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ABSTRACT	  	  

In cancer research, background models for mutation rates have been extensively calibrated in coding 
regions, leading to the discovery of many driver genes, mutated more than expected. Noncoding 
regions are also associated with disease; however, background models for them have not been 
investigated in much detail. This is partially due to limited noncoding functional annotation. Also, great 
mutation heterogeneity and potential correlations between neighboring sites give rise to substantial 
overdispersion in mutation count, resulting in problematic background rate estimation. Here, we 
address these issues with LARVA. This computational framework integrates a comprehensive set of 
noncoding functional elements, modeling their mutation count with a beta-binomial distribution to 
handle overdispersion. Moreover, LARVA uses regional genomic features such as replication timing 
to better estimate local mutation rates and mutational enrichments. We demonstrate LARVA’s 
effectiveness on 760 cancer genomes, showing that it identifies well-known noncoding drivers, such 
as the TERT promoter. Furthermore, LARVA highlights several novel highly mutated regulatory sites 
that could potentially be noncoding drivers. We make LARVA available as a software tool, and 
release our results, including all highly mutated annotations, as an online resource 
(larva.gersteinlab.org). 

INTRODUCTION	  

Genomes of numerous patients have been sequenced (1-5), opening up opportunities to identify the 

underlying genetic causes for complex disease (6-9) and develop more effective therapies targeted at 

specific molecular disease subtypes (10). Most of these studies have so far focused on identifying 

mutations and defects in the protein coding regions, or exomes, of disease genomes (2,11-14). These 

methods usually search for coding regions with higher than expected mutation frequencies in protein 

coding genes through rigorous background mutation rate control over a variety of genomic features 

(11). Such methods have been successfully used on numerous cancer genomes (15).  However, the 

noncoding regions, which comprise more than 98% of the human genome, were rarely investigated, 

primarily due to the difficulty of functional interpretation of noncoding variants. 

Recent genome annotation analysis has revealed a significant portion of the human genome is 

functional in a certain tissue or development stage (16,17), and several noncoding variants has been 

implicated in disease (18).  For example, several genome-wide association studies (GWASs) studies 

have discovered the phenotypic effect of common noncoding variants in regulatory regions (19,20). 



Other studies have reported that noncoding TERT mutations drive cancer progression in multiple 

tumor types, including melanomas and gliomas (21-23).  Moreover, mutations in the promoter regions 

of PLEKHS1, WDR74 and SDHD were also identified as recurrent driver mutations in some cancer 

types (24). In another example, analysis of the miRNA-binding sites on BRCA1 and BRCA2, the 

established drivers of breast cancer, indicated that certain variants in these sites are associated with 

increased risk of early onset breast cancer (25). Histones also serve as important noncoding 

regulators, as demonstrated in an analysis of a histone H1 variant linked to oncogene expression in 

ovarian cancer (26). In light of these discoveries, and the growing availability of whole-genome 

sequencing data (2,27-32), a statistical framework facilitating the identification of highly mutated 

noncoding mutations would be useful. 

More recently, a genome wide computational effort has been made to discover the noncoding 

regions with higher mutation burden in cancer genomes (24). Weinhold et al. called whole genome 

somatic variants for human tumor sequences from The Cancer Genome Atlas (TCGA) (28), and 

analyzed the variants that fall into noncoding annotations. A p-value was computed for each 

annotation reflecting the likelihood that the given annotation had more variants than expected from 

background mutation processes, which was modelled with a binomial distribution. It successfully 

identified some known noncoding drivers, such as the TERT promoter, and reported some novel 

candidates that were not discovered previously. The use of the binomial distribution is based on two 

assumptions: 1) the mutation rate is homogeneous; 2) variants mutate independently. However, 

cancer genomes often violate these assumptions. First, studies on the coding variants already proved 

that the mutation rates in cancer genomes demonstrate substantial cancer type, sample, and regional 

heterogeneity (11). Second, some passenger mutations are generated by other driver events, such as 

structural alterations and mutations in DNA replication or repair genes (33). In the human genome, 

there are many regions with high linkage disequilibrium (LD), one of several factors which leads to the 

correlated occurrences of mutations within these regions, including germline mutations and some 

somatic mutations. Hence, some degree of dependency is to be expected in human germline and 

somatic mutation landscape. Consistent with these statements, we observed that the somatic 

mutation counts in the noncoding elements exhibited substantially higher variance than expected, the 

so-called overdispersion, indicating that a binomial distribution might be potentially inadequate to 

handle such data, and the resultant p-values might be heavily inflated.  Hence, if this p-value inflation 

is not taken care of, a significance calculation based on a binomial distribution might report some 

artificial mutation hotspots by chance instead of real driver events. 

Here, we present a computational system, LARVA (Large-scale Analysis of Recurrent Variants in 

noncoding Annotations), that identifies highly mutated noncoding regulatory elements using whole 

genome sequencing (WGS) variant data from multiple genetic disease patients. LARVA treats the 

mutations counts within a given regulatory element as a beta-binomial distributed random variable. 

This design automatically accommodates the heterogeneous nature of mutation accumulation in 

cancer genomes and the potential dependency among neighboring loci by allowing the local mutation 

rate to be drawn from a beta distribution. Furthermore, we also divided the whole genome into several 



local bins and classified them using some known genomic confounders of the mutation rate, such as 

replication timing, for a more accurate local background mutation model. Such integrative analysis 

could potentially control the false positive rate in an effective manner. We demonstrate the usefulness 

of LARVA for finding both well-known and novel noncoding regulators with higher mutation burdens in 

a set of WGS cancer data that represents all the different types of whole genome sequenced cancers 

to our knowledge (see Methods for details). We release the noncoding annotations and the results in 

this paper as a potentially useful resource to researchers. Although designed for somatic variant 

analysis, the logic of LARVA can be immediately extended for germline variant analysis in complex 

diseases. The following sections describe LARVA’s concepts, their applications to the study of genetic 

disease, and our cancer findings.	  

MATERIAL AND METHODS	  

Whole genome cancer variant data	  

We collected whole genome cancer variant calls from a large number of previously sequenced cancer 

genomes. The majority of our data came from a set of 507 whole genome cancer samples published 

in Alexandrov et al. (27). This data spans breast cancer, lung cancer, leukemia, pancreatic cancer, 

pilocytic astrocytoma, medulloblastoma, liver cancer, and lymphoma (Fig 1 A and supplementary 

table 1). This was supplemented with a collection of 95 prostate cancer samples we obtained from 

publications (2,28-30), a set of 26 unpublished glial tumor samples, 32 kidney cancer samples from 

the TCGA (28), a set of 100 stomach cancer samples from Wang et al. (31). 

 

Quality control of the WGS variants 

A number of genomic regions are known to have poor read mappability due to sequence phenomena 

that cause ambiguous mapping results, such as a large number of tandem repeats. These regions are 

known as signal artifact blacklist regions (34). Since it is likely that variant calls in these regions are 

possibly inaccurate, we opted not to use these regions or any intersecting variants in our mutation 

rate calculations (details in Fig. S1). Blacklist regions were derived from (34), and downloaded from 

the UCSC Genome Browser. Variants intersecting these regions, as determined by BEDTools (35), 

were removed from the analysis. 

	  

Noncoding annotation summary 

Our analysis covered a range of noncoding regulatory annotations. The GENCODE v16 main 

annotation file was parsed to derive the coordinates of regulatory annotations close to gene regions, 

including promoters and untranslated regions (UTRs)(36). Transcription factor (TF) binding sites were 

derived from the Chip-seq experiments conducted as part of the ENCODE project (37). We collected 

the full list of TF binding sites in all possible tissues and cell lines from ENCODE. Distal regulatory 

modules (DRM) enhancers, which regulate the expression of genes at non-adjacent sites, were 

derived from (38). Another class of regulators, the Dnase I hypersensitive (DHS) sites (39), were also 

derived from the ENCODE project. Additionally, we added a set of sites deemed “ultra-conserved” in 



(40) due to their extremely high level of conservation across many species. Furthermore, we used a 

set of “ultra-sensitive” sites from (41), so named because they are noncoding regions under higher 

selective pressure from the population genetics perspective. Finally, similar to the 2500bp promoter 

sites, we studied the more proximal transcription start sites (TSSes) by extracting the 100bp regions 

immediately upstream of GENCODE gene coding annotations (36). Table 1 summarizes the 

noncoding annotations. 

Pseudogenes are known hot spots for artifacts due to their high context resemblance to their 

parent genes. In order to avoid potential variant calling bias, partially due to mapping difficulty, we 

removed the promoters, TSS, and UTR analyses for pseudogenes in the GENCODE annotation 

(details in Fig. S2 Text S1 section 1). 

Models used for significance evaluation of mutation burden 

The mutation counts for each regulatory element were calculated from the 760 cancer genomes 

mentioned above. For each regulatory element category, three models were used to calculate the 

mutation rate that would be expected due to background stochastic mutation processes for 

significance evaluation.  

Suppose there are k  noncoding regulatory elements (e.g. TF binding sites) to be analyzed. For 

the ith  element, let ni  stand for the total number of nucleotides. xi  and p  represent the number of  

mutations within element i  and the probability of observing a mutation in each position. Some 

previous models (24,42) assumed that p  is constant over the entire genome and mutations occur in 

an independent way. Hence, in model 1 xi  can be described as a binomial distribution. 

xi :Binomial ni, p( ) 	   	   	   	   	   	  
1 

However, due to the heterogeneous nature of the cancer genomes and the possible dependencies 

among neighboring loci, large overdispersion was found in the mutation count data (as seen in Fig. 4 

in the result section). As a result, we first improved model 1 into a two-layer hierarchical model (model 

2). Instead of setting p  as a constant, we allow it to be drawn from a beta distribution with two 

parameters µ  and σ  indicating the average mutation rate and overdispersion respectively (details in 

Text S1). As a result, the marginal distribution of xi  follows a beta-binomial distribution. 

xi p :Binomial ni, p( )
p :Beta µ,σ( ) 	   	   	   	   	  

2 

Furthermore, mutation rates were known to be confounded by a lot of genomic features, such as 

replication timing (represented by R ), so we further divided the noncoding regulatory elements into 



10 bins according to the averaged replication timing signal. Within each bin, we assumed that the 

mutation rate follows the same distribution. Therefore, model 3 can be represented as  

xi p :Binomial ni, p( )
p :Beta µ R,σ R( )
µ R,σ R : constant within the same R bin

	   	   	   	  

3. 

Method of maximum likelihoods was used for model 1. The moment estimator mentioned in (43,44) 

was used to estimate the parameters in model 2 and 3, and the p-values were calculated accordingly 

for the three models (for details see section 2 in Text S1). 

Workflow of LARVA 

Workflow of LARVA was given in Fig. 1B. The cancer variants in VCF format pass through a quality 

control filter that includes removing those variants that fall into blacklist regions. The preprocessed 

variants, along with our collected set of noncoding annotations that do not overlap blacklist regions, 

are used in the main computation. The main processing step includes counting all variant 

intersections with the noncoding annotations. DNA replication timing was used in model 3 for local 

mutation rate corrections. For each annotation category, the background mutation model was 

calculated using model 1-3 mentioned above, and p-values were given accordingly. 

Release of data 

We release the noncoding annotations, the mutation counts, and the corresponding p-values on the 

760 cancer genomes used in this paper as a potentially useful resource to facilitate cancer 

researchers for driver event discovery and validation in the future. The data can be directly 

downloaded from larva.gersteinlab.org. 

RESULTS	  

Overview of the annotated noncoding variants on various cancer genomes 

We sought to study the whole genome somatic mutation patterns of as many different cancer patients 

as possible. To that end, we collected whole genome cancer variant call sets from a range of cancer 

data repositories (27,28) and publications (2,27,29-32). Our data spans 760 genomes, and includes 

14 types of cancer (Fig. 1A and Supplementary Table S1). In all these samples, the percentage of 

coding variants were summarized in Table S2.  

As shown in table 1, our noncoding annotation list spans approximately 30% of the human 

genome. We observed different cancer types demonstrate distinct mutational preferences over these 

noncoding regions. To illustrate this phenomenon, we used 11 types of cancer from our overall 

dataset for which there are at least 20 samples and calculated the fraction of WGS mutations within 

each noncoding element category (boxplots of various colors in Fig. 2). The overall nucleotide 



percentage of each annotation over the genome was used as the background (black dashed lines in 

Fig. 2). In one instance representative of the large differences observed between cancer types, 

variants in kidney cancer was found to be preferentially located in the TF binding site while lung 

adenocarcinoma is mutation depleted in this region (0.140 average vs. 0.098 average, in Fig. 2). A 

large sample difference was also observed in several cancer types. For instance, within Pilocytic 

Astrocytoma, there are samples that have a TF binding peak mutation fraction as high as 0.252 and 

as low as 0.011, which represents a ~23-fold difference. Hence, it is important to understand the 

mutation patterns in these noncoding annotations, and take their unique characteristics into 

consideration. 

Large cancer type, sample, regional heterogeneity of cancer genomes, and the potential 

dependency among neighboring regions violate the binomial assumption 

In (24), the mutation burden tests are performed based on the binomial distribution, which inherently 

assumes a constant mutation rate and completely independent mutation events. However, these 

assumptions might not be appropriate for either somatic or germline variant analysis. 

First, in our analysis of hundreds of WGS somatic mutation signatures, we observed huge cancer 

type, sample, and regional somatic mutation rate heterogeneity. To demonstrate cancer type and 

sample mutation rate heterogeneity, we selected all cancer types with more than 20 samples in it. We 

split the human genome into 1 mega basepair (Mbp) size bins, and intersected the individual sample 

variants from our data set to calculate the mutation rate of each sample. Consistent with the analysis 

in coding regions (11), we observed huge mutation rate differences between cancer types. For 

instance, the average whole genome mutation rate in stomach cancer is as high as 11.389 

mutations/Mbp (Fig. 3A), which is ~800 times the mutation rate in medulloblastoma (0.0142, Fig. 3A). 

Furthermore, the whole genome mutation rate also fluctuates wildly across samples, and such 

changes may go as high as 100 times within the same cancer type (0.359 vs. 21.8 in breast cancer, 

for example). Additionally, to illustrate regional mutation rate heterogeneity, we randomly selected 50 

one-megabase-length regions to calculate the mean and standard deviation (SD) of the local mutation 

rate across samples in lung cancer and prostate cancer (Fig. 3B). As shown in Fig. 3B, the average 

local mutation rate may vary from 0 to 50.8 mutations/Mbp across the randomly selected bins, and the 

SD range is unusually huge for each bin. Similar results were also observed in prostate cancer (Fig. 

3B). 

Several biological signatures could partially explain the observed mutation rate heterogeneity. For 

example, the later replicating regions usually suffer from accumulative DNA damage, and therefore 

are prone to mutations (45). Furthermore, methylated cytosines in CpG sites are often unstable and 

undergo deamination to thymine, which yields a C to T transition (33). Hence, there is a noticeable 

mutation rate difference at CpG and non-CpG sites. Several other hypotheses were also proposed 

and summarized in Hodgkinson and Eyre-Walker’s review paper (33). 



Second, mutation events might not be independent of each other. For example, in germline 

mutation analysis, mutations with high LD are prone to co-occur. Additionally, some passenger 

mutations are generated by other driver mutations. The driver mutation might be a mutation in a DNA 

replication or repair gene. Moreover, some structural variations, such as long insertions or deletions, 

might cause problems in pairing during meiosis and thus generate additional point mutations in 

neighboring regions (46). Consistent with this hypothesis, the mutation rates of the surrounding 

structural variations are elevated in several eukaryotic species (46-48).  

Perhaps due to the violation of these two assumptions, we observed a much higher than expected 

variance in the mutation count data. For example, at a 10kb bin resolution, the observed mutation 

count variance is 7.679 times of the expected value under the binomial assumption. Hence, it is 

necessary to introduce other statistical models to handle such overdispersion in the mutation count 

data. 

Improved mutation count fitting through a beta-binomial distribution 

As discussed in the previous section, a binomial distribution model used in (24), which assumes a 

constant mutation rate and independent mutation process, could be problematic in more practical 

data analysis applications when the mutation counts are highly overdispersed.  Hence, we first 

proposed a two-layer model to fit the variant count data (model 2 in the Methods section). Instead of 

setting a constant mutation rate, our model treated the mutation rate as a beta-distributed random 

variable, which flexibly provides the underlying mutation rate with desired mean and variance 

properties. Then the mutation counts within each regulatory element could be easily modelled as a 

beta-binomial distribution (details in Methods section).  

We fitted the mutation count data at a 10kb bin resolution of the 760 WGS cancer genomes under 

the fixed (binomial) and variable (beta-binomial) mutation rate assumptions in Fig. 4.  We calculated 

the frequency of the observed mutation count in each bin and compared it with the binomial (model 1) 

and beta-binomial (model 2) fittings respectively. Fig. 4A shows that the observed data demonstrates 

much heavier tails than the binomial distribution, while the beta-binomial distribution fits the right tail 

very well. In order to quantitatively exhibit the improved performance of beta-binomial fitting, we 

utilized Kolmogorov-Smirnov (KS) statistics to compare the two distributions with the observed data in 

a nonparametric way. A larger KS statistic indicates a higher level of deviation between the two 

distributions. Specifically, 1000 bins were drawn from beta-binomial and binomial fitted distributions 

separately to calculate the KS statistic against the randomly sampled 1000 mutation counts from the 

observed data. This scheme was repeated 1000 times and the cumulative distribution function 

(C.D.F) of the KS statistics were given in Fig. 4B.  The median KS statistic value for the beta-binomial 

distribution was 0.087, significantly smaller than 0.218 of the binomial distribution (p-value for two-

sided Wilcoxon test < 2.2×10−
16, boxplots given in Fig. 4C).  Different bin sizes were analyzed using 

the sample method and results were similar (Fig. S3-S4). In order to avoid overfitting, we utilized half 

of the data for distribution fitting, and the remaining half as the input to calculate the KS statistic for 

evaluation. This scheme was repeated 100 times. The beta-binomial distribution still significantly 



outperforms the binomial distribution (0.0821 vs. 0.216, p-value for two sided Wilcoxon test < 

2.2×10−
16, Fig. S5). Hence, the improved performance of the beta-binomial distribution is due to its 

enhanced flexibility to handle the overdispersed mutation count data instead of overfitting. 

In the significance analysis, p-values were usually calculated from the right tail of the null 

distribution. However, the huge deviation of the binomial distribution from the observed one could 

potentially introduce huge p-value inflation, and consequently result in numerous false positives. We 

defined the p-values for the observed distribution as the percentage of bins with equal or larger 

mutation counts. However, the improved fitting of the beta-binomial distribution could solve this 

problem and provide more accurate p-value assessment. 

Local background mutation rate calculation through replication timing correction further 

controls false positives and false negatives  

Recently, several computational efforts have been made to link somatic mutation rates with several 

genomic features in protein-coding regions (11,33). A particularly well-known example is DNA 

replication timing. During replication, the single stranded DNA usually accrues endogenous DNA 

damage, such as oxidation and deamination (45). Hence, DNA that is replicated in a later stage would 

be susceptible to the effects of accumulative damage, and would be prone to all classes of 

substitutions. Consistent with this assumption, scientists observed that the later replicating regions 

demonstrate remarkably higher mutation rate (45). Although replication timing has been used 

successfully to calculate the background model in the coding regions, little work has been done in the 

noncoding regions in cancer genomics. Hence, we explored the effect of replication timing on the 

mutation rate calculation (model 3 in the methods section), and the consequential effect on the p-

value evaluation. 

Using 1kb bins, we counted the average replication timing value within the bin, and then separated 

the top and bottom 10% of replication timing bins for mutation rate calculation. As shown in Fig. 5A, 

we observed noticeable differences in the mutation rate vis-a-vis the replication timing signal. The 

average mutation count of the 760 samples was 1.200 for the bottom 10% replicating timing bins, as 

compared to 4.028 for the top 10% counterparts (p-value for two-sided Wilcoxon test < 2.2×10−
16). A 

KS test was performed to determine whether these two sets of mutation counts data follow the same 

distribution, and the p-value is less than 2.2×10−
16, indicating that the two distributions are significantly 

different. 

Moreover, we observed that the mutation counts data for bins with similar replication timing values 

still shows extensive overdispersion. For example, for the bottom 10% of replication timing bins, the 

observed variance of mutation counts was 4.168, which is 3.477 times that under the binomial 

assumption. Consistently, we observed poor fitting of binomial distribution against the observed 

distribution, especially in the right tails (Fig. 5A). The huge deviation in the right tails would result in 

huge p-value calculation inflation as shown in Fig. 5B. The p-value for 16 mutations in the bottom 

replication timing 1kb region from the empirical distribution shows only marginal significance 



(3.994×10−
4), but the binomial distribution could inflate it to 2.585×10−

13 due to its bad fitting of the 

heavy tails on the right side. But our beta-binomial distribution rigorously controls the p-values through 

the flexible mutation rate assumption (p-value = 1.002×10−
3). We demonstrated the better p-value 

curve of the beta-binomial distribution in a variety of data points and replication timings, indicating the 

robustness of our method (Fig. 5B).  

Additionally, the replication timing effect correction further improves the p-value calculation to avoid 

potential false positives and false negatives. For instance, for a region among the top replication 

timing regions, 8 mutations in 1kb bin would give a p-value at 0.094 after replication correction from 

the beta-binomial model, but might be reported as positive when ignoring replication timing effect (p-

value = 0.038 from beta-binomial by mixing the top and bottom 10% replication timing points).  

Similarly, a p-value of 0.064 would reject 7 mutations within 1kb bin as significant without correction.  

However, if this point comes from the bottom 10% of replication timing regions, the true p-value 

should be 0.030 due to its relatively lower local mutation rate. Hence, it is important to perform 

covariate correction before calculating p-values. 

LARVA discovered a list of highly recurrent noncoding regulatory regions from WGS data 

We first applied LARVA to the 760 genomes’ variants, intersecting them with the noncoding regions 

listed in Table 1.  In total, LARVA reported 3964 and 3776 highly mutated regions before and after 

replication timing corrections, respectively (as shown in Table 2). On the other hand, the binomial 

distribution models reported at least 30 times more regions as significant because of the 

aforementioned p-value inflation, giving rise to a high false positive rate. We also tested the 

immediate 100bp upstream of every possible transcription start site (see Methods for details), the 

results of which are depicted in Fig. 6B.  Forty-five TSSs passed the 0.05 p-value thresholds after p-

value adjustment (BH method, (49)).  Consistent with previous studies, we observed that the TSS for 

TERT came up in the top regions (Fig. 6B), and the oncogene TP53 also ranked second among all 

sites. LMO3, which ranked third after replication timing correction, is a protein-coding oncogene that is 

predominantly expressed in brain tissue. It has been reported to be involved in a variety of cancer 

types, such as lung cancer (50) and neuroblastomas (51). PRRC2B’s TSS was reported as the most 

significantly recurrent region among all TSSes. It is a protein-coding gene that is extensively 

expressed in brain tissue, but to the best of our knowledge, there is no study to show the link of 

PRRC2B to cancer. Further investigations should be performed for the purpose of validation. Similar 

results were given for promoters and UTR regions as well. We selected all the genes with highly 

mutated TSSes, promoters, or UTRs (adjusted p-values after corrections ≤ 0.05) and performed GO 

analysis (http://amigo.geneontology.org, (52)). The top three enriched GO terms are: “negative 

regulation of fibroblast proliferation”, “regulation of extrinsic apoptotic signaling pathway in absence of 

ligand”, and “regulation of cell growth”.   

In terms of transcription factor binding sites, LARVA identified 2054 out of the 5,710,954 binding 

sites as highly recurrent (0.036%). The transcription factor CTCF had 852 binding sites reported as 



significant (Table 3). CTCF is a multifunction protein that is linked with multiple cancer types (53). 

Specifically, several studies have reported that disruption of CTCF binding sites through mutations or 

abnormal methylation sites is closely associated with cancer (54,55). Moreover, we found that the 

oncogene BCL3 has a noticeably higher significant percentage with respect to the average (7.721 

times of the average, p-value for two-sided binomial test = 6.762×10−
13). Interestingly, BCL3 is a proto-

oncogene candidate which is closely associated with progression of diverse solid tumors (56). For 

example, BCL3 is aberrantly up- and down-regulated in breast cancer and nasopharyngeal 

carcinomas respectively, and is also reported to be strongly associated with survival in colorectal 

cancer.  However, it is not a highly mutated gene according to our data: BCL3’s mutation rate is 1.22 

mutations/Mbp while the gene average is 2.52 mutations/Mbp. Our analysis suggests another 

possibility: the misregulation of BCL3 may be due to binding site disruption instead of the changes in 

the protein itself. Further computational and experimental effort should be made to clarify the 

mechanism of BCL3 regulation in different cancer types. 

Whole genome recurrent events evaluation 

Despite great efforts to annotate noncoding regions, there are still many regions with as yet unknown 

regulatory roles. In order to evaluate the recurrent events in these regions, LARVA provides all 

possible p-values, whether before or after adjustment, and with or without replication timing 

corrections, for high confidence bins on the genome (see Methods for details) of variable length. We 

also compared the results from our beta-binomial model with the binomial models. For example, we 

randomly sampled five thousand 10kb bins from the whole genome and made a Manhattan plot of p-

values from both methods. It is obvious that the p-values from the binomial distribution were 

noticeably inflated (Fig. 7B), while our beta-binomial model effectively controls the p-values (Fig. 7A). 

DISCUSSION	  

Due to the rapid decline in time and money involved to perform whole genome sequencing, data is 

now available for thousands of genomes where previously only a handful were available (57). 

However, the analyses necessary for finding useful patterns in this data, and making sense of it for 

clinical benefit, have not kept pace with this sudden increase. Therefore, it is important that new 

algorithms are developed that can efficiently mine relevant patterns from genome sequence data, and 

that user interfaces for finding and understanding that data are optimized so that clinicians and 

biologists, who may not have extensive technical expertise, can use these results effectively in their 

work. 

Compared with the extensive computational and experimental efforts on the mutation patterns in 

the protein-coding regions in the past decade (58), the noncoding regions, which were viewed as 

‘dark matter’, and comprise up to 98% of the human genome, are barely investigated in cancer 

research studies, partially due to the limited knowledge of noncoding function. However, recently 

several examples clearly pinpointed the phenotypic effect of mutations in noncoding regulatory 

regions in a variety of cancer types. For instance, TERT promoter, a well-known example, has been 



associated with several cancer types (21-23). Fusions of the 5’ UTR of TMPRSS2 with ETS genes 

frequently observed in prostate cancer, as well as mutations in certain miRNA binding sites (59), can 

influence the binding affinity at these sites, and thus affect androgen receptor regulation in prostate 

cancer.  Hence, it is important to explore the mutation landscapes of such noncoding regions. 

In this paper, we have introduced a new computational framework for exploring patterns of 

mutation across either somatic or germline variants, especially in the noncoding regulatory regions of 

human genomes. We took advantage of the complete genome annotation efforts of the ENCODE 

project (16) to extract the most extensive catalog of noncoding regulatory regions to date.  We 

included the TF binding sites and DHS sites from all ENCODE experiments, promoters, UTRs, 

predicted enhancers, conserved and sensitive noncoding regions from our previous efforts (18). We 

then explored 760 cancer genomes on this comprehensive list of noncoding annotations to search for 

the highly mutated regulatory regions as potential noncoding driver candidates. 

Moreover, consistent with the highly heterogeneous protein coding regions (11), we observed 

larger than expected mutation variation across cancer types, samples, and genomic regions (Fig. 3).  

Therefore, the recently proposed binomial models, which assume a constant mutation rate and 

independence of mutation events, might be inadequate for the observed data (Fig. 4, Fig. S3-S4). 

Instead, we set up two hierarchical models to handle mutation count overdispersion (model 2 and 

model 3 in the Methods section). First, we flexibly modeled the mutation rate in the regulatory 

elements as a two-parameter beta distribution, hence the corresponding mutation count could be 

conveniently described as a beta-binomial distribution.  It provided significant improvement over the 

binomial model. In addition, we found that other genomic features, such as replication timing, would 

largely affect the background mutation rate (Fig. S6) and consequently generate both false positives 

and negatives.  We corrected the replication timing effect by estimating the local mutation parameters 

in the beta-binomial distribution for better p-value assessment. 

In the 760 cancer whole genomes in our analysis, we discovered 3776 noncoding regulatory 

regions that have significantly higher mutations than expected and provided the mutation enrichment 

significance of bins with variable length on the whole genome (Table 2).  A list of known noncoding 

hypomutated regions, such as TERT and TP53 TSS, were also reported by our analysis, which 

convincingly proved the effectiveness of LARVA in discovering functionally relevant results. We also 

observed some relatively novel results such as PRRC2B TSS, CTCF and BCL3 binding sites. BCL3 is 

a known oncogene that is highly associated with several solid tumors (56,60), but this gene itself is 

not enriched in somatic mutations. Our results advocate an alternate possibility: its mutation in cancer 

cells is actually in the disruption of its binding sites, rather than the disabling of the protein itself. We 

released our results to the public, which would potentially serve as a useful resource for cancer 

researchers in the future. 

It is worth pointing out that although LARVA was naturally designed to analyze somatic variants, it 

can be immediately extended to discover the hypermutated regions for germline variants. As with 

somatic variants, the germline mutation landscape demonstrates extensive heterogeneity and 



dependency, which cannot be properly handled by a binomial distribution. Furthermore, unlike GWAS 

common variants discovery, LARVA could combine both rare and common variants to assess the 

mutation burden in noncoding regulatory regions. Due to the popularity of studying rare variants in 

human genomes, LARVA could potentially serve as a powerful tool to discover hypermutated 

noncoding regulatory regions.  

LARVA’s complete design, in terms of both software and provided data, offers a new, convenient 

processing engine for whole genome mutation burden tests. Exome burden tests may be conducted 

with naturally defined regions—genes—to test for mutation burden. Whole genome burden tests, 

however, are hindered by the fact that many noncoding functional regions are poorly defined, if at all. 

LARVA unifies multiple noncoding annotation sets derived from a set of uniformly processed pipelines 

and experiments. These annotations are tested for mutation burden, and make it easy to understand 

the functional significance of each highly mutated region. 

One factor that may potentially improve LARVA’s effectiveness is the sequencing depth of the 

WGS experiments currently available. Insuffincient read coverage may result in undetected variants. 

Our plan is to incorporate additional, uniformly processed WGS data into LARVA as it becomes 

available in the future. Moreover, since there is no true gold standard dataset available to rigorously 

test LARVA’s sensitivity and specificity, its is difficult to accurately estimate the false positive and false 

negative rate. Hence, although not optimally designed for the coding region analysis, we applied 

LARVA on a group of whole exome sequencing data due to our better understanding of coding cancer 

drivers. Results showns that LARVA is able to find well-known coding genes that are assosciated with 

cancer.(see Text S1). 

In summary, LARVA is a powerful computational method to explore a broad range of genome 

annotations to uncover the ones that are mutated across many samples. LARVA makes it possible to 

predict putative noncoding drivers of genetic disease, and prioritize these predicted drivers for more 

rigorous downstream analysis. This may lead to faster identification of important targets that may be 

used to suppress disease with therapies and drugs. 

AVAILABILITY 

We make LARVA available as a software tool at larva.gersteinlab.org. We also make our data and 

results available at this URL, which includes our complete set of cancer variant data, noncoding 

annotations, and p-values computed by the LARVA software on this data. 
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TABLE AND FIGURES LEGENDS	  

Figure 1. (A) A pie chart representing the distribution of samples in our dataset of collected whole 

genome sequenced (WGS) cancers. (B) A flowchart of LARVA’s procedure for identifying significant 

highly mutated noncoding elements. Cancer variants in VCF format are passed through quality control 

filters, and then intersected with our noncoding annotation corpus. After factoring in regional mutation 

rate corrections, a beta-binomial distribution is fitted to the observed data, which allows the 

identification of elements with a significant mutational burden. 

Figure 2. Mutational heterogeneity between different types of cancer within several prominent classes 

of noncoding annotations. The percentage of mutations varies widely between noncoding element 

types, between cancer types, and between samples of the same cancer type. 

Figure 3. (A) Between samples of the same cancer type, there is huge mutation rate heterogeneity. 

For most cancers, the mutation rate spans several orders of magnitude. (B) Variation in the mutation 

rate across chromosome 1 in lung cancer (top) and prostate cancer (bottom). 

Figure 4. (A) The beta-binomial distribution (pink line) provides better fitting to the observed mutation 

counts at 10kb resolution (black line) of 760 cancer genomes, especially at the right tail as compared 

to the binomial distribution (turquoise line). (B) A comparison of the cumulative distribution function 

(CDF) of the binomial distribution and the beta-binomial distribution from part A. (C) Boxplots of the 

Kolmogorov-Smirnov (KS) statistics. 



Figure 5. The 1 kb genome bins representing the top 10% and bottom 10% of the DNA replication 

timing were used to derive an observed distribution of mutation counts, demonstrating the influence of 

replication timing. The fitted binomial and beta-binomial distributions are plotted as bar plots (A). P-

values at different mutation counts were given by the observed, beta-binomial, and binomial 

distribution. 

Figure 6. (A) The number of significant p-values implied by the beta-binomial distribution and the 

binomial distribution (with and without DNA replication timing correction). (B) A sorted p-value plot of 

the top significant TSSs derived from the LARVA analysis. 

Figure 7. Manhattan plot of the p-values from 5000 randomly samples 10kb bins from the beta-

binomial distribution (A) and the binomial distribution (B). The binomial distribution might provide 

heavily inflated p-values due to its inadequacy to capture the extensive overdispersion of the mutation 

count data.  

Table 1. List of noncoding annotations collected for LARVA’s analysis. 

Table 2. Number of significant recurrently mutated elements in each noncoding annotation class 

derived by LARVA 

Table 3. The top transcription factor binding sites (TFBSs) from LARVA’s analysis of our 760 cancer 

dataset. These findings may point to important regulatory disruptions in cancer. 

	  


