,
where ud  is the row in U corresponding to the document and vt  is the row in V corre‐
sponding to the term. Some simple linear algebra manipulation reveals that computing
a similarity between a term and every document is equivalent to USvt . Each element in
the resulting vector will contain a similarity between a document and the query term.
In the other direction, the similarity between a document and every term comes from
ud

T SV .

def topDocsForTerm(US: RowMatrix, V: Matrix, termId: Int)
  : Seq[(Double, Long)] = {
  val rowArr = row(V, termId).toArray
  val rowVec = Matrices.dense(termRowArr.length, 1, termRowArr)

  val docScores = US.multiply(termRowVec) 

  val allDocWeights = docScores.rows.map(_.toArray(0)).
    zipWithUniqueId 
  allDocWeights.top(10)
}

def printRelevantDocs(term: String) {
  val id = idTerms(term)
  printIdWeights(topDocsForTerm(normalizedUS, svd.V, id, docIds)
}

printRelevantDocs("fir")
...
(Silver tree,0.006292909647173194), (See the forest for the trees,0.004785047583508223), (Eucalyptus tree,0.004592837783089319), (Sequoia tree,0.004497446632469554), (Willow tree,0.004442871594515006), (Coniferous tree,0.004429936059594164), (Tulip Tree,0.004420469113273123), (National tree,0.004381572286629475), (Cottonwood tree,0.004374705020233878), (Juniper Tree,0.004370895085141889)

printRelevantDocs("graph")
...
(K-factor (graph theory),0.07074443599385992), (Mesh Graph,0.05843133228896666), (Mesh graph,0.05843133228896666), (Grid Graph,0.05762071784234877), (Grid graph,0.05762071784234877), (Graph factor,0.056799669054782564), (Graph (economics),0.05603848473056094), (Skin graph,0.05512936759365371), (Edgeless graph,0.05507918292342141), (Traversable graph,0.05507918292342141)

Compute scores against every doc
Find the docs with the highest scores
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Multiple-Term Queries
Lastly, what about servicing queries with multiple terms? Finding documents relevant
to a single term involved selecting the row corresponding to that term from V. This is
equivalent to multiplying V by a term vector with a single non-zero entry. To move to
multiple terms, instead compute the concept-space vector by simply multiplying V by
a term vector with non-zero entries for multiply terms. To maintain the weighting
scheme used for the original term-document matrix, set the value for each term in the
query to its inverse document frequency. In one sense, querying in this way is like adding
a new document to the corpus with just a few terms, finding its representation as a new
row of the low-rank term-document matrix approximation, and then discovering the
cosine similarity between it and the other entries in this matrix.

import breeze.linalg.{SparseVector => BSparseVector}

def termsToQueryVector(
    terms: Seq[String],
    idTerms: Map[String, Int],
    idfs: Map[String, Double]): BSparseVector[Double] = {
  val indices = terms.map(idTerms(_)).toArray
  val values = terms.map(idfs(_)).toArray
  new BSparseVector[Double](indices, values, idTerms.size)
}

def topDocsForTermQuery(
    US: RowMatrix,
    V: Matrix,
    query: BSparseVector[Double]): Seq[(Double, Long)] = {
  val breezeV = new BDenseMatrix[Double](V.numRows, V.numCols,
    V.toArray)
  val termRowArr = (breezeV.t * query).toArray

  val termRowVec = Matrices.dense(termRowArr.length, 1, termRowArr)

  val docScores = US.multiply(termRowVec) 

  val allDocWeights = docScores.rows.map(_.toArray(0)).
    zipWithUniqueId 
  allDocWeights.top(10)
}

def printRelevantDocs(terms: Seq[String]) {
  val queryVec = termsToQueryVector(terms, idTerms, idfs)
  printIdWeights(topDocsForTermQuery(US, svd.V, queryVec), docIds)
}

printRelevantDocs(Seq("factorization", "decomposition"))
...
(K-factor (graph theory),0.04335677416674133), (Matrix Algebra,0.038074479507460755), (Matrix algebra,0.038074479507460755), (Zero Theorem,0.03758005783639301), (Birkhoff-von Neumann Theorem,0.03594539874814679), (Enumeration theorem,0.03498444607374629), (Pythagoras' theorem,0.03489110483887526), (Thales theorem,0.03481592682203685), (Cpt theorem,0.03478175099368145), (Fuss' theorem,0.034739350150484904)
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Compute scores against every doc
Find the docs with the highest scores

Where To Go From Here
The Singular Value Decomposition and its sister technique Principal Component Anal‐
ysis have a wide variety of applications outside of text analysis. A common method of
recognizing human faces known as eigenfaces relies on it to understand the patterns of
variation in human appearance. In climate research, it is used to find global temperature
trends from disparate noisy data sources like tree rings. Michael Mann’s famous “hockey
stick” graph use, depicting the rise of temperatures throughout the twentieth, in fact
depicts a concept in the sense used above. Singular Value Decomposition and PCA are
also useful in visualization of high-dimensional datasets. By reducing a dataset down
to its first two or three concepts, it can be plotted on a graph that humans can view.

A variety of other methods exist for understanding large corpuses of text. For example,
a technique known as Latent Dirichlet Allocation (LDA) is useful in many similar ap‐
plications. As a topic model, it infers a set of topics from a corpus and assigns each
document a level of participation in each topic.
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CHAPTER 7

Analyzing Co-occurrence Networks with
GraphX

Josh Wills

It’s a small world. It keeps recrossing itself.
— David Mitchell

Data scientists come in all shapes and sizes and come from a remarkably diverse set of
academic backgrounds. Although many have some training in disciplines like computer
science, mathematics, and physics, there are other successful data scientists who studied
neuroscience, sociology, and political science. Although these fields study different
things (e.g., brains, people, political institutions) and have not traditionally required
students to learn how to program, they all share two important characteristics that have
made them fertile training ground for data scientists.

First, all of these fields are interested in understanding relationships between entities,
whether between neurons, individuals, or countries, and how these relationships affect
the observed behavior of the entities. Second, the explosion of digital data over the past
decade gave researchers access to vast quantities of information about these relation‐
ships, and required that they develop new skills in order to acquire and manage these
data sets.

As these researchers began to collaborate with each other and with computer scientists,
they also discovered that many of the techniques that they were using to analyze rela‐
tionships could be applied to problems across domains, and the field of network sci‐
ence was born. Network science applies tools from graph theory, the mathematical dis‐
cipline that studies the properties of pairwise relationships (called edges) between a set
of entities (called vertices). Graph theory is also widely used in computer science to study
everything from data structures to computer architecture to the design of networks like
the Internet.

115



Graph theory and network science have had a significant impact in the business world
as well. Almost every major Internet company derives a significant fraction of its value
by its ability to build and analyze an important network of relationships better than any
of its competitors: the recommendation algorithms that are used at Amazon and Netflix
rely on the networks of consumer-item purchases (Amazon) and user-movie ratings
(Netflix) that each company creates and controls. Facebook and LinkedIn built graphs
of relationships between people that they analyze in order to organize content feeds,
promote advertisements, and broker new connections. And perhaps most famously of
all, Google used the PageRank algorithm that the founders’ developed to create a fun‐
damentally better way to search the World Wide Web.

The computational and analytical needs of these network-centric companies helped
drive the creation of distributed processing frameworks like MapReduce as well as the
hiring of data scientists who were capable of using these new tools in order to analyze
and create value from the ever-expanding volume of data. One of the earliest use cases
for MapReduce was to create a scalable and reliable way to solve the iterative sequence
of equations at the heart of PageRank. Over time, as the graphs became larger and data
scientists needed to analyze them faster, new graph-parallel processing frameworks, like
Pregel at Google, Giraph at Yahoo!, and GraphLab at Carnegie Mellon, were developed.
These frameworks supported fault-tolerant, in-memory, iterative, and graph-centric
processing, and were capable of performing certain types of graph computations orders
of magnitude faster than the equivalent data-parallel MapReduce jobs.

In this chapter, we’re going to introduce a Spark library called GraphX, which extends
Spark to support many of the graph-parallel processing tasks that Pregel, Giraph, and
GraphLab support. Although it cannot handle every graph computation as quickly as
the custom graph frameworks do, the fact that it is a Spark library means that it is
relatively easy to bring GraphX into your normal data analysis workflow whenever you
want to analyze a network-centric data set. With it, you can combine graph-parallel
programming with the familiar Spark abstractions that you are used to working with.

The MEDLINE Citation Index: A Network Analysis
MEDLINE (Medical Literature Analysis and Retrieval System Online) is a database of
academic papers that have been published in journals covering the life sciences and
medicine. It is managed and released by the United States National Library of Medicine
(NLM), a division of the National Institute of Health (NIH). Its citation index, which
tracks the publication of articles across thousands of journals, can trace its history back
to 1879, and it has been available online to medical schools since 1971 and to the general
public via the World Wide Web since 1996. The main database contains more than 20
million articles going back to the early 1950s and is updated five days a week.

Due to the volume of citations and the frequency of updates, the research community
developed an extensive set of semantic tags called MeSH (Medical Subject Headings)
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that are applied to all of the citations in the index. These tags provide a meaningful
framework that can be used to explore relationships between documents in order to
facilitate literature reviews, and they have also been used as the basis for building data
products: in 2001, PubGene demonstrated one of the first production applications of
biomedical text mining by launching a search engine that allowed users to explore the
graph of MeSH terms that connect related documents together.

In this chapter, we’re going to use Scala, Spark, and GraphX in order to acquire, trans‐
form, and then analyze the network of MeSH terms on a recently published subset of
citation data from MEDLINE. The network analysis we’ll be performing was inspired
by the paper “Large-Scale Structure of a Network of Co-Occurring MeSH Terms: Stat‐
istical Analysis of Macroscopic Properties,” by Kastrin et al. (2014), although we’ll be
using a different subset of the citation data and performing the analysis with GraphX
instead of the R packages and C++ code that was used in that paper.

Our goal will be to get a feel for the shape and properties of the citation graph. We’ll
attack this from a few different angles to get a full view of the dataset. First, we’ll approach
it without thinking about its graphical structure, looking at the major topics and their
co-occurrences. Then, we’ll look for connected components - do can one follow a path
of citations from any topic to any other topic, or is the data actually a set of separate
smaller graphs. We’ll move on to look at the degree distribution of the graph, which gives
a sense of how the relevance of topics can vary, and find the topics that are connected
to the most other topics. Last, we’ll compute a couple slightly more advanced graph
statistics: the clustering coefficient and the average path length. Among other uses, these
allow us to understand how similar the citation graph is to other common real-world
graphs like the World Wide Web and Facebook’s social network.

Getting The Data
We can retrieve a sample of the citation index data from the NIH’s FTP server:

$ mkdir medline_data
$ cd medline_data
$ wget ftp://ftp.nlm.nih.gov/nlmdata/sample/medline/*.gz

Let’s uncompress the citation data and examine it before we load it into HDFS:

$ gunzip *.gz
$ ls -ltr
...
total 843232
-rw-r--r-- 1 spark spark 162130087 Dec 17  2013 medsamp2014h.xml
-rw-r--r-- 1 spark spark 146357238 Dec 17  2013 medsamp2014g.xml
-rw-r--r-- 1 spark spark 132427298 Dec 17  2013 medsamp2014f.xml
-rw-r--r-- 1 spark spark 102401546 Dec 17  2013 medsamp2014e.xml
-rw-r--r-- 1 spark spark 102715615 Dec 17  2013 medsamp2014d.xml
-rw-r--r-- 1 spark spark  89355057 Dec 17  2013 medsamp2014c.xml
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-rw-r--r-- 1 spark spark  69209079 Dec 17  2013 medsamp2014b.xml
-rw-r--r-- 1 spark spark  58856903 Dec 17  2013 medsamp2014a.xml

The sample files contain about 600 MB of XML-formatted data, uncompressed. Each
entry in the sample files is a MedlineCitation record, which contains information about
the publication of an article in a biomedical journal, including the journal name, issue,
publication date, the names of the authors, the abstract, and the set of MeSH keywords
that are associated with the article. In addition, each of the MeSH keywords has an
attribute to indicate whether or not the concept the keyword refers to was a major topic
of the article or not. Let’s take a look at the first citation record in medsamp2014a.xml:

<MedlineCitation Owner="PIP" Status="MEDLINE">
<PMID Version="1">12255379</PMID>
<DateCreated>
  <Year>1980</Year>
  <Month>01</Month>
  <Day>03</Day>
</DateCreated>
...
<MeshHeadingList>
...
  <MeshHeading>
    <DescriptorName MajorTopicYN="N">Intelligence</DescriptorName>
  </MeshHeading>
  <MeshHeading>
    <DescriptorName MajorTopicYN="Y">Maternal-Fetal Exchange</DescriptorName>
  </MeshHeading>
...
</MeshHeadingList>
...
</MedlineCitation>

In our latent semantic analysis of Wikipedia articles, we were primarily interested in
the unstructured article text that was contained in each of the XML records. But for our
co-occurrence analysis, we’re going to want to extract the values contained within the
DescriptorName tags by parsing the structure of the XML directly. Fortunately, Scala
comes with an excellent library for parsing and querying XML documents directly that
we can use to help us out.

Let’s get started by loading the citation data into HDFS.

$ hadoop fs -mkdir medline
$ hadoop fs -put *.xml medline

Now we can start up an instance of the Spark Shell. The chapter relies on the code
described in the Latent Semantic Analysis chapter for parsing XML-formatted data. To
compile this code into a jar so that we can make use of it, go into the common/ directory
in the git repo and build it with Maven:
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$ cd common/
$ mvn package
$ spark-shell --jars target/common-1.0.0.jar

Let’s write a function to read the XML-formatted MEDLINE data into the shell:

import com.cloudera.datascience.common.XmlInputFormat
import org.apache.spark.SparkContext
import org.apache.hadoop.io.{Text, LongWritable}
import org.apache.hadoop.conf.Configuration

def loadMedline(sc: SparkContext, path: String) = {
  @transient val conf = new Configuration()
  conf.set(XmlInputFormat.START_TAG_KEY, "<MedlineCitation ")
  conf.set(XmlInputFormat.END_TAG_KEY, "</MedlineCitation>")
  val in = sc.newAPIHadoopFile(path, classOf[XmlInputFormat],
      classOf[LongWritable], classOf[Text], conf)
  in.map(line => line._2.toString)
}
val medline_raw = loadMedline(sc, "medline")

We are setting the value of the START_TAG_KEY configuration parameter to be the prefix
of the MedlineCitation start tag, because the values of the tag’s attributes may change
from record to record. The XmlInputFormat will include these varying attributes in the
record values that are returned.

Parsing XML Documents with Scala’s XML Library
Scala has an interesting history with XML. Since version 1.2, Scala has treated XML as
a first-class data type. This means that the following code is syntactically valid:

import scala.xml._

val cit = <MedlineCitation>data</MedlineCitation>

This support for XML literals has always been somewhat unusual among major pro‐
gramming languages, especially as other serialization formats such as JSON have come
into widespread use. In 2012, Martin Odersky published the following note to the Scala
language mailing list:

[XML literals] Seemed a great idea at the time, now it sticks out like a sore thumb. I believe
with the new string interpolation scheme we will be able to put all of XML processing in
the libraries, which should be a big win.

— Martin Odersky

As of Scala 2.11, the scala.xml package is no longer a part of the core Scala libraries.
After you upgrade, you will need to explicitly include the scala-xml dependency in
order to use the Scala XML libraries in your projects.
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With that caveat in mind, Scala’s support for parsing and querying XML documents is
truly excellent, and we will be availing ourselves of it to help extract the information we
want from the MEDLINE citations. Let’s get started by pulling the unparsed first citation
record into our Spark shell:

val raw_xml = medline_raw.take(1)(0)
val elem = XML.loadString(raw_xml)

The elem variable is an instance of the scala.xml.Elem class, which is how Scala rep‐
resents an individual node in an XML document. There are a number of built-in func‐
tions for retrieving information about the node and its contents, such as:

elem.label
elem.attributes

There are also a small set of operators for finding the children of a given XML node; the
first one, for retrieving a node’s direct children by name, is called \:

elem \ "MeshHeadingList"
...
NodeSeq(<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Behavior</DescriptorName>
</MeshHeading>
...

The \ operator only works on direct children of the node; if we execute elem \ "Mesh
Heading", the result is an empty NodeSeq. In order to extract non-direct children of a
given node, we need to use the \\ operator:

elem \\ "MeshHeading"
...
NodeSeq(<MeshHeading>
<DescriptorName MajorTopicYN="N">Behavior</DescriptorName>
</MeshHeading>,
...

We can also use the \\ operator to get at the DescriptorName entries directly, and then
retrieve the MeSH tags within each node by calling the text function on each element
of the NodeSeq:

(elem \\ "DescriptorName").map(_.text)
...
List(Behavior, Congenital Abnormalities, ...

Finally, note that each of the DescriptorName entries has an attribute called MajorTo
picYN that indicates whether or not this MeSH tag was a major topic of the cited article.
We can look up the value of attributes of XML tags using the \ and \\ operators if we
preface the attribute name with a “@” symbol. We can use this to create a filter that only
returns the names of the major MeSH tags for each article:
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def majorTopics(elem: Elem): Seq[String] = {
  val dn = elem \\ "DescriptorName"
  val mt = dn.filter(n => (n \ "@MajorTopicYN").text == "Y")
  mt.map(n => n.text)
}
majorTopics(elem)

Now that we have our XML parsing code working locally, let’s apply it to parse the MeSH
codes for each citation record in our RDD and cache the result:

val mxml = medline_raw.map(XML.loadString)
val medline = mxml.map(majorTopics).cache()
medline.take(1)(0)

Analyzing the MeSH Major Topics and their Co-
occurrences
Now that we’ve extracted the MeSH tags we want from the MEDLINE citation records,
let’s get a feel for the overall distribution of tags in our data set by calculating some basic
summary statistics, such as the number of records and a histogram of the frequencies
of various major MeSH topics:

medline.count()
val topics = medline.flatMap(mesh => mesh)
val topicCounts = topics.countByValue()
topicCounts.size
val tcSeq = topicCounts.toSeq
tcSeq.sortBy(_._2).reverse.take(10).foreach(println)
...
(Research,5591)
(Child,2235)
(Infant,1388)
(Toxicology,1251)
(Pharmacology,1242)
(Rats,1067)
(Adolescent,1025)
(Surgical Procedures, Operative,1011)
(Pregnancy,996)
(Pathology,967)

The most frequently occurring major topics are, unsurprisingly, some of the most gen‐
eral ones, like the uber-generic “Research,” or the slightly less generic “Toxicology,”
“Pharmacology,” and “Pathology.” The frequent topic list also includes references to
various patient populations, like “Child,” “Infant”, “Rats,” or (the even more odious)
“Adolescent.” Fortunately, there are over 13,000 different major topics in our data set,
and given that the most frequently occurring major topic only occurs in a small fraction
of all the documents (5591 / 240000 ~ 2.3%), we would expect that the overall distri‐
bution of topics has a relatively long-tail. We can verify this by creating a frequency
count of the values of the topicCounts map:
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val valueDist = topicCounts.groupBy(_._2).mapValues(_.size)
valueDist.toSeq.sorted.take(10).foreach(println)
...
(1,2599)
(2,1398)
(3,935)
(4,761)
(5,592)
(6,461)
(7,413)
(8,394)
(9,345)
(10,297)

Of course, our primary interest is in co-occurring MeSH topics. Each entry in the
medline data set is a list of strings that are the names of topics that are mentioned in
each citation record. In order to get the co-occurrences, we need to generate all of the
two-element sublists of this list of strings. Fortunately, Scala’s collections library has a
built-in method called combinations to make generating these sublists extremely easy:

val list = List(1, 2, 3)
val list2 = list.combinations(2)
list2.toList.foreach(println)

When using this function to generate sublists that we are going to aggregate with Spark,
we need to be careful that all of the lists are sorted in the same way, because the lists
returned from the combinations function depend on the order of the input elements,
and lists with the same elements in a different order are not equal to one another:

val list3 = list.reverse.combinations(2)
list3.toList.foreach(println)
List(3, 2) == List(2, 3)

Therefore, when we generate the two-element sublists for each citation record, we’ll
ensure that the list of topics is sorted before we call combinations:

val topicPairs = medline.flatMap(t => t.sorted.combinations(2))
val cooccurs = topicPairs.map(p => (p, 1)).reduceByKey(_+_)
cooccurs.cache()
cooccurs.count()

Because there are 13,034 topics in our data, there are potentially 13,034*13033/2 =
84,936,061 unordered co-occurrence pairs. However, the count of co-occurrences re‐
veals that only 259,920 pairs actually appear in the data set, a tiny fraction of the possible
pairs. If we look at the most frequently appearing co-occurrence pairs in the data, we
see this:

val ord = Ordering.by[(Seq[String], Int), Int](_._2)
cooccurs.top(10)(ord).foreach(println)
...
(List(Child, Infant),1097)
(List(Rats, Research),995)
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(List(Pharmacology, Research),895)
(List(Rabbits, Research),581)
(List(Adolescent, Child),544)
(List(Mice, Research),505)
(List(Dogs, Research),469)
(List(Research, Toxicology),438)
(List(Biography as Topic, History),435)
(List(Metabolism, Research),414)

As we might have suspected from the counts of the most frequently occurring major
topics, the most frequently occurring co-occurrence pairs are also relatively uninter‐
esting. Most of the top pairs, like (“Child”, “Infant”) and (“Rats”, “Research”), are simply
the product of two of the most frequently occurring individual topics. There’s nothing
surprising or informative about the fact that these pairs exist in the data.

Constructing a Co-occurrence Network with GraphX
As we saw in the last section, when we’re studying co-occurrence networks, our standard
tools for summarizing data don’t provide us much insight. The overall summary sta‐
tistics we can calculate, like raw counts, don’t give us a feel for the overall structure of
the relationships in the network, and the co-occurrence pairs that we can see at the
extremes of the distribution are usually the ones that we care about least.

What we really want to do is analyze the co-occurrence network as a network: by think‐
ing of the topics as vertices in a graph, and the existence of a citation record that features
both topics as an edge between those two vertices. Then, we could compute network-
centric statistics that would help us understand the overall structure of the network and
identify interesting local outlier vertices that are worthy of further investigation.

Constructing a Co-occurrence Network with GraphX | 123



Figure 7-1. Co-occurrence of Cancer Drug Mentions in Research Papers

In the same way that MLlib provides a set of patterns and algorithms for creating ma‐
chine learning models in Spark, GraphX is a Spark library that is designed to help us
analyze various kinds of networks using the language and tools of graph theory. Because
GraphX builds on top of Spark, it inherits all of Spark’s scalability properties, which
means that it is capable of carrying out analyses on extremely large graphs that are
distributed across multiple machines. GraphX also integrates well with the rest of the
Spark platform, and as we will see, makes it easy for data scientists to move from writing
data-parallel ETL routines against RDDs, to executing graph-parallel algorithms against
a graph, to analyzing and summarizing the output of the graph computation in a data-
parallel fashion again. It is the seamless way that GraphX allows you to introduce graph-
style processing into your analytic workflow that makes it so powerful.

GraphX is based on two specialized RDD implementations that are optimized for
graphs. The VertexRDD[VD] is a specialized implementation of RDD[(VertexId, VD)],
where the VertexID type is an instance of Long and is required for every vertex, while
the VD can be any other type of data that is associated with the vertex, and is called the
vertex attribute. The EdgeRDD[ED] is a specialized implementation of RDD[Edge[ED]],
where Edge is a case class that contains two VertexId values and an edge attribute of
type ED. Both the VertexRDD and the EdgeRDD have internal indices within each partition
of the data that is designed to facilitate fast joins and attribute updates. Given both a
VertexRDD and an associated EdgeRDD, we can create an instance of the Graph class,
which contains a number of methods for efficiently performing graph computations.
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The first requirement in creating a graph is to have a Long value that can be used as an
identifier for each vertex in the graph. This is a bit of a problem for us in constructing
our co-occurrence network, since all of our topics are identified as strings. We need a
way to come up with a unique 64-bit value that can be associated with each topic string,
and ideally, we’d like to do it in a distributed fashion so that it can be done quickly across
all of our data.

One option we could use would be to use the built-in hashCode method that will generate
a 32-bit integer for any given Scala object. For our problem, which only has 13,000
vertices in the graph, the hash code trick will probably work. But for graphs that have
millions or tens of millions of vertices, the probability of a hash code collision might be
unacceptably high. For this reason, we’re going to use the Hashing library from Google’s
Guava Library to create a unique 64-bit identifier for each topic using the MD5 hashing
algorithm:

import com.google.common.hash.Hashing

def hashId(str: String) = {
  Hashing.md5().hashString(str).asLong()
}

We can apply this hashing function to our medline data in order to generate an
RDD[(Long, String)] that will be the basis for the set of vertices in our co-occurrence
graph. We can also do a simple verification check to ensure that the hash value was
unique for each topic:

val vertices = topics.map(topic => (hashId(topic), topic))
vertices.map(_._1).countByValue().size
vertices.map(_._2).countByValue().size

We will generate the edges for the graph from the co-occurrence counts that we created
in the last section, using the hashing function to map each topic name to its corre‐
sponding vertex id. A good habit to get into when you are generating edges is to ensure
that the left-hand side VertexId (which GraphX refers to as the src) is less than the
right-hand side VertexId (which GraphX refers to as the dst.) Although most of the
algorithms in the GraphX library do not assume anything about the relationship be‐
tween src and dst, there are a few that do, so it’s a good idea to implement this pattern
early so that you don’t have to think about it later on:

import org.apache.spark.graphx._

val edges = cooccurs.map(p => {
  val (topics, cnt) = p
  val ids = topics.map(hashId).sorted
  Edge(ids(0), ids(1), cnt)
})
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Now that we have both the vertices and the edges, we can create our Graph instance,
and mark it as cached so we can keep it around for subsequent processing:

val g = Graph(vertices, edges)
g.cache()

The vertices and edges arguments that we used to construct the Graph instance were
regular RDDs- we didn’t even de-duplicate the entries in the vertices so that there was
only a single instance of each topic. Fortunately, the Graph API does this for us, con‐
verting the RDDs we passed in to a VertexRDD and an EdgeRDD, so that the vertex counts
are now unique:

vertices.count()
...
280823

g.vertices.count()
...
13034

Note that if there are duplicate entries in the EdgeRDD for a given pair of vertices, the
Graph API will not de-duplicate them: GraphX allows us to create multigraphs, which
can have multiple edges with different values between the same pair of vertices. This
can be useful in applications where the vertices in the graph represent rich objects, like
people or businesses, that may have many different kinds of relationships between them
(i.e., friends, family members, customers, partners, etc.) It also allows us to treat the
edges as either directed or undirected, depending on the context.

Understanding the Structure of Networks
When we explore the contents of a table, there are a number of summary statistics about
the columns that we want to calculate right away so that we can get a feel for the structure
of the data and explore any problem areas. The same principle applies when we are
investigating a new graph, although the summary statistics we are interested in are
slightly different. The Graph class provides built-in methods for calculating a number
of these statistics, and in combination with the regular Spark RDD APIs, makes it easy
for us to quickly get a feel for the structure of a graph in order to guide our exploration.

Connected Components
One of the most basic things we want to know about a graph is whether or not it is
connected. In a connected graph, it is possible for any vertex to reach any other vertex
by following a path, which is simply a sequence of edges that lead from one vertex to
another. If the graph isn’t connected, then it may be divided into a smaller set of con‐
nected subgraphs that we may investigate individually.

126 | Chapter 7: Analyzing Co-occurrence Networks with GraphX



Connectedness is a fundamental graph property, and so it shouldn’t be surprising that
GraphX includes a built-in method for identifying the connected components in a
graph. You’ll note that as soon as you call the connectedComponents method on the
graph, a number of Spark jobs will be launched, and then you’ll finally see the result of
the computation:

val ccg = g.connectedComponents()

Look at the type of the object returned by the connectedComponents method: it’s another
instance of the Graph class, but the type of the vertex attribute is a VertexId that is used
as a unique identifier for the component that each vertex belongs to. In order to get a
count of the number of connected components and their size, we can use the trusty
countByValue method against the VertexId values for each vertex in the VertexRDD:

val componentCounts = ccg.vertices.map(_._2).countByValue()
componentCounts.size

val ccSeq = componentCounts.toSeq
ccSeq.sortBy(_._2).reverse.take(10).foreach(println)
(-9222594773437155629,11915)
(-6468702387578666337,4)
(-7038642868304457401,3)
(-7926343550108072887,3)
(-5914927920861094734,3)
(-4899133687675445365,3)
(-9022462685920786023,3)
(-7462290111155674971,3)
(-5504525564549659185,3)
(-7557628715678213859,3)

The largest component includes over 90% of the vertices, while the second largest con‐
tains only 4-- a vanishingly small fraction of the graph. It’s worthwhile to take a look at
the topics for some of these smaller components, if only to understand why they were
not connected to the largest component. In order to see the names of the topics asso‐
ciated with these smaller components, we’ll need to join the VertexRDD for the connected
components graph with the vertices from our original concept graph. When the two
VertexRDDs that we are joining have identical structure, GraphX provides an efficient
way to perform this computation via the innerJoin method on VertexRDD. The inner
Join method requires that we provide a function on the VertexID and the data contained
inside of each of the two VertexRDD s which returns a value that will be used as the new
data type for the resulting VertexRDD. In this case, we want to understand the names of
the concepts for each connected component, so we’ll return a tuple that contains both
values:

val nameCID = g.vertices.innerJoin(ccg.vertices) {
  (id, name, cid) => (name, cid)
}
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Let’s take a look at the topic names for the largest connected component that wasn’t a
part of the giant component:

val c1 = nameCID.filter(x => x._2._2 == -6468702387578666337L)
c1.collect().foreach(x => println(x._2._1))
...
Reverse Transcriptase Inhibitors
Zidovudine
Anti-HIV Agents
Nevirapine

If we look up the terms [Zidovudine] and [Nevirapine] in Google, we find the Wikipedia
entry for Nevirapine, which indicates that the two drugs are used in conjunction for the
treatment of HIV-1, the most severe form of HIV.

It’s surprising that this subgraph was not connected to any other topics about HIV or
AIDS in the overall subgraph. If we take a look at the distribution of topics that mention
HIV in the overall data, we see this:

val hiv = topics.filter(_.contains("HIV")).countByValue()
hiv.foreach(println)
...
(HIV Seronegativity,10)
(HIV Long Terminal Repeat,2)
(HIV Long-Term Survivors,1)
(HIV Integrase Inhibitors,1)
(HIV Infections,104)
(HIV-2,2)
(HIV Seroprevalence,6)
(Anti-HIV Agents,1)
(HIV-1,72)
(HIV,16)
(HIV Seropositivity,41)

It feels like this distinct subcomponent in the graph is an artifact of the data- likely a
result of a parsimonious labeling of the major topics for an individual citation in the
index that excluded other major topics, like HIV-1, that would have tied this paper into
the giant component of the graph. The lesson here is that the topic co-occurrence net‐
work is tending towards being fully connected as we add more citations to it over time,
and there do not appear to be structural reasons that we would expect it to become
disconnected into distinct subgraphs.

Under the covers, the connectedComponents method is performing a series of iterative
computations on our graph in order to identify the component that each vertex belongs
to, taking advantage of the fact that the VertexId is a unique numeric identifier for each
vertex. During each phase of the computation, each vertex broadcasts the smallest Ver‐
texID value that it has seen to each of its neighbors. During the first iteration, this will
simply be the vertex’s own ID, but this will generally be updated in subsequent iterations.
Each vertex keeps track of the smallest VertexID it has seen, and when none of these
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smallest IDs changes during an iteration, the connected component computation is
complete, with each vertex assigned to the component that is represented by the smallest
VertexID value for a vertex that was a part of that component. These kinds of iterative
computations on graphs are common, and later in this chapter, we will see how we can
use this iterative pattern to compute other graph metrics that illuminate the structure
of the graph.

Degree Distribution
A connected graph can be structured in many different ways. For example, there might
be a single vertex that is connected to all of the other vertices, but none of those other
vertices connect to each other. If we eliminated that single central vertex, the graph
would shatter into individual vertices. We might also have a situation in which every
vertex in the graph was connected to exactly two other vertices, so that the entire con‐
nected component formed a giant loop.

Figure 7-2. Degree Distributions in Connected Graphs

In order to gain additional insight into how the graph is structured, it’s helpful to look
at the degree of each vertex, which is simply the number of edges that a particular vertex
belongs to. In a graph without loops (i.e., an edge that connects a vertex to itself), the
sum of the degrees of the vertices will be equal to twice the number of edges, because
each edge will contain two distinct vertices.

In GraphX, we can get the degree of each vertex by calling the degrees method on the
Graph object. This method returns a VertexRDD of integers that is the degree at each
vertex. Let’s get the degree distribution and some basic summary statistics on it for our
concept network:

val degrees = g.degrees.cache()
degrees.map(_._2).stats()
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...
(count: 12065, mean: 43.09,
 stdev: 97.63, max: 3753.0, min: 1.0)

There are a few interesting bits of information in the degree distribution. First, note that
the number of entries in the degrees RDD is less than the number of vertices in the
graph: while the graph contains 13034 vertices, the degrees RDD only has 12065 entries.
This is probably caused by citations in the medline data that only had a single major
topic, which means that they would not have had any other topics to co-occur with in
our data. We can confirm that this is the case by revisiting the original medline RDD:

val sing = medline.filter(x => x.size == 1)
sing.count()
...
48611

val singTopic = sing.flatMap(topic => topic).distinct()
singTopic.count()
...
8084

There are 8084 distinct topics that occur as singletons inside of 48611 medline docu‐
ments. Let’s remove the instances of those topics that already occur in the topicPairs
RDD:

val topic2 = topicPairs.flatMap(p => p)
singTopic.subtract(topic2).count()
...
969

This leaves 969 topics that only occur as singletons inside of medline documents, and
13034 - 969 is 12065, the number of entries in the degrees RDD.

Next, note that although the mean is relatively small, indicating that the average vertex
in the graph is only connected to a small fraction of the other nodes, the maximum value
indicates that there is at least one highly connected node in the graph that is connected
to almost a third of the other nodes in the graph.

Let’s take a closer look at the concepts for these high degree vertices by joining the
degrees VertexRDD to the vertices in the concept graph using GraphX’s innerJoin
method and an associated function for combining the name of a concept and the degree
of the vertex into a tuple. Remember, the innerJoin method requires the vertices that
are returned to be present in both of the VertexRDD s, so the concepts that do not have
any co-occurring concepts will be filtered out:

val namesAndDegrees = degrees.innerJoin(g.vertices) {
  (id, d, name) => (name, d)
}
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When we print the top ten elements of the namesAndDegrees VertexRDD ordered by the
value of the degree, we get this:

val ord = Ordering.by[(String, Int), Int](_._2)
namesAndDegrees.map(_._2).top(10)(ord).foreach(println)
...
(Research,3753)
(Child,2364)
(Toxicology,2019)
(Pharmacology,1891)
(Adolescent,1884)
(Pathology,1781)
(Rats,1573)
(Infant,1568)
(Geriatrics,1546)
(Pregnancy,1431)

Unsurprisingly, most of the high degree vertices refer to the same generic concepts that
we’ve been seeing throughout this analysis. In the next section, we’ll use some new
functionality of the GraphX API and a bit of old-fashioned statistics in order to filter
out some of the less interesting co-occurrence pairs from the graph.

Filtering Out Noisy Edges
In the current co-occurrence graph, the edges are weighted based on the count of how
often a pair of concepts appears in the same paper. The problem with this simple
weighting scheme is that it doesn’t distinguish concept pairs that occur together because
they have a meaningful semantic relationship from concept pairs that occur together
because they happen to both occur frequently for any type of document. We need to use
a new edge weighting scheme that takes into account how “interesting” or “surprising”
a particular pair of concepts is for a document given the overall prevalence of those
concepts in the data.

For any pair of concepts, we can create a 2x2 contingency table that contains the counts
of how those concepts co-occur in Medline documents:

Has Y No Y Y Total

Has X a c A

No X b d B

X Total S F N

In this table, the lowercase entries a, b, c, and d represent the raw counts of presence/
absence for concepts X and Y. The uppercase entries A and B are the row sums for concept
X and S and F are the column sums for concept Y, and the value N is the total number of
documents.
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If the concepts X and Y are unrelated, then we would expect that the counts in the
individual cells in the table would be approximately equal to their expected values based
on the row and column sums for the concepts. For example, we would expect that the
value of a would be roughly equal to N * \frac{{A}}{{N}} * \frac{{S}}{{N}}. We can use
the chi-squared statistic as a way to evaluate the difference between the expected and
observed counts for any pair of counts; for a 2x2 contingency table, the value of the chi-
squared statistic can be calculated as:

{\chi}^2 = \frac{{N(|ad - bc|)^2}}{{S F A B}}

Roughly speaking, the larger the value of the chi-squared statistic, the more interesting
we find a given pair of concepts to be. In this section, we’ll compute the value of the chi-
squared statistic for each pair of concepts in our co-occurrence graph using GraphX.

Processing EdgeTriplets
The easiest part of the chi-squared statistic to count is N, the total number of documents
under consideration. We can get this easily by simply counting the number of entries
in the medline RDD:

val N = medline.count()

It’s also relatively easy for us to get the counts of how many documents feature each
concept; we already did this analysis in order to create the map of topicCounts earlier
in this chapter, but now we’ll get the counts as an RDD on the cluster:

val vc = topics.map(x => (hashId(x), 1)).reduceByKey(_+_)

Once we have this VertexRDD of counts, we can create a new graph using it as the vertex
set, along with the existing edges RDD:

val bg = Graph(vc, g.edges)

Now we have all of the information we need to compute the chi-squared statistic for
each edge in the bg graph. In order to do the calculation, we need to combine data that
is stored at both the vertices (i.e., the counts of how often each concept appears in a
document) as well as the edges (the count of how often each pair of concepts occurs in
the same document.) GraphX supports this kind of computation via a data structure
called an EdgeTriplet[VD, ED], which has information about the attributes of both the
vertices and the edges contained within a single object, as well as the IDs of both of the
vertices. Given a EdgeTriplet over our bg graph, we can calculate the chi-squared sta‐
tistic as follows:

def chiSq(a: Int, S: Int, A: Int, N: Long): Double = {
  val F = N - S
  val B = N - A
  val b = A - a
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  val c = S - a
  val d = N - b - c - a
  val inner = (a*d - b*c) - N / 2.0
  N * math.pow(inner, 2) / (A * B * S * F)
}

We can then apply this method to transform the value of the graph edges via the map
Triplets operator, which returns a new graph whose edge attributes will be the value
of the chi-squared statistic for each co-occurrence pair, and then get an idea of the
distribution of the values for this statistic across the edges:

val cg = bg.mapTriplets(trip => {
  chiSq(trip.attr, trip.srcAttr, trip.dstAttr, N)
})
cg.edges.map(x => x.attr).stats()
...
(count: 259920, mean: 546.97,
 stdev: 3428.85, max: 222305.79, min: 0.0)

Having calculated the chi-squared statistic value, we want to use it to filter out edges
that don’t appear to have any meaningful relationship between the co-occurring con‐
cepts. As we can see from the distribution of the edge values, there is an enormous range
of values for the chi-squared statistic across the data, which should make us feel com‐
fortable experimenting with an aggressive filtering criteria to eliminate noisy edges. For
a 2x2 contingency table in which there is no relationship between the variables, we
expect that the value of the chi-squared metric will follow the chi-squared distribution
with one degree of freedom. The 99.999th percentile of the chi-squared distribution
with one degree of freedom is approximately 19.5, so let’s try this value as a cutoff to
eliminate edges from the graph, leaving us with only those edges where we are extreme‐
ly confident that they represent an interesting co-occurrence relationship. We’ll perform
this filtering on the graph with the subgraph method, which takes a boolean function
of an EdgeTriplet to determine which edges to include in the subgraph:

val sg = cg.subgraph(trip => trip.attr > 19.5)
sg.edges.count
...
170664

Our extremely strict filtering rule removed about one third of the edges in the original
co-occurrence graph. It isn’t a bad thing that the rule didn’t remove more of the edges,
since we expect that most of the co-occurring concepts in the graph are actually se‐
mantically related to one another, and so they would co-occur more often than they
would simply by chance. In the next section, we’ll analyze the connectedness and overall
degree distribution of the subgraph, to see if there was any major impact to the structure
of the graph by removing these noisy edges.
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Analyzing the Filtered Graph
We’ll start by re-running the connected component algorithm on the subgraph and
checking the component counts and sizes, as we did before on the original graph:

val sgc = sg.connectedComponents()
val scc = sgc.vertices.map(_._2).countByValue()
scc.size
scc.toSeq.sortBy(_._2).reverse.take(10).foreach(println)
...
(-9222594773437155629,11912)
(-6468702387578666337,4)
(-7038642868304457401,3)
(-7926343550108072887,3)
(-5914927920861094734,3)
(-4899133687675445365,3)
(-9022462685920786023,3)
(-7462290111155674971,3)
(-5504525564549659185,3)
(-7557628715678213859,3)

Filtering out a third of the edges in the graph led to a small change in the connectedness
of the graph: three additional islands exist in the filtered graph (1042 vs. 1039 in the
original), and the size of the largest connected component has fallen by three vertices
(11912 vs. 11915). This indicates that three weakly connected concepts have been
pruned from the largest component into individual islands. Even so, the largest con‐
nected component is still roughly the same size as before; pruning a third of the edges
in the graph did not cause the largest component to break up into a number of large
pieces. This indicates that the connected structure of the graph is reasonably robust to
filtering out the noisy edges. When we look at the degree distribution for the filtered
graph, we see a similar story:

val sd = sg.degrees.cache()
sd.map(_._2).stats()
...
(count: 12062, mean: 28.30,
 stdev: 44.84, max: 1603.0, min: 1.0)

The mean degree for the original graph was about 43, and the mean degree for the
filtered graph has fallen a bit, to about 28. More interesting, however, is the precipitous
drop in the size of the largest degree vertex, which has fallen from 3753 in the original
graph to 1603 in the filtered graph. If we look at the association between concept and
degree in the filtered graph, we see this:

val namesAndDegrees = sd.innerJoin(g.vertices) {
  (id, d, name) => (name, d)
}
val ord = Ordering.by[(String, Int), Int](_._2)
namesAndDegrees.map(_._2).top(10)(ord).foreach(println)
...

134 | Chapter 7: Analyzing Co-occurrence Networks with GraphX



(Research,1603)
(Pharmacology,873)
(Toxicology,814)
(Rats,716)
(Pathology,704)
(Child,617)
(Metabolism,587)
(Rabbits,560)
(Mice,526)
(Adolescent,510)

Our chi-squared filtering criteria appears to have the desired effect: it’s eliminating edges
in our graph related to generic concepts, while preserving the edges in the rest of the
graph that represent meaningful and interesting semantic relationships between con‐
cepts. We can continue to experiment with different chi-squared filtering criteria to see
how they impact the connectedness and degree distribution in the graph; it would be
interesting to find out what value of the chi-squared distribution would cause the large
connected component in the graph to break up into smaller pieces, or if the largest
component would simply continue to “melt,” like a giant iceberg slowly losing tiny pieces
over time.

Small World Networks
The connectedness and degree distribution of a graph can give us a basic idea of its
overall structure, and GraphX makes it easy to calculate and analyze these properties.
In this section, we’ll go a bit deeper into the GraphX APIs and show how we can use
them to calculate some more advanced properties of a graph that do not have built-in
support in GraphX.

With the rise of computer networks like the World Wide Web and social networks like
Facebook and Twitter, data scientists now have rich data sets that describe the structure
and formation of real-world networks, vs. the idealized networks that mathematicians
and graph theorists have traditionally studied. One of the first papers to describe the
properties of these real-world networks, and how they differed from the idealized mod‐
els, was published in 1998 by Duncan Watts and Steven Strogatz and was titled “Col‐
lective dynamics of small world networks.” It was a seminal paper that outlined the first
mathematical model for how to generate graphs that exhibited the two small world
properties that we see in real world graphs:

1. Most of the nodes in the network have a small degree and belong to a relatively
dense cluster of other nodes; that is, a high fraction of a node’s neighbors are also
connected to each other.
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2. Despite the small degree and dense clustering of most nodes in the graph, it is
possible to reach any node in the network from any other network relatively quickly
by traversing a small number of edges.

For each of these properties, Watts and Strogatz defined a metric that could be used to
rank graphs based on how strongly they expressed these properties. In this section, we
will use GraphX to compute these metrics for our concept network, and compare the
values that we get to the values we would get for an idealized random graph to test
whether our concept network exhibits the small world property.

Cliques and Clustering Coefficients
A graph is complete if every vertex is connected to every other vertex by an edge. In a
given graph, there may be many subsets of vertices that are complete, and we call these
complete subgraphs cliques. The presence of many large cliques in a graph indicates that
the graph has the kind of locally dense structure that we see in real small-world networks.

Unfortunately, finding cliques in a given graph turns out to be very difficult to do. The
problem of detecting whether or not a given graph has a clique of a given size is NP-
complete, which means that finding cliques in even small graphs can be very compu‐
tationally intensive.

Computer scientists have developed a number of simple metrics that give us a good feel
for the local density of a graph without the computational costs of finding all of the
cliques of a given size. One of these metrics is the triangle count at a vertex. A triangle
is a complete graph on three vertices, and the triangle count at a vertex V is simply the
number of triangles that contain V. The triangle count is a measure of how many neigh‐
bors of V are also connected to each other. Watts and Strogatz defined a new metric,
called the local clustering coefficient, that is the ratio of the actual triangle count at a
vertex to the number of possible triangles at that vertex based on how many neighbors
it has. For an undirected graph, the local clustering coefficient C for a vertex that has k
vertices is:

C = \frac{{2 #triangles }}{{k (k - 1)}}

Let’s use GraphX to compute the local clustering coefficients for each node in the filtered
concept network. GraphX has a built-in method called triangleCount that returns a
Graph whose VertexRDD contains the number of triangles at each vertex:

val tri = sg.triangleCount()
tri.vertices.map(x => x._2).stats()
...
(count: 13034, mean: 163.05,
  stdev: 616.56, max: 38602.0, min: 0.0)
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To compute the local clustering coefficient, we’ll need to normalize these triangle counts
by the total number of possible triangles at each vertex, which we can compute from
the degrees RDD:

val den = sd.mapValues(d => d * (d - 1) / 2.0)

Now we’ll join the VertexRDD of triangle counts from the tri graph to the VertexRDD
of normalization terms we calculated and compute the ratio of the two, being careful to
avoid dividing by zero for any vertices that only have a single edge:

val clusterCoef = tri.vertices.innerJoin(den) { (id, tc, den) =>
  if (den == 0) { 0 } else { tc / den }
}

Computing the average value of the local clustering coefficient for all of the vertices in
the graph gives us the network average clustering coefficient:

val avgCC = clusterCoef.map(_._2).sum() / sg.vertices.count()
...
0.2784084744308219

Computing Average Path Length with Pregel
The second property of small-world networks is that the length of the shortest path
between any two randomly chosen nodes tends to be small. In this section, we’ll compute
the average path length for nodes contained in the large connected component of our
filtered graph.

Computing the path length between vertices in a graph is an iterative process that is
similar to the iterative process we use to find the connected components. At each phase
of the process, each vertex will maintain a collection of the vertices that it knows about
and how far away each vertex is. Each vertex will then query its neighbors about the
contents of their lists, and it will update its own list with any new vertices that are
contained in its neighbors’ lists that were not contained in its own list. This process of
querying neighbors and updating lists will continue across the entire graph until none
of the vertices are able to add any new information to their lists.

This iterative, vertex-centric method of parallel programming on large, distributed
graphs is based on a paper that Google published in 2009 called “Pregel: A System for
Large-Scale Graph Processing.” Pregel is based on a model of distributed computation
that predates MapReduce called “bulk-synchronous parallel,” or BSP. BSP programs
divide parallel processing stages into two phases: computation and communication.
During the computation phase, each vertex in the graph examines its own internal state
and decides to send zero or more messages to other vertices in the graph. During the
communication phase, the Pregel framework handles routing the messages that resulted
from the previous communication phase to the appropriate vertices, which then process
those messages, update their internal state, and potentially generate new messages dur‐
ing the next computation phase. The sequence of computation and communication
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steps continues until all of the vertices in the graph vote to halt, at which point the
computation is finished.

BSP was one of the first parallel programming frameworks that was both fairly general-
purpose as well as fault-tolerant: it was possible to design BSP systems in such a way
that the state of the system at any computation phase could be captured and stored so
that if a particular machine failed, the state of that machine could be replicated on
another machine, the overall computation could be rolled back to the earlier state before
the failure occurred, and then the computation could continue.

Since Google published their paper on Pregel, a number of open-source projects have
been developed that replicate aspects of the BSP programming model on top of HDFS,
such as Apache Giraph and Apache Hama. These systems have proven very useful for
specialized problems that fit nicely into the BSP computational model, such as large-
scale PageRank computations, but they are not widely deployed as part of the analysis
toolkit for regular data scientists because it is relatively difficult to integrate them into
a standard data-parallel workflow. GraphX solves this problem by allowing data scien‐
tists to easily bring graphs into a data-parallel workflow when it is convenient for rep‐
resenting data and implementing algorithms, and it provides a built-in pregel operator
for expressing BSP computations on top of graphs. In this section, we’ll demonstrate
how to use this operator to implement the iterative, graph-parallel computations we
need in order to compute the average path length for a graph.

1. Figure out what state we need to keep track of at each vertex.
2. Write a function that takes the current state into account, evaluates each pair of

linked vertices to determine which messages to send at the next phase,
3. Write a function that merges that messages from all of the different vertices together

before we pass it to the vertex for updating.

There are three major things we need to decide in order to implement a distributed
algorithm using pregel. First, we need to decide what data structure we’re going to use
to represent the state of each vertex, and what data structure we’re going to use to rep‐
resent the messages that are passed between vertices. For the average path length prob‐
lem, we want each vertex to have a lookup table that contains the IDs of the vertices it
currently knows about and how far away from those vertices it is. We’ll store this in‐
formation inside of a Map[VertexId, Int] that we maintain for each vertex. Similarly,
the messages that are passed to each vertex should be a lookup table of vertex IDs and
distances that are based on information that the vertex receives from its neighbors, and
we can use a Map[VertexId, Int] to represent this information as well.

Once we know the data structures that we’ll use for representing the state of the vertices
and the content of the messages, we need to write two functions. The first one, which
we’ll call addMaps, is used to merge the information from the new messages into the
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state of the vertex. In this case, both the state and the message are of type Map[VertexId,
Int], so we need to merge the contents of these two maps while retaining the smallest
value associated with any VertexId entries that occur in both maps:

def addMaps(
    m1: Map[VertexId, Int],
    m2: Map[VertexId, Int]) = {
  (m1.keySet ++ m2.keySet).map {
    k => k -> math.min(
      m1.getOrElse(k, Int.MaxValue),
      m2.getOrElse(k, Int.MaxValue))
  }.toMap
}

Unfortunately, the vertex update function also includes the VertexId value as an argu‐
ment, we’ll define a trivial update function that takes the VertexId along with the
Map[VertexId, Int] arguments, but delegates all of the actual work to addMaps:

def update(
    id: VertexId,
    state: Map[VertexId, Int],
    msg: Map[VertexId, Int]) = {
  addMaps(state, msg)
}

Because the messages that we’ll be passing during the algorithm are also of type Map[Ver
texId, Int], and we want to merge them and keep the minimal value of each key they
possess, we will be able to use the addMaps function for the reduce phase of the Pregel
run as well.

The final step is usually the most involved: we need to write the code that constructs
the message that will be sent to each vertex based on the information it receives from
its neighbors at each iteration. The basic idea here is that each Vertex should increment
the value of each key in its current Map[VertexId, Int] by one, combine the incre‐
mented map values with the values from its neighbor using the addMaps method, and
send the result of the addMaps function to the neighboring vertex if it differs from the
neighbor’s internal Map[VertexId, Int]. The code for performing this sequence of
operations looks like this:

def checkIncrement(
    a: Map[VertexId, Int],
    b: Map[VertexId, Int],
    bid: VertexId) = {
  val aplus = a.map { case (v, d) => v -> (d + 1) }
  if (b != addMaps(aplus, b)) {
    Iterator((bid, aplus))
  } else {
    Iterator.empty
  }
}
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With the checkIncrement function in hand, we can define the iterate function that
we will use for performing the message updates at each Pregel iteration for both the src
and dst vertices inside of an EdgeTriplet:

def iterate(e: EdgeTriplet[Map[VertexId, Int], _]) = {
  checkIncrement(e.srcAttr, e.dstAttr, e.dstId) ++
  checkIncrement(e.dstAttr, e.srcAttr, e.srcId)
}

During each iteration, we need to determine the path lengths that need to be commu‐
nicated to each of the vertices based on the path lengths that they already know about,
and then we need to return an Iterator that contains a tuple of (VertexId, Map[Ver
texId, Int]) where the first VertexId indicates where the message should be routed,
and the Map[VertexId, Int] is the message itself.

If any vertex does not receive any messages during an iteration, the pregel operator
assumes that this vertex is finished computing, and it will be excluded from subsequent
processing. As soon as no more messages are sent to any vertex from the iterate
method, the algorithm is complete.

Note that the implementation of the pregel operator in GraphX has a limitation com‐
pared to BSP systems like Giraph: GraphX can only send messages between vertices that
are connected by an edge, whereas Giraph can send messages between any two vertices
in a graph.

Now that our functions are completed, let’s prepare the data for the BSP run. Given a
large enough cluster and plenty of memory, we could compute the path lengths between
every pair of vertices using a Pregel-style algorithm with GraphX. However, this isn’t
necessary for us to get an idea of the general distribution of path lengths in the graph;
instead, we can randomly sample a small subset of the vertices and then compute the
path lengths for each vertex to just that subset. Using the RDD sample method, let’s
select 2% of the VertexId values for our sample without replacement, using the value
1729L as the seed for the random number generator:

val fraction = 0.02
val replacement = false
val sample = sg.vertices.map(_._1).
  sample(replacement, fraction, 1729L)
val ids = sample.collect().toSet

Now, we’ll create a new Graph object whose vertex Map[VertexId, Int] values are only
non-empty if the vertex is a member of the sampled IDs:

val mg = sg.mapVertices((id, _) => {
  if (ids.contains(id)) {
    Map(id -> 0)
  } else {
    Map[VertexId, Int]()
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  }
})

Finally, to kick off the run, we need an initial message to send to the vertices. For this
algorithm, that initial message is an empty Map[VertexId, Int]. We can then call the
pregel method, followed by the update, iterate, and addMaps functions to execute
during each iteration:

val start = Map[VertexId, Int]()
val res = mg.pregel(start)(update, iterate, addMaps)

This should run for a few minutes; the number of iterations of the algorithm will be one
plus the length of the longest path in our sample. Once it completes, we can flatMap
the vertices in order to extract the tuples of (VertexId, VertexId, Int) values that
represent the unique path lengths that were computed:

val paths = res.vertices.flatMap { case (id, m) =>
  m.map { case (k, v) =>
    if (id < k) (id, k, v) else (k, id, v)
  }
}.distinct()
paths.cache()

We can now compute summary statistics for the non-zero path lengths and compute
the histogram of path lengths in our sample:

paths.map(_._3).filter(_ > 0).stats()
...
(count: 2701516, mean: 3.57,
 stdev: 0.84, max: 8.0, min: 1.0)

val hist = paths.map(_._3).countByValue()
hist.toSeq.sorted.foreach(println)
...
(0,248)
(1,5653)
(2,213584)
(3,1091273)
(4,1061114)
(5,298679)
(6,29655)
(7,1520)
(8,38)

The average path length of our sample was 3.57, while the clustering coefficient that we
calculated in the last section was 0.274. The table below shows the values of these sta‐
tistics for three different small-world networks as well as for random graphs that were
generated on the same number of vertices and edges as each of the real world networks,
and is taken from a paper titled “Multiscale Visualization of Small World Networks” by
Auber et al. (2003):
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Table 7-1. Example small-world networks
Graph Avg Path Length (APL) Clustering Coefficient (CC) Random APL Random CC

IMDB 3.20 0.967 2.67

0.024 Mac OS 9 3.28 0.388

3.32 0.018 .edu sites 4.06

The IMDB graph was built from actors who had appeared in the same movies, the Mac
OS 9 network referred to header files that were co-included in the same source files in
the OS 9 operating system source code, and the .edu sites refers to sites in the .edu top-
level domain that linked to one another and is drawn from a paper by Adamic (1999).
Our analysis shows that the network of MeSH tags in the MEDLINE citation index fits
naturally into the same range of average path length and clustering coefficient values
that we see in other well-known small world networks, with a much higher clustering
coefficient value than we would expect given the relatively low average path length.

Where To Go From Here
At first, small-world networks were a curiosity; it was interesting that so many different
types of real-world networks, from sociology and political science to neuroscience and
cell biology had such similar and peculiar structural properties. More recently, however,
it seems that deviances from small-world structure in these networks can be indicative
of the potential for functional problems. Dr. Jeffrey Petrella at Duke University gathered
research that indicates that the network of neurons in the brain exhibit a small-world
structure, and that deviance from this structure occurs in patients who have been di‐
agnosed with Alzheimer’s disease, schizophrenia, depression, and attention deficit dis‐
orders. In general, real-world graphs should exhibit the small-world property; if they
do not, that may be evidence of a problem, such as fraudulent activity in a small-world
graph of transactions or trust relationships between businesses.

Going forward, more and more problems in data science will require the tools and
techniques of graph analytics in order to solve real-world problems. Computer networks
will be augmented with billions of sensors that will be deployed everywhere and will
need to be able to pass messages to one another in unreliable conditions in order to
detect and recover from failures. More and more businesses will be created whose core
value is the development, maintenance, and analysis of a network of relationships and
connections between diverse entities. New and even more powerful machine learning
algorithms will be created on top of graphs that can solve problems in image classifi‐
cation and voice recognition that are an order of magnitude beyond what we can do
today.

It is a really, really good time to be a data scientist.
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CHAPTER 8

Geospatial and Temporal Data Analysis on
the New York City Taxicab Data

Josh Wills

Nothing puzzles me more than the time and space; and yet nothing troubles me less, as
I never think about them.

— Charles Lamb

New York is widely known for its yellow taxi cabs, and hailing one is just as much a part
of the experience of visiting New York as eating a hot dog from a street vendor or riding
the elevator to the top of the Empire State Building.

Residents of New York have all kinds of tips based on their anecdotal experiences about
the best times and places to catch a cab, especially during rush hour and when it’s raining.
But there is one time of day when everyone will recommend that you simply take the
subway instead: during the shift change that happens from 4 to 5 PM every day. During
this time, yellow taxis have to return to their dispatch centers (often in Queens) so that
one driver can quit for the day and the next one can start, and drivers who are late to
return have to pay fines.

In March of 2014, The New York City Taxi and Limousine Commission shared an
infographic on their twitter account (@nyctaxi) that showed the number of taxis on the
road and the fraction of those taxis that was occupied at any given time. Sure enough,
there was a noticeable dip of taxis on the road from 4-6 PM, and two-thirds of the taxis
that were driving were occupied.

This tweet caught the eye of self-described urbanist, mapmaker, and data junkie Chris
Whong, who sent a tweet to the @nyctaxi account to find out if the data they used in
their infographic was publicly available. The taxi commission replied that he could have
the data if he filed a Freedom of Information Law (FOIL) request and provided the
commission with hard drives that they could copy the data on to. After filling out one
PDF form, buying two new 500GB hard drives, and waiting two business days, Chris
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had access to all of the data on taxi rides from January 1st through December 31st 2013.
Even better, he posted all of the fare data online, where it has been used as the basis for
a number of beautiful visualizations of transportation in New York City.

One statistic that is important to understanding the economics of taxis is utilization:
the fraction of time that a cab is on the road and is occupied by one or more passengers.
One factor that impacts utilization is the passenger’s destination: a cab that drops off
passengers near Union Square on midday is much more likely to find their next fare in
just a minute or two, whereas a cab that drops someone off at 2 AM on Staten Island
may have to drive all the way back to Manhattan before they find their next fare. We’d
like to quantify these effects and find out the average time it takes for a cab to find its
next fare as a function of the borough that they dropped their passengers off in- Man‐
hattan, Brooklyn, Queens, the Bronx, Staten Island, or none-of-the-above (e.g., if they
dropped the passenger off somewhere outside of the city, like Newark International
Airport.)

To carry out this analysis, we need to deal with two types that data that come up all the
time: temporal data, such as dates and times, and geospatial information, like points of
longitude and latitude and spatial boundaries. In this chapter, we’re going to demon‐
strate how to use and extend Scala and Spark to work with these data types. all the time:

Getting the Data
For this analysis, we’re only going to consider the fare data from January 2013, which
will be about 2.5 GB of data after we uncompress it. You can access the data for each
month of 2013 at [this website](http://www.andresmh.com/nyctaxitrips/), and if you
have a sufficiently large Spark cluster at your disposal, you can re-create the analysis
below against all of the data for the year. For now, let’s create a working directory on
our client machine and take a look at the structure of the fare data:

$ mkdir taxidata
$ cd taxidata
$ wget https://nyctaxitrips.blob.core.windows.net/data/trip_data_1.csv.zip
$ unzip trip_data_1.csv.zip
$ head -n 10 trip_data_1.csv

Each row of the file after the header represents a single taxi ride in CSV format. For each
ride, we have some attributes of the cab (a hashed version of the medallion number) as
well as the driver (a hashed version of the hack license), some temporal information
about when the trip started and ended, and the longitude/latitude coordinates for where
the passenger(s) were picked up and where they were dropped off.
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Working With Temporal And Geospatial Data in Spark
One of the great features of the Java platform is the sheer volume of code that has been
developed for it over the years: for any kind of data type or algorithm you might need
to use, it’s likely that someone else has written a Java library that you can use to solve
your problem, and there’s also a good chance that an open-source version of that library
exists that you can download and use without having to purchase a license.

Of course, just because a library exists and is freely available doesn’t mean that you
necessarily want to rely on it to solve your problem; open-source projects have a lot of
variation in terms of their quality, their state of development in terms of bug fixes and
new features, and their ease-of-use in terms of API design and the presence of useful
documentation and tutorials.

Our decision making process is a bit different than that of a developer choosing a library
for an application; we want something that will be pleasant to use for interactive data
analysis and that is easy to use in a distributed application. In particular, we want to be
sure that the main data types that we will be working with in our RDDs implement the
Serializable interface and/or can be easily serialized using libraries like Kryo.

Additionally, we would like the libraries we use for interactive data analysis to have as
few external dependencies as possible. Tools like Maven and SBT can help application
developers deal with complex dependencies when building applications, but for inter‐
active data analysis, we would much rather simply grab a JAR file with all of the code
we need, load it into the Spark shell, and start our analysis. Additionally, bringing in
libraries with lots of dependencies can cause version conflicts with other libraries that
Spark itself depends on, which can cause difficult-to-diagnose error conditions that
developers refer to as JAR hell.

Finally, we would like our libraries to have relatively simple and rich APIs that do not
make extensive use of Java-oriented design patterns like abstract factories, builders, and
visitors. Although these patterns can be very useful for application developers, they tend
to add a lot of complexity to our code that is unrelated to our analysis. Even better, many
Java libraries have Scala wrappers that take advantage of Scala’s power to reduce the
amount of boilerplate code required to use them.

Temporal Data with JodaTime and NScalaTime
For temporal data, there is of course the Java Date class and the Calendar class. But as
anyone who has ever used these libraries knows, they’re terrible. For many years now,
JodaTime has been the Java library of choice for working with temporal data.

There is a wrapper library named NScalaTime that provides some additional synctatic
sugar for working with JodaTime from Scala. We can get access to all its functionality
with a single import:
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import com.github.nscala_time.time.Imports._

JodaTime and NScalaTime revolve around the DateTime class. DateTime objects are
immutable, like Java Strings (and unlike the Calendar/Date objects in the regular Java
APIs), and provide a number of methods that we can use to perform calculations on
temporal data. In the following example, dt1 represents 9 AM on September 4th, 2014
and dt2 represents 3 PM on October 31st, 2014:

val dt1 = new DateTime(2014, 9, 4, 9, 0)
dt1.dayOfYear.get
val dt2 = new DateTime(2014, 10, 31, 15, 0)
dt1 < dt2
val dt3 = dt1 + 60.days
dt3 > dt2

For data analysis problems, we usually need to convert some string representation of a
date into a datetime object that we can do calculations on. A simple way to accomplish
this is Java’s SimpleDateFormat is useful for parsing dates in different formats. The
following parses dates in the format used by the taxi dataset:

import java.text.SimpleDateFormat
val format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
val datetime = new DateTime(format.parse("2014-10-12 10:30:44"))

Once we have parsed our DateTime objects, we often want to do a kind of temporal
arithmetic on them to find out how many seconds or hours or days separate them. In
JodaTime, we represent the concept of a span of time by the Duration class, which we
can create from two DateTime instances like this:

val d = new Duration(dt1, dt2)
d.getMillis
d.getStandardHours
d.getStandardDays

JodaTime handles all of the tedious details of different time zones and quirks of the
calendar like Daylight Savings Time when it performs these duration calculations so
that you don’t have to worry about them.

Geospatial Data with the Esri Geometry API and Spray
Working with temporal data on the JVM is easy: just use JodaTime, maybe with a wrap‐
per like NScalaTime if it makes your analysis easier to understand. For geospatial data,
the answer isn’t nearly so simple; there are many different libraries and tools that have
different functions, states of development, and maturity levels, so there is not a dominant
Java library for all geospatial use cases.

First problem: what kind of geospatial data do you have? There are two major kinds:
vector and raster, and there are different tools for working with the different kinds of
data. In our case, we have latitude and longitude for our taxicab records, and vector data
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stored in the GeoJSON format that represents the boundaries of the different boroughs
of New York. So we need a library that can parse GeoJSON data and can handle spatial
relationships, like detecting whether a given longitude/latitude pair is contained inside
of a polygon that represents the boundaries of a particular borough.

Unfortunately, there isn’t an open-source library that fits our needs exactly. There is a
GeoJSON parser library that can convert GeoJSON into Java objects, but there isn’t an
associated geospatial library that can analyze spatial relationships on the generated ob‐
jects. There is the GeoTools project, but it has a long list of components and
dependencies- exactly the kind of thing we try to avoid when choosing a library to work
with from the Spark shell. Finally, there is the Esri Geometry API for Java, which has
few dependencies and can analyze spatial relationships, but can only parse a subset of
the GeoJSON standard, so it won’t be able to parse the GeoJSON data we downloaded
without us doing some preliminary data munging.

For a data analyst, this lack of tooling might be an insurmountable problem. But we are
data scientists: if our tools don’t allow us to solve a problem, then we build new tools.
In this case, we will add Scala functionality for parsing all of the GeoJSON data, in‐
cluding the bits that aren’t handled by the Esri Geometry API, by leveraging one of the
many Scala projects that support parsing JSON data. The code that we will be discussing
in the next few sections is available in the book’s git repo, but has also been made available
as a standalone library on GitHub at http://github.com/jwills/geojson, where it can be
used for any kind of geospatial analysis project in Scala.

Exploring the Esri Geometry API
The core data type of the Esri library is the Geometry object. A Geometry describes a
shape, accompanied by a geolocation where that shape resides. The library contains a
set of spatial operations that allow analyzing geometries and their relationships. These
operations can do things like tell us the area of a geometry, tell us whether two geometries
overlap, or compute the geometry formed by the union of two geometries.

In our case, we’ll have geometry objects representing dropoff points for cab rides (lon‐
gitude and latitude), and geometry objects that represent the boundaries of a borough
in NYC. The spatial relationship we’re interested in is containment: is a given point in
space located inside one of the polygons associated with a borough of Manhattan?

The Esri API provides a convenience class called GeometryEngine that contains static
methods for performing all of the spatial relationship operations, including a con
tains operation. The contains method takes three arguments: two Geometry objects,
and one instance of the SpatialReference class, which represents the coordinate sys‐
tem used to perform the geospatial calculations. For maximum precision, we need to
analyze spatial relationships relative to a coordinate plane that maps each point on the
misshapen spheroid that is planet Earth into a two-dimensional coordinate system.
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Geospatial engineers have a standard set of well-known identifiers (referred to as
WKIDs) that can be used to reference the most commonly used coordinate systems.
For our purposes, we will be using WKID 4326, which is the standard coordinate system
used by GPS.

As Scala developers, we’re always on the lookout for ways to reduce the amount of typing
we need to do as part of our interactive data analysis in the Spark shell, where we don’t
have access to development environments like Eclipse and IntelliJ that can automatically
complete long method names for us and provide some syntactic sugar to make it easier
to read certain kinds of operations. Following the naming convention we saw in the
NScalaTime library, which defined wrapper classes like RichDateTime and RichDura
tion, we’ll define our own RichGeometry class that extends the Esri Geometry object
with some useful helper methods:

import com.esri.core.geometry.Geometry
import com.esri.core.geometry.GeometryEngine
import com.esri.core.geometry.SpatialReference

class RichGeometry(val geometry: Geometry,
    val csr: SpatialReference = SpatialReference.create(4326)) {
  def area2D() = geometry.calculateArea2D()

  def contains(other: Geometry): Boolean = {
    GeometryEngine.contains(geometry, other, csr)

  def distance(other: Geometry): Double =
    GeometryEngine.distance(geometry, other, csr
  }
}

We’ll also declare a companion object for RichGeometry that provides support for im‐
plicitly converting instances of the Geometry class into RichGeometry instances:

object RichGeometry {
  implicit def wrapRichGeo(g: Geometry) = {
    new RichGeometry(g)
  }
}

Remember, to be able to take advantage of this conversion, we need to import the im‐
plicit function definition into the Scala environment, like this:

import RichGeometry._

Intro to GeoJSON
Core object is called a feature, which is made up of a set of key-value pairs called
properties and a geometry instance, which is either a point, line, polygon, etc. A set of
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features is called a FeatureCollection in the GeoJSON nomenclature. Let’s pull down
the GeoJSON data for the NYC borough maps and take a look at its structure.

In the taxidata directory on your client machine, download the data and rename the
file to something a bit shorter:

wget https://nycdatastables.s3.amazonaws.com/2013-08-19T18:15:35.172Z/nyc-borough-boundaries-polygon.geojson
mv nyc-borough-boundaries-polygon.geojson nyc-boroughs.geojson

Open the file and look at a feature record, note the properties and the geometry objects--
in this case, a polygon representing the boundaries of the borough, and the properties
containing the name of the borough and other related information.

The Esri Geometry API will help us parse the geometry JSON inside of each feature,
but won’t help us with parsing the id or the properties fields, which can be arbitrary
JSON objects. To parse these objects, we’re going to need to use a Scala JSON library, of
which there are many that we can choose from.

Spray allows us to convert any Scala object to a corresponding JsValue by calling an
implicit toJson method, and it also allows us to convert any String that contains JSON
to a parsed intermediate form by calling parseJson, and then convert it to a Scala type
T by calling convertTo[T] on the intermediate type. Spray comes with built-in conver‐
sion implementations for the common Scala primitive types as well as tuples and the
collection types, and it also has a formatting library that allows us to declare the rules
for converting custom types like our RichGeometry class to and from JSON.

First, we’ll need to create a case class for representing GeoJSON features. According to
the specification, a feature is a JSON object that is required to have one field named
“geometry” that corresponds to a GeoJSON geometry type, and one field named “prop‐
erties” that is a JSON object with any number of key-value pairs of any type. A feature
may also have an optional “id” field that may be any JSON identifier. Our Feature case
class will define corresponding Scala fields for each of the JSON fields, and will add
some convenience methods for looking up values from the map of properties:

import spray.json.JsValue

case class Feature(
    val id: Option[JsValue],
    val properties: Map[String, JsValue],
    val geometry: RichGeometry) {
  def apply(property: String) = properties(property)
  def get(property: String) = properties.get(property)
}

We’re representing the geometry field in Feature using an instance of our RichGeome
try class, which we’ll create with the help of the GeoJSON geometry parsing functions
from the Esri Geometry API.
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We’ll also need a case class that corresponds to the GeoJson FeatureCollection. In order
to make the FeatureCollection class a bit easier to use, we will have it extend the
IndexedSeq[Feature] trait by implementing the appropriate apply and length meth‐
ods, so that we can call the standard Scala Collections API methods like map, filter,
and sortBy directly on the FeatureCollection instance itself, without having to access
the underlying Array[Feature] value that it wraps:

case class FeatureCollection(features: Array[Feature])
    extends IndexedSeq[Feature] {
  def apply(index: Int) = features(index)
  def length = features.length
}

After we have defined the case classes for representing the GeoJSON data, we need to
define the formats that tell Spray how to convert between our domain objects (RichGe
ometry, Feature, and FeatureCollection) and a corresponding JsValue instance. To
do this, we need to create Scala singleton objects that extends the RootJsonFormat[T]
trait, which defines abstract read(jsv: JsValue): T and write(t: T): JsValue
methods. For the RichGeometry class, we can delegate most of the parsing and format‐
ting logic to the Esri Geometry API, particularly the geometryToGeoJson and geome
tryFromGeoJson methods on the GeometryEngine class, but for our case classes, we
need to write the formatting code ourselves. Here’s the formatting code for the Fea
ture case class, including some special logic to handle the optional id field:

implicit object FeatureJsonFormat extends
    RootJsonFormat[Feature] {
  def write(f: Feature) = {
    val buf = scala.collection.mutable.ArrayBuffer(
      "type" -> JsString("Feature"),
      "properties" -> JsObject(f.properties),
      "geometry" -> f.geometry.toJson)
    f.id.foreach(v => { buf += "id" -> v})
    JsObject(buf.toMap)
  }

  def read(value: JsValue) = {
    val jso = value.asJsObject
    val id = jso.fields.get("id")
    val properties = jso.fields("properties").asJsObject.fields
    val geometry = jso.fields("geometry").convertTo[RichGeometry]
    Feature(id, properties, geometry)
  }
}

The FeatureJsonFormat object uses the implicit keyword so that the Spray library
can look it up when the convertTo[Feature] method is called on an instance of JsVal
ue. You can see the rest of the RootJsonFormat implementations in the source code for
the GeoJSON library on GitHub.
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Preparing the New York City Taxicab Data
With the GeoJSON and JodaTime libraries in hand, it’s time to begin analyzing the NYC
taxi cab data interactively using Spark. Let’s create a taxidata directory in HDFS and
copy the trip data we have been looking at into the cluster:

hadoop fs -mkdir taxidata
hadoop fs -put trip_data_1.csv taxidata/

Now start the Spark shell, using the --jars argument to make the libraries we need
available in the REPL:

spark-shell --jars joda-time-2.4.jar,geojson.jar

Once the Spark shell has loaded, we can create an RDD from the taxi data and examine
the first few lines, just as we have in other chapters:

val taxiRaw = sc.textFile("taxidata")
val taxiHead = taxiRaw.take(10)
taxiHead.foreach(println)

Let’s begin by defining a case class that contains the information about each taxi trip
that we want to use in our analysis. We’ll define a case class called Trip that uses the
DateTime class from the JodaTime API to represent pickup and dropoff times, and the
Point class from the Esri Geometry API to represent the longitude and latitude of the
pickup and dropoff locations:

import com.esri.core.geometry.Point
import com.github.nscala_time.time.Imports._

case class Trip(
  pickupTime: DateTime,
  dropoffTime: DateTime,
  pickupLoc: Point,
  dropoffLoc: Point)

In order to parse the data from the taxiRaw RDD into instances of our case class, we
will need to create some helper objects and functions. First, we’ll process the pickup
and dropoff times using an instance of our SimpleDateFormat with an appropriate
formatting string:

val formatter = new SimpleDateFormat(
  "yyyy-MM-dd HH:mm:ss")

Next, we will parse the longitude and latitude of the pickup and dropoff locations using
the Point class and the implicit toDouble method Scala provides for strings:

def point(longitude: String, latitude: String): Point = {
  new Point(longitude.toDouble, latitude.toDouble)
}
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With these methods in hand, we can define a parse function that extracts a tuple con‐
taining the driver’s hack license and an instance of the Trip class from each line of the
taxiraw RDD:

def parse(line: String): (String, Trip) = {
  val fields = line.split(',')
  val license = fields(1)
  val pickupTime = new DateTime(formatter.parse(fields(5)))
  val dropoffTime = new DateTime(formatter.parse(fields(6)))
  val pickupLoc = point(fields(10), fields(11))
  val dropoffLoc = point(fields(12), fields(13))

  val trip = Trip(pickupTime, dropoffTime, pickupLoc, dropoffLoc)
  (license, trip)
}

We can test the parse function out on several of the records from the taxiHead array
to verify that it can correctly handle a sample of the data.

Handling Invalid Records at Scale
Anyone who has been working with large-scale, real-world data sets knows that they
invariably contain at least a few records that do not conform to the expectations of the
developer or data scientist who wrote the code to them. Many MapReduce jobs and
Spark pipelines have failed because of invalid records that caused the parsing logic to
throw an exception.

Typically, we handle these exceptions one-at-a-time by checking the logs for the indi‐
vidual tasks and figuring out which line of code threw the exception and then figuring
out how to tweak the code to ignore or correct the invalid records. This is a tedious
process, and it often feels like we’re playing whack-a-mole: just as we get one exception
fixed, we discover another one on a record that came later within the partition.

One strategy that experienced data scientists deploy when working with a new data set
is to add a try-catch block to their parsing code so that any invalid records can be
written out to the logs without causing the entire job to fail. If there are only a handful
of invalid records in the entire data set, we might be okay with ignoring them and
continuing with our analysis. With Spark, we can do even better: we can adapt our
parsing code so that we can interactively analyze the invalid records in our data just as
easily as we would perform any other kind of analysis.

For any individual record in an RDD, there are two possible outcomes for our parsing
code: it will either parse the record successfully and return meaningful output, or it will
fail and throw an exception, in which case we want to capture both the value of the
invalid record and the exception that was thrown. Whenever an operation has two
mutually exclusive outcomes, we can use Scala’s Either[L, R] type to represent the
return type of the operation.
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The safe function below takes an argument named f of type S � T and returns a new S
� Either[T, (S, Exception)] that will return either the result of calling f or, if an
exception is thrown, a tuple containing the invalid input value and the exception itself.

def safe[S, T](f: S => T): S => Either[T, (S, Exception)] = {
  new Function[S, Either[T, (S, Exception)]] with Serializable {
    def apply(s: S): Either[T, (S, Exception)] = {
      try {
        Left(f(s))
      } catch {
        case e: Exception => Right((s, e))
      }
    }
  }
}

We can now create a safe wrapper function called safeParse by passing our parse
function (of type String � Trip) to the safe function, and then applying safeParse to
the taxiraw RDD:

val safeParse = safe(parse)
val taxiParsed = taxiRaw.map(safeParse)
taxiParsed.cache()

If we want to determine how many of the input lines were parsed successfully, we can
use the isLeft method on Either[L, R] in combination with the countByValue action:

taxiParsed.map(_.isLeft).
countByValue().
foreach(println)
...
(false,87)
(true,14776529)

This looks like good news- only a small fraction of the input records threw exceptions.
We would like to examine these records in the client to see which exception was thrown
and determine if our parsing code can be improved to correctly handle them. One way
to get the invalid records is to use a combination of the filter and map methods:

val taxiBad = taxiParsed.
  filter(_.isRight).
  map(_.right.get)

Alternatively, we can do both the filtering and the mapping in a single call using the
collect method on the RDD class that takes a partial function as an argument. A partial
function is a function that has an isDefinedAt method which determines whether or
not it is defined for a particular input. We can create partial functions in Scala either by
extending the PartialFunction[S, T] trait or by the following special case syntax:
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val taxiBad = taxiParsed.collect {
  case t if t.isRight => t.right.get
}

The if block determines the values for which the partial function is defined, and the
expression after the � gives the value the partial function returns. Be careful to distinguish
between the collect method that applies a partial function to an RDD and the col
lect() action that takes no arguments and returns the contents of the RDD to the client:

taxiBad.collect().foreach(println)

Note that most of the bad records throw ArrayIndexOutOfBoundsExceptions because
they are missing the fields that we are trying to extract in the parse function we wrote
above. Because there are relatively few of these bad records (only 87 or so), we can
reasonably drop them from consideration and continue our analysis, focusing on the
records in the data that parsed correctly:

val taxiGood = taxiParsed.collect {
  case t if t.isLeft => t.left.get
}
taxiGood.cache()

Even though the records in the taxigood RDD parsed correctly, they may still have data
quality problems that we want to uncover and handle. To find the remaining data quality
problems, we can start to think of conditions that we would expect to be true for any
correctly recorded trip.

Given the temporal nature of our trip data, one reasonable invariant that we can expect
is that the dropoff time for any trip will be sometime after the pickup time. We might
also expect that trips will not take more than a few hours to complete, although it’s
certainly possible that long trips, trips that take place during rush hour, or trips that are
delayed by accidents could go on for several hours. We’re not exactly sure what the cutoff
should be for a trip that takes a “reasonable” amount of time.

Let’s define a helper function named hours that uses the JodaTime Duration class to
compute the number of hours a taxi ride took. We can then use it to compute the
histogram of the number of hours the trips in the taxigood RDD took from start to
finish:

import org.joda.time.Duration

def hours(trip: Trip): Long = {
  val d = new Duration(
    trip.pickupTime,
    trip.dropoffTime)
  d.getStandardHours
}

taxiGood.values.map(hours).
  countByValue().
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  toList.
  sorted.
  foreach(println)
...
(-8,1)
(0,14752245)
(1,22933)
(2,842)
(3,197)
(4,86)
(5,55)
(6,42)
(7,33)
(8,17)
(9,9)
...

Everything looks fine here, except for one trip which too a negative eight hours to
complete! Perhaps the DeLorean from Back to the Future is moonlighting as a NYC taxi
cab? Let’s examine this record

taxiGood.values.
  filter(trip => hours(trip) == -8).
  collect().
  foreach(println)

This reveals the one odd record- a trip that began around 6 P on January 25th and
finished just before 10 AM the same day. I isn’t obvious what exactly went wrong with
the recording of this trip, but since it only seemed to happen for a single record, it should
be okay to exclude it from our analysis for now

Looking at the remainder of the trips that went on for a non-negative number of hours,
it appears that the vast majority of taxi rides last for no longer than 3 hours. We’ll apply
a filter to the taxiGood RDD so that we can focus on the distribution of these “typical”
rides and ignore the outliers for now:

val taxiClean = taxiGood.filter {
  case (lic, trip) => {
    val hrs = hours(trip)
    0 <= hrs && hrs < 3
  }
}

Geospatial Analysis
Lets start examining the geospatial aspects of the taxi data. For each trip, we have a
longitude/latitude pair representing where the passenger(s) were picked up and another
one for where they were dropped off. We would like to be able to determine which
borough each of these longitude/latitude pairs belongs to, and identify any trips that
did not start or end in any of the five boroughs. For example, if a taxi took passengers
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from Manhattan to Newark International Airport, that would be a valid ride that would
be interesting to analyze, even though it would not end within one of the five boroughs.
However, if it looks as if a taxi took a passenger to the South Pole, then we can be
reasonably confident that the record is invalid and should be excluded from our analysis.

To perform our borough analysis, we’ll need to load the GeoJSON data we downloaded
earlier and stored in the file nyc-boroughs.geojson. The Source class in the sca
la.io package makes it easy to read the contents of a text file or URL into the client as
a single String:

val geojson = scala.io.Source.
  fromFile("nyc-boroughs.geojson").
  mkString

Now we need to use the GeoJSON parsing tools we reviewed earlier in the chapter using
Spray and Esri into the Spark shell so that we can parse the geojson string into an
instance of our FeatureCollection case class:

import com.cloudera.science.geojson._
import GeoJsonProtocol._
import spray.json._

val features = geojson.parseJson.convertTo[FeatureCollection]

We can create a sample point to test out the functionality of the Esri Geometry API and
verify that it can correctly identify which borough a particular point belongs to:

val p = new Point(-73.994499, 40.75066)
val borough = features.find(f => f.geometry.contains(p))

Before we use the features on the taxi trip data, we should take a moment to think
about how to organize this geospatial data for maximum efficiency. One option would
be to research data structures that are optimized for geospatial lookups, such as quad
trees, and then find or write our own implementation. But let’s see if we can come up
with a quick heuristic that will allow us to bypass that bit of work.

The find method will iterate through the FeatureCollection until it finds a feature
whose geometry contains the given Point of longitude/latitude. Most taxi rides in New
York begin and end in Manhattan, so if the geospatial features that represent Manhattan
are earlier in the sequence, most of the find calls will return relatively quickly. We can
use the fact that the boroughCode property of each feature can be used as a sorting key,
with the code for Manhattan equal to 1 and the code for Staten Island equal to 5. Within
the features for each borough, we want the features associated with the largest polygons
to come before the smaller polygons, since most trips will be to and from the “major”
region of each borough. Sorting the features by the combination of the borough code
and the area2D() of each feature’s geometry should do the trick:

val areaSortedFeatures = features.sortBy(f => {
  val borough = f("boroughCode").convertTo[Int]
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  (borough, -f.geometry.area2D())
})

Note that we’re sorting based on the negation of the area2D() value, as we want the
largest polygons to come first and Scala sorts in ascending order by default.

Now we can broadcast the sorted features in the frs sequence to the cluster and write
a function that uses these features to find out which of the five boroughs (if any) a
particular trip ended in:

val bFeatures = sc.broadcast(areaSortedFeatures)

def borough(trip: Trip): Option[String] = {
  val feature = bFeatures.value.find(f => {
    f.geometry.contains(trip.dropoffLoc)
  })
  feature.map(f => {
    f("borough").convertTo[String]
  })
}

If none of the features contain the dropoff_loc for the trip, then the value of optf will
be None, and the result of calling map on a None value is still None. We can apply this
function to the trips in the taxitime RDD to create a histogram of trips by borough:

taxiClean.values.
  map(borough).
  countByValue().
  foreach(println)
...
(Some(Queens),672135)
(Some(Manhattan),12978954)
(Some(Bronx),67421)
(Some(Staten Island),3338)
(Some(Brooklyn),715235)
(None,338937)

As we expected, the vast majority of trips end in the borough of Manhattan, while
relatively few trips end in Staten Island. One surprising observation is the number of
trips that end outside of any borough; the number of None records is substantially larger
than the number of taxi rides that end in the Bronx. Let’s grab some examples of this
kind of trip from the data.

taxiClean.values.
  filter(t => borough(t).isEmpty).
  take(10).foreach(println)

When we print out these records, we see that a substantial fraction of them start and
end at the point (0.0, 0.0), indicating that the trip location is missing for these records
We should filter these events out of our data set, as they won’t help us with our analysis.
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def hasZero(trip: Trip): Boolean = {
  val zero = new Point(0.0, 0.0)
  (zero.equals(trip.pickupLoc) || zero.equals(trip.dropoffLoc))
}
val taxiDone = taxiClean.filter {
  case (lic, trip) => !hasZero(trip)
}.cache()

When we re-run our borough analysis on the taxiDone RDD, we see this:

taxiDone.values.
  map(borough).
  countByValue().
  foreach(println)
...
(Some(Queens),670996)
(Some(Manhattan),12973001)
(Some(Bronx),67333)
(Some(Staten Island),3333)
(Some(Brooklyn),714775)
(None,65353)

Our zero point filter removed a small number of observation from the output boroughs,
but it removed a large fraction of the None entries, leaving a much more reasonable
number of observations that had drop offs outside of the city.

Sessionization in Spark
At this point, the taxiDone RDD contains all of the individual trips for each taxi driver
in individual records that are distributed across different partitions of the data. In order
to compute the length of time between the end of one ride and the start of the next one,
we need to aggregate all of the trips from a shift by a single driver into a single record,
and then sort the trips within that shift by time. The sort step allows us to compare the
dropoff time of one trip to the pickup time of the next trip. This kind of analysis is called
sessionization, and is commonly performed over web logs in order to analyze the be‐
havior of the users of a website.

Sessionization can be a very powerful technique for uncovering insights in data and for
building new data products that can be used to help people make better decisions. For
example, Google’s spell correction engine is built on top of the sessions of user activity
that Google builds each day from the logged records of every event (searches, clicks,
maps visits, etc.) occurring on its web properties. In order to identify likely spell cor‐
rection candidates, Google processes those sessions looking for situations where a user
typed in a query, didn’t click on anything, typed in a slightly different query a few seconds
later, and then clicked on a result and didn’t come back to Google. Then they count how
often this pattern occurs for any pair of queries. If it occurs frequently enough (e.g., if
every time we see the query “untied stats”, it’s followed a few seconds later by the query
“united states”), then we assume that the second query is a spell correction of the first.
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This analysis takes advantage of the patterns of human behavior that are represented in
the event logs to build a spell correction engine from data that is more powerful than
any engine that could be created from a dictionary. The engine can be used to perform
spell correction in any language, and can correct words that might not be included in
any dictionary (e.g., the name of a new startup), and can even correct queries like “untied
stats” where none of the words are misspelled! Google uses similar techniques to show
recommended and related searches, as well as to decide which queries should return a
OneBox result that gives the answer to a query on the search page itself, without re‐
quiring that the user click through to a different page. There are OneBoxes for weather,
scores from sports games, addresses, and lots of other kinds of queries.

In the next section, we’ll show how to efficiently construct and analyze sessions using
some advanced functionality that was introduced in Spark 1.2.0.

Building Sessions: Secondary Sorts in Spark
The naive way to create sessions in Spark is to perform a groupBy on the identifier we
want to create sessions for and then sort the events post-shuffle by a timestamp identifier.
If we only have a small number of events for each entity, then this approach will work
reasonably well. However, as this approach requires all the events for any particular
entity to be in memory at the same time, it will not scale as the number of events for
each entity gets larger and larger. We need a way of building sessions that does not
require all of the events for a particular entity to be available at the same time for sorting.

In MapReduce, we can build sessions by performing a secondary sort, where we create
a composite key made up of an identifier and a timestamp value, sort all of the records
on the composite key, and then use a custom partitioner and grouping function to ensure
that all of the records for the same identifier appear in the same output partition. For‐
tunately, Spark can also support this same secondary sort pattern by making use of its
repartitionAndSortWithinPartitions transformation.

In the repo, we’ve provided an implementation of a groupByKeyAndSortValues trans‐
formation that does exactly this. As the workings of this functionality are mostly or‐
thogonal to the concepts this chapter is covering, we’re omitting the gory details here.
Work is progressing on Spark JIRA SPARK-3655 to add a transformation like this to
core Spark.

The transformation accepts four parameters:

• The RDD of key-value pairs that we want to operate on.
• A function that accepts a value and extracts the secondary key to sort on.
• An optional splitting function that can break up sorted runs with the same key into

multiple groups. In our case, we’ll use this to break up multiple shifts from the same
driver.
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• The number of partitions in the output RDD.

Our secondary key in this case is the pickup time for the trip:

def secondaryKeyFunc(trip: Trip) = trip.pickupTime.getMillis

We need to decide what criteria we should use to determine when one shift ends and
another one begins. Like some of the other choices we’ve made in this chapter (e.g.,
filtering out trips that go on for longer than 3 hours), this is a somewhat arbitrary choice,
and we need to be conscious of how this choice may impact the results of our subsequent
analysis. It’s a good idea, especially in the early stages of a sessionization analysis, to try
many different split criteria and see how the results of our analysis change. Once we
settle on a reasonable window of time to distinguish between different shifts, the im‐
portant thing is to make a choice- even though it is somewhat arbitrary- and to stick
with that choice for the long haul. Our primary interest as data scientists is how things
change over time, and keeping our definitions for data and metrics constant allows us
to make valid comparisons over long periods.

Let’s start out by choosing four hours as our threshold, so that any gap of time between
sequential pickups longer than that time will be considered two separate shifts, and the
intermediate time will be considered a break where the driver was not accepting new
passengers:

def split(t1: Trip, t2: Trip): Boolean = {
  val p1 = t1.pickupTime
  val p2 = t2.pickupTime
  val d = new Duration(p1, p2)
  d.getStandardHours >= 4
}

Armed with our secondary key function and splitting function, we can perform the
grouping and sorting:

val sessions = groupByKeyAndSortValues(
  taxiDone, secondaryKeyFunc, split, 30)
sessions.cache()

The result is an RDD[(String, List[Trip])], where all of the trips belong to the same
shift for the same driver, and the trips are sorted by time.

Executing a sessionization pipeline is an expensive operation, and the sessionized data
is often useful for many different analysis tasks that we might want to perform. In gen‐
eral, it’s a good idea to amortize the cost of sessionizing a large data set by only per‐
forming the sessionization once, and then writing the sessionized data to HDFS so that
it may be used by multiple data scientists to answer lots of different questions. Per‐
forming sessionization once is also a good way to enforce standard rules for session
definitions across the entire data science team, which has the same benefits for ensuring
apples-to-apples comparisons of results.
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At this point, we are ready to analyze our sessions data to see how long it takes for a
driver to find their next fare after a drop off in a particular borough. We will create a
boroughDuration method that takes two instances of the Trip class and computes both
the borough of the first trip and the Duration between the dropoff time of the first trip
and the pickup time of the second:

def boroughDuration(t1: Trip, t2: Trip) = {
  val b = borough(t1)
  val d = new Duration(
    t1.dropoffTime,
    t2.pickupTime)
  (b, d)
}

We want to apply our new function to all sequential pairs of trips inside of our ses
sions RDD. Although we could write a for loop to do this, we can also use the slid
ing method of the Scala Collections API to get the sequential pairs in a more functional
way:

val boroughDurations = sessions.values.flatMap(trips => {
  val iter = trips.sliding(2)
  val viter = iter.filter(_.size == 2)
  viter.map(p => boroughDuration(p(0), p(1)))
}).cache()

The filter call on the result of the sliding method ensures that we ignore any sessions
that contain only a single trip, and the result of our flatMap over the sessions is an
RDD[(Option[String], Duration)] that we can now examine. First, we should do a
validation check to ensure that most of the durations are non-negative:

bdrdd.values.map(_.getStandardHours).
  countByValue().
  toList.
  sorted.
  foreach(println)
...
(-2,2)
(-1,17)
(0,13367875)
(1,347479)
(2,76147)
(3,19511)

Only a few of the records have a negative duration, and when we examine them more
closely, there doesn’t seem to be any common patterns to them that we could use to
understand the source of the erroneous data. We will exclude these records from our
analysis of the distribution of durations, which we can compute with the help of Spark’s
StatCounter class that we have used before:
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import org.apache.spark.util.StatCounter

boroughDurations.filter {
  case (b, d) => d.getMillis >= 0
}.mapValues(d => {
  val s = new StatCounter()
  s.merge(d.getStandardSeconds)
}).
reduceByKey((a, b) => a.merge(b)).collect().foreach(println)
...

(Some(Bronx),(count: 56951, mean: 1945.79,
  stdev: 1617.69, max: 14116, min: 0))
(None,(count: 57685, mean: 1922.10,
  stdev: 1903.77, max: 14280, min: 0))
(Some(Queens),(count: 557826, mean: 2338.25,
  stdev: 2120.98, max: 14378.000000, min: 0))
(Some(Manhattan),(count: 12505455, mean: 622.58,
  stdev: 1022.34, max: 14310, min: 0))
(Some(Brooklyn),(count: 626231, mean: 1348.675465,
  stdev: 1565.119331, max: 14355, min: 0))
(Some(Staten Island),(count: 2612, mean: 2612.24,
  stdev: 2186.29, max: 13740, min: 0.000000))

As we would expect, the data shows that dropoffs in Manhattan have the shortest
amount of down time for drivers at just over ten minutes. Taxi rides that end in Brooklyn
have a down time of over twice that, and the relatively few rides that end in Staten Island
take a driver an average of almost 45 minutes to get to their next fare.

As the data demonstrates, taxi drivers have a major financial incentive to discriminate
among passengers based on their final destination; drop offs in Staten Island, in par‐
ticular, involves an extensive amount of down time for a driver. The NYC Taxi and
Limousine Commission has made a major effort over the years to identify this discrim‐
ination and has fined drivers who have been caught rejecting passengers because of
where they wanted to go. It would be interesting to attempt to examine the data for
unusually short taxi rides that could be indicative of a dispute between the driver and
the passenger about where the passenger wanted to be dropped off.

Where To Go From Here
Imagine using this same technique on the taxi cab data in order to build an application
that could recommend the best place for a cab to go after a drop off, based on the current
traffic patterns and the historical record of next-best-locations that is contained within
this data. You could also look at the information from the perspective of someone trying
to catch a cab: given the current time, place, and weather data, what is the probability
that I will be able to hail a cab from the street within the next 5 minutes? This sort of
information could be incorporated into applications like Google Maps to help travelers
decide when to leave and which travel option they should take.
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The Esri API is one of a few different tools that can help interact with geospatial data
from JVM-based languages. Another is GeoTrellis, a geospatial library written in Scala,
that seeks to be easily accessible from Spark. A third is GeoTools, a Java-based GIS
toolkit.
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CHAPTER 9

Financial Risk through Monte Carlo
Simulation

Sandy Ryza

Under reasonable circumstances, how much can you expect to lose? This is the quantity
that the financial statistic “Value at Risk” (VaR) seeks to measure. Since its development
soon after the stock market crash of 1987, VaR has seen widespread use across financial
services organizations. The statistic plays a vital role in the management of these insti‐
tutions - it helps determine how much cash they must hold to meet the credit ratings
that they seek. In addition, some use it to more broadly understand the risk character‐
istics of large portfolios, and others compute it before executing trades to help inform
immediate decisions.

Many of the most sophisticated approaches to estimating this statistic rely on compu‐
tationally intensive simulation of markets under random conditions. Spark is an ideal
tool for this simulation. Foremost, it can leverage the parallelism of thousands of cores
to perform these simulations and aggregate their results. Secondly, as a general-purpose
data transformation engine, it is also adept at performing the pre-processing steps that
surround the simulations. It can transform the raw financial data into the model pa‐
rameters needed to carry out the simulations, as well as support ad-hoc analysis of the
results. It can drastically reduce development time compared to more traditional ap‐
proaches that use HPC environments.

VaR considers a portfolio of financial instruments, such as bonds, loans, options, and
stocks, and a time interval. It is a simple measure of investment risk that tries to provide
a reasonable estimate of maximum probable loss over the particular time period. A VaR
statistic has three parameters: a portfolio, a time period, and a confidence level. A VaR
of 1 million dollars with a 95% confidence level and two weeks indicates the belief that
the investment stands only a 5% chance of losing more than 1 million dollars over two
weeks.
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In service of modeling VaR, we’ll introduce a few different concepts, approaches, and
packages. We’ll cover kernel density estimation and plotting with the breeze-viz package,
sampling from the multivariate normal distribution, and statistics functions from the
Apache Commons Math package.

Terminology
This chapter makes use of a set of terms specific to the finance domain. We’ll briefly
define them here:

• Instrument - A tradable asset, such as a bond, loan, option, or stock investment. At
any particular time, an instrument is considered to have a value, which is the price
for which it could be sold.

• Portfolio - A collection of instruments owned by a financial institution.
• Return - The change in an instrument or portfolio’s value over a time period.
• Loss - A negative return.
• Index - An imaginary portfolio of instruments. For example, the NASDAQ Com‐

posite index includes about 3,000 stocks and similar instruments for major US and
international companies.

• Market factor - A value that can be used as an indicator of macro aspects of the
financial climate at a particular time. For example, the value of an index, the Gross
Domestic Product of the United States, or the exchange rate between the dollar and
the euro. We will often refer to market factors as just factors.

Methods for Calculating VaR
So far, our definition of VaR has been fairly open ended. Estimating this statistic requires
proposing a model for how a portfolio functions and choosing the probability distri‐
bution its returns are likely to take. Institutions employ a variety of approaches for
calculating VaR, all of which tend to fall under a few general methods.

Variance-Covariance
Variance-Covariance is by far the simplest and least computationally intensive method.
Its model assumes that the return of each instrument is normally distributed, which
allows deriving a solution analytically.

Historical Simulation
Historical Simulation directly extrapolates risk from historical data. For example, to
determine a 95% VaR for a portfolio, it might look at that portfolio’s performance for
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the last hundred days and estimate the statistic as its value on the fifth-worst day. A
drawback of this method is that historical data can be limited and fails to include “what-
ifs”. The history we have for the instruments in our portfolio may lack market collapses,
but we might wish to model what happens to our portfolio in these situations. Techni‐
ques exist for making historical simulation robust to these issues, such as introducing
“shocks” into the data, but we won’t cover them here.

Monte Carlo Simulation
Monte Carlo Simulation, which the rest of this chapter will focus on, tries weaken the
assumptions in the previous methods by simulating the portfolio under random con‐
ditions. When we can’t derive a closed form for a probability distribution analytically,
we can often estimate the shape it takes by repeatedly sampling the simpler processes
that compose it and seeing how the results perform in aggregate. In its most general
form, this method:

• Defines a relationship between market conditions and each instrument’s returns.
• Poses trials consisting of random market conditions.
• Calculates the portfolio loss for each trial, and uses the aggregated trial data to build

up a profile of the portfolio’s risk characteristics.

Of course, the Monte Carlo method isn’t perfect either. The models for generating trial
conditions and for inferring instrument performance from them must make simplifying
assumptions, and the distribution that comes out won’t be more accurate than the
models and historical data going in.

Our Model
A Monte Carlo risk model typically phrases each instrument’s return in terms of a set
of market factors. Common market factors might be the value of indexes like the S&P
500, the US GDP, or currency exchange rates. We then need a model that predicts the
return of each instrument based on these market conditions. In our simulation, we’ll
use a simple linear model. A factor return is a change in the value of a market factor
over a particular time, e.g. if the value of the S&P 500 moves from 2000 to 2100 over a
time interval, its return would be 100. We’ll derive a set of features from simple trans‐
formations of the factor returns. For each instrument, we’ll train a model that assigns a
weight to each feature. This means that the return of each instrument is calculated as
the sum of the returns of the market factor features multiplied by their weights for that
instrument. We can fit the linear model for each instrument with a regression that uses
historical data. If the horizon of the VaR calculation is two weeks, the regression treats
every two week interval in history as a labeled point.
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It’s also worth mentioning that we could have chosen a more complicated model. For
example, the model need not be linear: it could be a decision tree or explicitly incor‐
porate domain specific knowledge.

Now that we have our model for calculating instrument losses from market factors, we
need a process for simulating the behavior of market factors. A simple assumption is
that each market factor return follows a normal distribution. To capture the fact that
market factors are often correlated - when NASDAQ is down, the Dow is likely to be
suffering as well - we can use a multivariate normal distribution with a non-diagonal
covariance matrix. As above, we could have chosen a more complicated method of
simulating the market or assumed a different distribution for each market factor, per‐
haps one with a fatter tail.

Getting the Data
It can be difficult to find large volumes of nicely-formatted historical data, but Yahoo
has a variety of stock data available for download in CSV format. The following script,
located in the risk/data directory of the repo, will make a series of REST calls to
download histories for all the stocks included in the NASDAQ index and place them in
a stocks/ directory.

$ ./download-all-symbols.sh

We also need historical data for our risk factors. For our factors, we’ll use the values of
the S&P 500 and NASDAQ indexes, as well as the prices of 30-year treasury bonds and
crude oil. The indexes can be downloaded from Yahoo as well:

$ mkdir factors/
$ ./download-symbol.sh SNP factors
$ ./download-symbol.sh NDX factors

The treasury bonds and crude oil can be copied from Investing.com.

Preprocessing
At this point, we have data from different sources in different formats. For example, the
first few rows of the Yahoo-formatted data for GOOGL looks like:

Date,Open,High,Low,Close,Volume,Adj Close
2014-10-24,554.98,555.00,545.16,548.90,2175400,548.90
2014-10-23,548.28,557.40,545.50,553.65,2151300,553.65
2014-10-22,541.05,550.76,540.23,542.69,2973700,542.69
2014-10-21,537.27,538.77,530.20,538.03,2459500,538.03
2014-10-20,520.45,533.16,519.14,532.38,2748200,532.38

while the Investing.com history for crude oil price looks like:

Oct 24, 2014    81.01   81.95   81.95   80.36   272.51K -1.32%
Oct 23, 2014    82.09   80.42   82.37   80.05   354.84K 1.95%

168 | Chapter 9: Financial Risk through Monte Carlo Simulation



Oct 22, 2014    80.52   82.55   83.15   80.22   352.22K -2.39%
Oct 21, 2014    82.49   81.86   83.26   81.57   297.52K 0.71%
Oct 20, 2014    81.91   82.39   82.73   80.78   301.04K -0.93%
Oct 19, 2014    82.67   82.39   82.72   82.39   -       0.75%

From each source, for each instrument and factor, we want to derive a list of (date,
closing price) tuples. Using the Java’s SimpleDateFormat that was introduced in the
previous chapter, we can parse dates in the Investing.com format:

import java.text.SimpleDateFormat
val format = new SimpleDateFormat("MMM d, yyyy")
format.parse("Oct 24, 2014")
res0: java.util.Date = Fri Oct 24 00:00:00 PDT 201

The 3000-instrument histories and 4-factor histories are small enough to read and pro‐
cess locally. This remains the case even for larger simulations with hundreds of thou‐
sands of instruments and thousands of factors. The need for a distributed system like
Spark comes in when actually running the simulations, which can require massive
amounts of computation on each instrument.

To read a full Investing.com history from local disk:

import com.github.nscala_time.time.Imports._
import java.util.File
import scala.io.Source

def readInvestingDotComHistory(file: File):
    Array[(DateTime, Double)] = {
  val format = new SimpleDateFormat("MMM d, yyyy")
  val lines = Source.fromFile(file).getLines().toSeq
  lines.map(line => {
    val cols = line.split('\t')
    val date = new DateTime(format.parse(cols(0)))
    val value = cols(1).toDouble
    (date, value)
  }).reverse.toArray
}

As in the previous chapter, we use JodaTime and its Scala wrapper NScalaTime to rep‐
resent our dates, wrapping the Date output of SimpleDateFormat in a JodaTime Date
Time.

To read a full Yahoo history:

def readYahooHistory(file: File): Array[(DateTime, Double)] = {
  val format = new SimpleDateFormat("yyyy-MM-dd")
  val lines = Source.fromFile(file).getLines().toSeq
  lines.tail.map(line => {
    val cols = line.split(',')
    val date = new DateTime(format.parse(cols(0)))
    val value = cols(1).toDouble
    (date, value)
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  }).reverse.toArray
}

Notice that lines.tail is useful for excluding the header row. We load all the data and
filter out instruments with less than 5 years of history:

val start = new DateTime(2009, 10, 23, 0, 0)
val end = new DateTime(2014, 10, 23, 0, 0)

val files = new File("data/stocks/").listFiles()
val rawStocks = files.flatMap(file => {
  try {
    Some(readYahooHistory(file))
  } catch {
    case e: Exception => None
  }
}).filter(_.size >= 260*5+10)

val factorsPrefix = "data/factors/"
val factors1 = Array("crudeoil.tsv", "us30yeartreasurybonds.tsv").
  map(x => new File(factorsPrefix + x)).
  map(readInvestingDotComHistory)
val factors2 = Array("SNP.csv", "NDX.csv").
  map(x => new File(factorsPrefix + x)).
  map(readYahooHistory)

Different types of instruments may trade on different days, or the data may have missing
values for other reasons, so it is important to make sure that our different histories align.
First, we need to trim all of our time series to the same region in time. To deal with time
series that are missing values at the start and end dates, we simply fill in those dates with
the closest value in the segment. We implicitly take advantage of the NScalaTime func‐
tionality for comparing dates.

def trimToRegion(history: Array[(DateTime, Double)],
    start: DateTime, end: DateTime): Array[(DateTime, Double)] = {
  var trimmed = history.
    dropWhile(_._1 < start).takeWhile(_._1 <= end)
  if (trimmed.head._1 != start) {
    trimmed = Array((start, trimmed.head._2)) ++ trimmed
  }
  if (trimmed.last._1 != end) {
    trimmed = trimmed ++ Array((end, trimmed.last._2))
  }
  trimmed
}

To deal with missing within a time series, we use a simple imputation strategy that fills
in an instrument’s price as its most recent closing price before that day. Unfortunately
there is no pretty Scala collections method that can do this for us, so we write our own:
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def fillInHistory(history: Array[(DateTime, Double)],
    start: DateTime, end: DateTime): Array[(DateTime, Double)] = {
  var cur = history
  val filled = new ArrayBuffer[(DateTime, Double)]()
  var curDate = start
  while (curDate < end) {
    if (cur.tail.nonEmpty && cur.tail.head._1 == curDate) {
      cur = cur.tail
    }

    filled += ((curDate, cur.head._2))

    curDate += 1.days
    // Skip weekends
    if (curDate.dayOfWeek().get > 5) curDate += 2.days
  }
  filled.toArray
}

We apply trimToRegion and fillInHistory to the data:

val stocks = rawStocks.map(trimToRegion(_, start, end)).
  map(fillInHistory(_, start, end))

val factors = (factors1 ++ factors2).
  map(trimToRegion(_, start, end)).
  map(fillInHistory(_, start, end))

Determining the Factor Weights
Recall, Value at Risk deals with losses over a particular time horizon. We are not con‐
cerned with the absolute prices of instruments, but how those prices move over a given
length of time. In our calculation, we will set that length to two weeks. The following
function makes use of Scala collections’ sliding method to transform time series of
prices into time series of price movements over two-week intervals. Note that we use
10 instead of 14 to define the window because financial data does not include weekends.

def twoWeekReturns(history: Array[(DateTime, Double)])
  : Array[Double] = {
  history.sliding(10).
    map(window => window.last._2 - window.head._2).
    toArray
}

val stocksReturns = stocks.map(twoWeekReturns)
val factorsReturns = factors.map(twoWeekReturns)

With these return histories in hand, we can turn to our goal of training predictive models
for the instruments. For each instrument, we want a model that predicts its two week
return based on the returns of the factors over the same time period. For simplicity, we
will use a linear regression model.
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To account for the fact that instrument returns may not be purely linear functions of
the factor returns, we can include some additional features in our model that we derive
from non-linear transformations of the factor returns. We will try adding two additional
features for each factor return: its square and its square root. Our model is still a linear
model in the sense that the response variable is a linear function of the features. Some
of the features just happen to be determined by non-linear functions of the factor re‐
turns. Keep in mind that this particular feature transformation is meant to demonstrate
some of the options available - it shouldn’t be received as a state-of-the-art practice in
predictive financial modeling.

While we will be carrying out many regressions - one for each instrument - each re‐
gression is small, meaning that we don’t need to make use of Spark’s distributed linear
modeling capabilities. Instead, we’ll use the ordinary least squares regression offered by
the Apache Commons Math package. While our factor data is currently an array of
histories, OLSMultipleLinearRegression expects data as an array of sample points (in
our case a two week interval), so we need to transpose our factor matrix:

def factorMatrix(histories: Seq[Array[Double]])
  : Array[Array[Double]] = {
  val mat = new Array[Array[Double]](histories.head.length)
  for (i <- 0 until histories.head.length) {
    mat(i) = histories.map(_(i)).toArray
  }
  mat
}

Then we can tack on our additional features:

def featurize(factorReturns: Array[Double]): Array[Double] = {
  val squaredReturns = factorReturns.
    map(x => math.signum(x) * x * x)
  val squareRootedReturns = factorReturns.
    map(x => math.signum(x) * math.sqrt(math.abs(x)))
  squaredReturns ++ squareRootedReturns ++ factorReturns
}

And then train the linear models:

import org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression

def linearModel(instrument: Array[Double],
    factorMatrix: Array[Array[Double]])
  : OLSMultipleLinearRegression = {
  val regression = new OLSMultipleLinearRegression()
  regression.newSampleData(instrument, factorMatrix)
  regression
}

val models = stocksReturns.map(linearModel(_, factorMat))

How well do these models fit the data? Let’s look at their R-Squareds:
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val rSquareds = models.map(_.calculateRSquared())
rSquareds.max
res4: Double = 0.995930201862683

scala> rSquareds.min
Double = 3.26838249414485E-4

For some instruments, these factors explain a huge amount of the variance in the data.
For others, almost none. All-in-all it doesn’t look like a very accurate model. While the
predictiveness of these models is very important for the result, as the focus of this chapter
is computing VaR and not predictive financial modeling, we’re going to sidestep tuning
them further.

To find the model parameters for each instrument, we can use OLSMultipleLinearRe
gression’s estimateRegressionParameters method.

val factorWeights = models.map(_.estimateRegressionParameters())
  .toArray

We now have a X-by-4 matrix where each row is the set of model parameters (coeffi‐
cients, weights, covariants, whatever you wish to call them) for an instrument.

Sampling
With our models that map factor returns to instrument returns in hand, we now need
a procedure for simulating market conditions by generating random factor returns.
That is, we need to decide on a probability distribution over factor return vectors and
sample from it. What distribution does the data actually take? It can often be useful to
start answering this kind of question visually. A nice way to visualize a probability dis‐
tribution over continuous data is a density plot that plots the distribution’s domain vs.
its PDF. As we don’t know the distribution that governs the data, we don’t have an
equation that can give us its density at an arbitrary point, but we an approximate it
through a technique called kernel density estimation. In a loose way, kernel density
estimation is a way of smoothing out a histogram. It centers a probability distribution
(usually a normal distribution) at each data point. So a set of two-week-return samples
would result in 200 normal distributions, each with a different mean. To estimate the
probability density at a given point, it evaluates the PDFs of all the normal distributions
at that points and takes their average. The smoothness of a kernel density plot depends
on its bandwidth, the standard deviation of each of the normal distributions. The Git‐
Hub repository comes with a kernel density implementation that works both over RDDs
and local collections. For brevity, it is elided here.

breeze-viz is a Scala library that makes it easy to draw simple plots. The following snippet
creates a density plot from a set of samples.

import com.cloudera.datascience.KernelDensity
import breeze.plot._
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def plotDistribution(samples: Array[Double]) {
  val min = samples.min
  val max = samples.max
  val domain = Range.Double(min, max, (max - min) / 100).
    toList.toArray
  val densities = KernelDensity.estimate(samples, domain)

  val f = Figure()
  val p = f.subplot(0)
  p += plot(domain, densities)
}

The following shows the distribution (probability density function) of two week returns
for the bonds in our history:

Here is the same for two week returns of crude oil:
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The distribution of losses for each of the factors looks roughly normal, albeit fatter tailed.
While looking for a more exotic distribution that more closely fits the data is worthwhile,
we will avoid tuning our simulation in this way.

The simplest way to sample factors returns would be to fit a normal distribution to each
of the factors and sample from these distributions independently. However, this ignores
the fact that market factors are often correlated. If S&P is down, the Dow is likely to be
down as well. Failing to take these correlations into account can give us a much rosier
picture of our risk profile than its reality. Are our factors independent? The Pearson’s
correlation implementation from Commons Math can help us find out.

import org.apache.commons.math3.stat.correlation.PearsonsCorrelation
val factorCor = new PearsonsCorrelation(factorMat).getCorrelationMatrix().getData()
println(factorCor.map(_.mkString("\t")).mkString("\n"))
1.0     -0.3483711940254621             0.23398963510103332             0.39751849093072483
-0.3483711940254621             1.0             -0.21986388382897273            -0.4429969717412909
0.23398963510103332             -0.21986388382897273            1.0             0.3349660841463583
0.39751849093072483             -0.4429969717412909             0.3349660841463583              1.0

As we have significantly non-zero elements on the non-diagonals, it doesn’t look like it.

The Multivariate Normal Distribution
The multivariate normal distribution can help here by taking the correlation informa‐
tion between the factors into account. Each sample from a multivariate normal is a
vector. Given values for all of the dimensions but one, the distribution of values along
that dimension is normal. But, in their joint distribution, the variables are not inde‐
pendent.
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The multivariate normal is parameterized with a mean along each dimension and a
matrix describing the covariance between each pair of dimensions. When the covariance
matrix is diagonal, the multivariate normal reduces to sampling along each dimension
independently, but placing non-zero values in the off-diagonals imbues it with non-
independence characteristics.

The Value at Risk literature often describes a step in which the factor weights are trans‐
formed (decorrelated) so that sampling can proceed. The Apache Commons Math
MultivariateNormalDistribution takes care of this step for us under the covers.

To fit a multivariate normal distribution to our data, first we need find its sample means
and covariances:

import org.apache.commons.math3.stat.correlation.Covariance

val factorCov = new Covariance(factorMat).getCovarianceMatrix().
  getData()

val factorMeans = factorsReturns.
  map(factor => factor.sum / factor.size).toArray

Then, we can simply create a distribution parameterized with them:

import org.apache.commons.math3.distribution.MultivariateNormalDistribution

val factorsDist = new MultivariateNormalDistribution(factorMeans,
  factorCov)

To sample a set of market conditions from it:

factorsDist.sample()
res1: Array[Double] = Array(2.6166887901169384, 2.596221643793665, 1.4224088720128492, 55.00874247284987)

factorsDist.sample()
res2: Array[Double] = Array(-8.622095499198096, -2.5552498805628256, 2.3006882454319686, -75.4850042214693)

Running the Trials
With the per-instrument models and a procedure for sampling factor returns, we now
have the pieces we need to run the actual trials. Because running the trials is very com‐
putationally intensive, we will finally turn to Spark to help us parallelize them. In each
trial, we want to sample a set of risk factors, use them to predict the return of each
instrument, and sum all those returns to find the full trial loss. To achieve a represen‐
tative distribution, we want to run thousands or millions of these trials.

We have a few choices in how to parallelize the simulation. We can parallelize along
trials, instruments, or both. To parallelize along both, we would create an RDD of in‐
struments, an RDD of trial parameters, and then use the cartesian transformation to
generate an RDD of all the pairs. This is the most general approach, but has a couple
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disadvantages. First, it requires explicitly creating an RDD of trial parameters, which
we can avoid using some tricks with random seeds. Second, it requires a shuffle oper‐
ation.

Partitioning along instruments would look something like this:

val randomSeed = 1496
val instrumentsRdd = ...
def trialLossesForInstrument(seed: Long, instrument: Array[Double])
  : Array[(Int, Double)] = {
  ...
}
instrumentsRdd.flatMap(trialLossesForInstrument(randomSeed, _)).
  reduceByKey(_ + _)

With this approach, the data is partitioned across an RDD of instruments, and, for each
instrument a flatMap transformation computes and yields the loss against every trial.
Using the same random seed across all tasks means that we will generate the same
sequence of trials. A reduceByKey sums together all the losses corresponding to the
same trials. A disadvantage of this approach is that it still requires shuffling O(|instru‐
ments| * |trials|) data.

Our model data for our few thousand instruments data is small enough to fit in memory
on every executor, and some back-of-the-envelope calculations reveal that this is prob‐
ably still the case even with a million or so instruments and hundreds of factors. This
means that a good option is to distribute the instrument data in a broadcast variable.
The advantage of each executor having a full copy of the instrument data is that total
loss for each trial can be computed on a single machine. No aggregation is necessary.

With the partition-by-trials approach (which we will use), we start out with an RDD of
seeds. We want a different seed in each partition so that each partition generates different
trials.

val parallelism = 1000
val baseSeed = 1496

val seeds = (baseSeed until baseSeed + parallelism)
val seedRdd = sc.parallelize(seeds, parallelism)

For each seed, we want to generate a set of trial parameters and observe these parameters’
effect on all the instruments. Let’s start from the ground up by writing a function that
calculates the return of a single instrument underneath a single trial. We simply apply
the linear model that we trained earlier for that instrument. The length of the instru
ment array of regression parameters is one greater than the length of the trial array,
because the first element of the instrument array contains the intercept term.

def instrumentTrialReturn(instrument: Array[Double],
    trial: Array[Double]): Double = {
  var instrumentTrialReturn = instrument(0)

Running the Trials | 177



  var i = 0
  while (i < trial.length) { 
    instrumentTrialReturn += trial(i) * instrument(i+1)
    i += 1
  }
  instrumentTrialReturn
}

We use a while loop here instead of a more functional Scala construct because
this is a performance critical region

Then, to calculate the full return for a single trial, we simply sum over the returns of all
the instruments:

def trialReturn(trial: Array[Double],
    instruments: Seq[Array[Double]]): Double = {
  var totalReturn = 0.0
  for (instrument <- instruments) {
    totalReturn += instrumentTrialReturn(instrument, trial)
  }
  totalReturn
}

Lastly, we need to generate a bunch of trials in each task. Because choosing random
numbers is a big part of the process, it is important to use a strong random number
generator that will take a very long time to repeat itself. Commons Math includes a
Mersenne twister implementation that is good for this. We use it to sample from a
multivariate normal distribution as described above. Note that we are applying the
featurize method that we defined before on the generated factor returns in order to
transform them into the feature representation used in our models.

import org.apache.commons.math3.random.MersenneTwister

def trialReturns(seed: Long, numTrials: Int,
    instruments: Seq[Array[Double]], factorMeans: Array[Double],
    factorCovariances: Array[Array[Double]]): Seq[Double] = {
  val rand = new MersenneTwister(seed)
  val multivariateNormal = new MultivariateNormalDistribution(
    rand, factorMeans, factorCovariances)

  val trialReturns = new Array[Double](numTrials)
  for (i <- 0 until numTrials) {
    val trialFactorReturns = multivariateNormal.sample()
    val trialFeatures = featurize(trialFactorReturns)
    trialReturns(i) = trialReturn(trialFeatures, instruments)
  }
  trialReturns
}

With our scaffolding complete, we can use it to compute an RDD where each element
is the total return from a single trial. Because the instrument data (matrix including a
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weight on each factor feature for each instrument) is large, we use a broadcast variable
for it. This ensures that it only needs to be deserialized once per executor.

val numTrials = 10000000
val bFactorWeights = sc.broadcast(factorWeights)

val trialReturns = seedRdd.flatMap(
  trialValues(_, numTrials / parallelism,
    bFactorWeights.value, factorMeans, factorCov))

To calculate a 5% VaR, we need to find the cutoff between the top 5% of losses and the
bottom 95%. We can accomplish this using the takeOrdered action to pull the top 5%
into the driver:

val topLosses = trialReturns.takeOrdered(
  math.max(numTrials / 20, 1))
val varFivePercent = topLosses.last
varFivePercent: Double = -1751.6806481676153

As a quick and dirty test of how stable our simulation results are, we can try running
the VaR computation a few more times with different seeds. If the resulting values exhibit
high variance, it is an indication that each run should include more trials. Two additional
runs with different seeds yield -1752.8675055209305 and -1752.9495311180488. The
three taken together give a 95% confidence interval of [-1753.16, -1751.84], which seems
sufficiently tight.

Visualizing the Distribution of Returns
In addition to calculating VaR at a particular confidence level, it can be useful to look
at a fuller picture of the distribution of returns. Are they normally distributed? Do they
spike at the extremities? As we did for the individual factors, we can plot an estimate of
the probability density function for the joint probability distribution using kernel den‐
sity estimation. Again, the supporting code for calculating the density estimates in a
distributed fashion (over RDDs) is included in the git repository accompanying this
book.

def plotDistribution(samples: RDD[Double]) {
  val stats = samples.stats()
  val min = stats.min
  val max = stats.max
  val domain = Range.Double(min, max, (max - min) / 100)
    .toList.toArray
  val densities = KernelDensity.estimate(samples, domain)

  val f = Figure()
  val p = f.subplot(0)
  p += plot(domain, densities)
}
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plotDistribution(trialReturns)

The PDF of portfolio returns looks like a spikier, left-leaning version of a normal dis‐
tribution

Where To Go From Here
The model laid out in this exercise is a rough first cut of what would be used in an actual
financial institution. In building an accurate VaR model, a few steps that we glossed
over are very important. Curating the set of market factors can make or break a model,
and it is not uncommon for financial institutions to incorporate hundreds of factors in
their simulations. Picking these factors requires both running numerous experiments
on historical data and a heavy dose of creativity. Choosing the predictive model that
maps market factors to instrument returns is also important. While we used a simple
linear model, many calculations use non-linear functions or simulate the path over time
with Brownian motion. Lastly, it is worth putting care into the distribution used to
simulate the factor returns. Kolmogorov-Smirnoff tests and chi-squared tests are useful
for testing an empirical distribution’s normality. Q-Q plots are useful for comparing
distributions visually. Usually, a distribution with fatter tails more accurately mirrors
financial risk. Normal mixture distributions can be used to achieve these fatter tails.
Financial Economics, Fat-tailed Distributions, an article by Markus Haas and Christian
Pigorcsh, provides a nice reference on some of the other fat-tailed distributions out
there.
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Banks use Spark and large-scale data processing frameworks for calculating VaR with
historical methods as well. Evaluation of Value-at-Risk Models Using Historical Data,
by Darryll Hendricks, provides a good overview and performance comparison of his‐
torical VaR methods.

Monte Carlo risk simulations can be used for more than calculating a single statistic.
The results can be used to proactively reduce the risk of a portfolio. For example, if, in
the trials with the poorest returns, a particular set of instruments tends to come up
losing money repeatedly, one might consider dropping those instruments from the
portfolio or adding instruments that tend to move in the opposite direction from them.
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CHAPTER 10

Analyzing Genomics Data and the BDG
Project

Uri Laserson

So we need to shoot our SCHPON […] into the void.
— George M. Church

The advent of next-generation DNA sequencing (NGS) technology is rapidly trans‐
forming the life sciences into a data-driven field. However, making the best use of this
data is butting up against a traditional computational ecosystem that builds on difficult-
to-use low-level primitives for distributed computing (e.g., DRMAA or MPI) and a
jungle of semi-structured text-based file formats.

In this chapter, we will use Spark to manipulate large quantities of genomics data to
process and filter data, build a transcription factor binding site prediction model, and
join ENCODE genome annotations against the 1000 Genome project variants. In the
process, we will learn about a new set of Hadoop-friendly serialization and file formats
(Avro and Parquet) that greatly simplify many problems in data management. We
broadly promote the use of these serialization technologies to achieve compact binary
representations, service-oriented architectures, and language cross-compatibility.

Decoupling Storage from Modeling
Bioinformaticians spend a disproportionate amount of time worrying about file for‐
mats. .fasta, .fastq, .sam, .bam, .vcf, .gvcf, .bcf, .bed, .gff, .gtf, .narrow
Peak, .wig, .bigWig, .bigBed, .ped, .tped, to name a few, not to mention the scientists
that feel it is necessary to specify their own custom format for their own custom tool.
On top of that, many of the format specifications are incomplete/ambiguous (hard to
ensure implementations are consistent/compliant) and specify ASCII-encoded data
(inefficient, poor compression). It is particularly troubling because all of these file for‐
mats essentially store just a few common object types: an (aligned) sequence read, a
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called genotype, a sequence feature (à la UCSC genome browser), a phenotype. Libraries
like biopython are popular because they are chock-full-o'-parsers (e.g., Bio.SeqIO) that
attempt to read all the file formats into a small number of common in-memory models
(e.g., Bio.Seq, Bio.SeqRecord, Bio.SeqFeature).

We can solve all of these problems in one shot using a serialization framework like
Apache Avro. The key lies in Avro’s separation of the data model (i.e., an explicit schema)
from the underlying storage file format and also the language’s in-memory represen‐
tation. Avro specifies how a datum of a certain type should be communicated between
processes, whether that’s between running processes over the internet, or a process
trying to write the data into a particular file format. For example, a Java program that
uses Avro can write the data into multiple underlying file formats that are all compatible
with Avro’s data model. This allows each process to stop worrying about compatibility
with multiple file formats: the process only needs to know how to read Avro, and the
file system needs to know how to supply Avro.

Let's take the sequence feature as an example.  We begin by specifying the desired schema for the object

enum Strand {
  Forward,
  Reverse,
  Independent
}

record SequenceFeature {
  string featureId;
  string featureType; // 
  string chromosome;
  long startCoord;
  long endCoord;
  Strand strand;
  double value;
  map<string> attributes;
}

e.g., “conservation”, “centipede”, “gene”

This data type could be used to encode, for example, conservation level, the presence
of a promoter or ribosome binding site, a transcription factor binding site, etc. One way
to think about it is a binary version of JSON (but more restricted and much higher
performance). Given a particular data schema, the Avro spec then determines the pre‐
cise binary encoding for the object, so that it can be easily communicated between
processes (written in different programing languages), over the network, or onto disk
for storage. The Avro project includes modules for processing Avro-encoded data from
many languages, including Java, C/C++, Python, and Perl; after that, the language is
free to store the object in whichever way is deemed most advantageous. The separation
of data modeling from the storage format provides another level of flexibility/abstrac‐
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tion; Avro data can be stored as Avro-serialized binary objects (Avro container file), or
in a columnar file format for fast queries (Parquet file), or as text JSON data for maxi‐
mum flexibility (minimum efficiency). Finally, Avro supports schema evolvability, al‐
lowing the user to add new fields as they become necessary, while all the software grace‐
fully deals with new/old versions of the schema.

Overall, Avro is an efficient binary encoding that allows you to easily specify evolvable
data schemas, process the same data from many programming languages, and store the
data using many formats. Deciding to store your data using Avro schemas frees you
from perpetually working with more and more custom data formats, while simultane‐
ously increasing the performance of your computations.

Serialization Frameworks
There exist a large number of serialization frameworks in the wild. The most commonly
used frameworks in the big data community are Apache Avro, Apache Thrift, and Goo‐
gle’s Protocol Buffers (Protobuf). At the core, they all provide an interface definition
language for specifying the schemas of object/message types, and they all compile into
a variety of programming languages. On top of IDL, which is supported by Protobuf,
Thrift also adds a way to specify RPCs. (Google’s RPC mechanism, Stubby, has not been
open-sourced.) Finally, on top of IDL and RPC, Avro adds a file format specification for
storing the data on-disk. It’s difficult to make generalizations about which framework
is appropriate in what circumstances, as they all support different languages and have
different performance characteristics for the various languages.

The particular SequenceFeature model above is a bit simplistic for real data, but the
Big Data Genomics (BDG) project has already defined schemas to represent the fol‐
lowing objects:

• AlignmentRecord for reads
• Pileup for base observations at particular positions
• Variant for known genome variants and metadata
• Genotype for a called genotype at a particular locus
• Feature for a sequence feature (annotation on a genome segment)
• and many others

The actual schemas can be found in the bdg-formats GitHub repo. The Global Alliance
for Genomics and Health is also starting to develop their own set of Avro schemas.
Hopefully this will not turn into its own http://xkcd.com/927/ situation, where there is
a proliferation of competing Avro schemas. Even so, Avro provides many performance
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and data modeling benefits over the custom ASCII status quo. In the remainder of the
chapter, we’ll use some of the BDG schemas to accomplish some typical genomics tasks.

Ingesting Genomics Data with the ADAM CLI
This chapter makes heavy use of the ADAM project for genomics on
Spark. The project is under heavy development, including the docu‐
mentation. If you run into problems, make sure to check the latest
README files on GitHub, the GitHub issue tracker, or the adam-
developers mailing list.

BDG’s core set of genomics tools are called ADAM. Starting from a set of mapped reads,
this core includes tools that can perform mark-duplicates, base quality score recalibra‐
tion, indel realignment, and variant calling, among other tasks. ADAM also contains a
command line interface that wraps the core for ease of use. In contrast to HPC, these
command line tools know about Hadoop and HDFS, and many of them can automat‐
ically parallelize across a cluster without having to split files or schedule jobs manually.

We’ll start by building adam like the README tells us to:

git clone https://github.com/bigdatagenomics/adam.git
cd adam
export "MAVEN_OPTS=-Xmx512m -XX:MaxPermSize=128m"
mvn clean package -DskipTests

ADAM comes with a submission script that facilitates interfacing with Spark’s spark-
submit script; the easiest way to use it is probably to alias it:

export $ADAM_HOME=path/to/adam
alias adam-submit="$ADAM_HOME/bin/adam-submit"

As noted in the README, additional JVM options can be set through $JAVA_OPTS, or
check the appassembler docs for more info. At this point, you should be able to run
ADAM from the command-line and get the usage message:

$ adam-submit
...

     e            888~-_              e                 e    e
    d8b           888   \            d8b               d8b  d8b
   /Y88b          888    |          /Y88b             d888bdY88b
  /  Y88b         888    |         /  Y88b           / Y88Y Y888b
 /____Y88b        888   /         /____Y88b         /   YY   Y888b
/      Y88b       888_-~         /      Y88b       /          Y888b

Choose one of the following commands:

ADAM ACTIONS
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             compare : Compare two ADAM files based on read name
           findreads : Find reads that match particular individual
                       or comparative criteria
               depth : Calculate the depth from a given ADAM file,
                       at each variant in a VCF
         count_kmers : Counts the k-mers/q-mers from a read
                       dataset.
   aggregate_pileups : Aggregate pileups in an ADAM reference-
                       oriented file
           transform : Convert SAM/BAM to ADAM format and
                       optionally perform read pre-processing
                       transformations
              plugin : Executes an ADAMPlugin
                   [etc.]

We’ll start by taking some mapped NGS reads (i.e., a .bam file), converting them to the
corresponding BDG format (AlignedRecord in this case), and saving them to HDFS.
First, we get our hands on a suitable .bam file (Illumina-sequenced, bwa-aligned) and
put it in HDFS:

# Note: this file is 16 GB
curl -O ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data\
/HG00103/alignment/HG00103.mapped.ILLUMINA.bwa.GBR\
.low_coverage.20120522.bam

# or using Aspera instead (which is *much* faster)
ascp -i path/to/asperaweb_id_dsa.openssh -QTr -l 10G \
anonftp@ftp.ncbi.nlm.nih.gov:/1000genomes/ftp/data/HG00103\
/alignment/HG00103.mapped.ILLUMINA.bwa.GBR\
.low_coverage.20120522.bam .

hadoop fs -put HG00103.mapped.ILLUMINA.bwa.GBR\
.low_coverage.20120522.bam /user/ds/genomics

We can then use the ADAM transform command to convert the .bam file to Parquet
format. This would work both on a cluster and in local mode:

adam-submit \
    transform \ 
    /user/ds/genomics/HG00103.mapped.ILLUMINA.bwa.GBR\
.low_coverage.20120522.bam \ 
    /user/ds/genomics/reads/HG00103

The ADAM command itself
The rest of the arguments are specific to the transform command

This should kick off a pretty large amount of output to the console, including the URL
to track the progress of the job. Let’s see what we’ve generated:

$ hadoop fs -du -h /user/ds/genomics/reads/HG00103
0        /user/ds/genomics/reads/HG00103/_SUCCESS
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516.9 K  /user/ds/genomics/reads/HG00103/_metadata
101.8 M  /user/ds/genomics/reads/HG00103/part-r-00000.gz.parquet
101.7 M  /user/ds/genomics/reads/HG00103/part-r-00001.gz.parquet
[...]
104.9 M  /user/ds/genomics/reads/HG00103/part-r-00126.gz.parquet
12.3 M   /user/ds/genomics/reads/HG00103/part-r-00127.gz.parquet

The resulting data set is the concatenation of all the files in the /user/ds/genomics/
reads/HG00103/ directory, where each part-*.parquet file is the output from one of
the Spark tasks. You’ll also notice that the data has been compressed more efficiently
than the initial .bam file (which is gzipped underneath) thanks to the columnar storage:

$ hadoop fs -du -h "/user/ds/genomics/HG00103.*.bam"
15.9 G  /user/ds/genomics/HG00103. [...] .bam

$ hadoop fs -du -h -s /user/ds/genomics/reads/HG00103
12.6 G  /user/ds/genomics/reads/HG00103

Let’s see what one of these objects looks like in an interactive session. First we start up
the Spark shell using the ADAM helper script. It takes the same arguments/options as
the default Spark scripts, but loads all of the JARs that are necessary, etc. In the example
below, we are running Spark on YARN:

export SPARK_HOME=/path/to/spark
$ADAM_HOME/bin/adam-shell

...
14/09/11 17:44:36 INFO SecurityManager: [...]
14/09/11 17:44:36 INFO HttpServer: Starting HTTP Server
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.2.0
      /_/

Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM [...])
[...lots of additional logging around setting up the YARN app...]

scala>

Note that when working on YARN, the interactive Spark shell requires yarn-client
mode, so that the driver is executed locally. It may also be necessary to set either HA
DOOP_CONF_DIR or YARN_CONF_DIR appropriately. Now we’ll load the aligned read data
as an RDD[AlignmentRecord]:

import org.apache.spark.rdd.RDD
import org.bdgenomics.adam.rdd.ADAMContext._
import org.bdgenomics.formats.avro.AlignmentRecord

val readsRDD: RDD[AlignmentRecord] = sc.adamLoad(
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  "/user/ds/genomics/reads/HG00103")
readsRDD.first()

which prints a lot of logging output (Spark and Parquet love to log) along with the result
itself:

res0: org.bdgenomics.formats.avro.AlignmentRecord = {"contig": {"contigName": "X", "contigLength": 155270560, "contigMD5": "7e0e2e580297b7764e31dbc80c2540dd", "referenceURL": "ftp:\/\/ftp.1000genomes.ebi.ac.uk\/vol1\/ftp\/technical\/reference\/phase2_reference_assembly_sequence\/hs37d5.fa.gz        AS:NCBI37       SP:Human", "assembly": null, "species": null}, "start": 50194838, "end": 50194938, "mapq": 60, "readName": "SRR062642.27455291", "sequence": "TGACTCTGATGTTAAGATGCATTGTTAAGATAGCCATCCTTGTTGTTCTGACTTTTTCCTTATTCTGCATAGGGCACTCATCCTTTTGAAAGGAAAACGG", "qual": ".LMMQPRQQPRQPILRQQRRIQQRQQJHRLQQRLHNKRISMRQHGQHRNM?HSMQRIR?OIHMIHJFFHFINK<ILFJHLJIKLINAKEEAHECCBBB;#", "cigar": "100M", "basesTrimmedFromStart": 0, "basesTrimmedFromEnd": 0, "readPaired": true, "properPair": true, "readMapped":...

You may get a different read, because the partitioning of the data may be different on
your cluster, so there is no guarantee which read will come back first.

Now we can interactively ask questions about our data set, all while executing the com‐
putations themselves across a cluster in the background. How many reads do we have
in this data set?

readsRDD.count()
...
14/09/11 18:26:05 INFO SparkContext: Starting job: count [...]
...
res16: Long = 160397565

Do the reads in this data set derive from all human chromosomes?

val uniq_chr = (readsRDD
  .map(_.contig.contigName.toString)
  .distinct()
  .collect())
uniq_chr.sorted.foreach(println)
...
1
10
11
12
[...]
GL000249.1
MT
NC_007605
X
Y
hs37d5

Yep. Let’s analyze the statement a little more closely:

val uniq_chr = (readsRDD // 
  .map(_.contig.contigName.toString) // 
  .distinct() // 
  .collect()) // 

RDD[AlignmentRecord]: contains all our data
RDD[String]: from each AlignmentRecord object, we extract the contig name,
and convert to a String
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RDD[String]: this will cause a reduce/shuffle to aggregate all the distinct contig
names; should be small, but still an RDD
Array[String]: this triggers the computation and brings the data in the RDD
back to the client app (the shell)

Say we are carrier screening an individual for cystic fibrosis using next-generation se‐
quencing and our genotype caller gave you something that looks like a premature stop
codon, but it’s not present in HGMD nor is it in the Sickkids CFTR database. We want
to go back to the raw sequencing data (i.e., the reads that originated in the .bam file) to
see if the potentially deleterious genotype call is a false positive. To do so, we need to
manually analyze all the reads that map to that variant locus, say, chromosome 7 at
117149189 (see ???):

val cftr_reads = (readsRDD
  .filter(_.contig.contigName.toString == "7")
  .filter(_.start <= 117149189)
  .filter(_.end > 117149189)
  .collect())
cftr_reads.length // cftr_reads is a local Array[AlignmentRecord]
...
res2: Int = 9

It is now possible to manually inspect these nine reads, or process them through a
custom aligner, for example, and check whether the reported pathogenic variant is a
false positive. Exercise to the reader: what is the average coverage on chromosome 7?
(It’s definitely too low for reliably making a genotype call at a given position.)

Say we’re running a clinical lab that is performing such carrier screening as a service to
clinicians. Archiving the raw data using Hadoop ensures that the data stays relatively
warm (compared with, say, tape archive). In addition to having a reliable system for
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1. Melnik et al., “Dremel: Interactive Analysis of Web-scale Datasets”, Proc. VLDB, 2010

actually performing the data processing, all of the past data is easily accessible for
quality-control (QC) or for cases where there need to be manual interventions, like
above. In addition to the rapid access to the totality of the data, the centrality also makes
it easy to perform large analytical studies, like population genetics, large-scale QC anal‐
yses, etc.

Parquet format and columnar storage
In the previous section, we saw how we can manipulate a potentially large amount of
sequencing data without worrying about the specifics of the underlying storage or the
parallelization of the execution. However, it’s worth noting that the ADAM project
makes use of the Parquet file format, which confers some considerable performance
advantages that we introduce here.

Parquet is an open-source file format specification and a set of reader/writer imple‐
mentations that we recommend for general use for data that will be used in analytical
queries (write once, read many times). It is largely based on the underlying data storage
format used in Google’s Dremel system.1, and has a data model that is compatible with
Avro, Thrift, and Protocol Buffers. Specifically, it supports most of the common database
types (e.g., int, double, string, etc.), along with arrays and records, including nested
types. Significantly, it is a columnar file format, meaning that values for a particular
column from many records are stored contiguously on disk (See ???). This physical data
layout allows for far more efficient data encoding/compression, and significantly re‐
duces query times by minimizing the amount of data that must be read/deserialized.
Parquet supports specifying different encoding/compression schemes for each column,
and for each column supports run-length encoding, dictionary encoding, and delta
encoding.

Another useful feature of Parquet for increasing performance is “predicate pushdown”.
In our CFTR query above, Spark had to deserialize/materialize the entirety of every
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single AlignmentRecord before deciding whether it passes the predicate or not. This
leads to a significant amount of wasted I/O and CPU time. The Parquet reader imple‐
mentations allow us to provide a predicate class that only deserializes the necessary
columns for making the decision, before materializing the full record.

For example, to implement our CFTR query using predicate pushdown, we must first
define a suitable predicate class that tests whether the AlignmentRecord is in the target
locus:

import org.bdgenomics.adam.predicates.ColumnReaderInput._
import org.bdgenomics.adam.predicates.ADAMPredicate
import org.bdgenomics.adam.predicates.RecordCondition
import org.bdgenomics.adam.predicates.FieldCondition

class CftrLocusPredicate extends ADAMPredicate[AlignmentRecord] {
  override val recordCondition = RecordCondition[AlignmentRecord](
    FieldCondition(
      "contig.contigName", (x: String) => x == "chr7"),
    FieldCondition(
      "start", (x: Long) => x <= 117149189),
    FieldCondition(
      "end", (x: Long) => x >= 117149189))
}

Note that for the predicate to work, the Parquet reader must instantiate the class itself.
This means that this code must be compiled into a jar and made available to the executors
by adding it to the Spark classpath. After that’s done, the predicate can be used like so:

val cftr_reads = sc.adamLoad[AlignmentRecord, CftrLocusPredicate](
  "/user/ds/genomics/reads/HG00103",
  Some(classOf[CftrLocusPredicate])).collect()

which should execute faster as it no longer must materialize all of the AlignmentRe
cord objects.

Example: Predicting Transcription Factor Binding Sites
from ENCODE Data
In this example, we will use publicly available sequence feature data to build a simple
model for transcription factor binding. Transcription factors (TFs) are proteins that
bind to specific sites in the genome and help control the expression of different genes.
As a result, they are critical in determining the phenotype of a particular cell, and are
involved in many physiological and disease processes. ChIP-seq is an NGS-based assay
that allows the genome-wide characterization of binding sites for a particular TF in a
particular cell/tissue type. However, in addition to ChIP-seq’s cost and technical diffi‐
culty, it requires a separate experiment for each tissue/TF pair. In contrast, DNase-seq
is an assay that finds regions of open-chromatin genome-wide, and only needs to be
performed once per tissue type. Instead of assaying TF binding sites by performing a
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ChIP-seq experiment for each tissue/TF combination, we’d like to predict TF binding
sites in a new tissue type assuming only the availability of DNase-seq data.

In particular, we will be predicting the binding sites for the CTCF transcription factor
using DNase-seq data along with known sequence motif data (from HT-SELEX) and
other data from the publicly available ENCODE data set. We have chosen 6 different
cell types that have available DNase-seq and CTCF ChIP-seq data. A training example
will be a DNase hypersensitivity (HS) peak, and the label will be derived from the ChIP-
seq data.

We will be using data from the following cell lines:
GM12878

commonly studied lymphoblastoid cell line

K562
female chronic myelogenous leukemia

BJ
skin fibroblast

HEK293
embryonic kidney

H54
glioblastoma

HepG2
hepatocellular carcinoma

First download the DNase data for each cell line in narrowPeak format:

hadoop fs -mkdir /user/ds/genomics/dnase
curl -s -L <...DNase URL...> \ # 
  | gunzip \ 
  | hadoop fs -put - /user/ds/genomics/dnase/sample.DNase.narrowPeak
[...]

See accompanying code repo for actual curl commands
Streaming decompression

Followed by the ChIP-seq data for the CTCF transcription factor, also in narrowPeak
format, and the GENCODE data, in GTF format:

hadoop fs -mkdir /user/ds/genomics/chip-seq
curl -s -L <...ChIP-seq URL...> \ # 
  | gunzip \
  | hadoop fs -put - /user/ds/genomics/chip-seq/samp.CTCF.narrowPeak
[...]
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See accompanying code repo for actual curl commands

Note how we unzip the stream of data with gunzip on the way to depositing it in HDFS.
Now we download a few additional data sets from which we’ll derive features for pre‐
diction.

# the hg19 human genome reference sequence
curl -s -L -O \
  "http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit"

Finally, the conservation data is available in fixed wiggle format, which is difficult to
read as a splittable file. It is not possible to predict how far back in a file a particular task
must read in order to obtain the metadata about the contig coordinates. Therefore, we
convert the wigFix data to BED format on the way into HDFS as well.

hadoop fs -mkdir /user/ds/genomics/phylop
for i in $(seq 1 22); do
    curl -s -L <...phyloP.chr$i URL...> \ # 
      | gunzip \
      | adam-submit wigfix2bed \
      | hadoop fs -put - "/user/ds/genomics/phylop/chr$i.phyloP.bed"
done
[...]

See accompanying code repo for actual curl commands

Finally, we perform a one-time conversion of the PhyloP data from the text-
based .bed format to Parquet in a Spark shell:

(sc
  .adamBEDFeatureLoad("/user/ds/genomics/phylop_text")
  .adamSave("/user/ds/genomics/phylop"))

From all of this raw data, we want to generate a training set with a schema like the
following:

1. DNase HS peak ID
2. Chromosome
3. Start
4. End
5. Highest TF motif PWM score
6. Average phyloP conservation score
7. Maximum phyloP conservation score
8. Minimum phyloP conservation score
9. Distance to closest transcription start site (TSS)
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10. TF identity (always “CTCF” in this case)
11. Cell line
12. TF binding status (boolean; the target variable)

Now we generate the data set that can be used to create the RDD[LabeledPoint]. We
need to generate the data for multiple cell lines, so we will define +RDD+s for each cell
line and concatenate them at the end:

// 

val cellLines = Vector(
  "GM12878", "K562", "BJ", "HEK293", "H54", "HepG2")
val dataByCellLine = cellLines.map(cellLine => { // 
  // 
})

// 

Load the necessary annotation data
For each cell line…
…generate an RDD suitable for conversion to RDD[LabeledPoint]
Concatenate the RDDs and carry through into MLlib, for example

Before we start, we load some data that will be used throughout the computation, in‐
cluding conservation, transcription start sites, the human genome reference sequence,
and the CTCF PWM as derived from HT-SELEX (cite this).

// Load the human genome reference sequence
val bHg19Data = sc.broadcast(
  new TwoBitFile(
    new LocalFileByteAccess(
      new File("/user/ds/genomics/hg19.2bit"))))

val phylopRDD = (sc.adamLoad[Feature, Nothing]("/user/ds/genomics/phylop")
  // clean up a few irregularities in the phylop data
  .filter(f => f.getStart <= f.getEnd))

val tssRDD = (sc.adamGTFFeatureLoad(
    "/user/ds/genomics/gencode.v18.annotation.gtf")
  .filter(_.getFeatureType == "transcript")
  .map(f => (f.getContig.getContigName, f.getStart)))

val bTssData = sc.broadcast(tssRDD
  // group by contig name
  .groupBy(_._1)
  // create Vector of TSS sites for each chromosome
  .map(p => (p._1, p._2.map(_._2.toLong).toVector))
  // collect into local in-memory structure for broadcasting
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  .collect().toMap)

// CTCF PWM from http://dx.doi.org/10.1016/j.cell.2012.12.009
val bPwmData = sc.broadcast(Vector(
  Map('A'->0.4553,'C'->0.0459,'G'->0.1455,'T'->0.3533),
  Map('A'->0.1737,'C'->0.0248,'G'->0.7592,'T'->0.0423),
  Map('A'->0.0001,'C'->0.9407,'G'->0.0001,'T'->0.0591),
  Map('A'->0.0051,'C'->0.0001,'G'->0.9879,'T'->0.0069),
  Map('A'->0.0624,'C'->0.9322,'G'->0.0009,'T'->0.0046),
  Map('A'->0.0046,'C'->0.9952,'G'->0.0001,'T'->0.0001),
  Map('A'->0.5075,'C'->0.4533,'G'->0.0181,'T'->0.0211),
  Map('A'->0.0079,'C'->0.6407,'G'->0.0001,'T'->0.3513),
  Map('A'->0.0001,'C'->0.9995,'G'->0.0002,'T'->0.0001),
  Map('A'->0.0027,'C'->0.0035,'G'->0.0017,'T'->0.9921),
  Map('A'->0.7635,'C'->0.0210,'G'->0.1175,'T'->0.0980),
  Map('A'->0.0074,'C'->0.1314,'G'->0.7990,'T'->0.0622),
  Map('A'->0.0138,'C'->0.3879,'G'->0.0001,'T'->0.5981),
  Map('A'->0.0003,'C'->0.0001,'G'->0.9853,'T'->0.0142),
  Map('A'->0.0399,'C'->0.0113,'G'->0.7312,'T'->0.2177),
  Map('A'->0.1520,'C'->0.2820,'G'->0.0082,'T'->0.5578),
  Map('A'->0.3644,'C'->0.3105,'G'->0.2125,'T'->0.1127)))

Now we define some utility functions that will be used in the feature generation, in‐
cluding the labeling, PWM scoring, and TSS distance

// fn for finding closest transcription start site
// naive...make this better
def distanceToClosest(loci: Vector[Long], query: Long): Long = {
  loci.map(x => abs(x - query)).min
}

// compute a motif score based on the TF PWM
def scorePWM(ref: String): Double = {
  val score1 = ref.sliding(bPwmData.value.length).map(s => {
    s.zipWithIndex.map(p => bPwmData.value(p._2)(p._1)).product
  }).max
  val rc = SequenceUtils.reverseComplement(ref)
  val score2 = rc.sliding(bPwmData.value.length).map(s => {
    s.zipWithIndex.map(p => bPwmData.value(p._2)(p._1)).product
  }).max
  max(score1, score2)
}

// functions for labeling the DNase peaks as binding sites or not;
// compute overlaps between an interval and a set of intervals
// naive impl - this only works because we know the ChIP-seq peaks
// are non-overlapping (how do we verify this? exercise for the
// reader)
def isOverlapping(i1: (Long, Long), i2: (Long, Long)) =
  (i1._2 > i2._1) && (i1._1 < i2._2)

def isOverlappingLoci(loci: Vector[(Long, Long)],
                      testInterval: (Long, Long)): Boolean = {
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  @tailrec
  def search(m: Int, M: Int): Boolean = {
    val mid = m + (M - m) / 2
    if (M <= m) {
      false
    } else if (isOverlapping(loci(mid), testInterval)) {
      true
    } else if (testInterval._2 <= loci(mid)._1) {
      search(m, mid)
    } else {
      search(mid + 1, M)
    }
  }
  search(0, loci.length)
}

Finally, the body of the “loop” for computing the data on each cell line. Note how we
read the text representations of the ChIP-seq and DNase data, as the data sets are not
so large that they will hurt performance.

First we load the DNase and ChIP-seq data as RDDs

val dnaseRDD = sc.adamNarrowPeakFeatureLoad(
  s"/user/ds/genomics/dnase/$cellLine.DNase.narrowPeak")
val chipseqRDD = sc.adamNarrowPeakFeatureLoad(
  s"/user/ds/genomics/chip-seq/$cellLine.ChIP-seq.CTCF.narrowPeak")

Then we define the function that will generate the target labels on the DNase features
as either “binding” or “not binding”. This function requires access to all the ChIP-seq
peaks together, so we process the raw ChIP-seq data into an in-memory data structure
and broadcast it to all the nodes, as the broadcast variable bBindingData:

val bBindingData = sc.broadcast(
  chipseq
    // group peaks by chromosome
    .groupBy(_.getContig.getContigName.toString) // 
    // for each chr, for each ChIP-seq peak, extract start/end
    .map(p => (p._1, p._2.map(f =>
      (f.getStart: Long, f.getEnd: Long)))) // 
    // for each chr, sort the peaks (non-overlapping)
    .map(p => (p._1, p._2.toVector.sortBy(x => x._1))) // 
    // collect them back into a local in-memory data structure for
    // broadcasting
    .collect().toMap)

RDD[(String, Iterable[Feature])]

RDD[(String, Iterable[(Long, Long)])]

RDD[(String, Vector[(Long, Long)])]
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This operation provides us with a Map where the key is the chromosome name and the
value is a Vector of non-overlapping (start, end) pairs sorted by position. Now we
define the actual labeling function:

def generateLabel(f: Feature) = {
  val contig = f.getContig.getContigName
  if (!bBindingData.value.contains(contig)) {
    false
  } else {
    val testInterval = (f.getStart: Long, f.getEnd: Long)
    isOverlappingLoci(bBindingData.value(contig), testInterval)
  }
}

In order to compute the conservation features (using the phyloP data), we must join the
DNase peaks with the phyloP data. Because we are joining intervals, we will use the
RegionJoin implementation in ADAM, which collects one side of the join (in this case,
the smaller DNase data), computes non-overlapping regions, and then implements a
replicated join by broadcasting the collected data.

val dnaseWithPhylopRDD = (
  RegionJoin.partitionAndJoin(sc, dnaseRDD, phylopRDD)
    // group the conservation values by DNase peak
    .groupBy(x => x._1.getFeatureId)
    // compute conservation stats on each peak
    .map(x => {
      val y = x._2.toSeq
      val peak = y(0)._1
      val values = y.map(_._2.getValue)
      // compute phylop features
      val avg = values.reduce(_ + _) / values.length
      val m = values.max
      val M = values.min
      (peak.getFeatureId, peak, avg, m, M)
    }))

Now we compute the final set of features on each DNase peak, including the target
variable

// generate the final set of tuples
dnaseWithPhylopRDD.map(tup => {
  val peak = tup._2
  val featureId = peak.getFeatureId
  val contig = peak.getContigName.getContigName
  val start = peak.getStart
  val end = peak.getEnd
  val score = scorePWM(
    bHg19Data.value.extract(ReferenceRegion(peak)))
  val avg = tup._3
  val m = tup._4
  val M = tup._5
  val closest_tss = min(
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    distanceToClosest(bTssData.value(contig), peak.getStart),
    distanceToClosest(bTssData.value(contig), peak.getEnd))
  val tf = "CTCF"
  val line = cellLine
  val bound = generateLabel(peak)
  (featureId, contig, start, end, score, avg, m, M, closest_tss,
    tf, line, bound)
})

This final RDD is computed in each pass of the loop over the cell lines. Finally, we union
each RDD from each cell line, and cache this data in memory in preparation for training
models off of it.

val preTrainingData = dataByCellLine.reduce(_ ++ _)
preTrainingData.cache()

preTrainingData.count() // 801263
preTrainingData.filter(_._12 == true).count() // 220285

At this point, the data in preTrainingData can be normalized and converted into an
RDD[LabeledPoint] for training a classifier, as described in Chapter XXXXX. Note that
you should perform cross-validation, where in each fold, you hold out the data from
one of the cell lines.

Example: Querying Genotypes from the 1000 Genomes
Project
In this example, we will be ingesting the full 1000 Genomes genotype data set. First we
will download the raw data directly into HDFS, unzipping in-flight, and then run an
ADAM job to convert the data to Parquet. An example command is below; this should
be executed for all chromosomes, and can be parallelized across the cluster.

curl -s -L ftp://.../1000genomes/.../chr1.vcf.gz \ # 
  | gunzip \
  | hadoop fs -put - /user/ds/genomics/1kg/vcf/chr1.vcf # 

export SPARK_JAR_PATH=hdfs:///path/to/spark.jar
adam/bin/adam-submit --conf spark.yarn.jar=$SPARK_JAR_PATH \
  vcf2adam \ # 
  -coalesce 5 \
  /user/ds/genomics/1kg/vcf/chr1.vcf \
  /user/ds/genomics/1kg/parquet/chr1

See the accompanying repo for the actual curl commands
Copy the text VCF file into Hadoop
Run the VCF to ADAM (Parquet) conversion cluster-wide
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Note how we specify -coalesce 5; this will ensure that the map tasks will compact the
data into a smaller number of large Parquet files. Then, from an ADAM shell, load and
inspect an object like so:

import org.bdgenomics.adam.rdd.ADAMContext._
import org.bdgenomics.formats.avro.Genotype

val genotypesRDD = sc.adamLoad[Genotype, Nothing](
  "/user/ds/genomics/1kg/parquet")
val gt = genotypesRDD.first()
...

Say we want to compute the minor allele frequency across all our samples for each
variant genome-wide that overlaps a CTCF binding site. We essentially must join our
CTCF data from last section with the genotype data from the 1000 Genomes project:

val ctcfRDD = sc.adamNarrowPeakFeatureLoad(
  "/user/ds/genomics/chip-seq/GM12878.ChIP-seq.CTCF.narrowPeak")
val filtered = (RegionJoin.partitionAndJoin(
  sc, ctcfRDD, genotypesRDD) // 
  .map(_._2)) // 

RegionJoin’s inner join also accomplishes the filtering
This mapper finally produces an RDD[Genotype]

We also need a function that will take a Genotype and compute the counts of the refer‐
ence/alternate alleles:

def genotypeToAlleleCounts(gt: Genotype): (Variant, (Int, Int)) = {
  val counts = gt.getAlleles.map(allele match {
    case GenotypeAllele.Ref => (1, 0)
    case GenotypeAllele.Alt => (0, 1)
    case _ => (0, 0)
  }).reduce((x, y) => (x._1 + y._1, x._2 + y._2))
  (gt.getVariant, (counts._1, counts._2))
}

Finally we generate the RDD[(Variant, (Int, Int))] and perform the aggregation:

val counts = filtered.map(genotypeToAlleleCounts)
val countsByVariant = counts.reduceByKey(
  (x, y) => (x._1 + y._1, x._2 + y._2))
val mafByVariant = countsByVariant.map(tup => {
  val (v, (r, a)) = tup
  val n = r + a
  (v, math.min(r, a).toDouble / n)
})

Traversing the entire data set is a sizable operation. Because we’re only accessing a few
fields from the genotype data, it would certainly benefit from predicate pushdown and
projection, which we leave as an exercise to the reader.
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Where to go from here
Many computations in genomics fit nicely into the Spark computational paradigm.
When performing ad hoc analysis, the most valuable contribution that projects like
ADAM provide is the set of Avro schemas that represent the underlying analytical ob‐
jects (along with the conversion tools). We saw how once data is converted into the
corresponding Avro schemas, many large-scale computations become relatively easy to
express and distribute.

While there may still be a dearth of tools for performing scientific research on Hadoop/
Spark, there do exist a few projects that could help avoid reinventing the wheel. We
explored the core functionality implemented in ADAM, but the project already has
implementations for the entire GATK best-practices pipeline, including BQSR, indel
realignment, and deduplication. In addition to ADAM, many institutions have signed
on to the Global Alliance for Genomics and Health, which has started to generate sche‐
mas of their own for genomics analysis. The Hammerbacher lab at Mount Sinai School
of Medicine has also developed Guacamole, a suite of tools mainly aimed at somatic
variant calling for cancer genomics. All of these tools are open-source with liberal
Apache v2 licenses, so if you start using them in your own work, please consider con‐
tributing improvements!
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CHAPTER 11

Analyzing Neuroimaging Data with
PySpark and Thunder

Uri Laserson

Advances in imaging equipment and automation have led to a glut of data on the func‐
tion of the brain. While past experiments might have generated time series data from
only a handful of electrodes in the brain, or a small number of static images of brain
slices, technologies today can sample brain activity from a large number of neurons in
a large region while organisms are actively behaving. Indeed, the Obama administration
has endorsed the BRAIN initiative, which has lofty technology development goals to
enable, for example, simultaneously recording the electrical activity of every neuron of
the mouse brain over an extended period of time. While breakthroughs in measurement
technology are certainly necessary, the amount of data generated will be a completely
new paradigm for biology.

In this chapter, we will introduce the PySpark API for interacting with Spark through
Python, as well as the Thunder project, which is developed on top of PySpark for pro‐
cessing large amounts of time series data in general, and neuroimaging data in particular.
PySpark is a particularly flexible tool for exploratory big data analysis, as it integrates
well with the rest of the PyData ecosystem, including matplotlib for visualization, and
even IPython Notebook (Jupyter) for “executable documents”.

We will marshal these tools for the task of understanding some of the structure of ze‐
brafish brains. Using Thunder, we will cluster different regions of the brain (representing
groups of neurons) to discover patterns of activity as the fish behaves over time.

Overview of PySpark
Python is a favorite tool for many data scientists, due to its high level syntax and extensive
library of packages, among other things. The Spark ecosystem has recognized Python’s
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importance in the data analytics milieu, and has begun to invest in a Python API for
using Spark, despite Python’s historical difficulties integrating with the JVM.

Python for Scientific Computing and Data Science
Python has become a favorite tool for scientific computing and data science. It is now
being used for many applications that would have traditionally used MATLAB, R, or
Mathematica. The reasons include: . A high-level language that is easy to use and learn .
An extensive library system ranging from niche numerical calculations to web-scraping
utilities to data visualization tools . Easily interfacing with C /C++ code, allowing access
to high-performance libraries, including BLAS/LAPACK/ATLAS

Some libraries to keep in mind in particular include: . numpy/scipy/matplotlib: these
libraries recapitulate typical MATLAB functionality, including fast array operations,
scientific functions, and a widely-used MATLAB-inspired plotting library . pandas: this
library provides functionality similar to R’s data.frame, and oftentimes with much
higher performance, to boot . scikit-learn/statsmodels: these libraries provide high-
quality implementations of machine learning algorithms (e.g., classification/regression,
clustering, matrix factorization) and statistical models . nltk: a popular library for nat‐
ural language processing . biopython: a popular library for omics data sets

Start PySpark just like Spark:

export IPYTHON=1 # PySpark can use the IPython shell
pyspark --master ... --num-executors ...  # 

pyspark takes the same Spark arguments as spark-submit and spark-shell

Python scripts can be submitted using spark-submit, which will detect the .py exten‐
sion on our scripts. PySpark supports the use of the IPython shell by setting the envi‐
ronment variable IPYTHON=1, which is something we recommend universally. When the
Python shell starts, it creates a Python SparkContext object through which we interact
with the cluster. Once the SparkContext is available, the PySpark API is very similar to
the Scala API.

raw_data = sc.textFile('path/to/csv/data') # RDD[string]
# filter, split on comma, parse floats to get a RDD[list[float]]
data = (raw_data
    .filter(lambda x: x.startswith("#"))
    .map(lambda x: map(float, x.split(','))))
data.take(5)

Just like in the Scala API, we load a text file, filter out rows that start with #, and parse
the CSV data into a list of float+s. The Python functions passed to, for exam
ple, +filter and map are very flexible. They must take a Python object and return a
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Python object (in the case of filter, the return value is interpreted as a boolean). The
only restrictions are that the Python function objects must be serializable with cloud
pickle (which includes anonymous lambda functions), and any necessary modules
referenced in the closures must be available on the PYTHONPATH of the executor Python
processes. To ensure the availability of referenced modules, either the modules must be
installed cluster-wide and available on the PYTHONPATH of the executor Python processes,
or the corresponding module zip/egg files must be explicitly distributed around by
Spark, which will then add them to the PYTHONPATH. This latter functionality can be
accomplished by a call to sc.addPyFile().

The PySpark RDDs are just RDDs of Python objects: like Python lists, they can store
objects with mixed types (since underneath, all the objects are +PyObject+s).

The PySpark API can lag behind the Scala API to a certain extent, so in some cases,
features become available in Scala more rapidly. However, in addition to the core API,
there already exists a Python API to MLlib, for example, which is used in Thunder.

PySpark Internals

It is useful to understand a bit about how PySpark is implemented in order to simplify
debugging and also to be conscious of possible performance pitfalls.

When PySpark’s Python interpreter starts, it also starts a JVM with which it commu‐
nicates through a socket. PySpark uses the Py4J project to handle this communication.
The JVM functions as the actual Spark driver, and loads a JavaSparkContext that com‐
municates with the Spark executors across the cluster. Python API calls to the Spark
Context object are then translated into Java API calls to the JavaSparkContext. For
example, the implementation of PySpark’s sc.textFile() dispatches a call to the .text
File method of the JavaSparkContext, which ultimately communicates with the Spark
executor JVMs to load the text data from HDFS.
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The Spark executors on the cluster start a Python interpreter for each core, with which
they communicate data through a pipe when they need to execute user-code. A Python
RDD in the local PySpark client corresponds to a PythonRDD object in the local JVM.
The data associated with the RDD actually live in the Spark JVMs as Java objects. For
example, running sc.textFile() in the Python interpreter will call the JavaSparkCon
texts textFile method, which loads the data as Java String objects in the cluster.
Similarly, loading a Parquet/Avro file using newAPIHadoopFile will load the objects as
Java Avro objects.

When an API call is made on the Python RDD, any associated code (e.g., Python lambda
function) is serialized using and distributed to the executors. The data is then converted
from Java objects to a Python-compatible representation (e.g., pickle objects) and
streamed to executor-associated Python interpreters through a pipe. Any necessary
Python processing is executed in the interpreter, and the resulting data is stored back
as an RDD (as pickle objects by default) in the JVMs.

Python’s built-in support for serializing executable code is not as powerful as Scala’s. As
a result the authors of PySpark had to use a custom module called “cloudpickle” built
by the now defunct PiCloud.

Setting Up PySpark with IPython Notebook (Jupyter)
IPython Notebook is a fantastic environment for exploratory analytics and for use as a
computational “lab notebook”. It allows the user to integrate text, images, executable
code (in Python and now other languages), and also supports a hosted platform, among
other features. While IPython Notebook works well with Spark, it requires some care
to configure correctly because PySpark must be initialized in a particular way. Refer to
this blog post for details: http://blog.cloudera.com/blog/2014/08/how-to-use-ipython-
notebook-with-apache-spark/

Overview and Installation of the Thunder library

Thunder Examples and Documentation
The Thunder package has excellent documentation and tutorials. The examples below
draw from the provided data sets and tutorials.

Thunder is a Python tool set for processing large mounts of spatial/temporal data sets
(i.e., large multidimensional matrices) on Spark. It makes heavy use of NumPy for ma‐
trix computations and also the MLlib library for distributed implementations of some
statistical techniques. Python also makes it very flexible and accessible to a broad au‐
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dience. Below, we introduce the Thunder API, and attempt to classify some neural traces
into a set of patterns using MLlib’s K-Means implementation as wrapped by Thunder
and PySpark.

Thunder requires Spark, as well as the Python libraries NumPy, SciPy, matplotlib, and
scikit-learn. Installing Thunder can be as easy as pip install thunder-python, though
requires checking out the git repo itself in order to use anything other than Spark 1.1
and Hadoop 1.x (see CITE_BOX).

Using Thunder with different versions of Hadoop/Spark
At the time of this writing, Thunder is by default built against the Hadoop 1.x API,
without any direct support for building against the Hadoop 2.x API (necessary for run‐
ning against YARN, for example). Installing Thunder via pip will also include a prebuilt
Thunder JAR compiled against Hadoop 1.x and Spark 1.1. To build against Hadoop 2.x,
change the scala/build.sbt file in the Thunder repo to reflect the desired version of
Hadoop. The Thunder Hadoop version should match the Spark Hadoop version (which
can also be changed in the SBT file).

After installation, and setting the SPARK_HOME environment variable, the Thunder shell
can be invoked like so

$ export IPYTHON=1 # recommended as usual
$ thunder

[...some logging output...]
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 1.1.0
      /_/

Using Python version 2.7.6 (default, Apr  9 2014 11:54:50)
SparkContext available as sc.

Running thunder version 0.5.0_dev
A thunder context is available as tsc

In [1]:

which shows us that the thunder command is basically wrapping the PySpark shell.
Similarly to PySpark, the start of most computations is the ThunderContext variable
tsc, which wraps the Python SparkContext with Thunder-specific functionality.

Overview and Installation of the Thunder library | 207



Loading data with Thunder
Thunder was designed especially with neuroimaging data sets in mind. As such, it is
geared towards analyzing data from large sets of images that are often captured over
time.

Let’s start by loading some images of zebrafish brains from an example dataset provided
in the Thunder repository. Zebrafish is a commonly used model organism in biology
research. It is small, quickly-reproducing, and is used as a model for vertebrate devel‐
opment. It’s also interesting because it has exceptionally fast regenerative capabilities.
In the context of neuroscience, zebrafish makes a great model because the brain is small
enough that it is essentially possible to image it entirely at a high-enough resolution to
distinguish individual neurons.

path_to_images = (
    'path/to/thunder/python/thunder/utils/data/fish/tif-stack')
imagesRDD = tsc.loadImages(path_to_images,
    inputformat='tif-stack') # 

print imagesRDD
print imagesRDD.rdd
...
<thunder.rdds.images.Images object at 0x109aa59d0>
PythonRDD[8] at RDD at PythonRDD.scala:43

tif-stack is a format where each file contains multiple planes in a z-dimension

This created an Images object that ultimately wraps an RDD, accessible as im
agesRDD.rdd. The Images object exposes the relevant similar functionality (like count,
take, etc.) as well. The objects stored in Images are key-value pairs.

print imagesRDD.first()
...
(0, array([[[26, 25],
         [26, 25],
         [26, 25],
         ...,
         [26, 26],
         [26, 26],
         [26, 26]],
        ...,
        [[25, 25],
         [25, 25],
         [25, 25],
         ...,
         [26, 26],
         [26, 26],
         [26, 26]]], dtype=uint8))
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The key 0 corresponds to the zeroth image in the set (they are ordered lexicographically
from the data directory), and the value is a NumPy array corresponding to the image.
All of the core data types in Thunder are ultimately backed by Python RDDs of key-
value pairs where the keys are typically some kind of tuple and the values are NumPy
arrays. The keys and values always have a homogeneous type across the RDD, even
though PySpark generally allows RDDs of heterogeneous collections. Because of the
homogeneity, the Images object exposes a .dims property describing the underlying
images:

print imagesRDD.first()[1].shape # 
...
(76, 87, 2) # 

print imagesRDD.dims # 
...
Dimensions: min=(0, 0, 0), max=(75, 86, 1), count=(76, 87, 2)

print imagesRDD.nimages
...
20

The shape of the NumPy array of the first key-value pair
A Thunder Dimensions object corresponding to the data in this RDD
Each “image” in the RDD is actually a stack of two 76 x 87 images

Our data set is comprised of 20 “images” where each image is a 76 x 87 x 2 stack. Thunder
provides a Dimensions object for keeping track of the shape of the data in the RDD.

Pixels, Voxels, and Stacks
“Pixel” is a portmanteau of “picture element”. Digital images can be modeled as simple
2-dimensional (2D) matrices of intensity values, and each element in the matrix is a
pixel. (A color image would require 3 of these matrices, one each for a red, green, and
blue channel.) However, because the brain is a 3-dimensional object, a single 2D slice
is not nearly enough to capture its activity. To address this, multiple techniques will
either acquire multiple 2D images in different planes on top of each other (a z-stack),
and some will even generate 3D information directly (e.g., light field microscopy). This
ultimately produces a 3D matrix of intensity values, where each value represents a “vol‐
ume element”, or “voxel”. Consistent with this, Thunder models all images as 2D or 3D
matrices, depending on the specific data type, and can read file formats like tif that can
natively represent 3D stacks.

One of the features of working in Python is that we can easily visualize our data while
working with the RDDs, in this case using the venerable Matplotlib library.
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import matplotlib.pyplot as plt
img = imagesRDD.values().first()
plt.imshow(img[:, : ,0], interpolation='nearest', aspect='equal',
    cmap='gray')

The Images API offers useful methods for working with the image data in a distributed
fashion, for example, to subsample each image down:

subsampled = imagesRDD.subsample((5, 5, 1)) # 
plt.imshow(subsampled.first()[1][:, : ,0], interpolation='nearest',
    aspect='equal', cmap='gray')
print subsampled.dims
...
Dimensions: min=(0, 0, 0), max=(15, 17, 1), count=(16, 18, 2)

The stride to subsample each dimension; note that this is an RDD operation, so
it returns immediately waiting for an RDD action to trigger computation
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While analyzing the collection of images may be useful for certain operations (e.g.,
normalizing images in certain ways), it’s difficult to take the temporal relationship of
the images into account. To do so, we’d rather work with the image data as a collection
of pixel/voxel time series. This is exactly what the Thunder Series object is for, and
there is an easy way to convert:

seriesRDD = imagesRDD.toSeries()

This operation executes a large-scale reorganization of the data into a Series object,
which is an RDD of key-value pairs where the key is a tuple of the coordinates of each
image (i.e., the voxel identifier) and the value is 1D NumPy array corresponding to the
time series of values.

print seriesRDD.dims
print seriesRDD.index
print seriesRDD.count()
...
Dimensions: min=(0, 0, 0), max=(75, 86, 1), count=(76, 87, 2)
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
13224

Whereas imagesRDD was a collection of 20 images with dimensions (76 x 87 x 2), ser
iesRDD is a collection of 13224 (76 x 87 x 2) time series of length 20. Also note that
executing seriesRDD.dims induces a job, as the dimensions can only be computed by
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analyzing all of the key values of the Series object. The seriesRDD.index property is
a Pandas-style index that can be used to reference each of the arrays. Since our original
images were 3-dimensional, the keys are 3-tuples:

print seriesRDD.rdd.takeSample(False, 1, 0)[0]
...
((30, 84, 1), array([35, 35, 35, 35, 35, 35, 35, 35, 34, 34,
       34, 35, 35, 35, 35, 35, 35, 35, 35, 35], dtype=uint8))

The Series API offers many methods for performing computations across the time
series, either at the per-series level or across all series. For example,

print seriesRDD.max()
...
array([158, 152, 145, 143, 142, 141, 140, 140, 139, 139, 140, 140,
       142, 144, 153, 168, 179, 185, 185, 182], dtype=uint8)

computes the maximum value across all voxels at each time point, while

stddevRDD = seriesRDD.seriesStdev()
print stddevRDD.take(3)
print stddevRDD.dims # 
...
[((0, 0, 0), 0.4), ((1, 0, 0), 0.0), ((2, 0, 0), 0.0)]
Dimensions: min=(0, 0, 0), max=(75, 86, 1), count=(76, 87, 2)

This property is intelligently inherited from the parent RDD, so this time there
is no Spark calculation since we’ve computed the Dimension for seriesRDD.

computes the standard deviation of each time series and returns the result as an RDD,
preserving all the keys. We can also locally repack the Series into the shape of the
Dimension (76 x 87 x 2 in this case)

repacked = stddevRDD.pack()
plt.imshow(repacked[:,:,0], interpolation='nearest', cmap='gray',
    aspect='equal')
print type(repacked)
print repacked.shape
...
<type 'numpy.ndarray'>
(76, 87, 2)

which allows us to plot the stddev of each voxel using the same spatial relationships. We
should take care to make sure that we’re not trying to return too much data to the client,
as it will consume significant network and memory resources.
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Alternatively, we can look at the centered time series directly, by plotting a subset of
them.

plt.plot(seriesRDD.center().subset(50).T)
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It’s also very easy to apply any user-defined function to each series (including lambda
functions), using the apply method, which calls the RDD’s .values().map() under‐
neath.

seriesRDD.apply(lambda x: x.argmin())

Thunder Core Datatypes
More generally, the two core data types in Thunder, Series and Images, both inherit
from the Data class, which wraps a Python RDD object and exposes part of the RDD
API. The Data class models RDDs of key-value pairs, where the key represents some
type of semantic identifier (e.g., a tuple of coordinates in space), and the value is a
NumPy array of actual data. For the Images object, the key could be a time point, for
example, and the value is the image at that timepoint formatted as a NumPy array. For
the Series object, the key might be an n-dimensional tuple with the coordinates of the
corresponding voxel, while the key is a 1D NumPy array representing the timeseries of
measurements at that voxel. All the arrays in Series must have the same dimensions.
Some useful bits of the objects’ APIs are summarized below.

class Data:
    property dtype:
        # The dtype of the numpy array in this RDD's value slot
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    # lots of RDD methods, like first(), count(), cache(), etc.

    # methods for aggregating across arrays, like mean(),
    # variance(), etc., that keep the dtype constant

class Series(Data):
    property dims:
        # lazily computes Dimension object with information about
        # the spatial dimensions encoded in the keys of this RDD

    property index:
        # a set of indices into each array, in the style of a
        # Pandas Series object

    # lots of methods to process all of the 1D arrays in parallel
    # across the cluster, like normalize(), detrend(), select(),
    # and apply(), that keep the dtype constant

    # methods for parallel aggregations, like seriesMax(),
    # seriesStdev(), etc., that change the dtype

    def pack():
        # collects the data at the client and repacks from the
        # sparse representation in the RDD to a dense
        # representation as a NumPy array with shape corresponding
        # to dims

class Images(Data):
    property dims:
        # the Dimension object corresponding to the NumPy shape
        # parameter of each value array

    property nimages:
        # number of images in RDD; lazily executes an RDD count
        # operation

    # multiple methods for aggregating across images or processing
    # them in parallel, like maxProjection(), subsample(),
    # subtract(), and apply()

    def toSeries():
        # reorganize data as a Series object

The same data set can typically be represented as either an Images or Series object,
converting between the two through a (possibly expensive) shuffle operation (analogous
to switching between row-major and column-major representations).

Data for Thunder can be persisted as a set of images, with the ordering encoded by
lexicographic ordering of the individual image file names; or the data can be persisted
as a set of binary 1D arrays for Series objects. See the documentation for more details.

Loading data with Thunder | 215



Example: Categorizing Neuron Types with Thunder
In this example, we’ll use the K-Means cluster the various fish time series into multiple
clusters in an attempt to describe the classes of neural behavior. We will use data already
persisted as Series data packaged in the repo that is larger than the image data used
previously. However, the spatial resolution of this data is still too low to define individual
neurons.

First we load the data

seriesRDD = tsc.loadSeries(
    'path/to/thunder/python/thunder/utils/data/fish/bin')
print seriesRDD.dims
print seriesRDD.index
...
Dimensions: min=(0, 0, 0), max=(75, 86, 1), count=(76, 87, 2)
[  0   1   2   3   4   5   6   ...   234 235 236 237 238 239]

which we see represents images with the same dimensions as earlier, but with 240 time
points instead of 20. We must normalize our features in order to get the best clustering.

normalizedRDD = seriesRDD.normalize(baseline='mean') # 

The baseline=mean option we specified is actually not documented. The
Thunder code is quite clear, and in multiple cases, there may be hidden
functionality that expresses what we want.

Let’s plot a few of the series to see what they look like. Thunder allows us to take a random
subset of the RDD and filter only collection elements that meet a certain criterion, like
minimum standard deviation by default. In order to choose a good value for the thresh‐
old, let’s first compute the stddev of each series and plot a histogram of a 10% sample
of the values.

stddevs = (normalizedRDD
    .seriesStdev()
    .values()
    .sample(False, 0.1, 0)
    .collect())
plt.hist(stddevs, bins=20)
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With this in mind, we’ll choose a threshold of 0.1 to look at the most “active” series.

plt.plot(normalizedRDD.subset(50, thresh=0.1, stat='std').T)
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Now that we have a feel for the data, let’s finally cluster the voxels into the various patterns
of behavior. Thunder has implemented a scikit-learn-style API for working with RDDs.
In some cases, Thunder contains its own implementations (e.g., the matrix factorization
code). In this case, Thunder’s K-Means abstraction calls out to the MLlib Python API.
We will perform K-Means for multiple values of k.

from thunder import KMeans
ks = [5, 10, 15, 20, 30, 50, 100, 200]
models = []
for k in ks:
    models.append(KMeans(k=k).fit(normalizedRDD))

Now we’ll compute two simple error metrics on each of the clusterings. The first will
simply be the sum across all time series of the Euclidean distance from the time series
to its cluster center. The second will be a built-in metric of the KMeansModel object.

def model_error_1(model):
    def series_error(series):
        cluster_id = model.predict(series)
        center = model.centers[cluster_id]
        diff = center - series
        return diff.dot(diff) ** 0.5

    return (normalizedRDD
        .apply(series_error)
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        .sum())

def model_error_2(model):
    return 1. / model.similarity(normalizedRDD).sum()

We will compute both error metrics for each value of k and plot them.

import numpy as np
errors_1 = np.asarray(map(model_error_1, models))
errors_2 = np.asarray(map(model_error_2, models))
plt.plot(
    ks, errors_1 / errors_1.sum(), 'k-o',
    ks, errors_2 / errors_2.sum(), 'b:v')

We’d expect these metrics to generally be monotonic with k; it seems like k=20 might
be a sharper elbow in the curve. Let’s visualize the cluster centers that we’ve learned
from the data.

model20 = models[3]
plt.plot(model20.centers.T)
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It’s also easy to plot the images themselves with the voxels colored according to their
assigned cluster.

from matplotlib.colors import ListedColormap
by_cluster = model20.predict(normalizedRDD).pack()
cmap_cat = ListedColormap(sns.color_palette("hls", 10), name='from_list')
plt.imshow(by_cluster[:, :, 0], interpolation='nearest',
    aspect='equal', cmap='gray')
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It’s clear that the learned clusters recapitulate certain elements of zebrafish brain anat‐
omy. If the original data were high resolution enough to resolve subcellular structures,
we could first perform clustering of the voxels with k equal to an estimate of the number
of neurons in the visual field. This would allow us to effectively map out the entire
neuron cell bodies. We would then define time series for each neuron, which could be
used for clustering again to determine different functional categories.

Where To Go From Here
Thunder is still a new project, but already includes a pretty rich set of functionality. In
addition to statistics on time series and clustering, it has modules for matrix factoriza‐
tions, regression/classification, and tools for visualization. It has fantastic documenta‐
tion and tutorials covering a large array of its functionality. To see Thunder in action,
see the recent article by Thunder authors in Nature Methods (July 2014).
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CHAPTER 12

Appendix: Upcoming MLlib Pipelines API

Sean Owen

The Spark project moves fast. When we started writing in August 2014, version 1.1.0
was nearing release. As this book goes to print in December 2014, Spark 1.2.0 is hot off
the presses too. This minor release alone contained almost 800 fixes and improvements.

The project carefully maintains binary and source compatibility for stable APIs in minor
releases, and most of MLlib is considered stable. The examples in the book should
therefore continue to work with Spark 1.3.0 and future 1.x releases; those implemen‐
tations won’t be going anywhere. However, new releases often add or change experi‐
mental or developer-only APIs, which are still evolving.

Spark MLlib has of course featured prominently in these chapters, and a book covering
Spark 1.2.0 would not be complete without mentioning a significant new direction for
MLlib that appears, in part, in Spark 1.2.0 as an experimental “alpha” API.

It’s officially only a month or so old, subject to change, and not nearly complete, and so
it has not been possible to build the book around it. However, it’s worth knowing about,
having already seen what MLlib offers today.

This appendix will give a quick look at the new “Pipelines” API, the result of work
discussed in SPARK-3530 in the Spark project issue tracker .

Beyond Mere Modeling
In purpose and scope, the current stable MLlib resembles other machine learning li‐
braries. It provides an implementation of machine learning algorithms, and just the core
implementation. Each takes pre-processed input, as an RDD of LabeledPoint or Rat
ing objects for example, and returns some representation of the resulting model. That’s
all. This is quite useful, but solving a real-world machine learning problem requires
more than just running an algorithm.
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You may have noticed that in each chapter of the book, most of the source code exists
to prepare features from raw input, transform the features, and evaluate the model in
some way. Calling an MLlib algorithm is just a small, easy part in the middle.

These additional tasks are common to just about any machine learning problem. In fact,
a real production machine learning deployment probably involves many more tasks:

1. Parse raw data into features
2. Transform features into others
3. Build a model
4. Evaluate a model
5. Tune hyperparameters
6. Rebuild and deploy a model continuously
7. Update a model in real-time
8. Answer queries from the model in real-time

Viewed this way, MLlib provides only a small part: #3. The new Pipelines API begins to
expand MLlib so that it’s a framework for tackling tasks #1 through #5. These are the
very tasks that we have had to complete by hand in different ways throughout the book.

The rest is important, but likely out of scope for MLlib. These aspects may be imple‐
mented with a combination of tools like Spark Streaming, JPMML, REST APIs, Apache
Kafka, and so on.

The Pipelines API
The new Pipelines API encapsulates a simple, tidy view of the machine learning tasks
above: at each stage, data is turned into other data, and eventually turned into a model,
which is itself an entity that just creates data (predictions) from other data too (input).

Data, here, is always represented by a specialized RDD borrowed from Spark SQL, the
org.apache.spark.sql.SchemaRDD class. As its name implies, it contains table-like
data, wherein each element is a Row. Each Row has the same “columns”, whose schema is
known, including name, type and so on.

This enables convenient SQL-like operations to transform, project, filter, and join this
data. Along with the rest of Spark’s APIs, this mostly answers task #1 above.

More importantly, the existence of schema information means that the machine learning
algorithms can more correctly and automatically distinguish between numeric and cat‐
egorical features. Input is no longer just an array of Double values, where the caller is
responsible for communicating which are actually categorical.
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The rest of the new Pipelines API, or at least the portions already released for preview
as experimental APIs, lives under the org.apache.spark.ml package — compare with
the current stable APIs in the org.apache.spark.mllib package.

The Transformer abstraction represents logic that can transform data into other data
— a SchemaRDD into another SchemaRDD. An Estimator represents logic that can build
a machine learning model, or Model, from a SchemaRDD. And a Model is itself a Trans
former.

org.apache.spark.ml.feature contains some helpful implementations like Ha
shingTF for computing term frequencies in TF-IDF, or Tokenizer for simple parsing.
In this way, the new API helps support task #2 above.

The Pipeline abstraction then represents a series of Transformer and Estimator ob‐
jects, which may be applied in sequence to an input SchemaRDD in order to output a
Model. Pipeline itself is therefore an Estimator, since it produces a Model!

This design allows for some interesting combinations. Because a Pipeline may contain
an Estimator, it means it may internally build a Model, which is then used as a Trans
former. That is, the Pipeline may build and use the predictions of an algorithm inter‐
nally as part of a larger flow. In fact, this also means that Pipeline can contain other
Pipeline instances inside.

To answer task #3, there is already a simple implementation of at least one actual model-
building algorithm in this new experimental API, org.apache.spark.ml.classifica
tion.LogisticRegression. While it’s possible to wrap existing
org.apache.spark.mllib implementations as an Estimator, the new API already pro‐
vides a rewritten implementation of logistic regression for us, for example.

The Evaluator abstraction supports evaluation of model predictions. It is in turn used
in the CrossValidator class in org.apache.spark.ml.tuning to create and evaluate
many Model instances from a SchemaRDD — so, it is also an Estimator. Supporting APIs
in org.apache.spark.ml.params define hyperparameters and grid search parameters
for use with CrossValidator. These packages help with tasks #4 and #5, then — eval‐
uating and tuning models as part of a larger pipeline.

Text Classification Example Walkthrough
The Spark Examples module contains a simple example of the new API in action, in the
org.apache.spark.examples.ml.SimpleTextClassificationPipeline class. Its ac‐
tion is illustrated in Figure 12-1:
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Figure 12-1. A simple text classification Pipeline

The input are objects representing documents, with an ID, text, and score (label). Al‐
though training is not a SchemaRDD, it will be implicitly converted later.

val training = sparkContext.parallelize(Seq(
  LabeledDocument(0L, "a b c d e spark", 1.0),
  LabeledDocument(1L, "b d", 0.0),
  LabeledDocument(2L, "spark f g h", 1.0),
  LabeledDocument(3L, "hadoop mapreduce", 0.0)))

The Pipeline applies two Transformer implementations. First, Tokenizer separates
text into words by space. Then, HashingTF computes term frequencies for each word.
Finally, LogisticRegression creates a classifier using these term frequencies as input
features.

val tokenizer = new Tokenizer().
  setInputCol("text").
  setOutputCol("words")
val hashingTF = new HashingTF().
  setNumFeatures(1000).
  setInputCol(tokenizer.getOutputCol).
  setOutputCol("features")

226 | Chapter 12: Appendix: Upcoming MLlib Pipelines API



val lr = new LogisticRegression().
  setMaxIter(10).
  setRegParam(0.01)

These operations are combined into a Pipeline which actually creates a model from
the training input.

val pipeline = new Pipeline().
  setStages(Array(tokenizer, hashingTF, lr))
val model = pipeline.fit(training) 

implicit conversion to SchemaRDD

Finally, this model can be used to classify new documents. Note that model is really a
Pipeline containing all the transformation logic above, not just a call to a classifier
model.

val test = sparkContext.parallelize(Seq(
  Document(4L, "spark i j k"),
  Document(5L, "l m n"),
  Document(6L, "mapreduce spark"),
  Document(7L, "apache hadoop")))
model.transform(test).
  select('id, 'text, 'score, 'prediction). 
  collect().
  foreach(println)

Not strings; syntax for Expressions

The code for an entire pipeline is simpler, better organized and more reusable compared
to the hand-written code that is currently necessary to implement the same functionality
around MLlib.

Look forward to more additions, and change, in the new org.apache.spark.ml Pipeline
API in 2015.
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CHAPTER 13

Appendix: Deeper Into Spark

Sandy Ryza

The Spark Execution Model
Understanding Spark at the level of transformations, actions, and RDDs is vital for
writing Spark programs. Understanding Spark’s underlying execution model is vital for
writing good Spark programs - for making sense of their performance characteristics,
for debugging failures and slowness, and for interpreting the user interface.

A Spark application consists of a driver process, which in spark-shell’s case, is the
process that the user is interacting with, and a set of executor processes scattered across
nodes on the cluster. The driver is in charge of the high-level control flow of work that
needs to be done. The executor processes are responsible for executing this work, in the
form of tasks, as well as for storing any data that the user chooses to cache. Both the
driver and the executors typically stick around for the entire time the application is
running. A single executor has a number of slots for running tasks, and will run many
concurrently throughout its lifetime.

At the top of the execution model are jobs. Invoking an action inside a Spark application
triggers the launch of a Spark job to fulfill it. To decide what this job looks like, Spark
examines the graph of RDDs that the action depends on and formulates an execution
plan that starts with computing the farthest back RDDs and culminates in the RDDs
required to produce the action’s results. The execution plan consists of assembling the
job’s transformations into stages. A stage corresponds to a collection of tasks that all
execute the same code, each on a different partition of the data. Each stage contains a
sequence of transformations that can be completed without shuffling the full data.

What determines whether data needs to be shuffled? For the RDDs returned by so-called
narrow transformations like map, the data required to compute a single partition resides
in a single partition in the parent RDD. Each object is only dependent on a single object
in the parent. However, Spark also supports transformations with wide dependencies
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like groupByKey and reduceByKey. In these, the data required to compute a single par‐
tition may reside in many partitions of the parent RDD. All of the tuples with the same
key must end up in the same partition. To satisfy these operations, Spark must execute
a shuffle, which transfers data around the cluster and results in a new stage with a new
set of partitions.

For example, the following code would execute in a single stage, because none of the
outputs of these three operations depend on data that can come from different partitions
than their inputs.

sc.textFile("someFile.txt").
  map(mapFunc).
  flatMap(flatMapFunc).
  filter(filterFunc).
  count()

The following code, which finds how many times each character appears in all the words
that appear more than 1000 times in a text file, would break down into three stages. The
reduceByKey operations result in stage boundaries, because computing their outputs
requires repartitioning the data by keys.

val tokenized = sc.textFile(args(0)).flatMap(_.split(' '))
val wordCounts = tokenized.map((_, 1)).reduceByKey(_ + _)
val filtered = wordCounts.filter(_._2 >= 1000)
val charCounts = filtered.flatMap(_._1.toCharArray).map((_, 1)).
  reduceByKey(_ + _)
charCounts.collect()

At each stage boundary, data is written to disk by tasks in the parent stage and then
fetched over the network by tasks in the child stage. Thus, stage boundaries can be
expensive and should be avoided when possible. The number of data partitions in the
parent stage may be different than the number of partitions in the child stage. Trans‐
formations that may trigger a stage boundary typically accept a numPartitions argument
that determines how many partitions to split the data into in the child stage. Just as the
number of reducers is an important parameter in tuning MapReduce jobs, tuning the
number of partitions at stage boundaries can often make or break an application’s per‐
formance. Choosing too few partitions can result in slowness when each task is forced
to handle too much data. The amount of time it takes a task to complete often increases
non-linearly with the size of the data assigned to it, as aggregation operations must spill
to disk when their data does not fit in memory. On the other side, a large number of
partitions leads to increased overhead in tasks on the parent side when sorting records
by their target partition, as well as more of the overhead associated with scheduling and
launching each task on the child side.
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Serialization
As a distributed system, Spark often needs serialize the raw Java objects it operates on.
When data is cached in a serialized format, transferred over the network for a shuffle,
Spark needs a byte stream representation of RDD contents. Spark accepts a pluggable
Serializer for defining this serialization and deserialization. By default, Spark uses
Java Object Serialization, which can serialize any Java objects that implements the Se
rializable interface. Nearly always, Spark should be configured to instead use Kryo
serialization. Kryo defines a more compact format that serializes and deserializes far
faster. The “catch” is that, to get this efficiency, Kryo requires registering any custom
classes defined in the application up front. Kryo will still work without registering the
classes, but the serialization will take up more space and time because the class name
must be written out before each record. Turning on Kryo and registering classes in code
looks like:

val conf = new SparkConf().setAppName("MyApp")
conf.registerKryoClasses(
  Array(classOf[MyCustomClass1], classOf[MyCustomClass2]))

Classes can also be registered with Kryo through configuration. When using, spark-
shell, this is the only way to do so. Something like the following can be placed in spark-
defaults.conf:

spark.kryo.classesToRegister=org.myorg.MyCustomClass1,org.myorg.MyCustomClass2
spark.serializer=org.apache.spark.serializer.KryoSerializer

Spark libraries like GraphX and MLlib may have their own set of custom classes, with
a utility method for registering them all:

GraphXUtils.registerKryoClasses(conf)

Accumulators
Accumulators are a Spark construct that allow collecting some statistics “on the side”
while a job is running. The code executing in each task can add to the accumulator, and
the driver can access its value. Accumulators are useful in situations like counting the
number of bad records a job encounters or computing the summed error during a stage
of an optimization process.

For example, Spark MLlib’s K-Means clustering implementation uses accumulators for
the latter. Each iteration of the algorithm starts with a set of cluster centers, assigns each
point in the dataset to its closest center, and then uses the assignment to compute a new
set of cluster centers. The cost of a clustering, which the algorithm is attempting to
optimize, is the sum of distances from each point to its closest cluster center. To know
when the algorithm should terminate, it is useful to compute this cost after assigning
points to their clusters.
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var prevCost = Double.MaxValue
var cost = 0.0
var clusterCenters = initialCenters(k)
while (prevCost - cost > THRESHOLD) {
  val costAccum = sc.accumulator(0, "Cost")
  clusterCenters = dataset.map {
    // Find the closest center to the point and the distance from
    // that center
    val (newCenter, distance) = closestCenterAndDistance(_,
      clusterCenters)
    costAccum += distance
    (newCenter, _)
  }.aggregate( /* average the points assigned to each center */ )

  prevCost = cost
  cost = costAccum.value
}

The above example defines the accumulator’s add function as integer addition, but ac‐
cumulators can also support other associative functions like set unions.

A task only contributes to the accumulator the first time it runs. For example, if a task
completes successfully, but its outputs are lost and it needs to be re-run, it will not
increment the accumulator again.

Accumulators are an optimization in the sense that, instead, the RDD could be cached
and a separate action run over it calculate the same results. Accumulators allow this to
be achieved much more efficiently by avoiding caching the data and avoiding executing
another job.

Spark and the Data Scientist’s Workflow
A few of Spark’s transformations and actions are particularly useful when exploring and
trying to get a feel for a new dataset. Some of these operators employ randomness. These
operators use a seed to ensure determinism in the cases that task results are lost and
need to be re-computed or multiple actions take advantage of the same un-cached RDD.

take enables inexpensively looking at the first few elements of an RDD. If there are no
operations preceding it that require shuffles, it only requires computing the elements
in the first partition.

myFirstRdd.take(2)
14/09/29 12:09:13 INFO SparkContext: Starting job: take at <console>:15
...
14/09/29 12:09:13 INFO SparkContext: Job finished: take at <console>:15, took 0.329755931 s
res1: Array[Int] = Array(1, 2)

takeSample is useful for pulling a representative sample of the data into the driver for
charting, playing with locally, or exporting for non-distributed analysis in a different
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environment like R. Its first argument withReplacement determines whether the sample
may contain multiple copies of the same record.

myFirstRdd.takeSample(true, 3)
14/09/29 12:14:18 INFO SparkContext: Starting job: takeSample at <console>:15
...
14/09/29 12:14:18 INFO SparkContext: Job finished: takeSample at <console>:15, took 0.051348012 s
res11: Array[Int] = Array(2, 1, 1)

myFirstRdd.takeSample(true, 5)
14/09/29 12:14:18 INFO SparkContext: Starting job: takeSample at <console>:15
...
14/09/29 12:14:18 INFO SparkContext: Job finished: takeSample at <console>:15, took 0.051348012 s
res11: Array[Int] = Array(2, 1, 1, 2, 4)

myFirstRdd.takeSample(false, 3)
14/09/29 12:14:18 INFO SparkContext: Starting job: takeSample at <console>:15
...
14/09/29 12:14:18 INFO SparkContext: Job finished: takeSample at <console>:15, took 0.051348012 s
res11: Array[Int] = Array(2, 1, 4)

top collects the k largest records in a dataset according to a given Ordering. It is useful
in a variety of situations, such as, after giving each record a score, examining the records
with the highest scores. Its opposite is takeOrdered, which finds the smallest records.
The following snippet generates random numbers between 0 and 100 and finds the ones
that occur most and least often.

import scala.util.Random

val randNums = Seq.fill(10000)(Random.nextInt(100))
val numberCounts = sc.parallelize(randNums).map(x => (x, 1)).
  reduceByKey(_ + _)

numCounts.top(3)(Ordering.by(_._2))
14/09/30 23:38:42 INFO SparkContext: Starting job: top at <console>:16
...
14/09/30 23:38:42 INFO SparkContext: Job finished: top at <console>:16, took 0.219709487 s
res6: Array[(Int, Int)] = Array((58,127), (25,120), (28,120))

numCounts.takeOrdered(3)(Ordering.by(_._2))
14/09/30 23:39:54 INFO SparkContext: Starting job: takeOrdered at <console>:16
...
14/09/30 23:39:54 INFO SparkContext: Job finished: takeOrdered at <console>:16, took 0.071684291 s
res7: Array[(Int, Int)] = Array((74,78), (92,79), (8,80))

top functions by first finding the k largest within each partition in a distributed fashion,
pulling these onto the driver, and then finding the largest k among all of them. This
works well when k is small, but ends up pulling the entire dataset onto the driver when
k is as large or larger than the size of data in a single partition. For these cases, it is wiser
to sort the full dataset in a distributed manner using sortByKey and then take the first
k elements.
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numberCounts.map(_.swap).sortByKey().map(_.swap).take(5) 
14/10/06 13:19:08 INFO SparkContext: Starting job: sortByKey at <console>:18
...
14/10/06 13:19:08 INFO DAGScheduler: Job 2 finished: take at <console>:18, took 0.086740 s
res3: Array[(Int, Int)] = Array((87,73), (19,76), (75,76), (25,81), (22,81))

Swap the order of the tuples to sort on the numbers instead of the counts.

The methods above pull data into the driver, but often sampling is useful for creating
distributed datasets as a step in a pipeline. sample creates an RDD by sampling its parent
RDD. Like takeSample, it can function with and without replacement. It accepts an
argument that determines the number of elements to sample as a fraction of the size of
the parent RDD. When sampling with replacement, Spark accepts a value greater than
one, which is useful for blowing up the size of a dataset to stress test a pipeline. sam
ple is also useful for permuting data, which is good practice before running online
algorithms over it like stochastic gradient descent.

val bootstrapSample = rdd.sample(true, .6)

val permuted = rdd.sample(false, 1.0)

randomSplit returns multiple RDDs that, combined, would make up their parent. It is
particularly useful for tasks like splitting data into train and test sets.

fullData.cache()
val (train, test) = fullData.randomSplit(Array(0.6, 0.4))

File Formats
Spark examples commonly employ textFile, but it is usually recommended to store
large datasets in binary formats, both to take up less space and to enforce typing. Av‐
ro and Parquet files are the standard row and columnar formats respectively used to
store data on Hadoop clusters. Avro also refers to an in-memory representation of on-
disk data from both of these formats.

The following example demonstrates reading Avro fields with name and favorite_col‐
or fields.

import org.apache.hadoop.io.NullWritable
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.avro.generic.GenericRecord
import org.apache.avro.mapred.AvroKey
import org.apache.avro.mapreduce.AvroKeyInputFormat

val conf = new Job()
FileInputFormat.setInputPaths(conf, inPaths)
val records = sc.newAPIHadoopRDD(conf.getConfiguration,
  classOf[AvroKeyInputFormat[GenericRecord]],
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  classOf[AvroKey[GenericRecord]],
  classOf[NullWritable]).map(_._1.datum)

val namesAndColors = records.map(x =>
  (x.get("name"), x.get("favorite_color")))

Similarly, for Parquet:

import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.avro.generic.GenericRecord
import parquet.hadoop.ParquetInputFormat

val conf = new Job()
FileInputFormat.setInputPaths(conf, inPaths)
val records = sc.newAPIHadoopRDD(conf.getConfiguration,
  classOf[ParquetInputFormat],
  classOf[Void],
  classOf[GenericRecord]).map(_._2)

val namesAndColors = records.map(x =>
  (x.get("name"), x.get("favorite_color")))

Note that Avro supports two kinds of in-memory representation:

• Avro generics, shown above, represent records as a map from String keys to Ob
ject values. They are the easiest to get started with when exploring a new dataset,
but suffer from some inefficiencies, such as the need to wrap primitive types in
objects.

• Avro specifics use code generation to create Java classes that correspond to the Avro
types. They are omitted here for the sake of brevity, but the GitHub repository
associated with this book includes an example.

Spark Subprojects
Spark Core refers to Spark’s distributed execution engine and the core Spark APIs de‐
scribed in the previous chapter. In addition to Spark Core, Spark contains a gaggle of
subprojects that offer functionality on top of its engine. These subprojects, detailed
below, lie at different stages of development. While the core Spark APIs will remain
stable and maintain compatibility, the APIs of subprojects marked alpha or beta are
subject to change.

MLlib
MLlib provides a set of machine learning algorithms written on top of Spark. The project
aims for high quality implementations of standard algorithms, focusing on maintain‐
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ability and consistency over breadth. At the time of this writing, MLlib supports the
following:

Table 13-1. MLlib Algorithms
Discrete Continuous

Supervised Decision Forests, Naive Bayes, Linear Support
Vector Machines, Logistic Regression and
Regularized Variants

Linear Regression and Regularized Variants (Ridge/L2, LASSO/
L1), Decision Forests

Unsupervised K-means Clustering Singular Value Decomposition, UV Decomposition through
Alternating Least Squares

MLlib represents data as Vector objects, which may be sparse or dense. It contains some
light linear algebra functionality for operating on Matrix objects, which represent local
matrices, and RowMatrix objects, which represent distributed collections of vectors. For
laying out and manipulating data under the covers, it relies on Breeze, a Scala linear
algebra library.

At the time of this book’s writing, MLlib is a beta component, meaning that some APIs
may change in future releases.

Several chapters in this book make use of MLlib’s algorithms:

• Chapter 3 uses MLlib’s alternating least squares implementation for making rec‐
ommendations.

• Chapter 4 uses MLlib’s random decision forests implementation for classification.
• Chapter 5 uses MLlib’s K-means clustering implementation for anomaly detection.
• Chapter 6 uses MLlib’s singular value decomposition implementation for text anal‐

ysis.

Spark Streaming
Spark Streaming purposes the Spark execution engine for processing data continuously.
Where Spark’s typical batch processing executes jobs over large datasets at once, Spark
streaming aims for low-latency (in the hundreds of milliseconds): as data becomes
available, it needs to be transformed and dealt with in near real time. Spark streaming
functions by running jobs over the small batches of data that accumulate in small time
intervals. It is useful for rapid alerting, supplying dashboards with up-to-date informa‐
tion, as well as cases that require more complex analytics. For example, a common use
case in anomaly detection is to run K-means clustering on batches of data, and to trigger
a warning if the cluster centers deviate from what is normal.
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Spark SQL
Spark SQL uses the Spark engine to execute SQL queries - either on datasets stored
persistently in HDFS or on existing RDDs. It enables manipulating data with SQL state‐
ments within a Spark program.

import org.apache.spark.sql.hive.HiveContext

val sqlContext = HiveContext(sc)

val schemaRdd = sqlContext.sql("FROM sometable SELECT column1, column2, column3")
schemaRdd.collect().foreach(println)

Spark SQL’s core data structure is a SchemaRDD, an RDD with Schema information that
gives a name and type for each column. SchemaRDD s can be created by programmatically
annotating existing RDDs with type information, or by accessing already Schema’d data
stored in Hive, as shown above.

At the time of this book’s writing, Spark SQL is an alpha component, meaning that some
of its APIs may change in future releases.

GraphX
Spark contains a subproject called GraphX that leverages its engine for graph processing.
In computer science, the word graph refers to structure consisting of a set of vertices
connected by a set of edges. Graph algorithms are useful for tasks like examining the
connections between users in a social network, understanding the importance of pages
on the internet based on what pages link to them, or running any analyses that depend
on the connectivity structure between entities. GraphX represents graphs with a pair of
RDDs - an RDD of vertices and an RDD of edges. It exposes an API similar to that of
Google’s Pregel graph processing system, and can express common algorithms like Pag‐
eRank in only a handful of lines of code.

At the time of this book’s writing, GraphX is an alpha component, meaning that some
of its APIs may change in future releases. Chapter 6 makes use of a variety of GraphX’s
capabilities for analyzing citation graphs.
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